JP2017082002A - Nucleic acid transfer carrier - Google Patents

Nucleic acid transfer carrier Download PDF

Info

Publication number
JP2017082002A
JP2017082002A JP2017019600A JP2017019600A JP2017082002A JP 2017082002 A JP2017082002 A JP 2017082002A JP 2017019600 A JP2017019600 A JP 2017019600A JP 2017019600 A JP2017019600 A JP 2017019600A JP 2017082002 A JP2017082002 A JP 2017082002A
Authority
JP
Japan
Prior art keywords
sirna
peptide surfactant
nucleic acid
peptide
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017019600A
Other languages
Japanese (ja)
Inventor
次郎 武井
Jiro Takei
次郎 武井
小林 智
Satoshi Kobayashi
智 小林
孝広 落谷
Takahiro Ochitani
孝広 落谷
文隆 竹下
Fumitaka Takeshita
文隆 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3D Matrix Ltd
Original Assignee
3D Matrix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3D Matrix Ltd filed Critical 3D Matrix Ltd
Publication of JP2017082002A publication Critical patent/JP2017082002A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a clinically applicable nucleic acid transfer carrier which is less toxic and capable of being administered topically or systemically and which increases the reaching efficiency and the introduction efficiency of nucleic acid pharmaceuticals to the affected site to be treated.SOLUTION: The present invention provides nucleic acid transfer carrier containing a peptide surfactant.SELECTED DRAWING: Figure 1

Description

本発明は、ペプチド界面活性剤を含む核酸の移送担体に関する。   The present invention relates to a nucleic acid transfer carrier containing a peptide surfactant.

RNA干渉(RNAi)は、短い2本鎖RNAによって特定遺伝子の発現が抑制される現象で、疾患の治療への応用が期待されている。現在の技術では、small interfering RNA(siRNA)やmicro RNA(miRNA)を核酸医薬として用いる際の移送担体は、カチオン性のリン脂質が主体であるが、その毒性が指摘されている。また、アテロコラーゲンを移送担体に用いる研究も行われているが、その治療効果の向上にはさらなる改善が必要である。   RNA interference (RNAi) is a phenomenon in which the expression of a specific gene is suppressed by a short double-stranded RNA, and is expected to be applied to the treatment of diseases. In the current technology, a transport carrier when using small interfering RNA (siRNA) or micro RNA (miRNA) as a nucleic acid drug is mainly a cationic phospholipid, but its toxicity has been pointed out. In addition, research using atelocollagen as a transport carrier has been carried out, but further improvement is necessary to improve its therapeutic effect.

siRNAをはじめとする核酸医薬の臨床における応用を考慮すると、核酸医薬品の患部への移送担体は、限りなく毒性が低いことが望まれ、また同時に患部までの到達効率や標的遺伝子の抑制効率が高く、かつ全身投与可能な担体の開発が待たれている。   Considering the clinical application of nucleic acid drugs including siRNA, it is desirable that the carrier for transferring the nucleic acid drug to the affected area is as low in toxicity as possible, and at the same time, the arrival efficiency to the affected area and the suppression efficiency of the target gene are high. Development of a carrier that can be administered systemically is awaited.

本発明のペプチド界面活性剤は、Gタンパク質結合レセプターウシロドプシンなどの膜タンパク質を安定させる作用やセルフアセンブリングする性質を有することが知られている(非特許文献1及び2)。しかし、核酸の移送担体としての用途はこれまで知られていなかった。   The peptide surfactant of the present invention is known to have an action of stabilizing membrane proteins such as G protein-coupled receptor bovine rhodopsin and a property of self-assembly (Non-patent Documents 1 and 2). However, its use as a nucleic acid transfer carrier has not been known so far.

X Zhao et al.,PNAS,Vol.103,No.47,17707−17712X Zhao et al. , PNAS, Vol. 103, no. 47, 17707-17712 A Nagai et al.,J.Nanosci.Nanotechnol.Vol.7,No.7,1−7A Nagai et al. , J .; Nanosci. Nanotechnol. Vol. 7, no. 7, 1-7

本発明が解決しようとする課題は、より毒性の低く、患部への到達効率と標的遺伝子の抑制効率が高い臨床応用可能な核酸移送担体を提供することである。   The problem to be solved by the present invention is to provide a nucleic acid transfer carrier that is less toxic, can reach the affected area, and has a high efficiency of suppressing the target gene, which can be applied clinically.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、驚くべきことに、ペプチド界面活性剤が核酸の移送担体として有用であることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that a peptide surfactant is useful as a nucleic acid transfer carrier and completed the present invention.

したがって、本発明は、下記のとおりである。
[1]ペプチド界面活性剤を含む核酸の移送担体。
[2]ペプチド界面活性剤が、4〜10の親水性アミノ酸からなる頭部及び1又は2の疎水性アミノ酸からなる尾部からなる、[1]に記載の核酸の移送担体。
[3]核酸の移送担体が、AAAAAAD又はAAAAAAKである、[1]に記載の核酸の移送担体。
[4]上記[1]−[3]のいずれか1に記載の核酸の移送担体及び核酸を含む、局所投与又は全身投与用医薬品。
Therefore, the present invention is as follows.
[1] A nucleic acid transfer carrier containing a peptide surfactant.
[2] The nucleic acid transfer carrier according to [1], wherein the peptide surfactant comprises a head composed of 4 to 10 hydrophilic amino acids and a tail composed of 1 or 2 hydrophobic amino acids.
[3] The nucleic acid transfer carrier according to [1], wherein the nucleic acid transfer carrier is AAAAAAD or AAAAAAK.
[4] A medicinal product for local administration or systemic administration comprising the nucleic acid transfer carrier according to any one of [1] to [3] above and a nucleic acid.

本発明の核酸移送担体は、より毒性が低く、局所投与及び全身投与が可能であり、核酸医薬品の治療患部への到達効率と導入効率を高めることができるという効果を有する。   The nucleic acid transfer carrier of the present invention is less toxic, can be administered locally and systemically, and has the effect of increasing the reach efficiency and introduction efficiency of the nucleic acid drug to the affected area.

ペプチド界面活性剤によるsiRNAの局所投与における遺伝子発現抑制効果の確認である。「si−」はペプチド界面活性剤にsiRNAを加えなかった実験群を意味し、その他の群にはペプチド界面活性剤にsiRNAを添加している。It is confirmation of the gene expression suppression effect in the local administration of siRNA by a peptide surfactant. “Si-” means an experimental group in which no siRNA was added to the peptide surfactant, and siRNA was added to the peptide surfactant in the other groups. ペプチド界面活性剤によるsiRNAの全身投与における遺伝子発現抑制効果の確認である。「si−」はペプチド界面活性剤にsiRNAを加えなかった実験群を意味し、その他の群にはペプチド界面活性剤にsiRNAを添加している。It is confirmation of the gene expression inhibitory effect in the systemic administration of siRNA by a peptide surfactant. “Si-” means an experimental group in which no siRNA was added to the peptide surfactant, and siRNA was added to the peptide surfactant in the other groups. ペプチド界面活性剤によるsiRNAの局所投与における腫瘍細胞増殖抑制効果の確認である。It is confirmation of the tumor cell growth inhibitory effect by local administration of siRNA by a peptide surfactant. ペプチド界面活性剤によるsiRNAの局所投与における腫瘍細胞増殖遺伝子の抑制効果の確認である。It is confirmation of the inhibitory effect of the tumor cell growth gene in local administration of siRNA by a peptide surfactant. ペプチド界面活性剤によるsiRNAの全身投与における腫瘍細胞増殖抑制効果の確認である。It is confirmation of the tumor cell growth inhibitory effect in the systemic administration of siRNA by a peptide surfactant. 血清中GOT濃度である。Serum GOT concentration. 血清中GPT濃度である。Serum GPT concentration. 血清中インターフェロンアルファ濃度である。Serum interferon alpha concentration. 血清中インターフェロンガンマ濃度である。Serum interferon gamma concentration. 血清中MCP−1濃度である。Serum MCP-1 concentration. 血清中インターロイキン12濃度である。Serum interleukin 12 concentration. 血清中インターロイキン6濃度である。Serum interleukin 6 concentration. 血清中ケモカイン濃度である。Serum chemokine concentration.

