JP2017084574A - Untuned high-frequency acceleration cavity, accelerator, and impedance adjustment method of untuned high-frequency acceleration cavity - Google Patents

Untuned high-frequency acceleration cavity, accelerator, and impedance adjustment method of untuned high-frequency acceleration cavity Download PDF

Info

Publication number
JP2017084574A
JP2017084574A JP2015211064A JP2015211064A JP2017084574A JP 2017084574 A JP2017084574 A JP 2017084574A JP 2015211064 A JP2015211064 A JP 2015211064A JP 2015211064 A JP2015211064 A JP 2015211064A JP 2017084574 A JP2017084574 A JP 2017084574A
Authority
JP
Japan
Prior art keywords
inner conductor
frequency
magnetic core
vacuum duct
acceleration cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015211064A
Other languages
Japanese (ja)
Other versions
JP6600531B2 (en
Inventor
沙紀 天野
Saki Amano
沙紀 天野
裕二郎 田島
Yujiro Tajima
裕二郎 田島
昭宏 長内
Akihiro Osanai
昭宏 長内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015211064A priority Critical patent/JP6600531B2/en
Publication of JP2017084574A publication Critical patent/JP2017084574A/en
Application granted granted Critical
Publication of JP6600531B2 publication Critical patent/JP6600531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an untuned high-frequency acceleration cavity, simplifying an installation operation of a magnetic body core, and also capable of improving flexibility of selection of a magnetic body core; an accelerator; and an impedance adjustment method of an untuned high-frequency acceleration cavity.SOLUTION: An untuned high-frequency acceleration cavity includes: a first vacuum duct 11 with conductivity through the inside of which charged particles pass; a second vacuum duct 12 with insulation properties at the inside of which an electric field accelerating charged particles is generated; an inner conductor 13 connected vertically to the first vacuum duct 11 at one end thereof; an annular magnetic body core 14 surrounding the inner conductor 13; and a housing 15 with conductivity surrounding the first and second vacuum ducts 11, 12, the inner conductor 13, and the magnetic body core 14.SELECTED DRAWING: Figure 1

Description

本発明による実施形態は、無同調高周波加速空胴、加速器および無同調高周波加速空胴のインピーダンス調整方法に関する。   Embodiments according to the present invention relate to an untuned radio frequency acceleration cavity, an accelerator, and an impedance adjustment method for an untuned radio frequency acceleration cavity.

無同調高周波加速空胴は、円盤状の磁性体コアと、磁性体コアの中心を貫通する金属ダクトすなわち内導体と、加速ギャップを有するセラミックダクトと、これら磁性体コア、金属ダクトおよびセラミックダクトを囲む筐体すなわち外導体とを備える。このような構成を有する無同調高周波加速空胴は、加速ギャップに発生する高周波電場でビームすなわち荷電粒子を加速する。磁性体コアにバイアス電流を印加することで入力高周波の変動に応じた共振周波数の制御を行う同調高周波加速空胴とは異なり、広帯域幅の高周波特性を有する磁性体コアを備えた無同調高周波加速空胴では、バイアス電流を印加する機構が省略されている。このため、無同調高周波加速空胴は、同調高周波加速空胴よりも高周波加速システムが簡略化できる。   The non-tuned high-frequency acceleration cavity includes a disk-shaped magnetic core, a metal duct that penetrates the center of the magnetic core, that is, an inner conductor, a ceramic duct having an acceleration gap, and these magnetic core, metal duct, and ceramic duct. A surrounding housing, that is, an outer conductor is provided. The non-tuned radio frequency acceleration cavity having such a configuration accelerates a beam, that is, a charged particle, with a radio frequency electric field generated in an acceleration gap. Unlike tuned high-frequency acceleration cavities that control the resonant frequency in response to fluctuations in the input high-frequency by applying a bias current to the magnetic core, untuned high-frequency acceleration with a magnetic core that has high-frequency characteristics over a wide bandwidth In the cavity, a mechanism for applying a bias current is omitted. For this reason, the non-tuned high frequency acceleration cavity can simplify the high frequency acceleration system more than the tuning high frequency acceleration cavity.

しかしながら、従来の無同調高周波加速空胴においては、ビームライン上に磁性体コアが配置されていた。このため、磁性体コアを交換する際には、ダクト内の真空を破ったうえで磁性体コアを交換し、磁性体コアの交換後にダクト内を再排気する必要があった。したがって、従来の無同調高周波加速空胴には、磁性体コアの設置作業が困難であるといった問題があった。また、従来の無同調高周波加速空胴は、ビームライン上で隣接する他の機器によって空間的な制約が課されていた。したがって、従来の無同調高周波加速空胴には、磁性体コアの枚数や厚さ等の磁性体コアの選択の自由度を向上させることが困難であるといった問題もあった。   However, in the conventional non-tuned high-frequency accelerating cavity, the magnetic core is arranged on the beam line. For this reason, when exchanging the magnetic core, it is necessary to break the vacuum in the duct and then replace the magnetic core, and to re-exhaust the duct after replacing the magnetic core. Therefore, the conventional non-tuned high frequency acceleration cavity has a problem that it is difficult to install the magnetic core. In addition, the conventional non-tuned high-frequency accelerating cavity is subject to spatial restrictions by other equipment adjacent on the beam line. Therefore, the conventional non-tuned high-frequency accelerating cavity has a problem that it is difficult to improve the degree of freedom in selecting the magnetic cores such as the number and thickness of the magnetic cores.

