JP2017089608A - Method for designing combustion chamber structure of engine - Google Patents

Method for designing combustion chamber structure of engine Download PDF

Info

Publication number
JP2017089608A
JP2017089608A JP2016014406A JP2016014406A JP2017089608A JP 2017089608 A JP2017089608 A JP 2017089608A JP 2016014406 A JP2016014406 A JP 2016014406A JP 2016014406 A JP2016014406 A JP 2016014406A JP 2017089608 A JP2017089608 A JP 2017089608A
Authority
JP
Japan
Prior art keywords
calculation
engine
combustion chamber
chamber structure
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016014406A
Other languages
Japanese (ja)
Other versions
JP6710986B2 (en
Inventor
克哉 西條
Katsuya Saijo
克哉 西條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Publication of JP2017089608A publication Critical patent/JP2017089608A/en
Application granted granted Critical
Publication of JP6710986B2 publication Critical patent/JP6710986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a method for designing a combustion chamber structure of an engine that can operate combustion reaction calculation in the computation fluid dynamics at higher speed than before.SOLUTION: In parallel calculation processing of the fluid combustion reaction calculation in multiple calculation lattices sectioned in a combustion chamber of the engine, multiple calculation lattices are appointed to any one of multiple calculators randomly.SELECTED DRAWING: Figure 9

Description

本発明はエンジンの燃焼室構造の設計方法に関し、更に詳しくは、数値流体力学を用いた燃焼反応計算を、従来よりも高速で実施することができるエンジンの燃焼室構造の設計方法に関する。   The present invention relates to a method for designing a combustion chamber structure of an engine, and more particularly, to a method for designing a combustion chamber structure of an engine capable of performing a combustion reaction calculation using numerical fluid dynamics at a higher speed than before.

近年、エンジンの燃焼室構造の設計ツールとして、数値流体力学(CFD)が多用されるようになっている(例えば、特許文献1を参照)。このCFDによる解析評価では、燃焼室内に区画された複数の計算格子内における燃料噴霧の燃焼に伴う化学反応や、火炎伝播帯の反応及び未燃ガス自着火(ノック現象)に関する化学反応などを解析する燃焼反応計算が行われる。この燃焼反応計算は複雑かつ多種にわたるので、計算速度の向上を図るために、計算格子ごとの計算をそれぞれ複数の計算機(CPU)のいずれか1台に割り当てて並列で処理する並列計算処理が採用される。   In recent years, computational fluid dynamics (CFD) has been frequently used as a design tool for engine combustion chamber structures (see, for example, Patent Document 1). In this analysis and evaluation by CFD, the chemical reaction associated with the combustion of fuel spray in the multiple calculation grids partitioned in the combustion chamber, the reaction in the flame propagation zone and the chemical reaction related to unburned gas self-ignition (knock phenomenon) are analyzed. Combustion reaction calculation is performed. Since this combustion reaction calculation is complicated and diverse, in order to improve the calculation speed, parallel calculation processing is adopted in which each calculation grid is assigned to one of a plurality of computers (CPUs) and processed in parallel. Is done.

しかしながら、エンジンの燃焼形態では、化学反応で生成する化学種の濃度状況及び温度や、伝播火炎及び未燃ガス自着火などが時空間的に偏在するため、並列計算処理において計算格子をCPUに対して単純に順に割り当てると、複数のCPU間の計算負荷が偏って、計算性能の向上を図ることが困難になるという問題があった。   However, in the combustion mode of the engine, the concentration state and temperature of chemical species generated by the chemical reaction, and the propagation flame and unburned gas auto-ignition are unevenly distributed in space and time. If they are simply assigned in order, there is a problem in that it is difficult to improve calculation performance because the calculation load among a plurality of CPUs is biased.