本発明において、ペプチド界面活性剤とは、6〜10個のアミノ酸残基を含むものであり、その長さは、約2〜3nmであり、従来の界面活性剤、たとえば、n−ドデシル−β−D−マルトシド(DM)やオクチル−D−グルコシド(OG)と同様の特性を示す。   In the present invention, a peptide surfactant includes 6 to 10 amino acid residues and has a length of about 2 to 3 nm, and is a conventional surfactant such as n-dodecyl-β. It exhibits the same characteristics as -D-maltoside (DM) and octyl-D-glucoside (OG).

本発明のペプチド界面活性剤は、好ましくは、4〜10の親水性アミノ酸からなる頭部及び1又は2の疎水性アミノ酸からなる尾部からなる。   The peptide surfactant of the present invention preferably comprises a head composed of 4 to 10 hydrophilic amino acids and a tail composed of 1 or 2 hydrophobic amino acids.

より具体的には、GGGGDD(G4D2)、GGGGGGD(G6D)、GGGGGGDD(G6D2)、GGGGGGGGD(G8D)、GGGGGGGGDD(G8D2)、GGGGGGGGGGD(G10D)、GGGGKK(G4K2)、GGGGGGK(G6K)、GGGGGGKK(G6K2)、GGGGGGGGK(G8K)、GGGGGGGGKK(G8K2)、GGGGGGGGGGGK(G10K)、GGGGGGGGGGKK(G10K2)、GGGGGGGGGGDD(G10D2)、AAAADD(A4D2)、AAAAAAD(A6D)、AAAAAADD(A6D2)、AAAAAAAAD(A8D)、AAAAAAAADD(A8D2)、AAAAAAAAAAD(A10D)、AAAAAAAAAADD(A10D2)、AAAAKK(A4K2)、AAAAAAK(A6K)、AAAAAAKK(A6K2)、AAAAAAAAK(A8K)、AAAAAAAAKK(A8K2)、AAAAAAAAAAK(A10K)、AAAAAAAAAAKK(A10K2)、VVVVDD(V4D2)、VVVVVVD(V6D)、VVVVVVDD(V6D2)、VVVVVVVVD(V8D)、VVVVVVVVDD(V8D2)、VVVVVVVVVVD(V10D)、VVVVVVVVVVDD(V10D2)、VVVVKK(V4K2)、VVVVVVK(V6K)、VVVVVVKK(V6K2)、VVVVVVVVK(V8K)、VVVVVVVVKK(V8K2)、VVVVVVVVVVK(V10K)、VVVVVVVVVVKK(V10K2)、LLLLDD(L4D2)、LLLLLLD(L6D)、LLLLLLDD(L6D2)、LLLLLLLLD(L8D)、LLLLLLLLDD(L8D2)、LLLLLLLLLLDD(L10D2)、LLLLKK(L4K2)、LLLLLLK(L6K)、又はLLLLLLKK(L6K2)、LLLLLLLLK(L8K)、LLLLLLLLKK(L8K2)、LLLLLLLLLK(L10K)、LLLLLLLLLLKK(L10K2)を挙げることができるが、中でも、AAAAAAD(A6D)又はAAAAAAK(A6K)が好ましく、AAAAAAK(A6K)が特に好ましい。   More specifically, GGGGDD (G4D2), GGGGGGD (G6D), GGGGGGDD (G6D2), GGGGGGGGD (G8D), GGGGGGGGGDD (G8D2), GGGGGGGGGD (G10D), G4 , GGGGGGGGK (G8K), GGGGGGGGKK (G8K2), GGGGGGGGGGGK (G10K), GGGGGGGGGGKK (G10K2), GGGGGGGGGGDD (G10D2), AAAADD (A4D2), AAAAAAD (A6D), AAAAAADD (A6D2), AAAAAAAAD (A8D), AAAAAAAADD (A8D2) , AAAAAAAAAAD (A10D), AAAAAAAAAAD (A10D2), AAAAAKK (A4K2), AAAAAAAK (A6K), AAAAAAAKK (A6K2), AAAAAAAAK (A8K), AAAAAAAKK (A10AV), AAAAAAV (V6D2), VVVVVVVVD (V8D), VVVVVVVVDD (V8D2), VVVVVVVVVVD (V10D), VVVVVVVVVVDD (V10D2), VVVVKK (V4K2), VVVVVVK (V6K), VVVVVVKK (V6K2), VVVVVVVVK (V8K), VVVVVVVVKK (V8K2), VVVVVVVVVVK (V10K), VVVVVVVVVVK (V10K2), LLLLDDD (L4D2), LLLLLLDLD (L6D), LLLLLLLDD (L6D2), LLLLLLLLD (L8D), LLLLLLLKLD (L8D2), LLLLLLLLLKD (L10L2L, LLL) LLLLLLLLLK (L8K), LLLLLLLLLKKK (L8K2), LLLLLLLLLKLK (L10K), and LLLLLLLLLLKK (L10K2) are preferable, among which AAAAAAA (A6A) or AAAAAAK (A6AA is preferable).

ペプチド界面活性剤の製造法は、固相合成法もしくは液層合成法によって合成される。当該ペプチドは人工合成可能であるため、生体由来物質を含まず、感染リスクの心配がない。   The peptide surfactant is produced by a solid phase synthesis method or a liquid layer synthesis method. Since the peptide can be artificially synthesized, it does not contain biological substances and there is no risk of infection.

本発明において、核酸移送担体とは、siRNA等のポリヌクレオチドや遺伝子を、生体の意図する組織への移送、遺伝子導入する際に用い、その到達効率と導入効率を高めることができる組成物をいう。   In the present invention, the nucleic acid transfer carrier refers to a composition that can be used to transfer a polynucleotide or gene such as siRNA to a tissue intended by a living body and introduce a gene, and to increase its arrival efficiency and introduction efficiency. .