特許第3054712号公報Japanese Patent No. 3054712

本発明は上述した課題を解決するためになされたものであり、磁性体コアの設置作業を簡便化し、かつ、磁性体コアの選択の自由度を向上させることが可能な無同調高周波加速空胴、加速器および無同調高周波加速空胴の調整方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a non-tunable high-frequency acceleration cavity capable of simplifying the installation work of the magnetic core and improving the degree of freedom in selecting the magnetic core. An object of the present invention is to provide a method for adjusting an accelerator and a non-tuned high-frequency acceleration cavity.

本実施形態による無同調高周波加速空胴は、
内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える。
The untuned high-frequency acceleration cavity according to this embodiment is
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
A conductive case surrounding the first and second vacuum ducts, the inner conductor, and the magnetic core;

本実施形態による加速器は、
無同調高周波加速空胴を備えた加速器であって、
前記無同調高周波加速空胴は、
内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える。
The accelerator according to this embodiment is
An accelerator with a non-tuned high frequency accelerating cavity,
The non-tuned high frequency acceleration cavity is
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
A conductive case surrounding the first and second vacuum ducts, the inner conductor, and the magnetic core;

本実施形態による無同調高周波加速空胴のインピーダンス調整方法は、
無同調高周波加速空胴のインピーダンス調整方法であって、
内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える無同調高周波加速空胴において、前記内導体の外径を調整することを含む。
The impedance adjustment method of the non-tuned high frequency acceleration cavity according to the present embodiment is
A method for adjusting the impedance of a non-tuned high-frequency acceleration cavity,
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
Adjusting the outer diameter of the inner conductor in a non-tunable high-frequency accelerating cavity including the first and second vacuum ducts, the inner conductor, and a conductive casing surrounding the magnetic core. Including.

本発明によれば、磁性体コアの設置作業を簡便化することができ、かつ、磁性体コアの選択の自由度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the installation operation | work of a magnetic body core can be simplified, and the freedom degree of selection of a magnetic body core can be improved.

図1Aは、第1の実施形態を示す無同調高周波加速空胴の断面図であり、図1Bは、磁性体コアを図1AのIB−IB断面で切断した断面図である。FIG. 1A is a cross-sectional view of a non-tuned high-frequency accelerating cavity showing the first embodiment, and FIG. 1B is a cross-sectional view of the magnetic core cut along the IB-IB cross section of FIG. 1A. 第2の実施形態を示す磁性体コアの断面図である。It is sectional drawing of the magnetic body core which shows 2nd Embodiment. 第3の実施形態を示す無同調高周波加速空胴の断面図である。It is sectional drawing of the untuned high frequency acceleration cavity which shows 3rd Embodiment. 第4の実施形態を示す無同調高周波加速空胴の断面図である。It is sectional drawing of the untuned high frequency acceleration cavity which shows 4th Embodiment. 図5Aは、第5の実施形態を示す無同調高周波加速空胴のインピーダンス調整方法において、調整前の加速空胴を示す断面図であり、図5Bは、インピーダンス増加後の加速空胴を示す断面図であり、図5Cは、インピーダンス減少後の加速空胴を示す断面図である。FIG. 5A is a cross-sectional view showing an acceleration cavity before adjustment in the method of adjusting the impedance of an untuned high-frequency acceleration cavity according to the fifth embodiment, and FIG. 5B is a cross-sectional view showing the acceleration cavity after the increase in impedance. FIG. 5C is a cross-sectional view showing the acceleration cavity after impedance reduction. 図6Aは、第6の実施形態を示す無同調高周波加速空胴のインピーダンス調整方法において、調整前の加速空胴を示す断面図であり、図6Bは、インピーダンス増加後の加速空胴を示す断面図であり、図6Cは、インピーダンス減少後の加速空胴を示す断面図である。FIG. 6A is a cross-sectional view illustrating an acceleration cavity before adjustment in an impedance adjustment method for a non-tuned high-frequency acceleration cavity according to a sixth embodiment, and FIG. 6B is a cross-section illustrating an acceleration cavity after an increase in impedance. FIG. 6C is a cross-sectional view showing the acceleration cavity after impedance reduction.

以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. This embodiment does not limit the present invention.