特開2005−257517号公報JP 2005-257517 A

本発明の目的は、数値流体力学における燃焼反応計算を、従来よりも高速で実施することができるエンジンの燃焼室構造の設計方法を提供することにある。   An object of the present invention is to provide a design method of a combustion chamber structure of an engine that can perform combustion reaction calculation in computational fluid dynamics at a higher speed than before.

上記の目的を達成する本発明のエンジンの燃焼室構造の設計方法は、エンジンの燃焼室内に区画された複数の計算格子内における流体の燃焼反応計算を、前記複数の計算格子ごとにそれぞれ複数の計算機のいずれか1つに割り当てて並列で処理する並列計算処理を含む数値流体力学を用いたエンジンの燃焼室構造の設計方法において、前記並列計算処理における前記計算格子の前記計算機への割り当てを無作為に行うことを特徴とするものである。   The engine combustion chamber structure design method of the present invention that achieves the above object is characterized in that a plurality of calculation reactions of fluid in a plurality of calculation grids partitioned in the combustion chamber of the engine are calculated for each of the plurality of calculation grids. In a design method of an engine combustion chamber structure using computational fluid dynamics including parallel calculation processing that is assigned to any one of the computers and processed in parallel, no assignment of the calculation grid to the computers in the parallel calculation processing is performed. It is characterized by the fact that it is done in a random manner.

本発明のエンジンの燃焼室構造の設計方法によれば、複数の計算格子における燃焼反応計算を、複数の計算機のいずれか1つにそれぞれ無作為に割り当てるようにしたので、各計算機における計算負荷が均一化されて並列計算処理の効率が向上するため、数値流体力学を用いた燃焼反応計算を従来よりも高速で実施することができる。   According to the engine combustion chamber structure design method of the present invention, since the combustion reaction calculation in the plurality of calculation grids is randomly assigned to any one of the plurality of computers, the calculation load on each computer is reduced. Since the efficiency of parallel calculation processing is improved by being uniformized, combustion reaction calculation using numerical fluid dynamics can be performed at a higher speed than in the past.

ディーゼルエンジンの燃焼室の例を示す構造図である。It is a structural diagram showing an example of a combustion chamber of a diesel engine. ガソリンエンジンの燃焼室の例を示す構造図である。It is a structural diagram showing an example of a combustion chamber of a gasoline engine. ガソリンエンジンの燃焼室の別の例を示す構造図である。It is a structural diagram which shows another example of the combustion chamber of a gasoline engine. ディーゼルデュアルフューエルエンジンの燃焼室の例を示す構造図である。It is a structural diagram showing an example of a combustion chamber of a diesel dual fuel engine. ディーゼルデュアルフューエルエンジンの燃焼室の別の例を示す構造図である。It is a structural diagram which shows another example of the combustion chamber of a diesel dual fuel engine. 本発明の実施形態からなるエンジンの燃焼室構造の設計方法を説明するフロー図である。It is a flowchart explaining the design method of the combustion chamber structure of the engine which consists of embodiment of this invention. キャビティを有するタイプの燃焼室に設定された計算格子の区画例の一部を示す模式図である。It is a schematic diagram which shows a part of division example of the calculation grid set to the combustion chamber of the type which has a cavity. キャビティを有しないタイプの燃焼室に設定された計算格子の区画例の一部を示す模式図である。It is a schematic diagram which shows a part of division example of the calculation grid set to the combustion chamber of the type which does not have a cavity. 計算格子をCPUに無作為で割り当てる方法の例を説明する模式図である。It is a schematic diagram explaining the example of the method of assigning a calculation grid to CPU at random.

以下に、本発明の実施の形態について、図面を参照して説明する。図1〜図5は、本発明の実施形態からなるエンジンの燃焼室構造の設計方法が適用される燃焼室の例を示す。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show examples of a combustion chamber to which a method for designing a combustion chamber structure of an engine according to an embodiment of the present invention is applied.