マウス局所投与モデルにおけるRNAi効果の検討
ルシフェラーゼ遺伝子を発現する腫瘍細胞を持つマウスにルシフェラーゼ遺伝子に対するsiRNAとペプチド界面活性剤を混合した溶液を腫瘍へ直接注射し、siRNAの導入と遺伝子抑制効果をルシフェラーゼ発光のイメージングで解析したところ、siRNA/ペプチド界面活性剤混合液による遺伝子抑制効果を確認した。
Examination of RNAi effect in mouse local administration model In mice with tumor cells that express luciferase gene, a solution containing siRNA and peptide surfactant mixed with luciferase gene is directly injected into tumor, and siRNA introduction and gene suppression effect is luciferase luminescence As a result, the gene suppression effect of the siRNA / peptide surfactant mixed solution was confirmed.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH2、Celtek社製
・ペプチド界面活性剤濃度
2濃度:50μg/mL、500μg/mL
・ルシフェラーゼ遺伝子抑制siRNA
Luciferase GL3 siRNA(B−Bridge International,Inc社製
・ルシフェリン
ルシフェリン1g(Wako)をダルベッコPBS(Mg2+,Ca2+不含)66.7mLに溶解し、0.2μmシリンジフィルター(Minisart)を通して滅菌した。シリンジフィルターを通して直接遮光チューブに分注し、−80℃(−20℃)で保存した。
・ルシフェラーゼ遺伝子発現腫瘍細胞
PC−3M−luc−C6(Xenogen,Alameda社)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH2, manufactured by Celtek ・ Peptide surfactant concentration 2 concentration: 50 μg / mL, 500 μg / mL
・ Luciferase gene suppression siRNA
Luciferase GL3 siRNA (B-Bridge International, Inc., Luciferin Luciferin 1 g (Wako)) was dissolved in 66.7 mL of Dulbecco's PBS (without Mg 2+ , Ca 2+ ) and sterilized through a 0.2 μm syringe filter (Minisart). The solution was directly dispensed into a light-shielding tube through a syringe filter and stored at −80 ° C. (−20 ° C.).
-Luciferase gene expression tumor cells PC-3M-luc-C6 (Xenogen, Alameda)

<方法>
・腫瘍モデルマウスの作成
PC−3M−luc−C6細胞を10%FBS(Equitech−Bio,Kerrville)含有Eagle’s MEM培地(Invitrogen)にて37℃、5%CO下で培養した。PC−3M−luc−C6細胞をトリプシン処理で回収し、ダルベッコPBS(Mg2+,Ca2+不含)に懸濁、9週齢の雄ヌードマウス(CLEA Japan,Osaka)の皮下に3×10細胞/200μlを26G注射針にて移植し、腫瘍マウスを作成した。
・siRNA/ペプチド界面活性剤の調製
Luciferase GL3 siRNA50μg(PBS(−)100μLに溶解)とペプチド界面活性剤を等量混合し(最終投与量が1匹あたり200μLになるよう調製)、室温にて20分間、低速で回転混和した。
・投与
試験群には、siRNA/ペプチド界面活性剤混合液を腫瘍部位あたりに200μl投与した。一方、コントロール群はペプチド界面活性剤(50μg/mLと500μg/mL)のみを200μl投与した。
・In vivoイメージング
ルシフェリン投与前に動物の体重を測定し、ルシフェリン溶液(15mg/mL)を150mg/kgで26G注射針(テルモ社)にて腹腔内投与した。ルシフェリン投与から10分後、IVIS Imaging System(Xenogen)にてイメージングした。イメージングデータはLIVINGIMAGE2.51ソフトウェア(Xenogen)にて解析した。ルシフェラーゼ発光イメージングは、siRNA投与直前をday0として、day0よりday2までを行い、発光量の変化をsiRNAの抑制効果とした。
<Method>
- mouse tumor model creation PC-3M-luc-C6 cells 10% FBS (Equitech-Bio, Kerrville) 37 ℃ at containing Eagle's MEM medium (Invitrogen), and incubated under 5% CO 2. PC-3M-luc-C6 cells were collected by trypsin treatment, suspended in Dulbecco's PBS (without Mg 2+ , Ca 2+ ), and 3 × 10 6 subcutaneously in 9-week-old male nude mice (CLEA Japan, Osaka). Cells / 200 μl were transplanted with a 26G injection needle to prepare tumor mice.
-Preparation of siRNA / peptide surfactant: 50 μg of Luciferase GL3 siRNA (dissolved in 100 μL of PBS (−)) and an equal amount of peptide surfactant (prepared so that the final dose is 200 μL per mouse), and 20 at room temperature Rotate and mix at low speed for minutes.
In the administration test group, 200 μl of siRNA / peptide surfactant mixed solution was administered per tumor site. On the other hand, in the control group, only 200 μl of peptide surfactant (50 μg / mL and 500 μg / mL) was administered.
In vivo imaging The body weight of the animals was measured before luciferin administration, and a luciferin solution (15 mg / mL) was intraperitoneally administered at 150 mg / kg with a 26G injection needle (Terumo). Ten minutes after the administration of luciferin, imaging was performed with IVIS Imaging System (Xenogen). Imaging data was analyzed with LIVINGIMAGE 2.51 software (Xenogen). Luciferase luminescence imaging was performed from day 0 to day 2 with day 0 immediately before siRNA administration, and the change in the amount of luminescence was regarded as the siRNA suppression effect.

<結果>
結果を図1に示した。コントロール群(ペプチド界面活性剤のみ)では投与後にルシフェラーゼ発光量が増加しているが、試験群では発光量が減弱していた。このことから、siRNAをペプチド界面活性剤と混合することで腫瘍細胞へのsiRNA導入が促進され、遺伝子発現が抑制されると考えられた。
<Result>
The results are shown in FIG. In the control group (peptide surfactant only), the amount of luciferase luminescence increased after administration, whereas the amount of luminescence decreased in the test group. From this, it was considered that mixing siRNA with a peptide surfactant promotes siRNA introduction into tumor cells and suppresses gene expression.

マウス全身投与モデルにおけるRNAi効果の検討
ルシフェラーゼ遺伝子を発現する腫瘍を持つマウスにルシフェラーゼ遺伝子抑制siRNAとペプチド界面活性剤を混合した溶液を尾静脈から投与し、siRNAの導入と遺伝子抑制効果をルシフェラーゼ発光のイメージングで解析したところ、siRNA/ペプチド界面活性剤混合液による遺伝子抑制効果を確認した。
Examination of RNAi effect in mouse systemic administration model To mice with tumors that express luciferase gene, a mixture of luciferase gene-suppressing siRNA and peptide surfactant is administered from the tail vein, and siRNA introduction and gene-suppressing effect are controlled by luciferase luminescence. Analysis by imaging confirmed the gene suppression effect of the siRNA / peptide surfactant mixture.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH2、Celtek社製
・ペプチド界面活性剤濃度
2濃度:50.0、500.0μg/mL
・ルシフェラーゼ遺伝子抑制siRNA
Luciferase GL3 siRNA(B−Bridge International,Inc社製)
・ルシフェリン
ルシフェリン1g(Wako)をダルベッコPBS(Mg2+,Ca2+不含)66.7mLに溶解し、0.2μmシリンジフィルター(Minisart)を通して滅菌した。シリンジフィルターを通して直接遮光チューブに分注し、−80℃(−20℃)で保存した。
・ルシフェラーゼ遺伝子発現腫瘍細胞
PC−3M−luc−C6(Xenogen,Alameda社)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH2, manufactured by Celtek ・ Peptide surfactant concentration 2 concentration: 50.0, 500.0 μg / mL
・ Luciferase gene suppression siRNA
Luciferase GL3 siRNA (B-Bridge International, Inc.)
-Luciferin 1 g (Wako) of luciferin was dissolved in 66.7 mL of Dulbecco's PBS (Mg 2+ , Ca 2+ free) and sterilized through a 0.2 μm syringe filter (Minisart). The solution was directly dispensed into a light-shielding tube through a syringe filter and stored at −80 ° C. (−20 ° C.).
-Luciferase gene expression tumor cells PC-3M-luc-C6 (Xenogen, Alameda)