(第1の実施形態)
先ず、第1の実施形態として、1つの内導体と周方向に連続した磁性体コアとを備えた無同調高周波加速空胴について説明する。図1Aは、第1の実施形態を示す無同調高周波加速空胴1の断面図である。図1Bは、磁性体コア14を図1AのIB−IB断面で切断した断面図である。
(First embodiment)
First, as a first embodiment, a non-tuned high-frequency acceleration cavity including one inner conductor and a magnetic core that is continuous in the circumferential direction will be described. FIG. 1A is a cross-sectional view of an untuned high-frequency acceleration cavity 1 showing the first embodiment. 1B is a cross-sectional view of the magnetic core 14 taken along the line IB-IB in FIG. 1A.

第1の実施形態の無同調高周波加速空胴1は、シンクロトロン加速器などの円形加速器に用いることができる。図1Aに示すように、第1の実施形態の無同調高周波加速空胴1は、第1真空ダクト11と、第2真空ダクト12と、内導体13と、磁性体コア14と、筐体15すなわち外導体とを備える。第1真空ダクト11と筐体15との間には、高周波電源2が接続されている。   The untuned high-frequency acceleration cavity 1 of the first embodiment can be used for a circular accelerator such as a synchrotron accelerator. As shown in FIG. 1A, the non-tuned high-frequency acceleration cavity 1 of the first embodiment includes a first vacuum duct 11, a second vacuum duct 12, an inner conductor 13, a magnetic core 14, and a casing 15. That is, an outer conductor is provided. A high frequency power source 2 is connected between the first vacuum duct 11 and the housing 15.

第1真空ダクト11は、ビームラインすなわちビーム軸10に沿った筒形状を有している。また、第1真空ダクト11は、導電性を有するように金属で形成されている。第1真空ダクト11の内部には、真空状態においてビーム軸10に沿って荷電粒子すなわちビームが通過する。   The first vacuum duct 11 has a cylindrical shape along the beam line, that is, the beam axis 10. The first vacuum duct 11 is made of metal so as to have conductivity. Charged particles, that is, a beam, pass through the first vacuum duct 11 along the beam axis 10 in a vacuum state.

第2真空ダクト12は、第1真空ダクト11の一端に接続され、ビームラインに沿った筒形状を有している。また、第2真空ダクト12は、内部に加速ギャップ121を有している。また、第2真空ダクト12は、絶縁性を有するようにセラミックで形成されている。第1真空ダクト11と筐体15との間に高周波電源2による高周波電力が印加されることで、加速ギャップ121には、高周波の加速電場が発生する。加速電場により、第1真空ダクト11を通過する荷電粒子は加速される。   The second vacuum duct 12 is connected to one end of the first vacuum duct 11 and has a cylindrical shape along the beam line. The second vacuum duct 12 has an acceleration gap 121 inside. Moreover, the 2nd vacuum duct 12 is formed with the ceramic so that it may have insulation. By applying high-frequency power from the high-frequency power source 2 between the first vacuum duct 11 and the housing 15, a high-frequency acceleration electric field is generated in the acceleration gap 121. The charged particles passing through the first vacuum duct 11 are accelerated by the acceleration electric field.

内導体13は、その一端において第1真空ダクト11に垂直に接続されている。より具体的には、内導体13は、不図示のフランジやネジなどの固定部材によって第1真空ダクト11に着脱可能に接続されている。なお、図1Aにおいて、内導体13は、ビームラインに直交する方向に延びる円筒形状の金属ダクト(すなわち、金属パイプ)であるが、内導体13として金属ダクトの代わりに金属棒を採用してもよい。   The inner conductor 13 is connected perpendicularly to the first vacuum duct 11 at one end thereof. More specifically, the inner conductor 13 is detachably connected to the first vacuum duct 11 by a fixing member such as a flange or a screw (not shown). In FIG. 1A, the inner conductor 13 is a cylindrical metal duct (that is, a metal pipe) extending in a direction perpendicular to the beam line. However, a metal rod may be adopted as the inner conductor 13 instead of the metal duct. Good.

磁性体コア14は、内導体13の外周面を包囲するように内導体13の延伸方向に沿って複数配置されている。図1Bに示すように、磁性体コア14は、周方向に連続した円環形状を有する。第1真空ダクト11と筐体15との間に高周波電源2による高周波電力が印加されることで、内導体13には、磁性体コア14を貫通するように電流が流れる。この電流により、磁性体コア14の内部には、内導体13の外周面に巻き付く方向の磁場が誘起されると共に、加速ギャップ121に加速電場が形成される。また、透磁率の高い磁性体コア14を設けることで光路長を長くし、内導体13の長さを抑制している。   A plurality of the magnetic cores 14 are arranged along the extending direction of the inner conductor 13 so as to surround the outer peripheral surface of the inner conductor 13. As shown in FIG. 1B, the magnetic core 14 has an annular shape that is continuous in the circumferential direction. By applying high-frequency power from the high-frequency power source 2 between the first vacuum duct 11 and the housing 15, a current flows through the inner conductor 13 so as to penetrate the magnetic core 14. This current induces a magnetic field in the direction around the outer peripheral surface of the inner conductor 13 inside the magnetic core 14, and an acceleration electric field is formed in the acceleration gap 121. Further, by providing the magnetic core 14 having a high magnetic permeability, the optical path length is increased and the length of the inner conductor 13 is suppressed.