図1に示す燃焼室1Aは、ディーゼルエンジンの燃焼室であり、シリンダボア2内を往復動するピストン3の頂面4の中央部に凹設されたキャビティ5Aから構成されている。このキャビティ5Aの断面形状としては、浅皿型やリエントラント型などが例示される。   A combustion chamber 1 </ b> A shown in FIG. 1 is a combustion chamber of a diesel engine, and includes a cavity 5 </ b> A that is recessed in the central portion of the top surface 4 of the piston 3 that reciprocates in the cylinder bore 2. Examples of the cross-sectional shape of the cavity 5A include a shallow dish type and a reentrant type.

燃焼室1Aでは、燃料である軽油はコモンレール(図示せず)内で蓄圧され、軽油インジェクタ6を通じて適切なタイミングでキャビティ5A内の圧縮空気中に噴射されて燃料噴霧となり、自着火により燃焼・膨張することでピストン3を押し下げる。燃焼後のガスは、排気弁7の開放時に排気管8を通じてシリンダボア2から排出される。その一方で、吸入空気は、吸気弁9の開放時に吸気管10を通じてシリンダボア2内へ導入される。   In the combustion chamber 1A, light oil as fuel is accumulated in a common rail (not shown), and is injected into the compressed air in the cavity 5A at an appropriate timing through the light oil injector 6 to become fuel spray, which is combusted and expanded by self-ignition. This pushes down the piston 3. The burned gas is discharged from the cylinder bore 2 through the exhaust pipe 8 when the exhaust valve 7 is opened. On the other hand, the intake air is introduced into the cylinder bore 2 through the intake pipe 10 when the intake valve 9 is opened.

図2に示す燃焼室1Bは、いわゆるポート噴射型のガソリンエンジンの燃焼室であり、シリンダボア2の内壁11と、そのシリンダボア2内を往復動するピストン3の頂面4とから構成されている。   A combustion chamber 1B shown in FIG. 2 is a combustion chamber of a so-called port injection type gasoline engine, and includes an inner wall 11 of a cylinder bore 2 and a top surface 4 of a piston 3 that reciprocates in the cylinder bore 2.

燃焼室1Bでは、燃料であるガソリンは、キャブレター又は燃料噴射装置(図示せず)を通じて吸気管10内に供給されて混合気を生成し、吸気弁9の開放時に燃焼室1B内へ導入された後に、圧縮されつつ点火プラグ12によって火花点火されて燃焼・膨張することでピストン3を押し下げる。燃焼後のガスは、排気弁7の開放時に排気管8を通じてシリンダボア2から排出される。   In the combustion chamber 1B, gasoline as fuel is supplied into the intake pipe 10 through a carburetor or a fuel injection device (not shown) to generate an air-fuel mixture, and is introduced into the combustion chamber 1B when the intake valve 9 is opened. After that, the piston 3 is pushed down by being ignited by the spark plug 12 while being compressed and burned / expanded. The burned gas is discharged from the cylinder bore 2 through the exhaust pipe 8 when the exhaust valve 7 is opened.

図3に示す燃焼室1Cは、いわゆる筒内噴射型又は直噴型のガソリンエンジンの燃焼室であり、シリンダボア2の内壁11と、ピストン3の頂面4と、その頂面4の一部に凹設されたキャビティ5Cとから構成されている。   A combustion chamber 1C shown in FIG. 3 is a combustion chamber of a so-called in-cylinder injection type or direct injection type gasoline engine. The combustion chamber 1C is formed on the inner wall 11 of the cylinder bore 2, the top surface 4 of the piston 3, and a part of the top surface 4. The cavity 5C is recessed.

この燃焼室1Cでは、燃料であるガソリンは、ガソリンインジェクタ13を通じて適切なタイミングでキャビティ5C内の圧縮空気中に直接に噴射されて、点火プラグ12によって火花点火されて燃焼・膨張する。   In the combustion chamber 1C, gasoline as fuel is directly injected into the compressed air in the cavity 5C through the gasoline injector 13 at an appropriate timing, and is ignited by the spark plug 12 to be burned and expanded.

