JP2017089634A - Turbine housing - Google Patents

Turbine housing Download PDF

Info

Publication number
JP2017089634A
JP2017089634A JP2016212634A JP2016212634A JP2017089634A JP 2017089634 A JP2017089634 A JP 2017089634A JP 2016212634 A JP2016212634 A JP 2016212634A JP 2016212634 A JP2016212634 A JP 2016212634A JP 2017089634 A JP2017089634 A JP 2017089634A
Authority
JP
Japan
Prior art keywords
sheet metal
inner cylinder
exhaust
scroll
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016212634A
Other languages
Japanese (ja)
Inventor
悟 横嶋
Satoru Yokoshima
悟 横嶋
飯島 徹
Toru Iijima
徹 飯島
公貴 戸張
Kimitaka Tobari
公貴 戸張
山本 隆治
Takaharu Yamamoto
隆治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Publication of JP2017089634A publication Critical patent/JP2017089634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbine housing capable of surely preventing occurrence of thermal deformation, cracking and the like, of a region at an exhaust outlet side of a scroll portion, and improving rigidity and durability.SOLUTION: In a turbine housing 10 including a scroll portion 20 configuring a scroll-shaped exhaust gas flow channel K between an exhaust inlet-side flange 12 configuring an inlet 12a of an exhaust gas B and an exhaust outlet-side flange 13 configuring an outlet 13a of the exhaust gas B, and discharging the exhaust gas to the exhaust outlet side through a turbine wheel 14 disposed on a central portion O of the scroll portion 20, a part of a flow channel face k of the exhaust gas flow channel K of the scroll portion 20 is formed by a scroll member 23 made of casting.SELECTED DRAWING: Figure 4

Description

本発明は、車両のターボチャージャ(ターボ過給機)に用いられるタービンハウジングに関する。   The present invention relates to a turbine housing used for a turbocharger (turbocharger) of a vehicle.

ターボチャージャに用いられるタービンハウジングとしては、鋳造製のものが一般的である。これに対し、板金製のタービンハウジングが例えば特許文献1により開示されている。これを、図10〜図12に示す。   As a turbine housing used for a turbocharger, a cast housing is generally used. On the other hand, a turbine housing made of sheet metal is disclosed in, for example, Patent Document 1. This is shown in FIGS.

図10〜図12に示すように、タービンハウジング1は、渦状の排気ガス通路を構成するスクロール部2と、このスクロール部2から突設され、排気ガスの出口となるタービン出口2bを構成するタービン出口構成配管7と、スクロール部2を外部の排気ガス通路(図示せず)とバイパスするバイパス通路5を構成するためにスクロール部2から突設され、タービン出口構成配管7と別体に並設されたバイパス通路構成配管6と、タービン出口構成配管7とバイパス通路構成配管6とで支持されるタービン出口フランジ4とを備えている。なお、図中符号2aはタービン入口を示し、符号3はタービン入口フランジを示している。   As shown in FIGS. 10 to 12, the turbine housing 1 includes a scroll portion 2 that forms a spiral exhaust gas passage, and a turbine that protrudes from the scroll portion 2 and forms a turbine outlet 2 b that serves as an exhaust gas outlet. An outlet constituting pipe 7 and a bypass passage 5 for bypassing the scroll portion 2 with an external exhaust gas passage (not shown) are provided so as to protrude from the scroll portion 2 and are arranged separately from the turbine outlet constituting pipe 7. And a turbine outlet flange 4 supported by the turbine outlet constituent pipe 7 and the bypass passage constituent pipe 6. In the figure, reference numeral 2a denotes a turbine inlet, and reference numeral 3 denotes a turbine inlet flange.

そして、タービンハウジング1は、タービン出口構成配管7とバイパス通路構成配管6の2つの配管によって、鋳物品で比較的重量のあるタービン出口フランジ4を支持している。   The turbine housing 1 supports the turbine outlet flange 4 having a relatively heavy weight with a cast article by two pipes, a turbine outlet constituent pipe 7 and a bypass passage constituent pipe 6.

特開2008−57448号公報JP 2008-57448 A

しかしながら、前記従来のタービンハウジング1では、スクロール部2が全て板金製で形成されているため、軽量ではあるが、熱により変形したり、亀裂等が発生し易く、耐久性の確保が難しかった。   However, in the conventional turbine housing 1, since the scroll portion 2 is entirely made of sheet metal, it is lightweight, but is easily deformed by heat, cracks, etc., and it is difficult to ensure durability.

そこで、本発明は、前記した課題を解決すべくなされたものであり、渦状の排気ガス流路を有したスクロール部の排気出口側の領域の熱変形及び亀裂等の発生を確実に防止することができると共に、剛性及び耐久性を向上させることができるタービンハウジングを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problem, and reliably prevents the occurrence of thermal deformation, cracks, and the like in the region on the exhaust outlet side of the scroll portion having a spiral exhaust gas flow path. An object of the present invention is to provide a turbine housing capable of improving rigidity and durability.

請求項1の発明は、排気ガスの入口を構成する排気入口側のフランジと前記排気ガスの出口を構成する排気出口側のフランジとの間に渦状の排気ガス流路を構成するスクロール部を備え、前記スクロール部の中心部に配設されたタービンホイールを経由して前記排気ガスを排気出口側に排出するタービンハウジングにおいて、前記スクロール部の前記排気ガス流路の流路面の一部を板金製より耐熱性の高い材料からなるスクロール部材によって形成したことを特徴とする。   According to a first aspect of the present invention, there is provided a scroll portion that forms a spiral exhaust gas flow path between an exhaust inlet side flange that constitutes an exhaust gas inlet and an exhaust outlet side flange that constitutes the exhaust gas outlet. In the turbine housing that discharges the exhaust gas to the exhaust outlet side via a turbine wheel disposed at the center of the scroll part, a part of the flow path surface of the exhaust gas flow path of the scroll part is made of sheet metal It is formed by a scroll member made of a material having higher heat resistance.

請求項2の発明は、請求項1記載のタービンハウジングであって、前記スクロール部の前記タービンホイールに相対向する部位を前記板金製より耐熱性の高い材料からなるスクロール部材によって形成すると共に、残りの部位を前記板金製のスクロール板材によって形成し、かつ、前記板金製より耐熱性の高い材料からなるスクロール部材の前記排気入口側のフランジ寄りの部位をその反対側の部位よりも厚肉に形成したことを特徴とする。   Invention of Claim 2 is the turbine housing of Claim 1, Comprising: The site | part which opposes the said turbine wheel of the said scroll part is formed with the scroll member which consists of a material more heat-resistant than the said sheet metal, and the remainder Is formed of the sheet metal scroll plate material, and the portion closer to the flange on the exhaust inlet side of the scroll member made of a material having higher heat resistance than the sheet metal is formed thicker than the opposite side portion. It is characterized by that.

請求項3の発明は、請求項1記載のタービンハウジングであって、前記渦状の排気ガス流路を構成するスクロール部を、分割された少なくとも2つの板金製の内筒分割体と前記タービンホイールに相対向する部位に位置する板金製より耐熱性の高い材料からなる内筒分割体とからなる内筒で構成し、前記内筒を分割された少なくとも2つの板金製の外筒分割体からなる外筒で所定間隔を空けて覆い、かつ、前記排気入口側の内筒を前記排気入口側のフランジに当接させると共に、前記外筒を前記排気入口側のフランジに溶接により固定したことを特徴とする。   The invention according to claim 3 is the turbine housing according to claim 1, wherein the scroll portion constituting the spiral exhaust gas flow path is divided into at least two divided inner cylinder divided bodies made of sheet metal and the turbine wheel. It is composed of an inner cylinder composed of an inner cylinder divided body made of a material having higher heat resistance than that made of sheet metal located in the opposite part, and the outer cylinder is composed of at least two sheet metal outer cylinder divided bodies. A cylinder is covered at a predetermined interval, the inner cylinder on the exhaust inlet side is brought into contact with the flange on the exhaust inlet side, and the outer cylinder is fixed to the flange on the exhaust inlet side by welding. To do.