筐体15は、第1真空ダクト11と、第2真空ダクト12と、内導体13と、磁性体コア14とを囲んでいる。筐体15は、導電性を有するように金属で形成されている。また、筐体15は接地されている。   The housing 15 surrounds the first vacuum duct 11, the second vacuum duct 12, the inner conductor 13, and the magnetic core 14. The casing 15 is made of metal so as to have conductivity. The housing 15 is grounded.

なお、第1真空ダクト11および第2真空ダクト12には、ビームライン上において他の真空ダクト3や電磁石4(例えば、四極電磁石や偏向電磁石)などの無同調高周波加速空胴1以外の加速器の構成部が接続されている。   The first vacuum duct 11 and the second vacuum duct 12 include accelerators other than the asynchronous high-frequency accelerating cavity 1 such as other vacuum ducts 3 and electromagnets 4 (for example, quadrupole electromagnets and deflection electromagnets) on the beam line. The components are connected.

以上の構成を有する第1の実施形態の無同調高周波加速空胴1において、磁性体コア14は、ビームラインから逸脱した内導体13の外周に設置される。これにより、第1真空ダクト11内の真空状態を破ることなく磁性体コア14を容易に設置できる。また、内導体13の外周に設置されるため、磁性体コア14は、ビームライン上に隣接する他の機器による空間的な制約を受けない。これにより、ビームライン上に磁性体コアを設置する場合と比べて、磁性体コア14の枚数や厚さを自由に選択できる。また、第2真空ダクト12を磁性体コア14に貫通させずに無同調高周波加速空胴1を輸送できるため、セラミック製の第2真空ダクト12の破損のリスクを低減できる。   In the untuned high-frequency accelerating cavity 1 of the first embodiment having the above configuration, the magnetic core 14 is installed on the outer periphery of the inner conductor 13 that deviates from the beam line. Thereby, the magnetic core 14 can be easily installed without breaking the vacuum state in the first vacuum duct 11. Further, since the magnetic core 14 is installed on the outer periphery of the inner conductor 13, the magnetic core 14 is not subjected to spatial restrictions by other devices adjacent on the beam line. Thereby, compared with the case where a magnetic body core is installed on a beam line, the number and thickness of the magnetic body core 14 can be selected freely. In addition, since the untuned high-frequency accelerating cavity 1 can be transported without penetrating the second vacuum duct 12 through the magnetic core 14, the risk of breakage of the ceramic second vacuum duct 12 can be reduced.

したがって、第1の実施形態によれば、磁性体コア14の設置作業を簡便化することができ、かつ、磁性体コア14の選択の自由度を向上させることができ、かつ、第2真空ダクト12の破損を抑制できる。   Therefore, according to the first embodiment, the installation work of the magnetic core 14 can be simplified, the degree of freedom of selection of the magnetic core 14 can be improved, and the second vacuum duct can be improved. 12 breakage can be suppressed.

(第2の実施形態)
次に、第2の実施形態として、磁性体コア14が周方向に分割された無同調高周波加速空胴1について説明する。第2の実施形態において、既述の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図2は、第2の実施形態を示す磁性体コア14の断面図である。図2は、図1Bに対応する断面図である。
(Second Embodiment)
Next, as a second embodiment, a non-tuned high-frequency acceleration cavity 1 in which a magnetic core 14 is divided in the circumferential direction will be described. In the second embodiment, the same reference numerals are used for the components corresponding to the above-described embodiments, and redundant description is omitted. FIG. 2 is a cross-sectional view of the magnetic core 14 showing the second embodiment. FIG. 2 is a cross-sectional view corresponding to FIG. 1B.

図2に示すように、第2の実施形態の磁性体コア14は、周方向において2つのコア部141、142に等分されている。なお、磁性体コア14の分割数は2つに限定されず、例えば、磁性体コア14を3つ以上のコア部に分割してもよい。   As shown in FIG. 2, the magnetic core 14 of the second embodiment is equally divided into two core portions 141 and 142 in the circumferential direction. The number of divisions of the magnetic core 14 is not limited to two. For example, the magnetic core 14 may be divided into three or more core portions.

第2の実施形態の無同調高周波加速空胴1によれば、コア部141、142間の間隙を調整することで、磁性体コア14の磁気抵抗を調整できる。これにより、共振周波数に対する半値幅の比であるQ値を簡便に所望の値にすることができる。   According to the untuned high-frequency acceleration cavity 1 of the second embodiment, the magnetic resistance of the magnetic core 14 can be adjusted by adjusting the gap between the core portions 141 and 142. Thereby, the Q value, which is the ratio of the half width to the resonance frequency, can be easily set to a desired value.