<方法>
・腫瘍モデルマウスの作成
PC−3M−luc−C6細胞を10%FBS(Equitech−Bio,Kerrville)含有Eagle’ s MEM培地(Invitrogen)にて37℃、5%CO下で培養。PC−3M−luc−C6細胞をトリプシン処理で回収し、ダルベッコPBS(Mg2+,Ca2+不含)に懸濁、9週齢の雄ヌードマウス(CLEA Japan,Osaka)の皮下に1.25×10細胞/200μlで26G注射針にて移植。
・siRNA/ペプチド界面活性剤の調製
Luciferase GL3 siRNA 50μg(PBS(−)100μLに溶解)とペプチド界面活性剤を等量混合し(最終投与量が1匹あたり200μLになるよう調製)、室温にて20分間、低速で回転混和した。
・投与
試験群はsiRNA/ペプチド界面活性剤混合液をマウス尾静脈より27G注射針(テルモ社製)にて200μl投与した。コントロール群はペプチド界面活性剤(500μ/mL)のみを200μl投与した。
・In vivoイメージング
ルシフェリン投与前に動物の体重を測定し、ルシフェリン溶液(15mg/mL)を150mg/kgで26G注射針(テルモ社)にて腹腔内投与した。ルシフェリン投与から10分後、IVIS Imaging System(Xenogen)にてイメージングした。イメージングデータはLIVINGIMAGE2.51ソフトウェア(Xenogen)にて解析した。ルシフェラーゼ発光イメージングは、siRNA投与直前をday0として、day0よりday2までを行い、発光量の変化をsiRNAの抑制効果とした。
<Method>
Creating a mouse tumor model PC-3M-luc-C6 cells 10% FBS (Equitech-Bio, Kerrville) 37 ℃ at containing Eagle 's MEM medium (Invitrogen), 5% CO 2 culture under. PC-3M-luc-C6 cells were collected by trypsinization, suspended in Dulbecco's PBS (without Mg 2+ , Ca 2+ ), and 1.25 × subcutaneously in 9 week old male nude mice (CLEA Japan, Osaka). Implanted with a 26G needle at 10 6 cells / 200 μl.
・ Preparation of siRNA / peptide surfactant 50 μg of Luciferase GL3 siRNA (dissolved in 100 μL of PBS (−)) and peptide surfactant were mixed in equal amounts (prepared so that the final dose was 200 μL per mouse), and at room temperature Spin-mixed at low speed for 20 minutes.
In the administration test group, 200 μl of siRNA / peptide surfactant mixed solution was administered from the tail vein of the mouse with a 27G injection needle (manufactured by Terumo). In the control group, 200 μl of peptide surfactant (500 μ / mL) alone was administered.
In vivo imaging The body weight of the animals was measured before luciferin administration, and a luciferin solution (15 mg / mL) was intraperitoneally administered at 150 mg / kg with a 26G injection needle (Terumo). Ten minutes after the administration of luciferin, imaging was performed with IVIS Imaging System (Xenogen). Imaging data was analyzed with LIVINGIMAGE 2.51 software (Xenogen). Luciferase luminescence imaging was performed from day 0 to day 2 with day 0 immediately before siRNA administration, and the change in the amount of luminescence was regarded as the siRNA suppression effect.

<結果>
結果を図2に示した。コントロール群(界面活性剤のみ)では投与後2日目でルシフェラーゼ発光量が増加しているが、試験群では発行量が減弱した。このことから、siRNAをペプチド界面活性剤に混合して全身投与すると、腫瘍細胞へのsiRNA導入がペプチド界面活性剤によって促進され、遺伝子発現が抑制されると考えられた。
<Result>
The results are shown in FIG. In the control group (surfactant only), the amount of luciferase luminescence increased on the second day after administration, but in the test group, the issued amount decreased. From this, it was considered that when siRNA was mixed with a peptide surfactant and administered systemically, introduction of siRNA into tumor cells was promoted by the peptide surfactant and gene expression was suppressed.

マウス局所投与モデルにおけるRNAi効果の検討
ルシフェラーゼ遺伝子を発現する腫瘍細胞を持つマウスに細胞増殖抑制効果をもつsiRNAとペプチド界面活性剤を混合した溶液を腫瘍へ直接注射し、細胞増殖抑制効果を腫瘍サイズ計測により解析したところ、siRNA/ペプチド界面活性剤混合液による細胞増殖抑制効果を確認した。
Examination of RNAi effect in a mouse model for local administration In mice with tumor cells expressing luciferase gene, a solution containing siRNA and peptide surfactant mixed with cell growth inhibitory effect is directly injected into the tumor, and the cell growth inhibitory effect is shown in tumor size When analyzed by measurement, the cell growth inhibitory effect of the siRNA / peptide surfactant mixed solution was confirmed.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH、Celtek社製
・ペプチド界面活性剤濃度
500μg/mL
・腫瘍細胞抑制siRNA
EZH2 siRNA(Sigma社製)
・ネガティブコントロールsiRNA
AllStars Negative Control siRNA(QIAGEN社製)
・ルシフェリン
ルシフェリン1g (Wako)をダルベッコPBS(Mg2+,Ca2+不含)66.7mLに溶解し、0.2μmシリンジフィルター(Minisart)を通して滅菌した。シリンジフィルターを通して直接遮光チューブに分注し、−80℃(−20℃)で保存。
・ルシフェラーゼ遺伝子発現腫瘍細胞
PC−3M−luc−C6(Xenogen,Alameda社)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH 2 , manufactured by Celtek ・ Peptide surfactant concentration 500 μg / mL
・ Tumor cell inhibitory siRNA
EZH2 siRNA (manufactured by Sigma)
・ Negative control siRNA
AllStars Negative Control siRNA (QIAGEN)
-Luciferin 1 g (Wako) of luciferin was dissolved in 66.7 mL of Dulbecco's PBS (Mg2 +, Ca2 + free) and sterilized through a 0.2 μm syringe filter (Minisart). Dispense directly into light-shielding tube through syringe filter and store at -80 ° C (-20 ° C).
-Luciferase gene expression tumor cells PC-3M-luc-C6 (Xenogen, Alameda)