請求項4の発明は、請求項1〜3のいずれか1項に記載のタービンハウジングであって、前記板金製より耐熱性の高い材料は、鋳造より形成されていることを特徴とする。   A fourth aspect of the present invention is the turbine housing according to any one of the first to third aspects, wherein the material having higher heat resistance than the sheet metal is formed by casting.

以上説明したように、請求項1の発明によれば、渦状の排気ガス流路を有したスクロール部の排気ガス流路の流路面の一部を板金製より耐熱性の高い材料からなるスクロール部材によって形成したことにより、スクロール部の排気出口側の領域の熱変形及び亀裂等の発生を確実に防止することができると共に、剛性及び耐久性を向上させることができる。   As described above, according to the invention of claim 1, a scroll member made of a material having a heat resistance higher than that of sheet metal is used for a part of the flow path surface of the exhaust gas flow path of the scroll portion having the spiral exhaust gas flow path. Thus, it is possible to reliably prevent the occurrence of thermal deformation, cracks, and the like in the region on the exhaust outlet side of the scroll portion, and to improve the rigidity and durability.

請求項2の発明によれば、スクロール部のタービンホイールに相対向する部位を板金製より耐熱性の高い材料からなるスクロール部材によって形成すると共に、残りの部位を板金製のスクロール板材によって形成して、スクロール部の排気ガス流路の流路面の一部を板金製より耐熱性の高い材料からなるスクロール部材によって形成し、かつ、板金製より耐熱性の高い材料からなるスクロール部材の排気入口側のフランジ寄りの部位をその反対側の部位よりも厚肉に形成したことにより、簡単な構造でスクロール部のタービンホイールに相対向する部位の熱変形及び亀裂等の発生を確実に防止することができると共に、剛性及び耐久性をより一段と向上させることができる。これにより、スクロール部とタービンホイールとのクリアランス(チップクリアランス)を簡単かつ確実に経時的に確保することができる。また、スクロール部の排気ガス流路の流路面の一部を板金製より耐熱性の高い材料からなるスクロール部材によって形成したことにより、排気出口側の熱容量が低下することがないため、排気浄化触媒の触媒暖気を促進して触媒を活性化させて、触媒浄化性能を向上させることができる。   According to invention of Claim 2, while forming the site | part which opposes the turbine wheel of a scroll part with the scroll member which consists of material with heat resistance higher than sheet metal, the remaining site | part is formed with the scroll board material made from sheet metal. A part of the flow path surface of the exhaust gas flow path of the scroll portion is formed by a scroll member made of a material having higher heat resistance than that made of sheet metal, and on the exhaust inlet side of the scroll member made of a material having higher heat resistance than that made of sheet metal By forming the part near the flange thicker than the part on the opposite side, it is possible to reliably prevent the occurrence of thermal deformation, cracks, and the like at the part of the scroll part facing the turbine wheel with a simple structure. At the same time, the rigidity and durability can be further improved. Thereby, the clearance (tip clearance) between the scroll portion and the turbine wheel can be easily and reliably secured over time. In addition, since a part of the flow path surface of the exhaust gas flow path of the scroll portion is formed by a scroll member made of a material having higher heat resistance than that of sheet metal, the heat capacity on the exhaust outlet side does not decrease, so the exhaust purification catalyst The catalyst warm-up can be promoted to activate the catalyst, and the catalyst purification performance can be improved.

請求項3の発明によれば、スクロール部を、分割された少なくとも2つの板金製の内筒分割体とタービンホイールに相対向する部位に位置する板金製より耐熱性の高い材料からなる内筒分割体とからなる内筒で構成し、内筒を分割された少なくとも2つの板金製の外筒分割体からなる外筒で所定間隔を空けて覆い、かつ排気入口側の内筒を排気入口側のフランジに当接させると共に、外筒を排気入口側のフランジに溶接により固定したことにより、内筒を外筒により保護することができると共に、外筒から外に排気ガスが漏れることを確実に防止することができる。また、排気ガスの熱によりスクロール部が熱膨張した場合であっても、排気入口側の内筒が排気入口側のフランジに摺動することによって、内筒の熱膨張による変位を許容することができる。これにより、スクロール部の熱膨張を有効に吸収することができる。   According to the invention of claim 3, the scroll part is divided into at least two divided inner cylinders made of sheet metal and an inner cylinder made of a material having higher heat resistance than that made of sheet metal located at a position opposite to the turbine wheel. The inner cylinder is covered with an outer cylinder made of at least two sheet metal outer cylinders divided at a predetermined interval, and the inner cylinder on the exhaust inlet side is covered on the exhaust inlet side. By abutting against the flange and fixing the outer cylinder to the flange on the exhaust inlet side by welding, the inner cylinder can be protected by the outer cylinder, and exhaust gas can be reliably prevented from leaking out of the outer cylinder. can do. Further, even when the scroll portion is thermally expanded due to the heat of the exhaust gas, the inner cylinder on the exhaust inlet side slides on the flange on the exhaust inlet side to allow displacement due to the thermal expansion of the inner cylinder. it can. Thereby, the thermal expansion of a scroll part can be absorbed effectively.

請求項4の発明によれば、板金製より耐熱性の高い材料として鋳造より形成された鋳物製のスクロール部材を用いたことにより、スクロール部の一部を構成する排気ガスの排気出口側の領域を簡単かつ確実に製造することができる。   According to invention of Claim 4, the area | region by the side of the exhaust outlet of the exhaust gas which comprises a part of scroll part by using the scroll member made from the casting formed by casting as a material more heat-resistant than sheet metal Can be manufactured easily and reliably.

本発明の第1の実施形態のターボチャージャに用いられるタービンハウジングの側面図である。It is a side view of the turbine housing used for the turbocharger of a 1st embodiment of the present invention. 上記タービンハウジングの正面図である。It is a front view of the said turbine housing. 上記タービンハウジングの背面図である。It is a rear view of the said turbine housing. 上記タービンハウジングの断面図である。It is sectional drawing of the said turbine housing. 上記タービンハウジングの板金製のスクロール部材と鋳物製のスクロール部材との接合状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the joining state of the scroll member made from a sheet metal of the said turbine housing, and the scroll member made from a casting. (a)は上記タービンハウジングの鋳物製のスクロール部材と排気管の接合状態を示す部分拡大断面図、(b)は同鋳物製のスクロール部材と排気管の別の接合状態を示す部分拡大断面図である。(A) is the elements on larger scale which show the joining state of the casting scroll member of the said turbine housing, and an exhaust pipe, (b) is the elements on larger scale which show another joining state of the scroll member made of the said casting, and an exhaust pipe It is. 図4中Y−Y線に沿う断面図である。It is sectional drawing which follows the YY line in FIG. 本発明の第2の実施形態のターボチャージャに用いられるタービンハウジングの断面図である。It is sectional drawing of the turbine housing used for the turbocharger of the 2nd Embodiment of this invention. 本発明の第3の実施形態のターボチャージャに用いられるタービンハウジングの断面図である。It is sectional drawing of the turbine housing used for the turbocharger of the 3rd Embodiment of this invention. 従来のターボチャージャに用いられる板金製のタービンハウジングを示す側面図である。It is a side view which shows the turbine housing made from sheet metal used for the conventional turbocharger. 上記従来の板金製のタービンハウジングの背面図である。It is a rear view of the conventional sheet metal turbine housing. 図11中X−X線に沿う断面図である。It is sectional drawing which follows the XX line in FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施形態のターボチャージャに用いられるタービンハウジングの側面図、図2は同タービンハウジングの正面図、図3は同タービンハウジングの背面図、図4は同タービンハウジングの断面図、図5は同タービンハウジングの板金製のスクロール部材と鋳物製のスクロール部材との接合状態を示す部分拡大断面図、図6(a)は同タービンハウジングの鋳物製のスクロール部材と排気管の接合状態を示す部分拡大断面図、図6(b)は同鋳物製のスクロール部材と排気管の別の接合状態を示す部分拡大断面図、図7は図4中Y−Y線に沿う断面図である。   FIG. 1 is a side view of a turbine housing used in a turbocharger according to a first embodiment of the present invention, FIG. 2 is a front view of the turbine housing, FIG. 3 is a rear view of the turbine housing, and FIG. FIG. 5 is a partially enlarged sectional view showing a joining state of a sheet metal scroll member and a casting scroll member of the turbine housing, and FIG. 6A is a casting scroll member and an exhaust pipe of the turbine housing. FIG. 6B is a partially enlarged sectional view showing another joined state of the cast scroll member and the exhaust pipe, and FIG. 7 is a sectional view taken along line YY in FIG. FIG.