図4に示す燃焼室1Dは、いわゆるポート噴射型のディーゼルデュアルフューエルエンジンの燃焼室であり、シリンダボア2内を往復動するピストン3の頂面4の中央部に凹設されたキャビティ5Dから構成されている。このキャビティ5Dの断面形状としては、浅皿型やリエントラント型などが例示される。   A combustion chamber 1D shown in FIG. 4 is a combustion chamber of a so-called port injection type diesel dual fuel engine, and is composed of a cavity 5D that is recessed at the center of the top surface 4 of the piston 3 that reciprocates in the cylinder bore 2. ing. Examples of the cross-sectional shape of the cavity 5D include a shallow dish type and a reentrant type.

この燃焼室1Dでは、一方の燃料である天然ガスは、CNGインジェクタ14を通じて吸気弁9の開弁中に吸気管10内へシリンダボア2へ向けて供給される。そして、燃焼室1D内へ導入された天然ガスは、軽油インジェクタ6を通じて適切なタイミングでキャビティ5D内へ噴射された他方の燃料である軽油とともに、圧縮時に自着火により燃焼・膨張することでピストン3を押し下げる。燃焼後のガスは、排気弁7の開放時に排気管8を通じてシリンダボア2から排出される。   In the combustion chamber 1D, natural gas as one fuel is supplied to the cylinder bore 2 into the intake pipe 10 through the CNG injector 14 while the intake valve 9 is opened. The natural gas introduced into the combustion chamber 1D is combusted and expanded by self-ignition at the time of compression together with light oil that is the other fuel injected into the cavity 5D through the light oil injector 6 at an appropriate timing. Press down. The burned gas is discharged from the cylinder bore 2 through the exhaust pipe 8 when the exhaust valve 7 is opened.

図5に示す燃焼室1Eは、いわゆる筒内噴射型又は直噴型のディーゼルデュアルフューエルエンジンの燃焼室であり、シリンダボア2内を往復動するピストン3の頂面4の中央部に凹設されたキャビティ5Eから構成されている。   A combustion chamber 1 </ b> E shown in FIG. 5 is a combustion chamber of a so-called in-cylinder injection type or direct injection type diesel dual fuel engine, and is recessed at the center of the top surface 4 of the piston 3 that reciprocates in the cylinder bore 2. It consists of a cavity 5E.

この燃焼室1Eでは、燃料である天然ガス及び軽油は、CNGインジェクタ14及び軽油インジェクタ6を通じて、適切なタイミングでキャビティ5E内にそれぞれ噴射されて、圧縮時に自着火により燃焼・膨張する。   In the combustion chamber 1E, natural gas and light oil, which are fuels, are respectively injected into the cavity 5E through the CNG injector 14 and the light oil injector 6 at appropriate timing, and are combusted and expanded by self-ignition during compression.

このような燃焼室1A〜1Eの設計方法におけるCFDによる燃焼時の解析評価を、図6に基づいて以下に説明する。   The analysis and evaluation during combustion by CFD in the design method of the combustion chambers 1A to 1E will be described below with reference to FIG.

最初に、予め設計された形状を有する燃焼室1A〜1E内に計算格子を複数区画して設定する(S10)。キャビティを有するタイプの燃焼室(例えば、燃焼室1Aなど)内に計算格子を設定した例を図7に示す。また、キャビティを有しないタイプの燃焼室(例えば、燃焼室1Bなど)内に計算格子を設定した例を図8に示す。これらの例では、各計算格子を規則的に区画しているが、不規則に区画することもある。   First, a plurality of calculation grids are set and set in the combustion chambers 1A to 1E having shapes designed in advance (S10). An example in which a calculation grid is set in a combustion chamber of a type having a cavity (for example, combustion chamber 1A) is shown in FIG. FIG. 8 shows an example in which a calculation grid is set in a combustion chamber of a type having no cavity (for example, the combustion chamber 1B). In these examples, each calculation grid is partitioned regularly, but may be partitioned irregularly.

