JP2017079548A - Installation structure of solar power generation module - Google Patents

Installation structure of solar power generation module Download PDF

Info

Publication number
JP2017079548A
JP2017079548A JP2015206707A JP2015206707A JP2017079548A JP 2017079548 A JP2017079548 A JP 2017079548A JP 2015206707 A JP2015206707 A JP 2015206707A JP 2015206707 A JP2015206707 A JP 2015206707A JP 2017079548 A JP2017079548 A JP 2017079548A
Authority
JP
Japan
Prior art keywords
power generation
generation module
solar power
cable
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015206707A
Other languages
Japanese (ja)
Other versions
JP6728626B2 (en
Inventor
和男 樫原
Kazuo Kashihara
和男 樫原
山口 雅夫
Masao Yamaguchi
雅夫 山口
弘美 魚岸
Hiromi Uogashi
弘美 魚岸
幸伸 佐藤
Yukinobu Sato
幸伸 佐藤
好弘 川上
Yoshihiro Kawakami
好弘 川上
聡 佐伯
Satoshi Saeki
聡 佐伯
仁美 本山
Hitomi Motoyama
仁美 本山
国春 三浦
Kuniharu Miura
国春 三浦
礼子 玉井
Reiko Tamai
礼子 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015206707A priority Critical patent/JP6728626B2/en
Publication of JP2017079548A publication Critical patent/JP2017079548A/en
Application granted granted Critical
Publication of JP6728626B2 publication Critical patent/JP6728626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance safety and strength against wind sufficiently.SOLUTION: An installation structure 1 of a solar power generation module is constituted by stretching a cable 3 to each top of tower shape structures 2, 2 and fixing the opposite ends thereof to the ground 5 via anchors 4, 4, and arranging multiple solar power generation modules 6 on the cable in a row along the cable 3. As shown on fig.(b), the solar power generation modules 6 are coupled with the cable so that the cable material axis and the plate surface are substantially in parallel, and rotatable around the material axis, and curved resistance members 7 are attached, as wind load resistance means, to the two shorter side edges parallel with the material axis of the cable 3 and clamping the cable. A weight 9 is suspended below the solar power generation module via a truss member 8, so as to balance the solar power generation module 6 at a predetermined angular position.SELECTED DRAWING: Figure 1

Description

本発明は、異なる二点間に張設された引張材に太陽光発電モジュールを設置する場合に適用される太陽光発電モジュールの設置構造に関する。   The present invention relates to a solar power generation module installation structure that is applied when a solar power generation module is installed on a tension member stretched between two different points.

化石燃料や原子力に代わる代替エネルギーとして、バイオマス、風力発電、地熱発電、燃料電池、太陽熱発電などが開発されているが、太陽光発電は、エネルギー密度が低い等の観点で火力発電や原子力発電に及ばないものの、設置場所の制約が少なく、電力が必要とされる場所に簡易に設置することができるという優位性を持つ。   Biomass, wind power generation, geothermal power generation, fuel cells, solar power generation, etc. have been developed as alternative energy alternatives to fossil fuels and nuclear power, but solar power generation has been developed for thermal power generation and nuclear power generation from the viewpoint of low energy density. Although it does not reach, there are few restrictions on the installation location, and there is an advantage that it can be easily installed in a place where electric power is required.

太陽光発電設備は、太陽光を電力に変換する太陽光発電モジュール、該太陽光発電モジュールからの直流電力を交流に変換するパワーコンディショナーなどの機器で構成されるが、最近では、パワーコンディショナーに代えて、太陽光発電モジュールごとにマイクロインバータと呼ばれる交流変換装置を取り付けるケースも増えてきており、設置場所のさらなる拡大及びそれに伴う導入促進が期待されている。   Photovoltaic power generation equipment is composed of devices such as a solar power generation module that converts sunlight into electric power and a power conditioner that converts direct current power from the solar power generation module into alternating current, but recently, it has been replaced with a power conditioner. The number of cases where an AC conversion device called a micro inverter is attached to each photovoltaic power generation module is increasing, and further expansion of the installation location and accompanying promotion are expected.

