JP2017084866A - Bonding wire - Google Patents

Bonding wire Download PDF

Info

Publication number
JP2017084866A
JP2017084866A JP2015208761A JP2015208761A JP2017084866A JP 2017084866 A JP2017084866 A JP 2017084866A JP 2015208761 A JP2015208761 A JP 2015208761A JP 2015208761 A JP2015208761 A JP 2015208761A JP 2017084866 A JP2017084866 A JP 2017084866A
Authority
JP
Japan
Prior art keywords
coating layer
metal coating
wire
bonding wire
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015208761A
Other languages
Japanese (ja)
Inventor
聡子 土居
Satoko Doi
聡子 土居
裕之 越中
Hiroyuki Koshinaka
裕之 越中
兼造 井手
Kenzo Ide
兼造 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2015208761A priority Critical patent/JP2017084866A/en
Publication of JP2017084866A publication Critical patent/JP2017084866A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45609Indium (In) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45611Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45618Zinc (Zn) as principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding wire having a core material including Ag as a primary component, which can prevent the sulfurization of a wire surface before and after boding.SOLUTION: Used is a bonding wire comprising: a core material 12 including 75 mass% or more of Ag; and a metal coating layer 14 covering the outer peripheral face of the core material 12. The metal coating layer 14 includes 90 mass% or more of at least one element selected from a group consisting of Sn, Zn and In. The metal coating layer is 0.01 μm or more in thickness.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子の電極と基板の電極とを接続するボンディングワイヤに関し、特に、Agを主成分とする芯材を備えたボンディングワイヤに関する。   The present invention relates to a bonding wire for connecting an electrode of a semiconductor element and an electrode of a substrate, and more particularly to a bonding wire including a core material mainly composed of Ag.

半導体素子上の電極と基板の電極との結線に用いられるボンディングワイヤは、一般に非常に細いため、導電性が良好で加工性に優れた金属材料により製造されている。特に、化学的な安定性や大気中での取り扱いやすさから、従来からAu製のボンディングワイヤが広く用いられている。しかし、従来のAu製のボンディングワイヤは質量の99%以上がAuであり、非常に高価であるため、より安価な材料からなるボンディングワイヤが待ち望まれている。   Since bonding wires used for connecting electrodes on a semiconductor element and electrodes on a substrate are generally very thin, they are manufactured from a metal material having good conductivity and excellent workability. In particular, Au bonding wires have been widely used in the past because of their chemical stability and ease of handling in the atmosphere. However, since a conventional Au bonding wire has a mass of 99% or more and is very expensive, a bonding wire made of a cheaper material is awaited.

Ag製のボンディングワイヤは、Au製のボンディングワイヤより安価であることに加え、光反射率がAuに比べて高いため、LED等の発光効率の向上に有効である。   In addition to being cheaper than Au bonding wires, Ag bonding wires are more effective in improving the light emission efficiency of LEDs and the like because their light reflectance is higher than that of Au.

しかしながら、Ag製のボンディングワイヤは表面が硫化して変色しやすいという問題を有する。表面が硫化したAg製のボンディングワイヤは、電極に対する接合不良が発生しやすくなり、また、光反射率が低下して発光効率を悪化させるという問題も生じる。   However, the bonding wire made of Ag has a problem that the surface is easily sulfided and easily discolored. A bonding wire made of Ag having a sulfurized surface is liable to cause poor bonding to the electrode, and also causes a problem that the light reflectance is lowered and the luminous efficiency is deteriorated.

これに対して、Ag表面の硫化による変色を抑制するため、有機化合物と界面活性剤とを含む変色防止層を、Agを主成分とする芯材の外周面に形成したボンディングワイヤが提案されている(例えば、下記特許文献1)。   On the other hand, in order to suppress discoloration due to sulfuration on the Ag surface, a bonding wire has been proposed in which a discoloration prevention layer containing an organic compound and a surfactant is formed on the outer peripheral surface of a core material mainly composed of Ag. (For example, Patent Document 1 below).

特開2015−164186号公報JP-A-2015-164186

しかしながら、上記の変色防止層を有するAg製のボンディングワイヤでは、変色防止層が有機化合物と界面活性剤により構成されているため、通常環境において硫化防止効果を有するが、接合時に与えられる熱によって芯材の表面から変色防止層が飛散しやすく、接合後の硫化防止効果が低減するという問題がある。   However, in the Ag bonding wire having the above-described anti-discoloration layer, the anti-discoloration layer is composed of an organic compound and a surfactant, and thus has an antisulfurization effect in a normal environment. There is a problem that the anti-discoloring layer easily scatters from the surface of the material, and the effect of preventing sulfidation after bonding is reduced.

本発明は、上記問題に鑑みてなされたものであり、Agを主成分とする芯材を備えたボンディングワイヤにおいて、接合の前後を通してワイヤ表面の硫化を防止することができるボンディングワイヤを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a bonding wire that can prevent sulfidation of the wire surface before and after bonding in a bonding wire including a core material mainly composed of Ag. With the goal.