次に、各計算格子における燃焼反応計算を実施して(S20)、化学反応による化学種の増減量などを求める。この燃焼反応計算においては、計算格子ごとにCPUをそれぞれ割り当てて並列で処理する並列計算が用いられる。   Next, the combustion reaction calculation in each calculation grid is performed (S20), and the increase / decrease amount of the chemical species due to the chemical reaction is obtained. In this combustion reaction calculation, parallel calculation is performed in which a CPU is assigned to each calculation grid and processed in parallel.

次に、燃料噴霧の計算格子間の移動を流体解析により評価して(S30)、燃焼室内における化学種の空間濃度を求める(S40)。   Next, the movement between the calculation grids of the fuel spray is evaluated by fluid analysis (S30), and the spatial concentration of the chemical species in the combustion chamber is obtained (S40).

最後に、各計算格子における温度変化を求める(S50)。これらのステップ20〜50の処理は繰り返し実施される。   Finally, the temperature change in each calculation grid is obtained (S50). These processes of Steps 20 to 50 are repeatedly performed.

このようなCFDによる解析評価において、ステップ20における計算格子のCPUへの割り当ては無作為に行われる。   In such analysis and evaluation by CFD, assignment of calculation grids to CPUs in step 20 is performed randomly.

この無作為に割り当てる方法の一例を、n個の連続する計算格子をm個のCPUにそれぞれ割り当てるケースで説明する(図9を参照)。なお、通常はn>mの関係となる。   An example of this random assignment method will be described in the case of assigning n consecutive calculation grids to m CPUs, respectively (see FIG. 9). Normally, the relationship is n> m.

まず、n個の計算格子及びm個のCPUに対して、1〜n及び1〜mの番号付けをそれぞれ行う(図9(a))。次に、互いに異なるn個の乱数を、1〜n番の計算格子に対してそれぞれ発生順に振り分ける(図9(b))。この乱数の発生は、CFDに予め組み込まれた乱数発生処理等により行うことができる。次に、その振り分けられた乱数間の大小関係(この例では小さい順)に基づいて1〜n番の計算格子の順序を並び替える(図9(c))。そして、その並び替えられた順序に従って、各計算格子をm個のCPUに1つずつ順に割り当てる(図9(d))。このとき、順番がm超となる計算格子は、1番のCPUから再び順に割り当てるようにする。   First, numbers 1 to n and 1 to m are assigned to n calculation grids and m CPUs, respectively (FIG. 9A). Next, n different random numbers are assigned to the 1st to nth calculation grids in the order of generation (FIG. 9B). This random number generation can be performed by a random number generation process or the like incorporated in advance in the CFD. Next, the order of the 1st to nth calculation grids is rearranged based on the magnitude relationship between the distributed random numbers (in this example, in ascending order) (FIG. 9C). Then, according to the rearranged order, each calculation grid is sequentially assigned to m CPUs one by one (FIG. 9D). At this time, the calculation grids whose order is over m are assigned again in order from the first CPU.

以上のように、複数の計算格子における燃焼反応計算を、複数のCPUのいずれか1つにそれぞれ無作為に割り当てることにより、各CPUにおける計算負荷が均一化されて並列計算処理の効率が向上するため、CFDを用いた燃焼反応計算を従来よりも高速で実施することができるのである。   As described above, by randomly assigning combustion reaction calculations in a plurality of calculation grids to any one of a plurality of CPUs, the calculation load in each CPU is equalized and the efficiency of parallel calculation processing is improved. Therefore, the combustion reaction calculation using CFD can be performed at a higher speed than before.