(第3の実施形態)
次に、第3の実施形態として、第2真空ダクト12に対して対称の位置関係を有する複数の内導体13を備えた無同調高周波加速空胴1について説明する。第3の実施形態において、既述の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図3は、第3の実施形態を示す無同調高周波加速空胴1の断面図である。
(Third embodiment)
Next, as a third embodiment, a non-tuned high-frequency accelerating cavity 1 including a plurality of inner conductors 13 having a symmetric positional relationship with respect to the second vacuum duct 12 will be described. In the third embodiment, the same reference numerals are used for the components corresponding to the above-described embodiments, and a duplicate description is omitted. FIG. 3 is a cross-sectional view of the non-tuned high-frequency accelerating cavity 1 showing the third embodiment.

図3に示すように、第3の実施形態の無同調高周波加速空胴1は、第2真空ダクト12上の対称点pを中心とした点対称の位置関係を有する2つの内導体13を備える。各内導体13は、ビームライン方向において第2真空ダクト12を挟むように配置された2つの第1真空ダクト11にそれぞれ接続されている。各内導体13の外周には、複数の磁性体コア14が配置されている。   As shown in FIG. 3, the non-tuned high-frequency accelerating cavity 1 of the third embodiment includes two inner conductors 13 having a point-symmetrical positional relationship with respect to the symmetry point p on the second vacuum duct 12. . Each inner conductor 13 is connected to two first vacuum ducts 11 arranged so as to sandwich the second vacuum duct 12 in the beam line direction. A plurality of magnetic cores 14 are arranged on the outer periphery of each inner conductor 13.

第3の実施形態において、高周波電源2は、2つの第1真空ダクト11に対応するように2つ設けられている。なお、高周波電源2を2つ設ける代わりに、1つの高周波電源2の高周波電力を分配器で2つに分配してもよい。   In the third embodiment, two high-frequency power sources 2 are provided so as to correspond to the two first vacuum ducts 11. Instead of providing two high-frequency power sources 2, the high-frequency power of one high-frequency power source 2 may be distributed to two by a distributor.

なお、第2真空ダクト12に対して鏡像対称の位置関係を有するように2つの内導体13を配置してもよいが、ビームライン方向のスペースを抑制する場合には、点対称の位置関係を有するように各内導体13を配置することが好ましい。   Note that the two inner conductors 13 may be arranged so as to have a mirror image symmetrical positional relationship with respect to the second vacuum duct 12, but when the space in the beam line direction is suppressed, the point symmetrical positional relationship is set. It is preferable to arrange each inner conductor 13 so as to have it.

第3の実施形態の無同調高周波加速空胴1によれば、各第1真空ダクト11に互いに逆位相の高周波電力を印加することで、第1の実施形態と比べて、高周波電圧Vの二乗を電力損失Pの2倍で除したシャントインピーダンスV/2Pの値を2倍に増加できる。これにより、第1の実施形態よりも高い加速電圧を得ることが可能となる。 According to the non-tuned high-frequency accelerating cavity 1 of the third embodiment, by applying high-frequency powers having opposite phases to each first vacuum duct 11, the square of the high-frequency voltage V compared to the first embodiment. The value of the shunt impedance V 2 / 2P divided by 2 times the power loss P can be doubled. Thereby, it is possible to obtain an acceleration voltage higher than that of the first embodiment.

(第4の実施形態)
次に、第4の実施形態として、排気装置を備えた無同調高周波加速空胴1について説明する。第4の実施形態において、既述の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図4は、第4の実施形態を示す無同調高周波加速空胴1の断面図である。図4では、高周波電源2の図示を省略している。
(Fourth embodiment)
Next, as a fourth embodiment, a non-tuned high-frequency accelerating cavity 1 including an exhaust device will be described. In the fourth embodiment, the same reference numerals are used for the components corresponding to the above-described embodiments, and a duplicate description is omitted. FIG. 4 is a cross-sectional view of the non-tuned high-frequency accelerating cavity 1 showing the fourth embodiment. In FIG. 4, the high-frequency power supply 2 is not shown.

図4に示すように、第4の実施形態の無同調高周波加速空胴1は、第1真空ダクト11に接続された内導体13の一端に相反する内導体13の他端側に、排気装置17を備える。また、内導体13の内部は、第1真空ダクト11を含む加速器のダクトの内部に連通している。排気装置17は、内導体13を通して加速器のダクト内を排気する。   As shown in FIG. 4, the non-tuned high-frequency accelerating cavity 1 of the fourth embodiment has an exhaust device on the other end side of the inner conductor 13 opposite to one end of the inner conductor 13 connected to the first vacuum duct 11. 17. Further, the inside of the inner conductor 13 communicates with the inside of the accelerator duct including the first vacuum duct 11. The exhaust device 17 exhausts the inside of the accelerator duct through the inner conductor 13.