図1〜図4に示すように、タービンハウジング10は、車両のターボチャージャ(ターボ過給機)のハウジングとして用いられ、吸入空気(吸気)Aの入口11aを構成する吸気入口側のフランジ11と、排気ガスBの入口12aを構成する排気入口側のフランジ12と、排気ガスBの出口13aを構成する排気出口側(排気流れ下流側)のフランジ13との間に備えられた渦状の排気ガス流路Kを構成するスクロール部としての内筒20と、この内筒20の排気出口側の箇所(円筒状部23d)に接続された排気管30と、これら内筒20と排気管30を隙間G(所定間隔)を空けて覆う外筒40とからなる所謂二重殻構造となっていて、排気入口側のフランジ12の入口12aから入った排気ガスBを、内筒20の旋回中心部(中心部)Oに配設されたタービンホイール14を経由して排気出口側のフランジ13の出口13aから排出するものである。   As shown in FIGS. 1 to 4, the turbine housing 10 is used as a housing of a turbocharger (turbocharger) of a vehicle, and includes a flange 11 on the intake inlet side that constitutes an inlet 11 a of intake air (intake air) A, and The spiral exhaust gas provided between the flange 12 on the exhaust inlet side constituting the inlet 12a of the exhaust gas B and the flange 13 on the exhaust outlet side (exhaust flow downstream side) constituting the outlet 13a of the exhaust gas B The inner cylinder 20 as a scroll part constituting the flow path K, the exhaust pipe 30 connected to a location (cylindrical part 23d) on the exhaust outlet side of the inner cylinder 20, and the gap between the inner cylinder 20 and the exhaust pipe 30 G has a so-called double-shell structure consisting of an outer cylinder 40 that covers G (predetermined intervals), and exhaust gas B that has entered from the inlet 12a of the flange 12 on the exhaust inlet side is sent to the center of rotation of the inner cylinder 20 ( Central part) Via the turbine wheel 14 disposed in those discharged from the outlet 13a of the exhaust outlet side of the flange 13.

図1に示すように、吸気入口側のフランジ11には外部から吸入空気Aを取り入れるコンプレッサ15が接続され、また、排気ガスBを放出する排気出口側のフランジ13には排気ガスBの有害な汚染物質を取り除く触媒コンバータ(排気ガス浄化装置)16が連結フランジ17と連結管18を介して接続されている。即ち、タービンハウジング10は、吸気側のコンプレッサ15と触媒コンバータ16の間に介在されている。   As shown in FIG. 1, a compressor 15 that takes in intake air A from the outside is connected to the flange 11 on the intake inlet side, and harmful to the exhaust gas B is connected to the flange 13 on the exhaust outlet side that discharges the exhaust gas B. A catalytic converter (exhaust gas purification device) 16 for removing pollutants is connected to a connecting flange 17 and a connecting pipe 18. That is, the turbine housing 10 is interposed between the compressor 15 on the intake side and the catalytic converter 16.

図2及び図4に示すように、内筒(スクロール部)20がハウジング内部の排気ガスBの渦巻き状の排気ガス流路Kを実質的に区画形成し、外筒40は内筒20及び排気管30を隙間(所定間隔)Gを空けて完全に覆い、内筒20及び排気管30を保護すると同時に断熱し、かつ、タービンハウジング10としての剛性を高める役割を担う外殻構造体をなしている。   As shown in FIGS. 2 and 4, the inner cylinder (scroll portion) 20 substantially defines and forms a spiral exhaust gas flow path K of the exhaust gas B inside the housing, and the outer cylinder 40 includes the inner cylinder 20 and the exhaust gas. The pipe 30 is completely covered with a gap (predetermined interval) G, and the inner cylinder 20 and the exhaust pipe 30 are protected and insulated at the same time, and an outer shell structure that plays a role of increasing the rigidity as the turbine housing 10 is formed. Yes.

図4に示すように、内筒20は、タービンホイール14のタービン軸14aの軸方向Lに直交する方向で2分割形成された板金製で薄板状のスクロール部材から成る第1内筒分割体21及び第2内筒分割体22と、タービンホイール14に相対向する部位(排気ガスBの排気出口側の領域)に位置する板金製より耐熱性の高い材料として鋳造より形成された鋳物製のスクロール板材から成る第3内筒分割体23とから構成されている。   As shown in FIG. 4, the inner cylinder 20 is a first inner cylinder divided body 21 made of a sheet metal and formed of a thin plate-like scroll member that is divided into two in a direction orthogonal to the axial direction L of the turbine shaft 14 a of the turbine wheel 14. And the second inner cylinder divided body 22 and a scroll made of casting formed by casting as a material having higher heat resistance than that made of sheet metal located in a portion facing the turbine wheel 14 (region on the exhaust outlet side of the exhaust gas B). It is comprised from the 3rd inner cylinder division body 23 which consists of board | plate materials.

図2及び図4に示すように、第1内筒分割体21と第2内筒分割体22は、板金をプレス加工することにより所定の湾曲筒形状に成形されていて、このプレス成形された2つの板金製の第1内筒分割体21の後周縁側の端部21bと第2内筒分割体22の前周縁側の端部22aを溶接により接合して固定してある。即ち、第1内筒分割体21の後周縁側の端部21bと第2内筒分割体22の前周縁側の端部22aは、外側に垂直に長さが異なるように折り曲げ形成されており、この長短の端部21b,22a同士は溶接(溶接部分を符号Eで示す)により固定されている。   As shown in FIGS. 2 and 4, the first inner cylinder divided body 21 and the second inner cylinder divided body 22 are formed into a predetermined curved cylinder shape by pressing a sheet metal, and this press molding is performed. The end part 21b on the rear peripheral side of the first inner cylinder divided body 21 made of two metal plates and the end part 22a on the front peripheral side of the second inner cylinder divided body 22 are joined and fixed by welding. That is, the end portion 21b on the rear peripheral side of the first inner cylinder divided body 21 and the end portion 22a on the front peripheral side of the second inner cylinder divided body 22 are bent so as to be vertically different from each other. The long and short end portions 21b and 22a are fixed to each other by welding (the welded portion is indicated by symbol E).

また、図2及び図4に示すように、第3内筒分割体23は、鋳物部品にて所定の湾曲筒形状に成形されていて、図4及び図5に示すように、板金製の第2内筒分割体22の後周縁側の端部22bと鋳物製の第3内筒分割体23の後外周縁側の段差凹状の端部23b同士を排気ガス流路Kの流路面kの反対側の面からの溶接(溶接部分を符号Eで示す)により接合して固定してある。これにより、内筒20の排気ガスBの排気出口側の領域としてのタービンホイール14に相対向する部位は、鋳物製のスクロール部材から成る鋳物製の第3内筒分割体23によって形成され、残りの部位は、板金製のスクロール板材から成る板金製の第1内筒分割体21及び第2内筒分割体22から形成されていて、その内部に渦巻き状の排気ガス流路Kが形成されている。   Further, as shown in FIGS. 2 and 4, the third inner cylinder divided body 23 is formed into a predetermined curved cylinder shape by a casting part, and as shown in FIGS. 2 The end 22b on the rear peripheral side of the inner cylinder divided body 22 and the stepped concave end 23b on the rear outer peripheral side of the cast third inner cylinder divided body 23 are opposite to the flow path surface k of the exhaust gas flow path K. Are joined and fixed by welding from the surface (the welded portion is indicated by symbol E). Thereby, the part opposite to the turbine wheel 14 as the region on the exhaust outlet side of the exhaust gas B of the inner cylinder 20 is formed by the cast third inner cylinder divided body 23 made of the cast scroll member, and the remaining Is formed of a sheet metal first inner cylinder divided body 21 and a second inner cylinder divided body 22 made of a sheet metal scroll plate material, and a spiral exhaust gas passage K is formed therein. Yes.

