JP2017083281A - Method for forming stage for micro-spectroscopic analysis - Google Patents

Method for forming stage for micro-spectroscopic analysis Download PDF

Info

Publication number
JP2017083281A
JP2017083281A JP2015211480A JP2015211480A JP2017083281A JP 2017083281 A JP2017083281 A JP 2017083281A JP 2015211480 A JP2015211480 A JP 2015211480A JP 2015211480 A JP2015211480 A JP 2015211480A JP 2017083281 A JP2017083281 A JP 2017083281A
Authority
JP
Japan
Prior art keywords
integer
optical material
sample stage
producing
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015211480A
Other languages
Japanese (ja)
Other versions
JP6519444B2 (en
Inventor
博文 森脇
Hirobumi Moriwaki
博文 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Research Center Inc
Original Assignee
Toray Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Research Center Inc filed Critical Toray Research Center Inc
Priority to JP2015211480A priority Critical patent/JP6519444B2/en
Priority to KR1020177022013A priority patent/KR101824948B1/en
Priority to CN201680009345.0A priority patent/CN107430059B/en
Priority to EP16772105.9A priority patent/EP3279639B1/en
Priority to US15/562,985 priority patent/US20180111156A1/en
Priority to PCT/JP2016/056993 priority patent/WO2016158221A1/en
Publication of JP2017083281A publication Critical patent/JP2017083281A/en
Application granted granted Critical
Publication of JP6519444B2 publication Critical patent/JP6519444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct sample condensation for realizing a more accurate micro spectroscopic analysis, on a solute dissolved in a solution.SOLUTION: A solution obtained by dissolving a water-repellent and oil-repellent compound into a solvent is applied on a surface of an optical material to be treated, by a dipping method, and thereafter the optical material is heated and is cleaned.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロ分光分析用試料台の作製方法に関する。   The present invention relates to a method for manufacturing a sample stage for microspectral analysis.

例えば、顕微FTIR(フーリエ変換赤外分光光度計)などを用いたマイクロ分光分析法は、微小かつ微量の有機物の定性分析にとって有効な手法である。例えば、顕微FTIRで定性分析を行う際、測定する試料の厚さが最適な状態でなければ、正常なFTIRスペクトルを得ることができないので、正常なFTIRスペクトルを得るための試料調製は重要となる。例えば、希薄な溶液試料の顕微FTIRを行う場合、従来は、特許文献1、2に開示されているように、サンプル台の赤外線反射部材に付されたフッ素樹脂の薄膜上に、溶媒に試料を含ませた溶液の凝縮核となるピンホールを形成し、そのピンホールについて顕微FTIRで測定して、微量の希薄溶液の溶質に関する成分情報を得ていた。   For example, a micro-spectroscopic analysis method using a microscopic FTIR (Fourier transform infrared spectrophotometer) or the like is an effective technique for qualitative analysis of minute and minute organic substances. For example, when performing qualitative analysis by microscopic FTIR, a normal FTIR spectrum cannot be obtained unless the thickness of the sample to be measured is in an optimal state, and therefore, sample preparation for obtaining a normal FTIR spectrum is important. . For example, when performing microscopic FTIR of a dilute solution sample, conventionally, as disclosed in Patent Documents 1 and 2, a sample is placed in a solvent on a fluororesin thin film attached to an infrared reflecting member of a sample stage. A pinhole serving as a condensation nucleus of the contained solution was formed, and the pinhole was measured by microscopic FTIR to obtain component information on the solute of a small amount of dilute solution.

特開平5−99813号公報JP-A-5-99813 特開平5−240785号公報Japanese Patent Laid-Open No. 5-240785 特開2000−035392号公報JP 2000-035392 A 特開平6−174615号公報JP-A-6-174615

しかしながら、当該手法では凝集核の厚さが厚く、得られるFTIRスペクトルは全体的に飽和状態となってしまい、成分を定性するため実施されるスペクトル解析に大きな支障を来たす場合に特許文献3に開示されている方法で凝集核の厚みを調節する場合、凝集核が治具に付着して分析できなくなってしまう点や特許文献4に開示されているような部材に付されたフッ素樹脂が塗布されている基板ではフッ素樹脂の薄膜が破壊しやすい点が欠点である。   However, in this method, the thickness of the aggregated nuclei is large, and the obtained FTIR spectrum is saturated as a whole, which is disclosed in Patent Document 3 when it hinders the spectrum analysis performed to qualify the components. When the thickness of the aggregated nuclei is adjusted by a conventional method, the aggregated nuclei adhere to the jig and cannot be analyzed, or a fluororesin attached to a member as disclosed in Patent Document 4 is applied. However, the disadvantage is that the fluororesin thin film tends to break.