<方法>
・腫瘍モデルマウスの作成
PC−3M−luc−C6細胞を10%FBS(Equitech−Bio,Kerrville)含有Eagle’s MEM培地(Invitrogen)にて37℃、5%CO2下で培養する。PC−3M−luc−C6細胞をトリプシン処理で回収し、ダルベッコPBS(Mg2+,Ca2+不含)に懸濁、9週齢の雄ヌードマウス(CLEA Japan,Osaka)の皮下に2×10細胞/200μlを26G注射針にて移植し、腫瘍マウスを作成する。
・siRNA/ペプチド界面活性剤の調製
siRNA 25μgとペプチド界面活性剤を等量ずつ混合(最終量を1匹あたり200μL)し、室温にて20分間、低速で回転混和した。
・投与
試験群には、EZH2 siRNA/ペプチド界面活性剤混合液を腫瘍部位あたりに200μl投与した。一方、コントロール群はAllStars Negative Control siRNA/ペプチド界面活性剤混合液を腫瘍あたり200μl投与した。投与はday0,day4,day8の3回投与とした。
・腫瘍サイズの計測
デジタルノギスによる短径、長径、高さ計測をsiRNA投与直前をday0として、day0,day4,day8に行い、腫瘍サイズ(三辺の積)の変化を腫瘍細胞増殖抑制効果とした。
<Method>
-Preparation of tumor model mice PC-3M-luc-C6 cells are cultured in Eagle's MEM medium (Invitrogen) containing 10% FBS (Equitech-Bio, Kerrville) at 37 ° C under 5% CO2. PC-3M-luc-C6 cells were collected by trypsin treatment, suspended in Dulbecco's PBS (without Mg2 +, Ca2 +), and subcutaneously 2 × 10 6 cells / 9 weeks old male nude mice (CLEA Japan, Osaka) / 200 μl is transplanted with a 26G needle to produce tumor mice.
-Preparation of siRNA / Peptide Surfactant 25 µg of siRNA and peptide surfactant were mixed in equal amounts (final amount was 200 µL per mouse), and mixed by rotation at low speed for 20 minutes at room temperature.
In the administration test group, 200 μl of EZH2 siRNA / peptide surfactant mixed solution was administered per tumor site. On the other hand, the control group was administered with 200 μl of AllStars Negative Control siRNA / peptide surfactant mixed solution per tumor. Administration was performed three times, day 0, day 4, and day 8.
・ Measurement of tumor size The short diameter, long diameter, and height measurement by digital calipers is performed on day 0, day 4, and day 8 immediately before siRNA administration, and the change in tumor size (product of three sides) is taken as the tumor cell proliferation inhibitory effect .

<結果>
結果を図3に示した。コントロール群では投与後day4,day8と腫瘍サイズが増加しているが、試験群では腫瘍サイズが減少していた。このことから、siRNAをペプチド界面活性剤と混合することで腫瘍細胞へのsiRNA導入が促進され、腫瘍細胞の増殖が抑制されると考えられた。
<Result>
The results are shown in FIG. In the control group, the tumor size was increased by day 4, day 8 after administration, but the tumor size was decreased in the test group. From this, it was considered that siRNA introduction into tumor cells was promoted by mixing siRNA with a peptide surfactant, and growth of tumor cells was suppressed.

マウス局所投与モデルにおけるRNAi効果の検討
ルシフェラーゼ遺伝子を発現する腫瘍細胞を持つマウスに腫瘍成長抑制効果をもつsiRNAとペプチド界面活性剤を混合した溶液を腫瘍へ直接注射し、標的遺伝子のmRNA量を定量PCRにより解析したところ、siRNA/ペプチド界面活性剤混合液による標的遺伝子の抑制効果が確認された。
Examination of RNAi effect in a mouse local administration model Mice with tumor cells expressing luciferase gene are directly injected into tumor with a mixture of siRNA having a tumor growth inhibitory effect and a peptide surfactant, and the amount of target gene mRNA is quantified. Analysis by PCR confirmed the inhibitory effect of the target gene by the siRNA / peptide surfactant mixture.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH、Celtek社製
・ペプチド界面活性剤濃度
500μg/mL
・腫瘍成長抑制siRNA
EZH2 siRNA(Sigma社製)
・ネガティブコントロールsiRNA
AllStars Negative Control siRNA(QIAGEN社製)
・ルシフェラーゼ遺伝子発現腫瘍細胞
PC−3M−luc−C6(Xenogen,Alameda社)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH 2 , manufactured by Celtek ・ Peptide surfactant concentration 500 μg / mL
・ Tumor growth inhibitory siRNA
EZH2 siRNA (manufactured by Sigma)
・ Negative control siRNA
AllStars Negative Control siRNA (QIAGEN)
-Luciferase gene expression tumor cells PC-3M-luc-C6 (Xenogen, Alameda)

<方法>
・腫瘍モデルマウスの作成
PC−3M−luc−C6細胞を10%FBS(Equitech−Bio,Kerrville)含有Eagie’s MEM培地(Invitrogen)にて37℃、5%CO2下で培養する。PC−3M−luc−C6細胞をトリプシン処理で回収し、ダルベッコPBS(Mg2+,Ca2+不含)に懸濁、9週齢の雄ヌードマウス(CLEA Japan,Osaka)の皮下に2×10細胞/200μlを26G注射針にて移植し、腫瘍マウスを作成する。
・siRNA/ペプチド界面活性剤の調製
siRNA 25μgとペプチド界面活性剤を等量ずつ混合(最終量を1匹あたり200μL)し、室温にて20分間、低速で回転混和した。
・投与
試験群には、EZH2 siRNA/ペプチド界面活性剤混合液を腫瘍部位あたりに200μl投与した。一方、コントロール群はAllStars Negative Control siRNA/ペプチド界面活性剤混合液を腫瘍あたり200μl投与した。投与は3日間の連続投与とした。
・組織の固定・保存
試験群及びコントロール群の腫瘍はday6に摘出し、液体窒素にて保存し、使用時まで−80℃にて冷凍保存した。
・RNA抽出
腫瘍をホモジナイズし、ISOGEN(ニッポンジーン社製)を用いてRNAを抽出した。
・cDNAの合成
High−Capacity cDNA Reverse Transcription Kits with RNAse Inhibitor(アプライドバイオシステムズ社製)を用いてsiRNAをcDNAに逆転写した。
・リアルタイムPCR
Platinum Quantitative PCR SuperMix−UDG(インビロトジェン社製)とTaqman Probe(アプライドバイオシステムズ社製)を用いてEZH2を標的とし、GAPDHを内部標準としてApplied Biosystems 7700リアルタイムPCRシステムによって定量解析を行った。
<Method>
-Preparation of tumor model mouse PC-3M-luc-C6 cells are cultured in Eagie's MEM medium (Invitrogen) containing 10% FBS (Equitech-Bio, Kerrville) at 37 ° C under 5% CO2. PC-3M-luc-C6 cells were collected by trypsin treatment, suspended in Dulbecco's PBS (without Mg2 +, Ca2 +), and subcutaneously 2 × 10 6 cells / 9 weeks old male nude mice (CLEA Japan, Osaka) / 200 μl is transplanted with a 26G needle to produce tumor mice.
-Preparation of siRNA / Peptide Surfactant 25 µg of siRNA and peptide surfactant were mixed in equal amounts (final amount was 200 µL per mouse), and mixed by rotation at low speed for 20 minutes at room temperature.
In the administration test group, 200 μl of EZH2 siRNA / peptide surfactant mixed solution was administered per tumor site. On the other hand, the control group was administered with 200 μl of AllStars Negative Control siRNA / peptide surfactant mixed solution per tumor. Administration was continuous for 3 days.
-Tissue fixation / storage test The tumors in the test group and the control group were excised on day 6, stored in liquid nitrogen, and stored frozen at -80 ° C until use.
-RNA extraction The tumor was homogenized, and RNA was extracted using ISOGEN (Nippon Gene).
Synthesis of cDNA siRNA was reverse-transcribed into cDNA using High-Capacity cDNA Reverse Transcription Kits with RNAse Inhibitor (Applied Biosystems).
Real-time PCR
Platinum Quantitative PCR SuperMix-UDG (manufactured by Invirotogen) and Taqman Probe (manufactured by Applied Biosystems) were used to target EZH2 and GAPDH was used as an internal standard to perform quantitative analysis using an Applied Biosystems 7700 real-time PCR system.