ここで、太陽光発電モジュールは、架台を介してビルの屋上や地盤面などに設置されるが、架台を設計製作するにあたっては、太陽光発電モジュールの自重をはじめ、風荷重などを考慮してその材質や断面寸法等が決定される。   Here, the solar power generation module is installed on the rooftop or ground surface of the building via a gantry, but when designing the gantry, take into account the wind load and other factors, including the weight of the solar power generation module. The material, cross-sectional dimensions, etc. are determined.

一方、太陽光発電モジュールを地面やビルの屋上ではなく、支柱間に架け渡されたケーブルに取り付けて該ケーブルに吊持させる提案もなされている(特許文献1)。   On the other hand, a proposal has been made to attach a solar power generation module to a cable spanned between columns instead of the ground or the roof of a building and suspend it on the cable (Patent Document 1).

特開2015−37163号公報Japanese Patent Laying-Open No. 2015-37163

太陽光発電モジュールを上述したようにケーブルに吊持させる形式で設置した場合、従来のように地面やビルの屋上を設置面として確保する必要がないので、スペース利用の観点では有利となる反面、風荷重による太陽光発電モジュールの損傷あるいはケーブルの破断といった事態が起きないよう対策を講じなければならない。   When the solar power generation module is installed in the form of being suspended on the cable as described above, it is not necessary to secure the ground or the rooftop of the building as an installation surface as in the past, but it is advantageous in terms of space utilization, Measures must be taken to prevent the occurrence of damage to the photovoltaic module or breakage of the cable due to wind loads.

しかしながら、従来においては、十分な風対策が講じられているとは言えず、風によって太陽光発電モジュールが損傷し、あるいは太陽光発電モジュールを吊持するケーブルやワイヤーが破断するといった事態の発生が懸念されていた。   However, in the past, it has not been said that sufficient wind countermeasures have been taken, and the occurrence of a situation such as damage to the photovoltaic module due to wind, or breakage of the cable or wire holding the photovoltaic module. There was concern.

本発明は、上述した事情を考慮してなされたもので、風に対する安全性や強度を十分に高めることが可能な太陽光発電モジュールの設置構造を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a solar power generation module installation structure that can sufficiently enhance safety and strength against wind.

上記目的を達成するため、本発明に係る太陽光発電モジュールの設置構造は請求項1に記載したように、板状に形成された太陽光発電モジュールを、異なる二点間に張設された引張材の材軸と板面がほぼ平行になるように該引張材に配置した太陽光発電モジュールの設置構造において、
前記太陽光発電モジュールを、該太陽光発電モジュールが前記引張材の材軸廻りに回動自在となるように該引張材に連結するとともに、前記太陽光発電モジュールを含めた重心位置が前記引張材による該太陽光発電モジュールの支点位置よりも低くなるように前記太陽光発電モジュールに錘を設置し、
前記太陽光発電モジュールの板面に対し垂直でない方向からの風であって前記板面に平行でかつ前記引張材の材軸に垂直な成分を受けたとき、その作用荷重が、前記引張材に向かう方向より該引張材から遠ざかる方向で大きくなるように、前記太陽光発電モジュールであって前記引張材を挟んだ2つの部位に風荷重抵抗手段をそれぞれ設けたものである。
In order to achieve the above object, the solar power generation module installation structure according to the present invention has a structure in which a solar power generation module formed in a plate shape is stretched between two different points as described in claim 1. In the installation structure of the solar power generation module arranged on the tensile material so that the material axis and the plate surface of the material are substantially parallel,
The solar power generation module is connected to the tension member such that the solar power generation module is rotatable about the material axis of the tension member, and the center of gravity including the solar power generation module is positioned at the tension member. The weight is installed on the photovoltaic module so as to be lower than the fulcrum position of the photovoltaic module by
When the wind is from a direction that is not perpendicular to the plate surface of the photovoltaic power generation module and receives a component that is parallel to the plate surface and perpendicular to the axis of the tensile material, the acting load is applied to the tensile material. In the photovoltaic power generation module, wind load resistance means are respectively provided at two portions sandwiching the tensile material so as to be larger in the direction away from the tensile material than in the direction of going.