上記課題を解決するため、本発明は以下の構成からなる。つまり
(1)撥水性または撥油性を有する下記構造式(I)で表わされるパーフルオロアルキルポリエーテル基含有シラン化合物を溶媒に溶解してなる液に光学材料を浸漬させ、浸漬後に光学材料を加熱し、次いで光学材料を洗浄して、光学材料の表面が撥水性または撥油性に改質されていることを特徴とする光学材料を用いたマイクロ分光分析用試料台の作製方法、
In order to solve the above problems, the present invention has the following configuration. That is, (1) an optical material is immersed in a solution obtained by dissolving a perfluoroalkyl polyether group-containing silane compound represented by the following structural formula (I) having water repellency or oil repellency in a solvent, and the optical material is heated after the immersion. Then, the optical material is washed, and the surface of the optical material is modified to be water-repellent or oil-repellent. A method for producing a sample stage for micro-spectral analysis using an optical material,

Figure 2017083281
Figure 2017083281

ここで、aは1〜30の整数、bは1〜10の整数、cは1〜20の整数、dは1〜10の整数、eは1〜20の整数、hは0〜10の整数、gは0〜20の整数、nは1〜320の整数であり、mおよびpの和は3である。
(2)前記光学材料が、シリコン、ゲルマニウム、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、およびダイヤモンドから選ばれる1種以上を含む(1)または(2)に記載のマイクロ分光分析用試料台の作製方法、
(3)前記光学材料の改質されている側の表面に、幅0.01〜1mmかつ深さ0.001〜0.1mmの溝、または、直径0.01〜1mmかつ深さ0.001〜0.1mmの凹みがある(1)または(2)に記載のマイクロ分光分析用試料台の作製方法、
(4)前記溶媒が、アルコール類、ケトン類、エーテル類、アルデヒド類、アミン類、脂肪酸類、エステル類およびニトリル類から選ばれる1種以上を含むものであり、かつ、該溶媒はフッ素変性されたものである(1)〜(3)のいずれかに記載のマイクロ分光分析用試料台の作製方法、である。
Here, a is an integer of 1-30, b is an integer of 1-10, c is an integer of 1-20, d is an integer of 1-10, e is an integer of 1-20, h is an integer of 0-10. , G is an integer of 0-20, n is an integer of 1-320, and the sum of m and p is 3.
(2) The optical material includes one or more selected from silicon, germanium, sapphire, calcium fluoride, barium fluoride, zinc selenide, and diamond, for microspectral analysis according to (1) or (2) A method for preparing a sample stage,
(3) A groove having a width of 0.01 to 1 mm and a depth of 0.001 to 0.1 mm, or a diameter of 0.01 to 1 mm and a depth of 0.001 on the surface of the optical material that has been modified. A method for producing a sample stage for microspectral analysis according to (1) or (2), which has a dent of ~ 0.1 mm,
(4) The solvent contains at least one selected from alcohols, ketones, ethers, aldehydes, amines, fatty acids, esters and nitriles, and the solvent is fluorine-modified. A method for producing a sample stage for microspectroscopy analysis according to any one of (1) to (3).

本発明により、たとえば、所望の撥水性、撥油性を有するパーフルオロアルキルエーテル基よりなる薄膜を光学材料の表面に容易に形成することができたプレートで、マイクロ分光分析における濃縮操作を簡便かつより正確に行うことができる。   According to the present invention, for example, a plate capable of easily forming a thin film made of a perfluoroalkyl ether group having desired water repellency and oil repellency on the surface of an optical material. Can be done accurately.