上記課題を解決するため、本発明のボンディングワイヤは、Agを75質量%以上含有する芯材と、芯材の外周面を被覆する金属被覆層とを備え、この金属被覆層が、Sn、Zn及びInからなる群から選択された1種又は2種以上の元素を90質量%以上含有し、この金属被覆層の厚みが0.01μm以上であるものとする。   In order to solve the above problems, a bonding wire of the present invention includes a core material containing 75% by mass or more of Ag and a metal coating layer that covers the outer peripheral surface of the core material. And 90% by mass or more of one or more elements selected from the group consisting of In, and the thickness of the metal coating layer is 0.01 μm or more.

本発明に係るボンディングワイヤの金属被覆層の厚みは、ボンディングワイヤの直径の1%以下とすることができる。   The thickness of the metal coating layer of the bonding wire according to the present invention can be 1% or less of the diameter of the bonding wire.

本発明に係るボンディングワイヤの金属被覆層の厚みは、0.1μm未満とすることができる。   The thickness of the metal coating layer of the bonding wire according to the present invention can be less than 0.1 μm.

本発明に係るボンディングワイヤの金属被覆層は、Snを含有することが好ましい。   The metal coating layer of the bonding wire according to the present invention preferably contains Sn.

本発明によれば、Agを主成分とする芯材の外周面を覆う金属被覆層が、従来技術のように有機化合物を主成分としないため、接合時に与えられる熱によって芯材の表面から飛散することがなく、接合の前後でボンディングワイヤ表面の変色を防止することができる。   According to the present invention, the metal coating layer covering the outer peripheral surface of the core material containing Ag as a main component does not contain an organic compound as a main component unlike the prior art, so that it is scattered from the surface of the core material by heat applied during bonding. Therefore, discoloration of the bonding wire surface can be prevented before and after bonding.

本発明の一実施形態に係るボンディングワイヤの断面図である。It is sectional drawing of the bonding wire which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係るボンディングワイヤ10について説明する。   Hereinafter, a bonding wire 10 according to an embodiment of the present invention will be described.

本実施形態に係るボンディングワイヤ10は、図1に示すように、Agを主成分とする芯材12と、露出部がないように芯材12の外周面全体を被覆する金属被覆層14とを備える。   As shown in FIG. 1, the bonding wire 10 according to this embodiment includes a core material 12 mainly composed of Ag, and a metal coating layer 14 that covers the entire outer peripheral surface of the core material 12 so that there is no exposed portion. Prepare.

具体的には、芯材12は、光反射率をAu以上にするため、Agを75質量%以上含有しているのが好ましい。なお、ボンディングワイヤ10の固有抵抗は、2N(99%)のAu製のボンディングワイヤの固有抵抗(3.0μΩ・cm)以下であることが好ましく、この観点からは、純度99.9質量%以上のAgを用いて芯材12の構成するAg合金を製作することが好ましい。   Specifically, the core material 12 preferably contains 75% by mass or more of Ag in order to make the light reflectivity Au or more. The specific resistance of the bonding wire 10 is preferably equal to or lower than the specific resistance (3.0 μΩ · cm) of 2N (99%) Au bonding wire. From this viewpoint, the purity is 99.9% by mass or more. It is preferable to produce an Ag alloy that constitutes the core material 12 using Ag.

芯材12の線径(直径)φは、ボンディングワイヤ10の用途に応じて適宜設定することができるが、一例を挙げると、5μm以上150μm以下とすることができる。   The wire diameter (diameter) φ of the core material 12 can be set as appropriate according to the application of the bonding wire 10, but can be set to 5 μm or more and 150 μm or less, for example.

芯材12は、本発明の目的に反しない範囲であれば、Ag以外に、Au及びPdの中から選択された1種以上の元素や、Ca、Y、Sm、La、Ce、Be、B及びGeの中から選択された1種又は2種以上の元素や、Cu及びNiの少なくとも一方の元素を含有してもよい。   As long as the core material 12 does not contradict the object of the present invention, in addition to Ag, one or more elements selected from Au and Pd, Ca, Y, Sm, La, Ce, Be, B And one or more elements selected from Ge and at least one element of Cu and Ni may be contained.

Auは、放電加熱等によりボンディングワイヤの先端に形成されるフリーエアボール(以下、FABと略記する)の真球度を向上させるために添加することができる。通常、純Agワイヤを用いてFABを作製すると、真球度の高いFABを安定的に得るのが難しい。しかし、Auを一定量添加することにより真球度の高いFABを得やすくなる。   Au can be added to improve the sphericity of a free air ball (hereinafter abbreviated as FAB) formed at the tip of the bonding wire by discharge heating or the like. Usually, when a FAB is produced using a pure Ag wire, it is difficult to stably obtain a FAB having a high sphericity. However, it becomes easy to obtain FAB with high sphericity by adding a certain amount of Au.