さらに、図2及び図4に示すように、鋳物製の第3内筒分割体23の正面23aは、平坦部になっていて、その下側(排気入口側のフランジ12)の面積が上側(排気入口側のフランジ12の反対側)の面積よりも広く形成されている。即ち、図4に示すように、鋳物製の第3内筒分割体23の排気入口側のフランジ12寄りの部位は、その反対側の部位よりも厚肉に形成されている。これにより、鋳物製の第3内筒分割体23によって内筒20の排気ガス流路Kの流路面kの一部が形成されている。   Further, as shown in FIGS. 2 and 4, the front surface 23 a of the cast third inner cylinder divided body 23 is a flat portion, and the area of the lower side (flange 12 on the exhaust inlet side) is the upper side ( It is formed wider than the area on the side opposite to the flange 12 on the exhaust inlet side. That is, as shown in FIG. 4, the portion of the cast third inner cylinder divided body 23 near the flange 12 on the exhaust inlet side is formed thicker than the portion on the opposite side. Thereby, a part of the flow path surface k of the exhaust gas flow path K of the inner cylinder 20 is formed by the cast third inner cylinder divided body 23.

さらに、鋳物製の第3内筒分割体23の排気入口側には段差円環状の凹部23cが形成されていると共に、排気出口側には円筒状部(筒状部)23dが一体突出形成されている。この段差円環状の凹部23cには、タービンホイール14を保護する円環リング状の補強部材(図示省略)を嵌め込んである。   Further, a step-shaped annular recess 23c is formed on the exhaust inlet side of the cast third inner cylinder divided body 23, and a cylindrical portion (cylindrical portion) 23d is integrally formed on the exhaust outlet side. ing. An annular ring-shaped reinforcing member (not shown) that protects the turbine wheel 14 is fitted in the stepped annular recess 23c.

また、図6(a)に示すように、円筒状部23dの内壁は出口側に行くに従って拡がる円錐状の斜面23eに形成されていて、この円筒状部23dの内壁の斜面23eに排気管30の前側の端部31を嵌め込んで両者が溶接(溶接部分を符号Eで示す)により固定されている。   As shown in FIG. 6A, the inner wall of the cylindrical portion 23d is formed as a conical slope 23e that expands toward the outlet side, and the exhaust pipe 30 is formed on the slope 23e of the inner wall of the cylindrical portion 23d. The front end portion 31 is fitted and both are fixed by welding (the welded portion is indicated by E).

図1〜図4に示すように、外筒40は、タービンホイール14のタービン軸14aの軸方向L(車両走行時の振動方向)に沿って2分割形成された第1外筒分割体41と第2外筒分割体42との2枚の板金製の薄板部材によって構成されている。この第1外筒分割体41と第2外筒分割体42は、板金をプレス加工することにより所定の湾曲形状に成形されていて、このプレス成形された2枚の板金製の第1外筒分割体41と板金製の第2外筒分割体42を溶接により接合することにより、内筒20及び排気管30が隙間Gを空けて完全に覆われるようになっている。   As shown in FIGS. 1 to 4, the outer cylinder 40 includes a first outer cylinder divided body 41 that is divided into two along the axial direction L of the turbine shaft 14 a of the turbine wheel 14 (vibration direction during vehicle travel). It is comprised by the sheet metal thin plate member with the 2nd outer cylinder division body 42. As shown in FIG. The first outer cylinder divided body 41 and the second outer cylinder divided body 42 are formed into a predetermined curved shape by pressing a sheet metal, and the first outer cylinder made of the two sheet metals formed by press forming is used. The inner cylinder 20 and the exhaust pipe 30 are completely covered with a gap G by joining the divided body 41 and the second outer cylinder divided body 42 made of sheet metal by welding.

即ち、図1,図3,図4及び図7に示すように、板金製の第1外筒分割体41の段差状に延びた他端部41bと板金製の第2外筒分割体42の段差状に延びた一端部42aは、第1外筒分割体41の他端部41bを下にして重ね合わせてタービンホイール14のタービン軸14aの軸方向(軸直線方向)Lに沿って溶接(溶接部分を符号Eで示す)により互いに固定されている。これにより、車両が走行中において、タービン軸14aの軸方向Lで伸縮するため、軸方向Lに沿って溶接することによって、溶接目の破裂が防止されようになっている。   That is, as shown in FIGS. 1, 3, 4, and 7, the other end portion 41 b extending in a step shape of the first outer cylinder divided body 41 made of sheet metal and the second outer cylinder divided body 42 made of sheet metal. One end portion 42a extending in a stepped shape is welded along the axial direction (axial linear direction) L of the turbine shaft 14a of the turbine wheel 14 with the other end portion 41b of the first outer cylinder divided body 41 facing down. The welded parts are fixed to each other by E). Thus, since the vehicle expands and contracts in the axial direction L of the turbine shaft 14a while the vehicle is traveling, welding along the axial direction L prevents rupture of the weld.

また、図7に示すように、外筒40を構成する板金製の第1外筒分割体41と板金製の第2外筒分割体42の各内面には、外筒40の湾曲形状に沿うようにプレス成形された板金製の各プレート(補強板材)45,46が少なくとも一点の溶接(点状の溶接)により固定されている。   Further, as shown in FIG. 7, the inner surfaces of the first outer cylinder divided body 41 made of sheet metal and the second outer cylinder divided body 42 made of sheet metal that form the outer cylinder 40 follow the curved shape of the outer cylinder 40. Each of the press-molded sheet metal plates (reinforcing plate members) 45 and 46 is fixed by at least one point welding (dot welding).

図2及び図4に示すように、吸気入口側のフランジ11は、円環状に形成されており、その中央の円形の開口部11aが吸入空気Aの入口になっている。そして、吸気入口側のフランジ11の内周面11bには、内筒20の板金製の第1内筒分割体21の前周縁側の端部21aが溶接(溶接部分を符号Eで示す)により固定されている。また、吸気入口側のフランジ11の外周面11cには、外筒40を構成する板金製の第1外筒分割体41及び板金製の第2外筒分割体42の前周縁側の各端部41c,42cが溶接(溶接部分を符号Eで示す)により固定されている。尚、吸気入口側のフランジ11には、ボルト取付用のネジ孔11dが等間隔に複数形成されている。   As shown in FIGS. 2 and 4, the flange 11 on the intake inlet side is formed in an annular shape, and a circular opening 11 a at the center is an inlet of the intake air A. Then, on the inner peripheral surface 11b of the flange 11 on the intake inlet side, the end portion 21a on the front peripheral side of the first inner cylinder divided body 21 made of sheet metal of the inner cylinder 20 is welded (the welded portion is indicated by E). It is fixed. Further, on the outer peripheral surface 11c of the flange 11 on the intake inlet side, respective end portions on the front peripheral side of the first outer cylinder divided body 41 made of sheet metal and the second outer cylinder divided body 42 made of sheet metal constituting the outer cylinder 40. 41c and 42c are being fixed by welding (a welding part is shown with the code | symbol E). The flange 11 on the intake inlet side is formed with a plurality of screw holes 11d for bolt mounting at equal intervals.