<結果>
結果を図4に示した。コントロール群のEZH2 mRNA発現量を1とした際の試験群のEZH2 mRNA発現量が0.53であった。このことから、siRNAをペプチド界面活性剤と混合することで腫瘍細胞における標的遺伝子抑制効果が確認された。
<Result>
The results are shown in FIG. When the EZH2 mRNA expression level in the control group was 1, the EZH2 mRNA expression level in the test group was 0.53. From this, the target gene suppression effect in a tumor cell was confirmed by mixing siRNA with a peptide surfactant.

マウス全身投与モデルにおけるRNAi効果の検討
ルシフェラーゼ遺伝子を発現する腫瘍を尾静脈投与したマウスに腫瘍成長抑制効果をもつsiRNAとペプチド界面活性剤を混合した溶液を尾静脈から投与し、全身性のがん転移抑制効果をルシフェラーゼ発光のイメージングにより解析したところ、siRNA/ペプチド界面活性剤混合液による全身性のがん転移抑制効果を確認した。
Examination of RNAi effect in a mouse systemic administration model A mouse mixed with a tumor expressing the luciferase gene via the tail vein is administered with a solution containing siRNA having a tumor growth inhibitory effect and a peptide surfactant from the tail vein to treat systemic cancer. When the metastasis inhibitory effect was analyzed by luciferase luminescence imaging, the systemic cancer metastasis inhibitory effect of the siRNA / peptide surfactant mixed solution was confirmed.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH、Celtek社製
・ペプチド界面活性剤濃度
500.0μg/mL
・腫瘍増殖抑制siRNA
EZH2 siRNA(Sigma社製)
KIF11 siRNA(Ambion社製)
・ネガティブコントロールsiRNA
AllStars Negative Control siRNA(QIAGEN社製)
・ルシフェリン
ルシフェリン1g (Wako)をダルベッコPBS(Mg2+,Ca2+不含)66.7mLに溶解し、0.2umシリンジフィルター(Minisart)を通して滅菌した。シリンジフィルターを通して直接遮光チューブに分注し、−80℃(−20℃)で保存。
・ルシフェラーゼ遺伝子発現腫瘍細胞
PC−3M−luc−C6(Xenogen,Alameda社)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH 2 , manufactured by Celtek ・ Peptide surfactant concentration 500.0 μg / mL
・ Tumor growth inhibitory siRNA
EZH2 siRNA (manufactured by Sigma)
KIF11 siRNA (Ambion)
・ Negative control siRNA
AllStars Negative Control siRNA (QIAGEN)
Luciferin 1 g (Wako) of luciferin was dissolved in 66.7 mL of Dulbecco's PBS (Mg2 +, Ca2 + free) and sterilized through a 0.2 um syringe filter (Minisart). Dispense directly into light-shielding tube through syringe filter and store at -80 ° C (-20 ° C).
-Luciferase gene expression tumor cells PC-3M-luc-C6 (Xenogen, Alameda)

<方法>
・腫瘍モデルマウスの作成
PC−3M−luc−C6細胞を10%FBS(Equitech−Bio,Kerrville)含有Eagle’s MEM培地(Invitrogen)にて37℃、5%CO2下で培養。PC−3M−luc−C6細胞をトリプシン処理で回収し、ダルベッコPBS(Mg2+,Ca2+不含)に懸濁、9週齢の雄スキッドマウス(CLEA Japan,Osaka)の尾静脈に2×10細胞/200μlで26G注射針にて移植。
・siRNA/ペプチド界面活性剤の調製
各siRNA50μgとペプチド界面活性剤を等量ずつ混合(最終量を1匹あたり200μL)し、室温にて20分間、低速で回転混和した。
・投与
試験群はEZH2 siRNAまたはKIF11 siRNA/ペプチド界面活性剤混合液をマウス尾静脈より27G注射針(テルモ社製)にて200μl投与した。コントロール群はAllStars Negative Control siRNA/ペプチド界面活性剤混合液を尾静脈より27G注射針(テルモ社製)にて200μl投与した。
・In vivoイメージング
ルシフェリン投与前に動物の体重を測定し、ルシフェリン溶液(15mg/mL)を150mg/kgで26G注射針(テルモ社)にて腹腔内投与した。ルシフェリン投与から10分後、IVISImaging System(Xenogen)にてイメージングした。イメージングデータはLIVINGIMAGE2.51ソフトウェア(Xenogen)にて解析した。ルシフェラーゼ発光イメージングは、siRNA投与直前をday0として、day0,day9,day12,day15までを行い、発光量の変化を腫瘍細胞抑制とした。
<Method>
-Preparation of tumor model mice PC-3M-luc-C6 cells were cultured in Eagle's MEM medium (Invitrogen) containing 10% FBS (Equitech-Bio, Kerrville) at 37 ° C under 5% CO2. PC-3M-luc-C6 cells were collected by trypsin treatment, suspended in Dulbecco's PBS (without Mg2 +, Ca2 +), and 2 × 10 6 cells in the tail vein of 9-week-old male skid mice (CLEA Japan, Osaka). / Implanted with a 26 G needle at 200 μl.
-Preparation of siRNA / Peptide Surfactant 50 μg of each siRNA and peptide surfactant were mixed in equal amounts (the final amount was 200 μL per mouse), and mixed at a low speed for 20 minutes at room temperature.
In the administration test group, 200 μl of EZH2 siRNA or KIF11 siRNA / peptide surfactant mixed solution was administered from a mouse tail vein with a 27G injection needle (manufactured by Terumo). In the control group, 200 μl of AllStars Negative Control siRNA / peptide surfactant mixed solution was administered from the tail vein with a 27G injection needle (manufactured by Terumo).
In vivo imaging The body weight of the animals was measured before luciferin administration, and a luciferin solution (15 mg / mL) was intraperitoneally administered at 150 mg / kg with a 26G injection needle (Terumo). Ten minutes after the administration of luciferin, imaging was performed with an IVISImaging System (Xenogen). Imaging data was analyzed with LIVINGIMAGE 2.51 software (Xenogen). In luciferase luminescence imaging, day 0 immediately before siRNA administration was set to day 0, and day 0, day 9, day 12, and day 15 were performed.

<結果>
結果を図5に示した。コントロール群(界面活性剤のみ)では投与後6日目よりルシフェラーゼ発光量の増加が確認されるが、試験群ではルシフェラーゼ発光量の増加は確認されなかった。このことから、siRNAをペプチド界面活性剤に混合して全身投与すると、腫瘍細胞へのsiRNA導入がペプチド界面活性剤によって促進され、全身性のがん転移が抑制されると考えられた。
<Result>
The results are shown in FIG. In the control group (surfactant only), an increase in luciferase luminescence was confirmed from day 6 after administration, but no increase in luciferase luminescence was confirmed in the test group. From this, it was considered that when siRNA was mixed with a peptide surfactant and administered systemically, introduction of siRNA into tumor cells was promoted by the peptide surfactant and systemic cancer metastasis was suppressed.