Pdは、ボンディングワイヤの先端に形成したFABを電極に押し当てて接合した部分(1st接合部)の耐食性を向上させるために添加することができる。BGA(Ball Grid Array)等の半導体パッケージの電極にはアルミニウムもしくはアルミニウム合金が被覆されていることが多い。LEDの電極は金被覆の場合が多いが、アルミニウムもしくはアルミニウム合金の被覆材が用いられることもある。銀とアルミニウムを接合すると、接合界面に銀とアルミニウムの金属間化合物層が生成する。この化合物層のうち、Ag2Alが成長すると、湿潤環境下における耐食性が劣化する。AgワイヤにPdを一定量添加すると、FABの外周部にPd濃化層が形成され、そのことによってAg2Alの生成が抑制でき、湿潤環境下における耐食性の劣化を抑えることができる。 Pd can be added in order to improve the corrosion resistance of the part (first joint part) joined by pressing the FAB formed at the tip of the bonding wire against the electrode. An electrode of a semiconductor package such as a BGA (Ball Grid Array) is often coated with aluminum or an aluminum alloy. The electrode of the LED is often gold-coated, but an aluminum or aluminum alloy coating material may be used. When silver and aluminum are bonded, an intermetallic compound layer of silver and aluminum is formed at the bonding interface. When Ag 2 Al grows in this compound layer, the corrosion resistance in a wet environment deteriorates. When a certain amount of Pd is added to the Ag wire, a Pd enriched layer is formed on the outer peripheral portion of the FAB, which can suppress the formation of Ag 2 Al and suppress the deterioration of the corrosion resistance in a wet environment.

Au及びPdはそれぞれ単独で添加しても効果が得られるが、PdとAuを複合して添加した場合、ワイヤの融点が高くなり、耐熱性がより向上する。   Even if Au and Pd are added alone, the effect can be obtained. However, when Pd and Au are added in combination, the melting point of the wire is increased and the heat resistance is further improved.

上記の観点から芯材12にAu及び/又はPdを含有させる場合、その含有量は合計量(つまり、Au又はPdを単独で添加する場合はAu又はPdの量、AuとPdを複合して添加する場合はAuとPdの合計量)で、0.1〜20質量%であることが好ましく、0.5〜4.0質量%であることがより好ましい。0.1質量%以上であると放電加熱によって真球状のFABが形成され易く、10質量%以下であるとワイヤの固有抵抗が適切な範囲に維持され、さらに、0.5質量%以上であると、より形状が安定したFABが得られ、4.0質量%以下であると、ワイヤの固有抵抗が3.0μΩ・cm以下になり、より特性のよいワイヤが得られる。   When Au and / or Pd are contained in the core material 12 from the above viewpoint, the content is the total amount (that is, when Au or Pd is added alone, the amount of Au or Pd is combined with Au and Pd). When added, the total amount of Au and Pd) is preferably 0.1 to 20% by mass, and more preferably 0.5 to 4.0% by mass. If it is 0.1% by mass or more, a spherical FAB is easily formed by discharge heating, and if it is 10% by mass or less, the specific resistance of the wire is maintained in an appropriate range, and further 0.5% by mass or more. Thus, a FAB having a more stable shape is obtained, and if it is 4.0% by mass or less, the specific resistance of the wire is 3.0 μΩ · cm or less, and a wire with better characteristics is obtained.

また、芯材12に、Ca、Y、Sm、La、Ce、Be、B及びGeの中から選択された1種又は2種以上の元素を添加する場合、これらの元素の合計量は、5〜500質量ppmであることが好ましい。5質量ppm以上であると、得られるワイヤの強度をより向上させることができ、ボンディング後の樹脂モールドの際にボンディングされたワイヤがモールド樹脂の流れによって移動するワイヤフローの発生が防止でき、500質量ppm以下であると放電加熱によって得られるFABの形状が安定して良好な球状のFABが得られる。   When one or more elements selected from Ca, Y, Sm, La, Ce, Be, B and Ge are added to the core material 12, the total amount of these elements is 5 It is preferable that it is -500 mass ppm. When the content is 5 ppm by mass or more, the strength of the obtained wire can be further improved, and the occurrence of a wire flow in which the bonded wire is moved by the flow of the mold resin at the time of resin molding after bonding can be prevented. When the mass is less than or equal to ppm, the shape of the FAB obtained by discharge heating is stable, and a good spherical FAB is obtained.

ここで、Ca、Y、Sm、La、Ce、Be、B及びGeの中では、極微量の添加でワイヤの耐熱性・強度向上に効果がある点からはYが好ましく、また、添加元素とAgが化合物を作ることによってマトリックスであるAg中に化合物が分散しワイヤの高強度化に寄与する点からは、LaやCeも好ましい。しかし、入手の容易さの点からは、Ca、Be、B又はGeの添加が好ましく、使い勝手や効果の観点からはCaの添加が最も好ましい。   Here, among Ca, Y, Sm, La, Ce, Be, B, and Ge, Y is preferable from the point of being effective in improving the heat resistance and strength of the wire by adding a very small amount, La and Ce are also preferable in that the compound is dispersed in the matrix Ag by making the compound of Ag and contributes to the enhancement of the strength of the wire. However, addition of Ca, Be, B or Ge is preferable from the viewpoint of availability, and addition of Ca is most preferable from the viewpoint of usability and effect.