図4に示すように、排気入口側のフランジ12は、略円環状に形成されており、その開口部12aが排気ガスBの入口になっている。そして、排気入口側のフランジ12の外周面12bの上側には、段差環状の凹部12cが形成されている。この凹部12cに沿って内筒20の板金製の第1内筒分割体21の下端部21c側及び板金製の第2内筒分割体22の下端部22c側が半円弧湾曲状にそれぞれ形成されていると共に該凹部12cのまわりにスライド自在に当接して嵌め込まれている。   As shown in FIG. 4, the flange 12 on the exhaust inlet side is formed in a substantially annular shape, and the opening 12 a serves as an inlet for the exhaust gas B. A step-shaped recess 12c is formed above the outer peripheral surface 12b of the flange 12 on the exhaust inlet side. The lower end portion 21c side of the first inner cylinder divided body 21 made of sheet metal and the lower end portion 22c side of the second inner cylinder divided body 22 made of sheet metal are formed in a semicircular arc shape along the recess 12c. And is slidably fitted around the recess 12c.

また、図2〜図4に示すように、排気入口側のフランジ12の外周面12bに沿って外筒40を構成する板金製の第1外筒分割体41及び板金製の第2外筒分割体42の下端部41e,42e側が半円弧湾曲状にそれぞれ形成されていると共に該外周面12bに溶接(溶接部分を符号Eで示す)により固定されている。尚、排気入口側のフランジ12には、図示しないボルト取付用のネジ孔が等間隔に複数形成されている。   Moreover, as shown in FIGS. 2-4, the 1st outer cylinder division body 41 made from sheet metal which comprises the outer cylinder 40 along the outer peripheral surface 12b of the flange 12 by the side of an exhaust inlet, and the 2nd outer cylinder division made from sheet metal The lower end portions 41e and 42e of the body 42 are formed in a semicircular arc shape, and are fixed to the outer peripheral surface 12b by welding (a welding portion is indicated by a symbol E). The flange 12 on the exhaust inlet side has a plurality of screw holes for bolts (not shown) formed at equal intervals.

さらに、図3及び図4に示すように、排気出口側のフランジ13は、略四角板状に形成されており、その中央の円形の開口部13aが排気ガスBの出口になっている。そして、排気出口側のフランジ13の内周面13bには、外筒40を構成する板金製の第1外筒分割体41及び板金製の第2外筒分割体42の後周縁側の各端部41d,42d及び排気管30の後側の端部32が溶接(溶接部分を符号Eで示す)により固定されている。尚、排気出口側のフランジ13には、角部にはボルト取付用のネジ孔13dがそれぞれ形成されている。   Further, as shown in FIGS. 3 and 4, the flange 13 on the exhaust outlet side is formed in a substantially square plate shape, and a circular opening 13 a at the center thereof serves as an outlet for the exhaust gas B. Then, on the inner peripheral surface 13b of the flange 13 on the exhaust outlet side, each end on the rear peripheral side of the first outer cylinder divided body 41 made of sheet metal and the second outer cylinder divided body 42 made of sheet metal constituting the outer cylinder 40 is provided. The end portions 32 on the rear side of the portions 41d and 42d and the exhaust pipe 30 are fixed by welding (the welded portion is indicated by symbol E). The flange 13 on the exhaust outlet side is formed with screw holes 13d for bolts at the corners.

以上実施形態のタービンハウジング10によれば、図4に示すように、渦状の排気ガス流路Kを有した内筒(スクロール部)20のタービンホイール14に相対向する部位(排気ガスBの排気出口側の領域)を鋳物製の内筒分割体(鋳物製のスクロール部材)23によって形成し、残りの部位を板金製の内筒分割体(板金製のスクロール板材)21,22によって形成して、内筒20の排気ガス流路Kの流路面kの一部を鋳物製の内筒分割体23によって形成し、かつ、鋳物製の内筒分割体23の排気入口側のフランジ12寄りの部位をその反対側の部位よりも厚肉に形成したことにより、簡単な構造で内筒20のタービンホイール14に相対向する部位の熱変形及び亀裂等の発生を確実に防止することができると共に、剛性及び耐久性をより一段と向上させることができる。これにより、内筒20の鋳物製の内筒分割体23とタービンホイール14とのクリアランス(チップクリアランス)を簡単かつ確実に経時的に確保することができる。   According to the turbine housing 10 of the embodiment described above, as shown in FIG. 4, a portion (exhaust gas of the exhaust gas B) facing the turbine wheel 14 of the inner cylinder (scroll portion) 20 having the spiral exhaust gas flow path K. The area on the outlet side) is formed by a cast inner cylinder divided body (cast scroll member) 23, and the remaining part is formed by a sheet metal inner cylinder divided body (sheet metal scroll plate material) 21 and 22. A part of the flow path surface k of the exhaust gas flow path K of the inner cylinder 20 is formed by the cast inner cylinder divided body 23, and the portion near the flange 12 on the exhaust inlet side of the cast inner cylinder divided body 23 Is formed thicker than the portion on the opposite side, thereby making it possible to reliably prevent the occurrence of thermal deformation, cracking, and the like at the portion facing the turbine wheel 14 of the inner cylinder 20 with a simple structure. Stiffness and durability It is possible to further improve. Thereby, the clearance (chip clearance) between the cast inner cylinder divided body 23 of the inner cylinder 20 and the turbine wheel 14 can be easily and reliably secured over time.

また、内筒20の排気ガス流路Kの流路面kの一部を鋳物製の内筒分割体23のによって形成したことにより、排気出口側の熱容量が低下することがないため、触媒コンバータ16の排気浄化触媒の触媒暖気を促進して触媒を活性化させることができる。これにより、触媒コンバータ16の触媒浄化性能を向上させることができる。   Further, since a part of the flow path surface k of the exhaust gas flow path K of the inner cylinder 20 is formed by the cast inner cylinder divided body 23, the heat capacity on the exhaust outlet side does not decrease, so the catalytic converter 16 The catalyst can be activated by promoting the catalyst warming of the exhaust purification catalyst. Thereby, the catalyst purification performance of the catalytic converter 16 can be improved.

また、渦状の排気ガス流路Kを構成する内筒20を、分割された2つの板金製の内筒分割体21,22とタービンホイール14に相対向する部位に位置する鋳物製の内筒分割体23とで構成し、この内筒20を分割された2つの板金製の外筒分割体41,42からなる外筒40で所定間隔Gを空けて覆ったことにより、内筒20を外筒40により保護することができると共に、外筒40から外に排気ガスBが漏れることを確実に防止することができる。   In addition, the inner cylinder 20 constituting the spiral exhaust gas flow path K is divided into a cast inner cylinder divided into two divided sheet metal inner cylinders 21 and 22 and a portion facing the turbine wheel 14. The inner cylinder 20 is formed by covering the inner cylinder 20 with a predetermined gap G with an outer cylinder 40 composed of two divided sheet metal outer cylinders 41 and 42. 40 can be protected, and the exhaust gas B can be reliably prevented from leaking out of the outer cylinder 40.