本発明のマイクロ分光分析の試料濃縮法の概略説明図である。It is a schematic explanatory drawing of the sample concentration method of the microspectral analysis of this invention. 撥水加工後のシリコン上での試料のFTIRスペクトルである。It is a FTIR spectrum of the sample on the silicon | silicone after water-repellent processing. 赤外線反射部材に付されたフッ素樹脂の薄膜上での試料のFTIRスペクトルである。It is a FTIR spectrum of the sample on the thin film of the fluororesin attached | subjected to the infrared reflective member. 赤外透過材料で測定された試料のFTIRスペクトルである。It is a FTIR spectrum of the sample measured with the infrared transmission material.

以下、本発明を説明する。   The present invention will be described below.

まず、本発明における撥水性または撥油性を有する化合物としては、下記構造式(I)で表わされるパーフルオロアルキルポリエーテル基含有シラン化合物が好ましく例示される。   First, as the compound having water repellency or oil repellency in the present invention, a perfluoroalkyl polyether group-containing silane compound represented by the following structural formula (I) is preferably exemplified.

Figure 2017083281
Figure 2017083281

ここで、aは1〜30の整数、bは1〜10の整数、cは1〜20の整数、dは1〜10の整数、eは1〜20の整数、hは0〜10の整数、gは0〜20の整数、nは1〜320の整数である。mとpの和は3である。 Here, a is an integer of 1-30, b is an integer of 1-10, c is an integer of 1-20, d is an integer of 1-10, e is an integer of 1-20, h is an integer of 0-10. , G is an integer of 0-20, and n is an integer of 1-320. The sum of m and p is 3.

本発明における溶媒としては、アルコール類、ケトン類、エーテル類、アルデヒド類、アミン類、脂肪酸類、エステル類およびニトリル類があげられ、かつ、フッ素変性されたものが好ましい。さらに、フッ素変性エーテル類、フッ素変性アルコール類が好ましく、エーテル類、アルコール類は炭素数2〜20のものが最も好ましい。   Examples of the solvent in the present invention include alcohols, ketones, ethers, aldehydes, amines, fatty acids, esters and nitriles, and those which are fluorine-modified are preferred. Further, fluorine-modified ethers and fluorine-modified alcohols are preferable, and ethers and alcohols having 2 to 20 carbon atoms are most preferable.

撥水性または撥油性を有する化合物を溶媒に溶解してなる液の溶液濃度は0.001〜10質量%、さらに0.01〜1質量%が好ましい。   The solution concentration of a solution obtained by dissolving a compound having water repellency or oil repellency in a solvent is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.

本発明における表面改質の方法として、ディップ処理またはスピンコートが例示され、なかでもディップ処理で表面改質するのが好ましい。本発明における光学材料としては、赤外線の吸収が少なく、かつ、溝、凹みを容易に加工できる材料が好ましく、シリコン、ゲルマニウム、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、およびダイヤモンドが例示される。なかでもシリコンが好ましい。処理対象である光学材料の表面を予め研磨して鏡面仕上げをしておき、試料の厚みを抑制するために、溝または凹みを予め設ける加工をしておくと、簡便、かつ正確に濃縮操作を行うことができる。表面を予め研磨して鏡面に仕上げ、さらに溶液試料を濃縮する側の表面に、表面に、幅0.01〜1mmかつ深さ0.001〜0.1mmの溝、または、直径0.01〜1mmかつ深さ0.001〜0.1mmの凹みを設けることが好ましい。   Examples of the surface modification method in the present invention include dip treatment or spin coating, and it is preferable to modify the surface by dip treatment. As the optical material in the present invention, a material that absorbs less infrared rays and can easily process grooves and dents is preferable, and examples include silicon, germanium, sapphire, calcium fluoride, barium fluoride, zinc selenide, and diamond. Is done. Of these, silicon is preferable. If the surface of the optical material to be processed is polished in advance to give a mirror finish, and processing to provide grooves or dents in advance to reduce the thickness of the sample, the concentration operation can be performed easily and accurately. It can be carried out. The surface is polished in advance to give a mirror surface. Further, on the surface on which the solution sample is concentrated, a groove having a width of 0.01 to 1 mm and a depth of 0.001 to 0.1 mm, or a diameter of 0.01 to It is preferable to provide a recess having a depth of 1 mm and a depth of 0.001 to 0.1 mm.