さらに、強度を一層向上させるためには、Ca、Y、Sm、La、Ce、Be、B又はGeの添加に加えて、Cu、Niの添加が効果的である。Cu、Niは、Ca、Y、Sm、La、Ce、Be、B及びGeと反応せずにマトリックスのAgと容易に合金化するため、Ca、Y、Sm、La、Ce、Be、B及びGeの添加効果を損なうことなく、マトリックスの高強度化に寄与する。なお、高強度化が必要な場合、上記のようにCa、Y、Sm、La、Ce、Be、B及びGeと併せてCuやNiを添加してもよいが、Ca、Y、Sm、La、Ce、Be、B及びGeに換えて、CuやNiを添加してもワイヤの強度を向上させることができる。   Furthermore, in order to further improve the strength, in addition to the addition of Ca, Y, Sm, La, Ce, Be, B or Ge, the addition of Cu and Ni is effective. Cu, Ni is easily alloyed with Ag of the matrix without reacting with Ca, Y, Sm, La, Ce, Be, B and Ge, so Ca, Y, Sm, La, Ce, Be, B and This contributes to increasing the strength of the matrix without impairing the effect of adding Ge. When high strength is required, Cu or Ni may be added together with Ca, Y, Sm, La, Ce, Be, B, and Ge as described above, but Ca, Y, Sm, La may be added. Even if Cu or Ni is added instead of Ce, Be, B and Ge, the strength of the wire can be improved.

また、芯材12にCu及びNiの中から選択された1種又は2種の元素を添加する場合、これらの元素の合計量は、100〜10000質量ppmであることが好ましい。100質量ppm以上であると、得られるワイヤの強度をより向上させることができ、ボンディング後の樹脂モールドの際にボンディングされたワイヤがモールド樹脂の流れによって移動するワイヤフローの発生が防止でき、10000質量ppm以下であると放電加熱によって得られるFABの形状が安定して良好な球状のFABが得られる。   Moreover, when adding 1 type or 2 types of elements selected from Cu and Ni to the core material 12, it is preferable that the total amount of these elements is 100-10000 mass ppm. When it is 100 mass ppm or more, the strength of the obtained wire can be further improved, and the occurrence of wire flow in which the bonded wire moves by the flow of the molding resin can be prevented at the time of resin molding after bonding. When the mass is less than or equal to ppm, the shape of the FAB obtained by discharge heating is stable, and a good spherical FAB is obtained.

次に金属被覆層14は、芯材12表面の硫化を抑え、有意な変色防止効果を得るため、Sn、Zn及びInからなる群から選択された1種又は2種以上の元素を90質量%以上含有することが好ましく、99質量%以上が含有することがより好ましい。また、金属被覆層14は、Sn、Zn及びInの元素のうちの1種又は2種以上からなることが好ましく、Sn、Zn、In、SnとZnの合金、及びSnとInの合金のいずれか1つからなることがより好ましい。Sn、Zn、In、SnとZnの合金、及びSnとInの合金の中では加工性が優れる点でSnが好ましい。なお、金属被覆層14は、本発明の目的に反しない範囲であれば、Sn、Zn及びIn以外の元素を含有してもよく、そのような金属の例としては、Ti、Cu、Ni、Al、Mg、Pd、Au、Ptが挙げられる。   Next, the metal coating layer 14 contains 90% by mass of one or more elements selected from the group consisting of Sn, Zn, and In in order to suppress sulfidation on the surface of the core material 12 and obtain a significant discoloration preventing effect. It is preferable to contain above, and it is more preferable to contain 99 mass% or more. The metal coating layer 14 is preferably made of one or more of Sn, Zn, and In, and any of Sn, Zn, In, Sn and Zn alloys, and Sn and In alloys. More preferably, it consists of one of them. Among Sn, Zn, In, an alloy of Sn and Zn, and an alloy of Sn and In, Sn is preferable in terms of excellent workability. The metal coating layer 14 may contain elements other than Sn, Zn, and In as long as the object of the present invention is not adversely affected. Examples of such metals include Ti, Cu, Ni, Al, Mg, Pd, Au, Pt are mentioned.