さらに、図4に示すように、排気入口側のフランジ12の外周面12bの上側に形成された段差環状の凹部12cに沿って内筒(スクロール部)20の板金製の第1内筒分割体21の下端部21c側及び板金製の第2内筒分割体22の下端部22c側が半円弧湾曲状にそれぞれ形成されていると共に、該段差環状の凹部12cのまわりにスライド自在に当接して嵌め込まれているため、排気ガスBの熱により内筒20が熱膨張した場合であっても、板金製の第1内筒分割体21の下端部21c及び板金製の第2内筒分割体22の下端部22cが排気入口側のフランジ12の段差環状の凹部12cの外周面に摺動することによって、板金製の第1,第2内筒分割体21,22の熱膨張による変位を許容することができる。これにより、内筒20の熱膨張を有効に吸収することができる。   Further, as shown in FIG. 4, the first inner cylinder divided body made of sheet metal of the inner cylinder (scroll portion) 20 along the step-shaped annular recess 12 c formed on the outer peripheral surface 12 b of the flange 12 on the exhaust inlet side. The lower end portion 21c side of 21 and the lower end portion 22c side of the second inner cylinder divided body 22 made of sheet metal are respectively formed in a semicircular curved shape, and are slidably contacted and fitted around the annular recess 12c of the stepped shape. Therefore, even if the inner cylinder 20 is thermally expanded by the heat of the exhaust gas B, the lower end portion 21c of the first inner cylinder divided body 21 made of sheet metal and the second inner cylinder divided body 22 made of sheet metal are used. The lower end portion 22c slides on the outer peripheral surface of the step-shaped annular recess 12c of the flange 12 on the exhaust inlet side, thereby allowing displacement due to thermal expansion of the first and second inner cylinder divided bodies 21 and 22 made of sheet metal. Can do. Thereby, the thermal expansion of the inner cylinder 20 can be absorbed effectively.

さらに、板金製より耐熱性の高い材料として鋳造より形成された鋳物製のスクロール板材を用いたことにより、内筒20の一部を成す排気ガスBの排気出口側の領域に位置する第3内筒分割体23を簡単かつ確実に製造することができる。   Furthermore, by using a cast scroll plate material formed by casting as a material having higher heat resistance than that made of sheet metal, the third inner part located in the region on the exhaust outlet side of the exhaust gas B forming part of the inner cylinder 20 The cylinder divided body 23 can be manufactured easily and reliably.

また、図7に示すように、外筒40を構成する板金製の第1外筒分割体41と板金製の第2外筒分割体42の各内面に、各プレート補強板材45,46をそれぞれ少なくとも一点の溶接により固定したことにより、外筒40を構成する板金製の第1外筒分割体41と板金製の第2外筒分割体42の歪み変形を確実に防止することができると共に、外筒40全体の振幅を減衰させることができる。これにより、熱膨張による板金製の第1外筒分割体41と板金製の第2外筒分割体42の歪みを有効に分散して防止することができる。   Further, as shown in FIG. 7, the plate reinforcing plate members 45 and 46 are respectively attached to the inner surfaces of the sheet metal first outer cylinder divided body 41 and the sheet metal second outer cylinder divided body 42 constituting the outer cylinder 40. By fixing by welding at least one point, it is possible to reliably prevent distortion deformation of the sheet metal first outer cylinder divided body 41 and the sheet metal second outer cylinder divided body 42 constituting the outer cylinder 40, and The amplitude of the entire outer cylinder 40 can be attenuated. Thereby, the distortion of the sheet metal first outer cylinder divided body 41 and the sheet metal second outer cylinder divided body 42 due to thermal expansion can be effectively dispersed and prevented.

尚、前記第1の実施形態では、図6(a)に示すように、鋳物製の第3内筒分割体23の排気出口側に一体突出形成した円筒状部23dの内壁を、出口側に行くに従って拡がる円錐状の斜面23eに形成して、この円筒状部23dの内壁の斜面23eに排気管30の前側の端部31を嵌め込んで溶接により固定したが、図6(b)に示すように、円筒状部23dの内壁に、排気管30の前側の端部31を位置決めする位置決め用のリブ(突起)23fを一体突出形成し、この円筒状部23dの内壁の位置決め用のリブ23fで排気管30の前側の端部31を位置決めして溶接(溶接部分を符号Eで示す)により固定しても良い。これにより、排気管30の前側の端部31が円筒状部23dの内壁の奥に行き過ぎることがなく、円筒状部23dに排気管30の前側の端部31を簡単かつ確実に位置決めして溶接により固定することができる。   In the first embodiment, as shown in FIG. 6 (a), the inner wall of the cylindrical portion 23d integrally formed on the exhaust outlet side of the cast third inner cylinder divided body 23 is provided on the outlet side. A conical slope 23e that expands as it goes is formed, and the front end portion 31 of the exhaust pipe 30 is fitted into the slope 23e on the inner wall of the cylindrical portion 23d and fixed by welding, as shown in FIG. 6 (b). As described above, a positioning rib (projection) 23f for positioning the front end 31 of the exhaust pipe 30 is integrally formed on the inner wall of the cylindrical portion 23d, and the positioning rib 23f for the inner wall of the cylindrical portion 23d is formed. The end 31 on the front side of the exhaust pipe 30 may be positioned and fixed by welding (the welded portion is indicated by E). Thus, the front end 31 of the exhaust pipe 30 does not go too far into the inner wall of the cylindrical portion 23d, and the front end 31 of the exhaust pipe 30 is easily and reliably positioned and welded to the cylindrical portion 23d. Can be fixed.

また、前記第1の実施形態によれば、外筒をタービンホイールのタービン軸の軸方向に沿って2分割した薄板部材によって構成したが、タービンホイールのタービン軸の軸方向に直交する方向に沿って2分割した薄板部材によって構成しても良い。   Moreover, according to the said 1st Embodiment, although the outer cylinder was comprised with the thin-plate member divided into 2 along the axial direction of the turbine shaft of a turbine wheel, it met along the direction orthogonal to the axial direction of the turbine shaft of a turbine wheel. Alternatively, it may be constituted by a thin plate member divided into two.

さらに、前記第1の実施形態によれば、板金製より耐熱性の高い材料として鋳造より形成された鋳物製のスクロール板材を用いたが、鋳物以外の材料で形成したスクロール板材を用いても良い。   Further, according to the first embodiment, the scroll plate material made of casting is formed by casting as a material having higher heat resistance than that made of sheet metal, but a scroll plate material made of a material other than casting may be used. .

図8は本発明の第2の実施形態のターボチャージャに用いられる排気ガス漏れ対策が必要な場合のタービンハウジングの断面図である。   FIG. 8 is a cross-sectional view of the turbine housing when an exhaust gas leakage countermeasure used in the turbocharger according to the second embodiment of the present invention is required.

この第2の実施形態のタービンハウジング10Aでは、排気入口側のフランジ12Aをプレス成形された板金により形成してある点が、前記第1の実施形態の鋳物製のフランジ12と異なる。また、外筒40の排気入口側の板金製の外筒分割体41,42の下端部41e,42eを板金製のフランジ12Aの開口部12aの内周面12eに溶接(溶接部分を符号Eで示す)により固定すると共に、外筒分割体41,42の下端部41e,42eに板金製のカラー(補強板材)25の下端部25bを溶接(溶接部分を符号Eで示す)により固定してある。そして、カラー25の外周面25cに内筒20の排気入口側の板金製の内筒分割体21,22の下端部21c,22cをスライド自在に嵌め込んである。尚、他の構成は前記第1実施形態と同様であるため、同一符号を付して詳細な説明を省略する。   The turbine housing 10A according to the second embodiment is different from the casting flange 12 according to the first embodiment in that the flange 12A on the exhaust inlet side is formed by press-molded sheet metal. Further, the lower end portions 41e, 42e of the sheet metal outer cylinder divisions 41, 42 on the exhaust inlet side of the outer cylinder 40 are welded to the inner peripheral surface 12e of the opening 12a of the sheet metal flange 12A (the welded portion is denoted by E). The lower end portion 25b of the sheet metal collar (reinforcing plate material) 25 is fixed to the lower end portions 41e, 42e of the outer cylinder divided bodies 41, 42 by welding (the welded portion is indicated by symbol E). . The lower end portions 21c, 22c of the inner cylinder divided bodies 21, 22 on the exhaust inlet side of the inner cylinder 20 are slidably fitted into the outer peripheral surface 25c of the collar 25. Since other configurations are the same as those in the first embodiment, the same reference numerals are given and detailed descriptions thereof are omitted.