第4の実施形態の無同調高周波加速空胴1によれば、ビームラインから逸脱した内導体13の端部に排気装置17を設置することで、ビームライン上に排気装置を設置する場合と比べてビームライン上のスペースを有効利用できる。   According to the untuned high-frequency accelerating cavity 1 of the fourth embodiment, the exhaust device 17 is installed at the end of the inner conductor 13 that deviates from the beam line, compared with the case where the exhaust device is installed on the beam line. The space on the beam line can be used effectively.

なお、第3の実施形態に示したように内導体13を複数設ける場合、各内導体13に対応するように排気装置17を複数設けてもよい。   When a plurality of inner conductors 13 are provided as shown in the third embodiment, a plurality of exhaust devices 17 may be provided so as to correspond to the respective inner conductors 13.

(第5の実施形態)
次に、第5の実施形態として、内導体の外径に基づく無同調高周波加速空胴のインピーダンス調整方法について説明する。第5の実施形態において、既述の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図5Aは、第5の実施形態を示す無同調高周波加速空胴1のインピーダンス調整方法において、インピーダンス調整前の無同調高周波加速空胴1を示す断面図である。図5Bは、インピーダンス増加後の無同調高周波加速空胴1を示す断面図である。図5Cは、インピーダンス減少後の無同調高周波加速空胴1を示す断面図である。
(Fifth embodiment)
Next, as a fifth embodiment, an impedance adjustment method for an untuned high-frequency acceleration cavity based on the outer diameter of the inner conductor will be described. In the fifth embodiment, the same reference numerals are used for the components corresponding to the above-described embodiments, and a duplicate description is omitted. FIG. 5A is a cross-sectional view showing the untuned high-frequency acceleration cavity 1 before impedance adjustment in the impedance adjustment method for the untuned high-frequency acceleration cavity 1 according to the fifth embodiment. FIG. 5B is a cross-sectional view showing the untuned high-frequency accelerating cavity 1 after increasing the impedance. FIG. 5C is a cross-sectional view showing the untuned high-frequency accelerating cavity 1 after impedance reduction.

内導体13がビームライン上から逸脱した位置に配置されていることで、無同調高周波加速空胴1においては、内導体13を容易に変更することで、内導体13と磁性体コア14との間隔を容易に調整できる。内導体13と磁性体コア14との間隔を容易に調整できることで、無同調高周波加速空胴1のインピーダンスを容易に調整できる。例えば、図5Bに示すように、図5Aの無同調高周波加速空胴1の内導体13を、これよりも外径が大きい内導体13に変更する(付け替える)ことで、インピーダンスを容易に増加できる。逆に、図5Cに示すように、図5Aの無同調高周波加速空胴1の内導体13を、これよりも外径が小さい内導体13に変更することで、インピーダンスを容易に減少できる。なお、内導体13として金属棒を用いる場合、金属棒を加工することで内導体13の外径を減少させてもよい。   By arranging the inner conductor 13 at a position deviating from the beam line, in the untuned high-frequency accelerating cavity 1, the inner conductor 13 can be easily changed, so that the inner conductor 13 and the magnetic core 14 can be changed. The interval can be adjusted easily. Since the distance between the inner conductor 13 and the magnetic core 14 can be easily adjusted, the impedance of the untuned high-frequency accelerating cavity 1 can be easily adjusted. For example, as shown in FIG. 5B, the impedance can be easily increased by changing (replacing) the inner conductor 13 of the non-tuned high-frequency accelerating cavity 1 of FIG. 5A to the inner conductor 13 having a larger outer diameter. . Conversely, as shown in FIG. 5C, the impedance can be easily reduced by changing the inner conductor 13 of the non-tuned high-frequency accelerating cavity 1 of FIG. 5A to the inner conductor 13 having a smaller outer diameter. When a metal bar is used as the inner conductor 13, the outer diameter of the inner conductor 13 may be reduced by processing the metal bar.

第5の実施形態によれば、所望する性能に応じて無同調高周波加速空胴1のインピーダンスを容易に調整できる。   According to the fifth embodiment, the impedance of the non-tuned high-frequency accelerating cavity 1 can be easily adjusted according to the desired performance.

(第6の実施形態)
次に、第6の実施形態として、内導体の外径および磁性体コアの内径に基づく無同調高周波加速空胴のインピーダンス調整方法について説明する。第6の実施形態において、既述の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図6Aは、第6の実施形態を示す無同調高周波加速空胴1のインピーダンス調整方法において、インピーダンス調整前の無同調高周波加速空胴1を示す断面図である。図6Bは、インピーダンス増加後の無同調高周波加速空胴1を示す断面図である。図6Cは、インピーダンス減少後の無同調高周波加速空胴1を示す断面図である。
(Sixth embodiment)
Next, as a sixth embodiment, an impedance adjustment method for an untuned high-frequency acceleration cavity based on the outer diameter of the inner conductor and the inner diameter of the magnetic core will be described. In the sixth embodiment, the same reference numerals are used for the components corresponding to the above-described embodiments, and a duplicate description is omitted. FIG. 6A is a cross-sectional view showing the non-tuned high-frequency acceleration cavity 1 before impedance adjustment in the impedance adjustment method of the non-tuned high-frequency acceleration cavity 1 according to the sixth embodiment. FIG. 6B is a cross-sectional view showing the untuned high-frequency accelerating cavity 1 after the impedance is increased. FIG. 6C is a cross-sectional view showing the untuned high-frequency accelerating cavity 1 after impedance reduction.