金属被覆層14の厚みtは、0.01μm以上0.1μm未満であることが好ましい。金属被覆層14の厚みtが0.01μm以上であると、芯材12表面の硫化を抑え、有意な変色防止効果を得ることができる。金属被覆層14の厚みtが0.1μm未満であると、芯材12の外周面に金属被覆層14を設けた後に伸線加工を行っても金属被覆層14の割れが発生しにくくなる。なお、金属被覆層14は芯材12の表面全体を隙間なく被覆しているのが好ましいが、本発明の目的に反しない範囲であれば被覆していない部分があってもよい。   The thickness t of the metal coating layer 14 is preferably 0.01 μm or more and less than 0.1 μm. When the thickness t of the metal coating layer 14 is 0.01 μm or more, sulfidation of the surface of the core material 12 can be suppressed, and a significant discoloration preventing effect can be obtained. If the thickness t of the metal coating layer 14 is less than 0.1 μm, cracking of the metal coating layer 14 is less likely to occur even when wire drawing is performed after the metal coating layer 14 is provided on the outer peripheral surface of the core material 12. The metal coating layer 14 preferably covers the entire surface of the core material 12 without any gaps, but there may be uncovered portions as long as the object of the present invention is not adversely affected.

また、放電加熱によって得られるFABの真球性を良好とするため、ボンディングワイヤ10の線径φが細くなるにつれて金属被覆層14の厚みtを小さくすることが好ましく、ボンディングワイヤ10の線径φに対するに金属被覆層の厚みtの比率ρ(t/φ)は1%以下が好ましく、0.2%以下であることがより好ましい。比率ρが1%以下であると放電加熱によって得られるFABの形状が安定して良好な球状のFABが得られやすく、0.2%以下であるとより形状が安定したFABが得られやすい。   Further, in order to improve the sphericity of the FAB obtained by discharge heating, it is preferable to reduce the thickness t of the metal coating layer 14 as the wire diameter φ of the bonding wire 10 becomes smaller, and the wire diameter φ of the bonding wire 10. In contrast, the ratio ρ (t / φ) of the thickness t of the metal coating layer is preferably 1% or less, and more preferably 0.2% or less. If the ratio ρ is 1% or less, the shape of the FAB obtained by discharge heating is stable and a good spherical FAB is easily obtained, and if it is 0.2% or less, the FAB having a more stable shape is easily obtained.

次に、このような構成のボンディングワイヤ10の製造方法の一例を説明する。   Next, an example of a method for manufacturing the bonding wire 10 having such a configuration will be described.

まず、純度99.9質量%以上のAgに、必要に応じて、Au、Pd、Ca、Y、Sm、La、Ce、Be、B、Ge、Cu及びNiの中から選択された1種以上の元素を添加して95質量%以上のAgを含有するAg合金を鋳造した後、連続鋳造法にて所定の径の棒状インゴットを作製する。   First, Ag having a purity of 99.9% by mass or more, if necessary, one or more selected from Au, Pd, Ca, Y, Sm, La, Ce, Be, B, Ge, Cu and Ni After adding the above element and casting an Ag alloy containing 95% by mass or more of Ag, a rod-shaped ingot having a predetermined diameter is produced by a continuous casting method.

次いで、棒状インゴットを伸線加工して、所定の直径の芯材12になるまで縮径する。その後、芯材12の外周全面に、Sn、Zn及びInの中から選択された1種又は2種以上の元素を含む金属被覆層14を形成する。金属被覆層14は、電気メッキ法、無電解メッキ法、蒸着法などの公知の手段によって形成することができる。   Next, the rod-shaped ingot is drawn to reduce the diameter until the core material 12 has a predetermined diameter. Thereafter, a metal coating layer 14 containing one or more elements selected from Sn, Zn, and In is formed on the entire outer periphery of the core material 12. The metal coating layer 14 can be formed by known means such as electroplating, electroless plating, and vapor deposition.

そして、金属被覆層14が形成された芯材12を更に伸線加工して、所定の線径φ(例えば、5μm〜150μm)に達するまで縮径する。これにより、厚みtが0.01μm以上の金属被覆層14で芯材12の外周面全体を覆ったボンディングワイヤ10を得ることができる。   Then, the core material 12 on which the metal coating layer 14 is formed is further drawn to reduce the diameter until a predetermined wire diameter φ (for example, 5 μm to 150 μm) is reached. Thereby, the bonding wire 10 which covered the whole outer peripheral surface of the core material 12 with the metal coating layer 14 whose thickness t is 0.01 micrometer or more can be obtained.

金属被覆層14の厚みtは、伸線加工の途中で芯材12に形成する金属被覆層14の厚みを変更することで、最終的に得られるボンディングワイヤ10の金属被覆層14の厚みtを調整することができる。   The thickness t of the metal coating layer 14 is changed to the thickness t of the metal coating layer 14 of the finally obtained bonding wire 10 by changing the thickness of the metal coating layer 14 formed on the core material 12 during the wire drawing process. Can be adjusted.

なお、必要に応じて伸線加工の途中や伸線加工の終了後にボンディングワイヤ10に熱処理を行ってもよい。熱処理の一例を挙げると、大気雰囲気又は窒素ガス雰囲気において300〜1000℃で0.1〜60秒間連続焼鈍処理を施すことができる。   In addition, you may heat-process the bonding wire 10 as needed in the middle of a wire drawing process, or after completion | finish of a wire drawing process. If an example of heat processing is given, a continuous annealing process can be performed for 0.1 to 60 second at 300-1000 degreeC in air | atmosphere atmosphere or nitrogen gas atmosphere.