この第2実施形態のタービンハウジング10Aによれば、排気入口側のフランジ12A及びカラー25をプレス成形の板金により形成したことにより、第1の実施形態の鋳物製のフランジ12の場合に比べて、構造を簡素化することができ、その分、低コスト化及び軽量化を図ることができる。   According to the turbine housing 10A of the second embodiment, the flange 12A and the collar 25 on the exhaust inlet side are formed of press-molded sheet metal, so that compared to the case of the flange 12 made of casting according to the first embodiment, The structure can be simplified, and the cost and weight can be reduced accordingly.

また、カラー25の外周面25cに排気入口側の板金製の内筒分割体21,22の下端部21c,22cをスライド自在に嵌合したことにより、板金製で薄板状のスクロール部材から成る第1内筒分割体21及び第2内筒分割体22の熱膨張による変位を許容することができ、スクロール部としての内筒20の熱膨張を有効に吸収することができる。   Further, the lower end portions 21c and 22c of the inner tube divided bodies 21 and 22 made of sheet metal on the exhaust inlet side are slidably fitted to the outer peripheral surface 25c of the collar 25, so that a first scroll member made of sheet metal and made of a thin plate is used. The displacement due to the thermal expansion of the first inner cylinder divided body 21 and the second inner cylinder divided body 22 can be allowed, and the thermal expansion of the inner cylinder 20 as the scroll portion can be effectively absorbed.

図9は本発明の第3の実施形態のターボチャージャに用いられる排気ガス漏れ対策が不要な場合のタービンハウジングの断面図である。   FIG. 9 is a cross-sectional view of the turbine housing when the exhaust gas leakage countermeasure used in the turbocharger according to the third embodiment of the present invention is not required.

この第3の実施形態のタービンハウジング10Bでは、排気入口側のフランジ12Bをプレス成形された薄肉状の板金により形成してある点が、前記第1の実施形態の鋳物製のフランジ12と相違する。また、外筒40の排気入口側の板金製の外筒分割体41,42の下端部41e,42eを板金製のフランジ12Bの内側の折曲部12dの内周面12eに溶接(溶接部分を符号Eで示す)により固定し、さらに、外筒分割体41,42の下端部41e,42eの内周面41f,42fに内筒20の排気入口側の板金製の内筒分割体21,22の下端部21c,22cをスライド自在に嵌め込んである。尚、他の構成は前記第1実施形態と同様であるため、同一符号を付して詳細な説明を省略する。   The turbine housing 10B of the third embodiment is different from the casting flange 12 of the first embodiment in that the flange 12B on the exhaust inlet side is formed of a thin sheet metal that is press-formed. . Further, the lower end portions 41e, 42e of the sheet metal outer cylinder divisions 41, 42 on the exhaust inlet side of the outer cylinder 40 are welded to the inner peripheral surface 12e of the bent portion 12d inside the sheet metal flange 12B (the welded portion is Further, the inner cylinder divided bodies 21 and 22 made of sheet metal on the exhaust inlet side of the inner cylinder 20 are fixed to the inner peripheral surfaces 41f and 42f of the lower end portions 41e and 42e of the outer cylinder divided bodies 41 and 42, respectively. The lower end portions 21c and 22c are slidably fitted. Since other configurations are the same as those in the first embodiment, the same reference numerals are given and detailed descriptions thereof are omitted.

この第3実施形態のタービンハウジング10Bによれば、排気入口側のフランジ12Bをプレス成形された薄肉状の板金により形成したことにより、第1の実施形態の鋳物製のフランジ12の場合及び第2の実施形態の補強板材としてのカラー25が必要な場合に比べて、構造をより簡素化することができ、その分、低コスト化及び組付け性の向上をより一段と図ることができる。   According to the turbine housing 10B of the third embodiment, the flange 12B on the exhaust inlet side is formed by press-formed thin sheet metal, so that the casting flange 12 of the first embodiment and the second Compared to the case where the collar 25 as the reinforcing plate member of the embodiment is required, the structure can be further simplified, and accordingly, the cost can be reduced and the assemblability can be further improved.

また、外筒分割体41,42の下端部41e,42eの内周面41f,42fに、排気入口側の板金製の内筒分割体21,22の下端部21c,22cをスライド自在に嵌合したことにより、板金製で薄板状のスクロール部材から成る第1内筒分割体21及び第2内筒分割体22の熱膨張による変位を許容することができ、スクロール部としての内筒20の熱膨張を有効に吸収することができる。   Further, the lower end portions 21c and 22c of the inner cylinder divided bodies 21 and 22 made of sheet metal on the exhaust inlet side are slidably fitted to the inner peripheral surfaces 41f and 42f of the lower end portions 41e and 42e of the outer cylinder divided bodies 41 and 42, respectively. As a result, the first inner cylinder divided body 21 and the second inner cylinder divided body 22 made of sheet metal and made of a thin scroll member can be allowed to displace due to thermal expansion, and the heat of the inner cylinder 20 as the scroll portion can be allowed. Expansion can be absorbed effectively.

10,10A,10B タービンハウジング
12 排気入口側のフランジ
12A,12B 排気入口側の板金製のフランジ
12a 開口部(排気ガスの入口)
12e 内周面
13 排気出口側のフランジ
13a 開口部(排気ガスの出口)
14 タービンホイール
20 内筒(スクロール部)
21 板金製の第1内筒分割体(板金製のスクロール部材)
21c 下端部
22 板金製の第2内筒分割体(板金製のスクロール部材)
22c 下端部
23 鋳物製の第3内筒分割体(板金製より耐熱性の高い材料として鋳造より形成された鋳物製のスクロール部材)
25 カラー(補強板材)
25b 下端部
25c 外周面
40 外筒
41 板金製の第1外筒分割体
41e 下端部
41f 内周面
42 板金製の第2外筒分割体
42e 下端部
42f 内周面
B 排気ガス
K 渦状の排気ガス流路
k 流路面
G 隙間(所定間隔)
O 旋回中心部(中心部)
E 溶接部分
10, 10A, 10B Turbine housing 12 Exhaust inlet side flange 12A, 12B Exhaust inlet side sheet metal flange 12a Opening (exhaust gas inlet)
12e Inner circumferential surface 13 Exhaust outlet side flange 13a Opening (exhaust gas outlet)
14 Turbine wheel 20 Inner cylinder (scroll part)
21 1st inner cylinder division body made from sheet metal (scroll member made from sheet metal)
21c Lower end part 22 2nd inner cylinder division body made from sheet metal (scroll member made from sheet metal)
22c lower end 23 cast third inner cylinder divided body (cast scroll member formed by casting as a material having higher heat resistance than sheet metal)
25 Color (Reinforcement plate)
25b Lower end portion 25c Outer peripheral surface 40 Outer cylinder 41 First outer cylinder divided body 41e made of sheet metal 41e Lower end portion 41f Inner peripheral surface 42 Second outer cylinder divided body made of sheet metal 42e Lower end portion 42f Inner peripheral surface B Exhaust gas K Vortex exhaust Gas channel k Channel surface G Gap (predetermined interval)
O Turning center (center)
E Welded part

Claims (6)