界面活性剤ペプチドの肝機能に与える影響についての検討
正常マウスにsiRNA/界面活性剤ペプチド混合液を尾静脈投与し、血清中のGOT,GPT濃度を測定し、肝毒性がないことを確認した。
Examination of the effect of surfactant peptide on liver function The siRNA / surfactant peptide mixture was administered to normal mice via the tail vein, and serum GOT and GPT concentrations were measured to confirm that there was no liver toxicity.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH、Celtek社製
・ペプチド界面活性剤濃度
500.0μg/mL
・siRNA
AllStars Negative Control siRNA(QIAGEN社製)
Poly(I:C)(Sigma社製)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH 2 , manufactured by Celtek ・ Peptide surfactant concentration 500.0 μg / mL
・ SiRNA
AllStars Negative Control siRNA (QIAGEN)
Poly (I: C) (manufactured by Sigma)

<方法>
・siRNA/ペプチド界面活性剤の調製
各siRNA 50μgとペプチド界面活性剤を等量ずつ混合(最終量を1匹あたり200μL)し、室温にて20分間、低速で回転混和した。
・サンプル調整
9週齢の雄ICRマウス(CLEA Japan,Osaka)の尾静脈にsiRNA/ペプチド界面活性剤混合27G注射針(テルモ社製)にて200μl投与し、6時間後に腹部大静脈より採血した。1000×gで15分間の遠心分離により血清を分離した。
・測定
富士ドライケム(富士フィルム社製)によりGOT,GPTを測定した。
<Method>
-Preparation of siRNA / Peptide Surfactant 50 μg of each siRNA and peptide surfactant were mixed in equal amounts (final amount was 200 μL per mouse), and rotated and mixed at low speed for 20 minutes at room temperature.
Sample preparation 200 μl of 9-week-old male ICR mice (CLEA Japan, Osaka) was administered to the tail vein with a siRNA / peptide surfactant mixed 27G injection needle (manufactured by Terumo), and blood was collected from the abdominal vena cava 6 hours later . Serum was separated by centrifugation at 1000 xg for 15 minutes.
-Measurement GOT and GPT were measured by Fuji Dry Chem (Fuji Film Co., Ltd.).

<結果>
結果を図6、図7に示した。試験群では血清中GOT値とGPT値は正常値を示した。このことからsiRNAとペプチド界面活性剤の混合液を全身投与しても肝機能は変わらず、肝毒性がないことが明らかとなった。
<Result>
The results are shown in FIGS. In the test group, serum GOT and GPT values were normal. From this, it was clarified that even if a mixed solution of siRNA and peptide surfactant was systemically administered, the liver function did not change and there was no liver toxicity.

界面活性剤ペプチドによる免疫応答性の検討
正常マウスにsiRNA/界面活性剤ペプチド混合液を尾静脈投与し、ELISA法により血清中のインターフェロンアルファ、インターフェロンガンマ、MCP−1、インターロイキン12、インターロイキン6、ケモカイン濃度を測定し、免疫応答性がないことを確認した。
Examination of immunoresponsiveness by surfactant peptide SiRNA / surfactant peptide mixed solution is administered to normal mice via tail vein, and serum interferon alpha, interferon gamma, MCP-1, interleukin 12, interleukin 6 is obtained by ELISA. The chemokine concentration was measured, and it was confirmed that there was no immune response.

<材料>
・ペプチド界面活性剤
配列:Ac−AAAAAAK−NH、Celtek社製
・ペプチド界面活性剤濃度
500.0μg/mL
・siRNA
AllStars Negative Control siRNA(QIAGEN社製)
<Material>
・ Peptide surfactant sequence: Ac-AAAAAAK-NH 2 , manufactured by Celtek ・ Peptide surfactant concentration 500.0 μg / mL
・ SiRNA
AllStars Negative Control siRNA (QIAGEN)

<方法>
・siRNA/ペプチド界面活性剤の調製
各siRNA 50μgとペプチド界面活性剤を等量ずつ混合(最終量を1匹あたり200μL)し、室温にて20分間、低速で回転混和した。
・サンプル調整
9週齢の雄ICRマウス(CLEA Japan,Osaka)の尾静脈にsiRNA/ペプチド界面活性剤混合27G注射針(テルモ社製)にて200μl投与し、6時間後に腹部大静脈より採血した。1000×gで15分間の遠心分離により血清を分離した。
・測定
Procarta Cytokine Assay(Panomics)によりインターフェロンアルファ、インターフェロンガンマ、MCP−1、インターロイキン12、インターロイキン6、ケモカイン濃度を測定した。
<Method>
-Preparation of siRNA / Peptide Surfactant 50 μg of each siRNA and peptide surfactant were mixed in equal amounts (final amount was 200 μL per mouse), and rotated and mixed at low speed for 20 minutes at room temperature.
Sample preparation 200 μl of 9-week-old male ICR mice (CLEA Japan, Osaka) was administered to the tail vein with a siRNA / peptide surfactant mixed 27G injection needle (manufactured by Terumo), and blood was collected from the abdominal vena cava 6 hours later . Serum was separated by centrifugation at 1000 xg for 15 minutes.
Measurements Interferon alpha, interferon gamma, MCP-1, interleukin 12, interleukin 6, and chemokine concentrations were measured by Procarta Cytokine Assay (Panomics).

<結果>
結果を図8、図9、図10、図11、図12、図13に示した。コントロール群(非投与群)と試験群を比較し血清中ンターフェロンアルファ、インターフェロンガンマ、MCP−1、インターロイキン12、インターロイキン6、ケモカイン濃度に差は認められなかった。このことからsiRNAとペプチド界面活性剤の混合液を全身投与しても免疫応答反応が惹起されないことが明らかとなった。
<Result>
The results are shown in FIGS. 8, 9, 10, 11, 12, and 13. A comparison was made between the control group (non-administration group) and the test group, and no difference was observed in serum interferon alpha, interferon gamma, MCP-1, interleukin 12, interleukin 6, and chemokine concentrations. From this, it was clarified that an immune response reaction was not induced even when a mixed solution of siRNA and a peptide surfactant was systemically administered.

<総合考察>
実施例1と実施例2と結果を併せ、ペプチド界面活性剤が、局所投与及び全身投与の両方でsiRNAによる遺伝子発現抑制に有用であると考えられた。
実施例3と実施例4、実施例5の結果を併せ、ペプチド界面活性剤が、局所投与及び全身投与の両方でsiRNAによる腫瘍細胞増殖抑制に有用であると考えられた。
実施例6と実施例7の結果を併せ、ペプチド界面活性剤は肝毒性がなく、免疫反応を惹起しないことから生体に安全な核酸移送担体であると考えられた。
<General consideration>
In combination with the results of Example 1 and Example 2, it was considered that the peptide surfactant is useful for suppressing gene expression by siRNA both in local administration and systemic administration.
In combination with the results of Example 3, Example 4, and Example 5, it was considered that the peptide surfactant is useful for suppressing tumor cell growth by siRNA both in local administration and systemic administration.
Combining the results of Example 6 and Example 7, the peptide surfactant was considered to be a safe nucleic acid transfer carrier for the living body because it has no hepatotoxicity and does not elicit an immune reaction.