上記により得られたボンディングワイヤ10では、Sn、Zn及びInの中から選択された1種又は2種以上の元素を90質量%以上含み、厚みtが0.01μm以上の金属被覆層14によって芯材12の外周面が覆われているため、芯材12の硫化を抑えることができ、よってボンディングワイヤ10の変色を抑えることができる。しかも、金属被覆層14は、Sn等の金属から構成されており、ボンディングワイヤ10の接合時に与えられる熱によって飛散することなく、芯材12の外周面に残留するため、接合後も芯材12の硫化による変色を防止することができる。   In the bonding wire 10 obtained as described above, the core is formed by the metal coating layer 14 containing 90% by mass or more of one or more elements selected from Sn, Zn and In and having a thickness t of 0.01 μm or more. Since the outer peripheral surface of the material 12 is covered, sulfidation of the core material 12 can be suppressed, and thus discoloration of the bonding wire 10 can be suppressed. In addition, the metal coating layer 14 is made of a metal such as Sn and remains on the outer peripheral surface of the core material 12 without being scattered by heat applied when the bonding wire 10 is bonded. Discoloration due to sulfuration can be prevented.

以上、本発明の実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment of this invention was described, these embodiment was shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

95質量%以上のAgを含有するAg合金を溶解し、連続鋳造法にて棒状インゴットを作製した。そして、棒状インゴットに伸線加工を施して直径が488μmの芯材12になるまで縮径した後、芯材12の外周面にSnを電気メッキ法によって被覆させて、Snを
99.5質量%含有する金属被覆層14を形成した。その後、金属被覆層14が形成された芯材12を更に伸線加工して、線径φが25μmに達するまで縮径した後、大気雰囲気において460℃で1秒間、連続焼鈍処理(熱処理)を施し、実施例1〜5及び比較例1〜3のボンディングワイヤ10を得た。
An Ag alloy containing 95% by mass or more of Ag was melted, and a rod-shaped ingot was produced by a continuous casting method. Then, the rod-shaped ingot is drawn to reduce the diameter until the core material 12 has a diameter of 488 μm, and then the outer peripheral surface of the core material 12 is coated with Sn by electroplating, and Sn is 99.5% by mass. The containing metal coating layer 14 was formed. Thereafter, the core material 12 on which the metal coating layer 14 is formed is further drawn to reduce the diameter until the wire diameter φ reaches 25 μm, and then subjected to continuous annealing treatment (heat treatment) at 460 ° C. for 1 second in an air atmosphere. The bonding wires 10 of Examples 1 to 5 and Comparative Examples 1 to 3 were obtained.

実施例1〜5及び比較例1〜3は、金属被覆層14の厚みtをそれぞれ変化させた以外は、ボンディングワイヤ10の線径φや芯材12及び金属被覆層14の組成を含め、全て同一とした。   Examples 1 to 5 and Comparative Examples 1 to 3 all included the wire diameter φ of the bonding wire 10 and the composition of the core material 12 and the metal coating layer 14 except that the thickness t of the metal coating layer 14 was changed. Identical.

得られた実施例1〜5及び比較例1〜3のボンディングワイヤ10につき、金属被覆層14の厚みtの測定、金属被覆層14の割れの有無、耐硫化性能、及びFABの真球性能の評価を行った。具体的な評価方法は以下のとおりである。結果を表1に示す。   For the obtained bonding wires 10 of Examples 1 to 5 and Comparative Examples 1 to 3, measurement of the thickness t of the metal coating layer 14, presence or absence of cracks in the metal coating layer 14, sulfidation resistance, and FAB true ball performance Evaluation was performed. The specific evaluation method is as follows. The results are shown in Table 1.

1.金属被覆層の厚み測定
実施例1〜5及び比較例1〜3のボンディングワイヤ10を走査型オージェ電子分光分析装置(アルバック・ファイ(株)製、PHI−700)により、Arイオンで深さ方向(径方向内方)に単位時間のスパッタを行い、その都度Sn濃度を測定していき、最外層におけるSn濃度の1/2の濃度になったところまでを金属被覆層の厚みとした。厚さの換算にはSiO2換算を用いた。
1. Thickness measurement of metal coating layer The bonding wires 10 of Examples 1 to 5 and Comparative Examples 1 to 3 were scanned with a scanning Auger Electron Spectrometer (PHI-700, ULVAC-PHI Co., Ltd.) in the depth direction with Ar ions. Sputtering was carried out for a unit time (inward in the radial direction), and the Sn concentration was measured each time, and the thickness of the metal coating layer was determined up to the point where the concentration was ½ of the Sn concentration in the outermost layer. For the thickness conversion, SiO 2 conversion was used.