第6の実施形態においては、例えば、図6Bに示すように、図6Aの内導体13を、これよりも外径が大きい内導体13に変更し、図6Aの磁性体コア14を、これよりも内径が小さい磁性体コア14に変更することで、インピーダンスを容易に増加できる。逆に、図6Cに示すように、図6Aの内導体13を、これよりも外径が小さい内導体13に変更し、図6Aの磁性体コア14を、これよりも内径が大きい磁性体コア14に変更することで、インピーダンスを容易に減少できる。   In the sixth embodiment, for example, as shown in FIG. 6B, the inner conductor 13 in FIG. 6A is changed to an inner conductor 13 having a larger outer diameter, and the magnetic core 14 in FIG. Also, the impedance can be easily increased by changing to the magnetic core 14 having a small inner diameter. Conversely, as shown in FIG. 6C, the inner conductor 13 in FIG. 6A is changed to an inner conductor 13 having a smaller outer diameter, and the magnetic core 14 in FIG. 6A is replaced with a magnetic core having a larger inner diameter. By changing to 14, the impedance can be easily reduced.

第6の実施形態においても、第5の実施形態と同様に、所望する性能に応じて無同調高周波加速空胴1のインピーダンスを容易に調整できる。   Also in the sixth embodiment, as in the fifth embodiment, the impedance of the non-tuned high-frequency accelerating cavity 1 can be easily adjusted according to the desired performance.

なお、内導体13の外径を一定としたまま磁性体コア14の内径を変更することでインピーダンスを調整してもよい。   The impedance may be adjusted by changing the inner diameter of the magnetic core 14 while keeping the outer diameter of the inner conductor 13 constant.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1 無同調高周波加速空胴
11 第1真空ダクト
12 第2真空ダクト
13 内導体
14 磁性体コア
15 筐体
DESCRIPTION OF SYMBOLS 1 Asynchronous high frequency acceleration cavity 11 1st vacuum duct 12 2nd vacuum duct 13 Inner conductor 14 Magnetic body core 15 Case

Claims (9)

内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える無同調高周波加速空胴。
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
A non-tunable high-frequency accelerating cavity comprising: the first and second vacuum ducts; a conductive casing surrounding the inner conductor and the magnetic core;
前記磁性体コアは、周方向において複数に分割された請求項1に記載の無同調高周波加速空胴。   The non-tuned high-frequency acceleration cavity according to claim 1, wherein the magnetic core is divided into a plurality of parts in the circumferential direction. 前記内導体は、金属ダクトである請求項1または2に記載の無同調高周波加速空胴。   The non-tuned high-frequency acceleration cavity according to claim 1 or 2, wherein the inner conductor is a metal duct. 前記内導体は、金属棒である請求項1または2に記載の無同調高周波加速空胴。   The untuned high-frequency acceleration cavity according to claim 1 or 2, wherein the inner conductor is a metal rod. 前記内導体は、前記第2真空ダクトに対して対称な位置関係を有するように複数配置された請求項1〜4のいずれか1項に記載の無同調高周波加速空胴。   5. The non-tuned high-frequency accelerating cavity according to claim 1, wherein a plurality of the inner conductors are arranged so as to have a symmetrical positional relationship with respect to the second vacuum duct. 前記内導体の内部は、前記第1真空ダクトの内部に連通され、
前記無同調高周波加速空胴は、前記内導体の他端側に配置された排気装置を備える請求項3に記載の無同調高周波加速空胴。
The inside of the inner conductor communicates with the inside of the first vacuum duct,
The non-tuned high-frequency acceleration cavity according to claim 3, wherein the non-tuned high-frequency acceleration cavity includes an exhaust device disposed on the other end side of the inner conductor.
無同調高周波加速空胴を備えた加速器であって、
前記無同調高周波加速空胴は、
内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える加速器。
An accelerator with a non-tuned high frequency accelerating cavity,
The non-tuned high frequency acceleration cavity is
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
An accelerator comprising the first and second vacuum ducts, the inner conductor, and a conductive casing surrounding the magnetic core.
無同調高周波加速空胴のインピーダンス調整方法であって、
内部を荷電粒子が通過する導電性の第1真空ダクトと、
内部に前記荷電粒子を加速する電場が発生する絶縁性の第2真空ダクトと、
一端において前記第1真空ダクトに垂直に接続された内導体と、
前記内導体を囲む環状の磁性体コアと、
前記第1および第2真空ダクトと、前記内導体と、前記磁性体コアとを囲む導電性の筐体と、を備える無同調高周波加速空胴において、前記内導体の外径を調整することを含むインピーダンス調整方法。
A method for adjusting the impedance of a non-tuned high-frequency acceleration cavity,
A conductive first vacuum duct through which charged particles pass;
An insulating second vacuum duct in which an electric field for accelerating the charged particles is generated;
An inner conductor connected perpendicularly to the first vacuum duct at one end;
An annular magnetic core surrounding the inner conductor;
Adjusting the outer diameter of the inner conductor in a non-tunable high-frequency accelerating cavity including the first and second vacuum ducts, the inner conductor, and a conductive casing surrounding the magnetic core. Impedance adjustment method including.
前記磁性体コアの内径を調整することを含む請求項8に記載のインピーダンス調整方法。   The impedance adjustment method according to claim 8, comprising adjusting an inner diameter of the magnetic core.
JP2015211064A 2015-10-27 2015-10-27 Non-tunable high-frequency accelerating cavity, accelerator, and method for adjusting impedance of non-tuned high-frequency accelerating cavity Active JP6600531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211064A JP6600531B2 (en) 2015-10-27 2015-10-27 Non-tunable high-frequency accelerating cavity, accelerator, and method for adjusting impedance of non-tuned high-frequency accelerating cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211064A JP6600531B2 (en) 2015-10-27 2015-10-27 Non-tunable high-frequency accelerating cavity, accelerator, and method for adjusting impedance of non-tuned high-frequency accelerating cavity