なお、本発明のエンジンの燃焼室構造の設計方法は、上述したディーゼルエンジン、ガソリンエンジン及びディーゼルデュアルフューエルエンジンの燃焼室1A〜1Eに限らず、燃焼反応が時空間的にばらつくエンジン燃焼が生じるエンジンであれば適用可能である。   The engine combustion chamber structure design method according to the present invention is not limited to the combustion chambers 1A to 1E of the diesel engine, gasoline engine, and diesel dual fuel engine described above, and an engine in which combustion occurs in which the combustion reaction varies in time and space. If so, it is applicable.

1A〜1E 燃焼室
2 シリンダボア
3 ピストン
4 頂面
5A、5C、5D、5E キャビティ
6 軽油インジェクタ
7 排気弁
8 排気管
9 吸気弁
10 吸気管
11 内壁
12 点火プラグ
13 ガソリンインジェクタ
14 CNGインジェクタ
1A to 1E Combustion chamber 2 Cylinder bore 3 Piston 4 Top surface 5A, 5C, 5D, 5E Cavity 6 Light oil injector 7 Exhaust valve 8 Exhaust pipe 9 Intake valve 10 Intake pipe 11 Inner wall 12 Spark plug 13 Gasoline injector 14 CNG injector

Claims (3)

エンジンの燃焼室内に区画された複数の計算格子内における流体の燃焼反応計算を、前記複数の計算格子ごとにそれぞれ複数の計算機のいずれか1つに割り当てて並列で処理する並列計算処理を含む数値流体力学を用いたエンジンの燃焼室構造の設計方法において、
前記並列計算処理における前記計算格子の前記計算機への割り当てを無作為に行うことを特徴とするエンジンの燃焼室構造の設計方法。
Numerical values including parallel calculation processing in which a combustion reaction calculation of a fluid in a plurality of calculation grids partitioned in a combustion chamber of an engine is assigned to one of a plurality of computers for each of the plurality of calculation grids and processed in parallel In the design method of the combustion chamber structure of the engine using hydrodynamics,
A design method of a combustion chamber structure of an engine, wherein the calculation grid is randomly assigned to the computer in the parallel calculation processing.
乱数発生処理を含み、
前記乱数発生処理で発生した互いに異なる複数の乱数を前記複数の計算格子に対してそれぞれ順に振り分けて、前記振り分けられた乱数間の大小関係に基づいて前記複数の計算格子の順序を設定し、前記設定された順序に従って前記計算格子の前記計算機への割り当てを行う請求項1に記載のエンジンの燃焼室構造の設計方法。
Including random number generation processing,
Distributing a plurality of different random numbers generated in the random number generation process to the plurality of calculation grids in order, and setting the order of the plurality of calculation grids based on the magnitude relationship between the distributed random numbers, The engine combustion chamber structure design method according to claim 1, wherein the calculation grid is assigned to the computer according to a set order.
前記エンジンが、ディーゼルエンジン、ガソリンエンジン又はディーゼルデュアルフューエルエンジンである請求項1又は2に記載のエンジンの燃焼室構造の設計方法。   The engine combustion chamber structure design method according to claim 1, wherein the engine is a diesel engine, a gasoline engine, or a diesel dual fuel engine.
JP2016014406A 2015-02-03 2016-01-28 Method of designing engine combustion chamber structure Active JP6710986B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015018960 2015-02-03
JP2015018960 2015-02-03
JP2015221076 2015-11-11
JP2015221076 2015-11-11

Publications (2)

Publication Number Publication Date
JP2017089608A true JP2017089608A (en) 2017-05-25
JP6710986B2 JP6710986B2 (en) 2020-06-17

Family

ID=58767489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014406A Active JP6710986B2 (en) 2015-02-03 2016-01-28 Method of designing engine combustion chamber structure

Country Status (1)