2.金属被覆層の割れの評価
電気メッキ法によって芯材12の外周面に金属被覆層14を形成したボンディングワイヤ10を、線径が250μmに達するまで伸線加工を行った後、汎用型電子顕微鏡(日本電子(株)製、JSM−6510LA)にて表面外観の観察を行うとともに、エネルギー分散型X線分光装置(EDX:Energy Dispersive X−ray Spectroscopy)(日本電子(株)製、EX−37001)にて表面状態の分析を行い、伸線加工によって生じた金属被覆層14の割れ(めっき割れ)の有無を評価した。
2. Evaluation of cracks in the metal coating layer The bonding wire 10 in which the metal coating layer 14 is formed on the outer peripheral surface of the core material 12 by electroplating is drawn until the wire diameter reaches 250 μm, and then a general-purpose electron microscope ( The surface appearance is observed with JEOL Co., Ltd. (JSM-6510LA), and an energy dispersive X-ray spectrometer (EDX: Energy Dispersive X-ray Spectroscopy) (EX-37001, manufactured by JEOL Ltd.) The surface state was analyzed at 1 to evaluate the presence or absence of cracks (plating cracks) in the metal coating layer 14 caused by wire drawing.

3.耐硫化性評価
実施例1〜5及び比較例1〜3のボンディングワイヤ10を長さ200mmに切断して評価試料を作製し、当該評価試料を硫化アンモニウム水溶液から発生する蒸気に20分間さらした後、上記汎用型電子顕微鏡にて外観を観察し、上記エネルギー分散型X線分光装置にて硫黄質量を測定した。
3. Sulfide resistance evaluation After bonding wires 10 of Examples 1 to 5 and Comparative Examples 1 to 3 were cut to a length of 200 mm to prepare an evaluation sample, the evaluation sample was exposed to vapor generated from an aqueous ammonium sulfide solution for 20 minutes. The external appearance was observed with the general-purpose electron microscope, and the sulfur mass was measured with the energy dispersive X-ray spectrometer.

金属被覆層12を形成していない比較例1のボンディングワイヤの硫黄質量定量値に対し、70%以下の硫黄質量定量値になっているものを耐硫化性能があると判断し、70%より多いものを耐硫化性能がないと判断した。   With respect to the sulfur mass quantitative value of the bonding wire of Comparative Example 1 in which the metal coating layer 12 is not formed, a sulfur mass quantitative value of 70% or less is judged to have sulfurization resistance, and is more than 70%. The product was judged not to have sulfurization resistance.

4.FABの真球性評価
実施例1〜5及び比較例1〜3のボンディングワイヤに対して、ワイヤボンダー(K&S社製、Iconn)にてFABを作製した。FAB作成条件は、N2ガス雰囲気で、ガス流量:0.5mL/min、スパーク電流40mA、スパーク時間1200μsecで放電を行い、ボンディングワイヤ10の先端にFABを作製した。
4). Evaluation of FAB True Sphericality For the bonding wires of Examples 1 to 5 and Comparative Examples 1 to 3, FABs were prepared using a wire bonder (Iconn, manufactured by K & S). FAB preparation conditions were as follows: discharging was performed in an N 2 gas atmosphere at a gas flow rate of 0.5 mL / min, a spark current of 40 mA, and a spark time of 1200 μsec.

FAB真球性の評価としては、実施例及び比較例のボンディングワイヤ毎にFABを40個ずつ作製した後、上記汎用型電子顕微鏡にて外観観察を行い、作製した40個のFABのワイヤ平行方向と垂直方向の長さをそれぞれ測定した。FABのワイヤ平行方向の長さXと垂直方向の長さYの比(X/Y)を真球性の指標として、70%〜130%であれば「真球性有り」と判断し、真球性有りと判断したFABの個数をカウントした。   For evaluation of FAB sphericity, 40 FABs were prepared for each of the bonding wires of Examples and Comparative Examples, and the appearance was observed with the general-purpose electron microscope. And the length in the vertical direction were measured. The ratio (X / Y) of the length X of the FAB in the wire parallel direction to the length Y in the vertical direction is used as an index of true sphericity. The number of FABs judged to be spherical was counted.

Figure 2017084866
Figure 2017084866

結果は、表1に示すとおりであり、実施例1〜5では、460℃の熱処理を行った後でも耐硫化性評価試験において硫黄質量が比較例1の70%以下となり、耐硫化性能が認められた。すなわち、金属被覆層14は熱により飛散することがないので、接合前だけでなく接合後においてもワイヤ表面の硫化を防止することができた。   The results are as shown in Table 1. In Examples 1 to 5, even after heat treatment at 460 ° C., the sulfur mass was 70% or less of Comparative Example 1 in the sulfidation resistance evaluation test, and sulfidation performance was recognized. It was. That is, since the metal coating layer 14 does not scatter due to heat, sulfidation of the wire surface can be prevented not only before but also after bonding.