前記光学材料を前記処理液中に浸漬した後、該光学材料を、加熱して乾燥する。   After the optical material is immersed in the processing solution, the optical material is heated and dried.

本発明において光学材料を加熱するとは、80℃から150℃で30分間から3時間に保つことをいう。さらには90℃から110℃で30分間から1時間に保つことが好ましい。   In the present invention, heating the optical material means maintaining at 80 to 150 ° C. for 30 minutes to 3 hours. Furthermore, it is preferable to maintain at 90 to 110 ° C. for 30 minutes to 1 hour.

以下、本発明を実施例で説明する。   Hereinafter, the present invention will be described with reference to examples.

まず、撥水性または撥油性を有する化合物として、パーフルオロアルキルポリエーテル基含有シラン化合物   First, as a compound having water repellency or oil repellency, a silane compound containing a perfluoroalkyl polyether group

Figure 2017083281
Figure 2017083281

のエチルノナフルオロブチルエーテル0.1質量%、つまり、DS−5210TH(株式会社ハーベスト製)を使用した。ここで、上記化学式における平均重合度(上記構造式(I)におけるn=32)は、19F NMRから計算した値である。 Of ethyl nonafluorobutyl ether 0.1% by mass, that is, DS-5210TH (manufactured by Harvest Co., Ltd.) was used. Here, the average degree of polymerization in the above chemical formula (n = 32 in the above structural formula (I)) is a value calculated from 19 F NMR.

表面を予め研磨して鏡面を仕上げ、さらに溶液試料を濃縮する側の表面に幅が0.1mm、深さ0.005mmの溝のあるシリコンを上記溶液に浸漬させ、浸漬後、シリコンを100℃で1時間加熱乾燥した。乾燥後、残留したDS−5210HをDS−TH(株式会社ハーベスト製)で洗浄除去した。   The surface is polished in advance to finish a mirror surface. Further, silicon having a groove having a width of 0.1 mm and a depth of 0.005 mm is immersed in the above solution on the surface on which the solution sample is concentrated. And dried for 1 hour. After drying, the remaining DS-5210H was removed by washing with DS-TH (manufactured by Harvest Co., Ltd.).

以上の処理により、溝のないシリコンの表面は撥水性、撥油性を有する性質に改質され、実際に5 mm□の領域で、分析深さ1〜数nmの飛行時間型二次イオン質量分析法(TOF−SIMS)によるイオンイメージ像で、SiOHイオン、Cイオン、COイオンなど撥水作用を有する分子構造が均一に存在していることを確認した。 Through the above processing, the surface of the silicon without grooves is modified to have water and oil repellency, and the time-of-flight secondary ion mass spectrometry with an analysis depth of 1 to several nm is actually performed in the 5 mm square region. It was confirmed by the ion image by the method (TOF-SIMS) that a molecular structure having a water-repellent action such as SiO 3 H ion, C 3 F 5 O 2 ion, C 3 F 7 O ion was uniformly present. .

図2における曲線は、大豆油1000ngを撥水処理したシリコン上で濃縮させてなる試料を用いて透過法による赤外分光分析を行ったときのFTIRスペクトルであり、図3における曲線は、大豆油1000ngを赤外線反射部材に付されたフッ素樹脂の薄膜上で濃縮させてなる試料を用いて、反射法による赤外分光分析を行なったときのFTIRスペクトルを示すものである。   The curve in FIG. 2 is an FTIR spectrum when infrared spectroscopic analysis is performed by a transmission method using a sample obtained by concentrating 1000 ng of soybean oil on water-repellent treated silicon. The curve in FIG. The FTIR spectrum is shown when infrared spectroscopic analysis is performed by a reflection method using a sample obtained by concentrating 1000 ng on a fluororesin thin film attached to an infrared reflecting member.

図2から、700〜4000cm−1の全ての領域において、図3に比べ良好なスペクトルが得られた。 From FIG. 2, a favorable spectrum was obtained compared with FIG. 3 in all regions of 700 to 4000 cm −1 .