Country Link
JP (1) JP6710986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895617A (en) * 2018-09-10 2020-03-20 广州汽车集团股份有限公司 Parameter optimization method and device for gasoline engine combustion system and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185377A (en) * 1994-12-28 1996-07-16 Mitsubishi Electric Corp Distributed computer system
JP2004239128A (en) * 2003-02-05 2004-08-26 Mazda Motor Corp Predicting analyzing method of engine performance, predicting analyzing system and its control program
JP2004240669A (en) * 2003-02-05 2004-08-26 Sharp Corp Job scheduler and multiprocessor system
JP2005012675A (en) * 2003-06-20 2005-01-13 Canon Inc Image display method and program
JP2005257517A (en) * 2004-03-12 2005-09-22 Mazda Motor Corp Prediction analysis method of engine performance, prediction analysis system and its control program
JP2008035532A (en) * 2007-08-31 2008-02-14 Canon Inc Image display method and program
JP2013209920A (en) * 2012-03-30 2013-10-10 Toyota Central R&D Labs Inc Spark ignition type internal-combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185377A (en) * 1994-12-28 1996-07-16 Mitsubishi Electric Corp Distributed computer system
JP2004239128A (en) * 2003-02-05 2004-08-26 Mazda Motor Corp Predicting analyzing method of engine performance, predicting analyzing system and its control program
JP2004240669A (en) * 2003-02-05 2004-08-26 Sharp Corp Job scheduler and multiprocessor system
JP2005012675A (en) * 2003-06-20 2005-01-13 Canon Inc Image display method and program
JP2005257517A (en) * 2004-03-12 2005-09-22 Mazda Motor Corp Prediction analysis method of engine performance, prediction analysis system and its control program
JP2008035532A (en) * 2007-08-31 2008-02-14 Canon Inc Image display method and program
JP2013209920A (en) * 2012-03-30 2013-10-10 Toyota Central R&D Labs Inc Spark ignition type internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895617A (en) * 2018-09-10 2020-03-20 广州汽车集团股份有限公司 Parameter optimization method and device for gasoline engine combustion system and storage medium

Also Published As

Publication number Publication date
JP6710986B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP5003496B2 (en) Reciprocating engine
JP6562019B2 (en) Internal combustion engine
Curto-Risso et al. On cycle-to-cycle heat release variations in a simulated spark ignition heat engine
JP6112195B2 (en) Internal combustion engine control system
JP4985412B2 (en) Reciprocating engine
US10794310B2 (en) Engine control system and method
Fontanesi et al. LES multi-cycle analysis of a high performance GDI engine
Ghorbanpour et al. A parametric investigation of HCCI combustion to reduce emissions and improve efficiency using a CFD model approach
KR101615698B1 (en) Inter-injection spark ignition control method for direct injection gas engine
Jupudi et al. Application of high performance computing for simulating cycle-to-cycle variation in dual-fuel combustion engines
Zembi et al. Large Eddy Simulation of ignition and combustion stability in a lean SI optical access engine
JP6710986B2 (en) Method of designing engine combustion chamber structure
JP2019116865A (en) Internal combustion engine
Baeta et al. Exploring the performance limits of a stratified torch ignition engine using numerical simulation and detailed experimental approaches
JP2007278233A (en) Fuel injection valve for direct injection spark ignition type internal combustion engine
Quazi et al. Effect of piston bowl shape, swirl ratio and spray angle on combustion and emission in off road diesel engine
Najafabadi et al. Effects of intake temperature and equivalence ratio on HCCI ignition timing and emissions of a 2-stroke engine
JP6013295B2 (en) Gas engine and plug cover design method for gas engine
Mahabadipour et al. “Lost Available IMEP”: A Second-Law-Based Performance Parameter for IC Engines
CA2863036A1 (en) Chamfered piston
Karvountzis-Kontakiotis et al. Investigation of cycle-to-cycle variability of NO in homogeneous combustion
JP2008297988A (en) Internal combustion engine
Pasunurthi et al. A numerical study of the influence of different operating conditions on the combustion development in an automotive-size diesel engine
JP2016211420A (en) Control device of internal combustion engine
Mashkour et al. Numerical Simulation of pent-roof combustion chamber in a SI Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6710986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150