特に、実施例1〜3では、金属被覆層14を形成した後に行う伸線加工によって金属被覆層14に割れも発生しなかった。また、実施例1〜3では、真球度の良好なFABを作製することができた。   In particular, in Examples 1 to 3, no cracks occurred in the metal coating layer 14 due to the wire drawing performed after the metal coating layer 14 was formed. Moreover, in Examples 1-3, FAB with favorable sphericity could be produced.

一方、比較例1〜3では、耐硫化性評価試験において硫黄質量が比較例1の70%より多くなり、有意な耐硫化性能が得られなかった。   On the other hand, in Comparative Examples 1-3, the sulfur mass in the sulfidation resistance evaluation test was greater than 70% of Comparative Example 1, and no significant sulfidation performance was obtained.

10…ボンディングワイヤ、12…芯材、14…金属被覆層 DESCRIPTION OF SYMBOLS 10 ... Bonding wire, 12 ... Core material, 14 ... Metal coating layer

Claims (4)

Agを75質量%以上含有する芯材と、前記芯材の外周面を被覆する金属被覆層とを備え、
前記金属被覆層がSn、Zn及びInからなる群から選択された1種又は2種以上の元素を90質量%以上含有し、金属被覆層の厚みが0.01μm以上であるボンディングワイヤ。
A core material containing 75% by mass or more of Ag, and a metal coating layer covering the outer peripheral surface of the core material,
A bonding wire in which the metal coating layer contains 90% by mass or more of one or more elements selected from the group consisting of Sn, Zn, and In, and the thickness of the metal coating layer is 0.01 μm or more.
前記金属被覆層の厚みがボンディングワイヤの線径の1%以下である、請求項1のボンディングワイヤ。   The bonding wire of Claim 1 whose thickness of the said metal coating layer is 1% or less of the wire diameter of a bonding wire. 前記金属被覆層の厚みが0.1μm未満である、請求項1又は2に記載のボンディングワイヤ。   The bonding wire according to claim 1, wherein the metal coating layer has a thickness of less than 0.1 μm. 前記金属被覆層がSnを含有する、請求項1〜3のいずれか1項に記載のボンディングワイヤ。   The bonding wire according to claim 1, wherein the metal coating layer contains Sn.
JP2015208761A 2015-10-23 2015-10-23 Bonding wire Pending JP2017084866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208761A JP2017084866A (en) 2015-10-23 2015-10-23 Bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208761A JP2017084866A (en) 2015-10-23 2015-10-23 Bonding wire

Publications (1)

Publication Number Publication Date
JP2017084866A true JP2017084866A (en) 2017-05-18

Family

ID=58714331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208761A Pending JP2017084866A (en) 2015-10-23 2015-10-23 Bonding wire

Country Status (1)

Country Link
JP (1) JP2017084866A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129253A1 (en) * 2012-02-27 2013-09-06 日鉄住金マイクロメタル株式会社 Power semiconductor device, method for manufacturing same, and bonding wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129253A1 (en) * 2012-02-27 2013-09-06 日鉄住金マイクロメタル株式会社 Power semiconductor device, method for manufacturing same, and bonding wire

Similar Documents

Publication Publication Date Title
TWI427719B (en) The joint structure of the joining wire and its forming method
TWI618802B (en) Bonding wire for semiconductor device
JP5842068B2 (en) Bonding wire and manufacturing method thereof
US10840208B2 (en) Bonding wire for semiconductor device
KR101485226B1 (en) Lead frame for optical semiconductor device, manufacturing method of lead frame for optical semiconductor device, and optical semiconductor device
WO2017013817A1 (en) Bonding wire for semiconductor device
JP2016225610A (en) Bonding wire for semiconductor device
TWI761637B (en) Palladium-coated copper bonding wire and method for producing the same
JP7269361B2 (en) Wire bonding structure, bonding wire and semiconductor device used therefor
WO2020162526A1 (en) Palladium-coated copper bonding wire, wire-bonded structure, semiconductor device, and method for manufacturing semiconductor device
JP5578960B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP6869920B2 (en) Precious metal-coated silver wire for ball bonding and its manufacturing method, and semiconductor device using precious metal-coated silver wire for ball bonding and its manufacturing method
KR20200120862A (en) Gold-coated silver bonding wire and its manufacturing method, and semiconductor device and its manufacturing method
WO2019130570A1 (en) Bonding wire for semiconductor devices
JP2017084866A (en) Bonding wire
JP5767521B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP2019071423A (en) Semiconductor device bonding wire
TWI600030B (en) Bonding wire and wire bonding method
JP5937770B1 (en) Bonding wires for semiconductor devices
TWI731234B (en) Noble metal-coated silver wire for ball bonding and manufacturing method thereof, and semiconductor device using precious metal-coated silver wire for ball bonding and manufacturing method thereof
JP2012204805A (en) Bonding wire
JP5554155B2 (en) Lead frame for optical semiconductor device and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029