比較例
図4における曲線は、大豆油100μgをダイヤモンド板に付着させて赤外分光分析を行なったときのFTIRスペクトルであり、これは試料量が多く採れる場合に行なう方法である。
Comparative Example The curve in FIG. 4 is an FTIR spectrum when infrared spectroscopic analysis is performed with 100 μg of soybean oil attached to a diamond plate, which is a method performed when a large amount of sample can be taken.

図2は、試料量が多く採れる場合に行なう方法で測定されたFTIRスペクトルとほとんど同じ良好な結果であった。   FIG. 2 shows almost the same good results as the FTIR spectrum measured by the method performed when a large amount of sample can be taken.

1:表面改質部
2:光学材料
3:試料
4:溝
5:検出器
6:赤外線
1: Surface modification part 2: Optical material 3: Sample 4: Groove 5: Detector 6: Infrared ray

Claims (4)

撥水性または撥油性を有する下記構造式(I)で表わされるパーフルオロアルキルポリエーテル基含有シラン化合物を溶媒に溶解してなる液に、光学材料を浸漬させ、浸漬後に光学材料を加熱し、次いで光学材料を洗浄して、光学材料の表面が撥水性または撥油性に表面改質されていることを特徴とする光学材料を用いたマイクロ分光分析用試料台の作製方法。
Figure 2017083281
ここで、aは1〜30の整数、bは1〜10の整数、cは1〜20の整数、dは1〜10の整数、eは1〜20の整数、hは0〜10の整数、gは0〜20の整数、nは1〜320の整数であり、mおよびpの和は3である。
The optical material is immersed in a solution obtained by dissolving a perfluoroalkyl polyether group-containing silane compound represented by the following structural formula (I) having water repellency or oil repellency in a solvent, and after the immersion, the optical material is heated, A method for producing a sample stage for micro-spectral analysis using an optical material, wherein the optical material is washed and the surface of the optical material is modified to have water repellency or oil repellency.
Figure 2017083281
Here, a is an integer of 1-30, b is an integer of 1-10, c is an integer of 1-20, d is an integer of 1-10, e is an integer of 1-20, h is an integer of 0-10. , G is an integer of 0-20, n is an integer of 1-320, and the sum of m and p is 3.
前記光学材料が、シリコン、ゲルマニウム、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、およびダイヤモンドから選ばれる1種以上を含む請求項1記載のマイクロ分光分析用試料台の作製方法。 The method for producing a sample stage for microspectroscopy analysis according to claim 1, wherein the optical material contains one or more selected from silicon, germanium, sapphire, calcium fluoride, barium fluoride, zinc selenide, and diamond. 前記光学材料の改質されている側の表面に、幅0.01〜1mmかつ深さ0.001〜0.1mmの溝、または、直径0.01〜1mmかつ深さ0.001〜0.1mmの凹みがある請求項1または2に記載のマイクロ分光分析用試料台の作製方法。 A groove having a width of 0.01 to 1 mm and a depth of 0.001 to 0.1 mm, or a diameter of 0.01 to 1 mm and a depth of 0.001 to 0. The method for producing a sample stage for microspectroscopy analysis according to claim 1 or 2, wherein there is a recess of 1 mm. 前記溶媒が、アルコール類、ケトン類、エーテル類、アルデヒド類、アミン類、脂肪酸類、エステル類およびニトリル類から選ばれる1種以上を含むものであり、かつ、該溶媒はフッ素変性されたものである請求項1〜3のいずれかに記載のマイクロ分光分析用試料台の作製方法。 The solvent contains at least one selected from alcohols, ketones, ethers, aldehydes, amines, fatty acids, esters and nitriles, and the solvent is fluorine-modified. A method for producing a sample stage for microspectral analysis according to any one of claims 1 to 3.
JP2015211480A 2015-04-02 2015-10-28 Method of preparing sample stand for microspectroscopic analysis Active JP6519444B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015211480A JP6519444B2 (en) 2015-10-28 2015-10-28 Method of preparing sample stand for microspectroscopic analysis
KR1020177022013A KR101824948B1 (en) 2015-04-02 2016-03-07 Preparation method of sample for micro spectrometry
CN201680009345.0A CN107430059B (en) 2015-04-02 2016-03-07 The production method of microspectroscopy sample table
EP16772105.9A EP3279639B1 (en) 2015-04-02 2016-03-07 Method of fabricating sample stage for microspectrometric analysis
US15/562,985 US20180111156A1 (en) 2015-04-02 2016-03-07 Method of fabricating sample stage for microspectrometric analysis
PCT/JP2016/056993 WO2016158221A1 (en) 2015-04-02 2016-03-07 Method of fabricating sample stage for microspectrometric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211480A JP6519444B2 (en) 2015-10-28 2015-10-28 Method of preparing sample stand for microspectroscopic analysis