Claims (4)

ペプチド界面活性剤を含む核酸の移送担体。   A nucleic acid transfer carrier comprising a peptide surfactant. ペプチド界面活性剤が、4〜10の親水性アミノ酸からなる頭部及び1又は2の疎水性アミノ酸からなる尾部からなる、請求項1に記載の核酸の移送担体。   The nucleic acid transfer carrier according to claim 1, wherein the peptide surfactant comprises a head composed of 4 to 10 hydrophilic amino acids and a tail composed of 1 or 2 hydrophobic amino acids. 核酸の移送担体が、AAAAAAD又はAAAAAAKである、請求項1に記載の核酸の移送担体。   The nucleic acid transfer carrier according to claim 1, wherein the nucleic acid transfer carrier is AAAAAAAD or AAAAAAK. 請求項1−3のいずれか1項に記載の核酸の移送担体及び核酸を含む、局所投与又は全身投与用医薬品。   A medicinal product for local administration or systemic administration comprising the nucleic acid transfer carrier according to any one of claims 1 to 3 and a nucleic acid.
JP2017019600A 2009-02-27 2017-02-06 Nucleic acid transfer carrier Pending JP2017082002A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009045940 2009-02-27
JP2009045940 2009-02-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015200530A Division JP2016074663A (en) 2009-02-27 2015-10-08 Nucleic acid transfer carrier

Publications (1)

Publication Number Publication Date
JP2017082002A true JP2017082002A (en) 2017-05-18

Family

ID=43039916

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2009175811A Pending JP2010222338A (en) 2009-02-27 2009-07-07 Nucleic acid transfer carrier
JP2014082452A Pending JP2014139235A (en) 2009-02-27 2014-04-14 Nucleic acid transfer carrier
JP2015200530A Pending JP2016074663A (en) 2009-02-27 2015-10-08 Nucleic acid transfer carrier
JP2017019600A Pending JP2017082002A (en) 2009-02-27 2017-02-06 Nucleic acid transfer carrier

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2009175811A Pending JP2010222338A (en) 2009-02-27 2009-07-07 Nucleic acid transfer carrier
JP2014082452A Pending JP2014139235A (en) 2009-02-27 2014-04-14 Nucleic acid transfer carrier
JP2015200530A Pending JP2016074663A (en) 2009-02-27 2015-10-08 Nucleic acid transfer carrier

Country Status (1)

Country Link
JP (4) JP2010222338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116092A1 (en) * 2017-12-15 2019-06-20 3-D Matrix, Ltd. Surfactant peptide nanostructures and uses in drug delivery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2874003A1 (en) * 2012-05-31 2013-12-05 Sotirios KOUTSOPOULOS Sustained delivery of molecules using peptide surfactants and uses thereof
AU2018364916A1 (en) * 2017-11-09 2020-06-18 Purmx Therapeutics, Inc. Therapeutic pharmaceutical composition for cancer including miRNA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176335A1 (en) * 2001-07-10 2003-09-18 Shuguang Zhang Surfactant peptide nanostructures, and uses thereof
WO2009002274A1 (en) * 2007-06-28 2008-12-31 Agency For Science, Technology And Research Cationic peptide for delivering an agent into a cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176335A1 (en) * 2001-07-10 2003-09-18 Shuguang Zhang Surfactant peptide nanostructures, and uses thereof
WO2009002274A1 (en) * 2007-06-28 2008-12-31 Agency For Science, Technology And Research Cationic peptide for delivering an agent into a cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADV.POLYM.SCI.,2006,VOL.203,P.145-170, JPN6013046845 *
J.NANOSCI.NANOTECHNOL.,2007,VOL.7,NO.7,P.2246-2252, JPN6013046846 *
LANGMUIR, vol. Vol.19, JPN7014000491, 2003, pages 4332 - 4337 *
MACROMOL.BIOSCI.,2007,VOL.7,P.13-22, JPN6013046841 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116092A1 (en) * 2017-12-15 2019-06-20 3-D Matrix, Ltd. Surfactant peptide nanostructures and uses in drug delivery
US11324703B2 (en) 2017-12-15 2022-05-10 3-D Matrix, Ltd. Surfactant peptide nanostructures and uses thereof in drug delivery

Also Published As

Publication number Publication date
JP2010222338A (en) 2010-10-07
JP2014139235A (en) 2014-07-31
JP2016074663A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6946399B2 (en) C / EBPα small molecule activated RNA
Deng et al. A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages
US20200000787A1 (en) Medicament for treatment of liver cancer
Ge et al. Myocardial ischemia‐reperfusion induced cardiac extracellular vesicles harbour proinflammatory features and aggravate heart injury
Ye et al. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia–reperfusion injury
US20130122096A1 (en) Compositions for drug delivery and methods of manufacturing and using same
Wang et al. A therapeutic silencing RNA targeting hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice
Carreras-Badosa et al. NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation
JP7039470B2 (en) Monocarboxylic Acid Transporter 4 (MCT4) Antisense Oligonucleotide (ASO) Inhibitor for Use as a Therapeutic Agent in the Treatment of Cancer
JP2017082002A (en) Nucleic acid transfer carrier
Lin et al. Osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss
EP4019037A1 (en) Prevention and treatment of non-melanoma skin cancer (nmsc)
Liu et al. Tollip orchestrates macrophage polarization to alleviate intestinal mucosal inflammation
EP2606909B1 (en) Method and composition for treating, preventing and diagnosing cancer containing cancer stem cells or derived therefrom
Andre et al. In vivo knockdown of CXCR4 using jetPEI/CXCR4 shRNA nanoparticles inhibits the pulmonary metastatic potential of B16‑F10 melanoma cells
Zeng et al. Neddylation suppression by a macrophage membrane-coated nanoparticle promotes dual immunomodulatory repair of diabetic wounds
Choi et al. GNAQ knockdown promotes bone metastasis through epithelial-mesenchymal transition in lung cancer cells
Wang et al. In Situ Formed ROS‐Responsive Hydrogel with STING Agonist and Gemcitabine to Intensify Immunotherapy against Pancreatic Ductal Adenocarcinoma
WO2023051822A1 (en) Targeting oligonucleotide for treating diseases associated with pcsk9
Kang et al. Novel role of IL-6/SIL-6R signaling in the expression of inducible nitric oxide synthase (iNOS) in murine B16, metastatic melanoma clone F10. 9, cells
JP2011012042A (en) Sustained release carrier for nucleic acid
CN116406258A (en) Drug-loaded nanoparticle for aerosol inhalation and siRNA sequence group for treating pulmonary fibrosis and design method thereof
CN111419832A (en) Pharmaceutical composition and application thereof in preparing medicines for treating tumors
Dong et al. Reversing the PAI-1-induced fibrotic immune exclusion of solid tumor by multivalent CXCR4 antagonistic nano-permeator
Hum et al. IL-17A Increases Doxorubicin Efficacy in Triple Negative Breast Cancer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522