Publications (2)

Publication Number Publication Date
JP2017084574A true JP2017084574A (en) 2017-05-18
JP6600531B2 JP6600531B2 (en) 2019-10-30

Family

ID=58712132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211064A Active JP6600531B2 (en) 2015-10-27 2015-10-27 Non-tunable high-frequency accelerating cavity, accelerator, and method for adjusting impedance of non-tuned high-frequency accelerating cavity

Country Status (1)

Country Link
JP (1) JP6600531B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161997A (en) * 1995-12-14 1997-06-20 Hitachi Ltd High frequency acceleration device and ring-shaped accelerator using it
JPH09167699A (en) * 1995-12-18 1997-06-24 Hitachi Ltd High frequency accelerating cavity and annular accelerator using this
JPH11273898A (en) * 1998-03-26 1999-10-08 Toshiba Corp High-frequency acceleration cavity
JP2001126900A (en) * 1999-10-26 2001-05-11 High Energy Accelerator Research Organization High frequency acceleration cavity and control method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161997A (en) * 1995-12-14 1997-06-20 Hitachi Ltd High frequency acceleration device and ring-shaped accelerator using it
US5917293A (en) * 1995-12-14 1999-06-29 Hitachi, Ltd. Radio-frequency accelerating system and ring type accelerator provided with the same
JPH09167699A (en) * 1995-12-18 1997-06-24 Hitachi Ltd High frequency accelerating cavity and annular accelerator using this
JPH11273898A (en) * 1998-03-26 1999-10-08 Toshiba Corp High-frequency acceleration cavity
JP2001126900A (en) * 1999-10-26 2001-05-11 High Energy Accelerator Research Organization High frequency acceleration cavity and control method of the same

Also Published As

Publication number Publication date
JP6600531B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US6456011B1 (en) Magnetic field for small closed-drift ion source
KR102223658B1 (en) Methods of directing magnetic fields in a plasma source, and associated systems
TWI422287B (en) Plasma processing device
WO2016024362A1 (en) Waveguide power combiner/divider
JP4513756B2 (en) Electromagnetic wave generator
US6975072B2 (en) Ion source with external RF antenna
JP2006156394A (en) Electromagnetic induction accelerator with coil winding number adjustment
KR101118492B1 (en) Induction coil, plasma generating apparatus and plasma generating method
JP6600531B2 (en) Non-tunable high-frequency accelerating cavity, accelerator, and method for adjusting impedance of non-tuned high-frequency accelerating cavity
Zavodszky et al. Status report on the design and construction of the Superconducting Source for Ions at the National Superconducting Cyclotron Laboratory/Michigan State University
CN112088418A (en) Multipole lens, and aberration corrector and charged particle beam device using same
JP7096779B2 (en) Ion source, and circular accelerator and particle beam therapy system using it
CA2438098C (en) Magnetic field for small closed-drift thruster
KR102117569B1 (en) Plasma source
JP2018106977A (en) Multi-beam klystron
US3366904A (en) High-power multi-stage klystron with adjustable periodic magnetic focussing
JP2014038774A (en) High-frequency acceleration cavity and manufacturing method for the same
US3355622A (en) Electron beam focusing apparatus
JP2018107102A (en) Plasma generation device
US8773225B1 (en) Waveguide-based apparatus for exciting and sustaining a plasma
US9852873B2 (en) Electron cyclotron resonance ion generator device
JP2010063313A (en) Linear motor
JPWO2020059435A1 (en) Vacuum valve
US3411033A (en) Electron beam focusing device employing a foil wound solenoid
JP6952997B2 (en) Mirror magnetic field generator and ECR ion source device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150