Publications (2)

Publication Number Publication Date
JP2017083281A true JP2017083281A (en) 2017-05-18
JP6519444B2 JP6519444B2 (en) 2019-05-29

Family

ID=58714060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211480A Active JP6519444B2 (en) 2015-04-02 2015-10-28 Method of preparing sample stand for microspectroscopic analysis

Country Status (1)

Country Link
JP (1) JP6519444B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063267A (en) * 1992-06-20 1994-01-11 Horiba Ltd Method and device for detecting organic compound
JP2008203020A (en) * 2007-02-19 2008-09-04 Toppan Printing Co Ltd Microspectroscopic method
JP2010175338A (en) * 2009-01-28 2010-08-12 Kanagawa Acad Of Sci & Technol Specimen target used in mass spectroscopy, method for manufacturing the same, and mass spectroscope using such specimen target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063267A (en) * 1992-06-20 1994-01-11 Horiba Ltd Method and device for detecting organic compound
JP2008203020A (en) * 2007-02-19 2008-09-04 Toppan Printing Co Ltd Microspectroscopic method
JP2010175338A (en) * 2009-01-28 2010-08-12 Kanagawa Acad Of Sci & Technol Specimen target used in mass spectroscopy, method for manufacturing the same, and mass spectroscope using such specimen target

Also Published As

Publication number Publication date
JP6519444B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5870439B1 (en) Method for preparing sample stage for micro-spectral analysis
JP5442589B2 (en) Method for analyzing metal impurities in silicon wafers
CN108675646B (en) Microporous optical element with highly roughened channel interior surface and method of making same
Li et al. Electrochemical fabrication of silver tips for tip‐enhanced Raman spectroscopy assisted by a machine vision system
US10103357B2 (en) Fabrication of multilayer nanograting structures
CN102680410A (en) Method for non-destructively, quickly and accurately characterizing bonding structure of tetrahedral amorphous carbon film
JP2014514581A (en) Background radiation estimation of spectral data by polynomial fitting.
CN109444193A (en) The failure analysis method of semiconductor chip
Ye et al. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique
JP2017083281A (en) Method for forming stage for micro-spectroscopic analysis
Ali et al. Polymer-assisted deposition of homogeneous metal oxide films to produce nuclear targets
KR101733664B1 (en) Method for preparation of surface enhanced Raman scattering substrate using oligomer dielectric layer
Jeihanipour et al. Deep‐Learning‐Assisted Stratification of Amyloid Beta Mutants Using Drying Droplet Patterns
JP6872457B2 (en) Method for preparing a sample table for mass spectrometry
JP2017106727A (en) Method for forming stage for micro-spectroscopic analysis
JP6974810B2 (en) Method for preparing a sample table for microspectroscopic analysis
KR101824948B1 (en) Preparation method of sample for micro spectrometry
Cheng et al. Wafer-level fabrication of 3D nanoparticles assembled nanopillars and click chemistry modification for sensitive SERS detection of trace carbonyl compounds
US6225136B1 (en) Method of producing a contaminated wafer
Lee et al. Microwave assisted formation of monoreactive perfluoroalkylsilane-based self-assembled monolayers
CN100468664C (en) Chemical etching method for zinc oxide ultraviolet focal-plane imaging array preparing process
CN110879221A (en) Silicon-based silver nano surface enhanced substrate and preparation method thereof
JP2007207783A (en) Etching method and inspection method of silicon wafer
JP5728449B2 (en) Light enhancement element and method for manufacturing the same
Zhao et al. Subsurface damage distribution and processing method of ground fused silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250