排気ガスの入口を構成する排気入口側のフランジと前記排気ガスの出口を構成する排気出口側のフランジとの間に渦状の排気ガス流路を構成するスクロール部を備え、前記スクロール部の中心部に配設されたタービンホイールを経由して前記排気ガスを排気出口側に排出するタービンハウジングにおいて、
前記スクロール部の前記排気ガス流路の流路面の一部を板金製より耐熱性の高い材料からなるスクロール部材によって形成したことを特徴とするタービンハウジング。
A scroll part that forms a spiral exhaust gas flow path between a flange on the exhaust inlet side that constitutes an exhaust gas inlet and a flange on the exhaust outlet side that constitutes an outlet of the exhaust gas; and a central part of the scroll part In the turbine housing that discharges the exhaust gas to the exhaust outlet side via the turbine wheel disposed in
A turbine housing, wherein a part of a flow path surface of the exhaust gas flow path of the scroll portion is formed by a scroll member made of a material having higher heat resistance than that of sheet metal.
請求項1記載のタービンハウジングであって、
前記スクロール部の前記タービンホイールに相対向する部位を前記板金製より耐熱性の高い材料からなるスクロール部材によって形成すると共に、残りの部位を前記板金製のスクロール板材によって形成し、かつ、前記板金製より耐熱性の高い材料からなるスクロール部材の前記排気入口側のフランジ寄りの部位をその反対側の部位よりも厚肉に形成したことを特徴とするタービンハウジング。
The turbine housing according to claim 1, comprising:
A portion of the scroll portion facing the turbine wheel is formed by a scroll member made of a material having higher heat resistance than that of the sheet metal, and the remaining portion is formed of the scroll plate material made of the sheet metal, and the sheet metal is made. A turbine housing characterized in that a portion near the flange on the exhaust inlet side of the scroll member made of a material having higher heat resistance is formed thicker than a portion on the opposite side.
請求項1記載のタービンハウジングであって、
前記渦状の排気ガス流路を構成するスクロール部を、分割された少なくとも2つの板金製の内筒分割体と前記タービンホイールに相対向する部位に位置する板金製より耐熱性の高い材料からなる内筒分割体とからなる内筒で構成し、前記内筒を分割された少なくとも2つの板金製の外筒分割体からなる外筒で所定間隔を空けて覆い、かつ、前記排気入口側の内筒を前記排気入口側のフランジに当接させると共に、前記外筒を前記排気入口側のフランジに溶接により固定したことを特徴とするタービンハウジング。
The turbine housing according to claim 1, comprising:
The scroll portion constituting the spiral exhaust gas flow path is made of a material having higher heat resistance than that of a sheet metal located at a position opposite to the divided inner cylinder divided body made of the sheet metal and the turbine wheel. An inner cylinder formed of a cylinder divided body, the inner cylinder is covered with an outer cylinder formed of at least two sheet metal outer cylinder divided bodies at a predetermined interval, and the inner cylinder on the exhaust inlet side In contact with the flange on the exhaust inlet side, and the outer cylinder is fixed to the flange on the exhaust inlet side by welding.
請求項1〜3のいずれか1項に記載のタービンハウジングであって、
前記板金製より耐熱性の高い材料は、鋳造より形成されていることを特徴とするタービンハウジング。
The turbine housing according to any one of claims 1 to 3,
The turbine housing characterized in that the material having higher heat resistance than the sheet metal is formed by casting.
請求項1記載のタービンハウジングであって、
前記渦状の排気ガス流路を構成するスクロール部を、分割された少なくとも2つの板金製の内筒分割体と前記タービンホイールに相対向する部位に位置する板金製より耐熱性の高い材料からなる内筒分割体とからなる内筒で構成し、前記内筒を分割された少なくとも2つの板金製の外筒分割体からなる外筒で所定間隔を空けて覆い、かつ、前記排気入口側の前記外筒分割体の下端部を前記排気入口側の板金製のフランジの開口部の内周面に溶接により固定すると共に、前記排気入口側の前記外筒分割体の下端部に補強板材の下端部を溶接により固定し、前記補強板材の外周面に前記排気入口側の前記板金製の内筒分割体の下端部をスライド自在に嵌合したことを特徴とするタービンハウジング。
The turbine housing according to claim 1, comprising:
The scroll portion constituting the spiral exhaust gas flow path is made of a material having higher heat resistance than that of a sheet metal located at a position opposite to the divided inner cylinder divided body made of the sheet metal and the turbine wheel. The inner cylinder is composed of an inner cylinder composed of a cylinder divided body, the inner cylinder is covered with an outer cylinder composed of at least two sheet metal outer cylinder divided bodies, and the outer cylinder on the exhaust inlet side is covered with a predetermined interval. The lower end portion of the cylinder divided body is fixed to the inner peripheral surface of the opening of the flange made of sheet metal on the exhaust inlet side by welding, and the lower end portion of the reinforcing plate member is attached to the lower end portion of the outer cylinder divided body on the exhaust inlet side. A turbine housing fixed by welding and slidably fitted to the outer peripheral surface of the reinforcing plate member at the lower end of the sheet metal inner cylinder divided body on the exhaust inlet side.
請求項1記載のタービンハウジングであって、
前記渦状の排気ガス流路を構成するスクロール部を、分割された少なくとも2つの板金製の内筒分割体と前記タービンホイールに相対向する部位に位置する板金製より耐熱性の高い材料からなる内筒分割体とからなる内筒で構成し、前記内筒を分割された少なくとも2つの板金製の外筒分割体からなる外筒で所定間隔を空けて覆い、かつ、前記排気入口側の前記外筒分割体の下端部を前記排気入口側の板金製のフランジの開口部の内周面に溶接により固定し、前記排気入口側の前記外筒分割体の下端部の内周面に、前記排気入口側の前記板金製の内筒分割体の下端部をスライド自在に嵌合したことを特徴とするタービンハウジング。
The turbine housing according to claim 1, comprising:
The scroll portion constituting the spiral exhaust gas flow path is made of a material having higher heat resistance than that of a sheet metal located at a position opposite to the divided inner cylinder divided body made of the sheet metal and the turbine wheel. The inner cylinder is composed of an inner cylinder composed of a cylinder divided body, the inner cylinder is covered with an outer cylinder composed of at least two sheet metal outer cylinder divided bodies, and the outer cylinder on the exhaust inlet side is covered with a predetermined interval. The lower end portion of the cylinder divided body is fixed to the inner peripheral surface of the opening of the flange made of sheet metal on the exhaust inlet side by welding, and the exhaust gas is fixed to the inner peripheral surface of the lower end portion of the outer cylinder divided body on the exhaust inlet side. A turbine housing characterized in that a lower end portion of the sheet metal inner cylinder division on the inlet side is slidably fitted.
JP2016212634A 2015-11-06 2016-10-31 Turbine housing Pending JP2017089634A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218366 2015-11-06
JP2015218366 2015-11-06

Publications (1)

Publication Number Publication Date
JP2017089634A true JP2017089634A (en) 2017-05-25

Family

ID=58770112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212634A Pending JP2017089634A (en) 2015-11-06 2016-10-31 Turbine housing

Country Status (1)

Country Link
JP (1) JP2017089634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174533A1 (en) * 2019-02-25 2020-09-03 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and turbocharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174533A1 (en) * 2019-02-25 2020-09-03 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and turbocharger
JPWO2020174533A1 (en) * 2019-02-25 2021-12-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and turbocharger
US11428108B2 (en) 2019-02-25 2022-08-30 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing and turbocharger

Similar Documents

Publication Publication Date Title
WO2017078088A1 (en) Turbine housing
US9003780B2 (en) Exhaust gas purification device
JP2017089450A (en) Turbine housing
JP6204398B2 (en) Turbine housing
JP6097070B2 (en) Exhaust gas exhaust system
JP6735916B2 (en) Turbine housing
WO2019124546A1 (en) Method for manufacturing turbine housing
JP6087679B2 (en) Engine muffler
WO2013137105A1 (en) Catalytic converter
JP2017089634A (en) Turbine housing
JP2019199853A (en) Turbine housing
JP6667488B2 (en) Turbine housing
JP2017089449A (en) Turbine housing
JP6449673B2 (en) Turbine housing
US6474697B2 (en) Exhaust elbow
JP2009052441A (en) Exhaust emission control device
JP2016156279A (en) Turbine housing
JP6397737B2 (en) Catalytic converter
JP6320281B2 (en) Turbine housing
JP2016156331A (en) Turbine housing
JP2019035345A (en) Exhaust pipe of internal combustion engine
JP6530157B1 (en) Method of manufacturing turbine housing
JP2019094904A (en) Turbine housing
JP2010255611A (en) Exhaust manifold in double pipe structure
JP2016097333A (en) Catalytic converter