また、本発明に係る太陽光発電モジュールの設置構造は、前記各風荷重抵抗手段を、C字状横断面の湾曲状抵抗部材をその開放側が前記引張材の側を向くように前記太陽光発電モジュールの縁部に配置して構成したものである。   Moreover, the installation structure of the photovoltaic power generation module according to the present invention is characterized in that each wind load resistance means includes a curved resistance member having a C-shaped cross section, and the photovoltaic power generation so that the open side faces the tensile material side. It is arranged at the edge of the module.

また、本発明に係る太陽光発電モジュールの設置構造は、前記各風荷重抵抗手段を、前記太陽光発電モジュールの板面に対する垂直位置から前記引張材の側に傾斜させた形で該太陽光発電モジュールの各面にそれぞれ取り付けられた一対の平板状抵抗部材で構成したものである。   Further, the solar power generation module installation structure according to the present invention is such that each wind load resistance means is inclined from the vertical position with respect to the plate surface of the solar power generation module toward the tensile material. It is composed of a pair of flat resistor members attached to each surface of the module.

また、本発明に係る太陽光発電モジュールの設置構造は、前記各風荷重抵抗手段を、前記引張材の側で前記板面と平行に延びる角度から該角度を基準としたときに前記板面と180゜未満となる角度までの範囲内で回動可能となるように前記太陽光発電モジュールの各面にそれぞれ取り付けられた一対の可動平板状抵抗部材で構成したものである。   Further, the installation structure of the photovoltaic power generation module according to the present invention is characterized in that each wind load resistance means has the plate surface when the angle is based on the angle from the angle extending parallel to the plate surface on the tensile material side. It is composed of a pair of movable flat resistor members attached to the respective surfaces of the photovoltaic power generation module so as to be rotatable within a range up to an angle of less than 180 °.

また、本発明に係る太陽光発電モジュールの設置構造は、前記角度範囲の上限を前記板面に対し90゜より大きい角度としたものである。   In the installation structure of the photovoltaic power generation module according to the present invention, the upper limit of the angle range is an angle larger than 90 ° with respect to the plate surface.

本発明に係る太陽光発電モジュールの設置構造においては、板状の太陽光発電モジュールを引張材に配置するにあたり、該太陽光発電モジュールが引張材の材軸廻りに回動自在となるように該引張材に連結するとともに、太陽光発電モジュールを含めた重心位置が、引張材による該太陽光発電モジュールの支点位置よりも低くなるように太陽光発電モジュールに錘を設置する一方、太陽光発電モジュールの板面に対し垂直でない方向からの風であって該板面に平行でかつ引張材の材軸に垂直な成分を受けたとき、その作用荷重が、引張材に向かう方向より該引張材から遠ざかる方向で大きくなるように、太陽光発電モジュールであって引張材を挟んだ2つの部位に風荷重抵抗手段をそれぞれ設けてある。   In the installation structure of the solar power generation module according to the present invention, when the plate-shaped solar power generation module is arranged on the tensile material, the solar power generation module is configured to be rotatable around the material axis of the tensile material. The solar power generation module is connected to the tensile material and the weight is installed on the solar power generation module so that the center of gravity position including the solar power generation module is lower than the fulcrum position of the solar power generation module by the tensile material. When the wind is from a direction that is not perpendicular to the plate surface and is parallel to the plate surface and perpendicular to the material axis of the tensile material, the working load is from the tensile material in the direction toward the tensile material. Wind load resistance means are respectively provided in two portions of the photovoltaic power generation module sandwiching the tensile material so as to increase in the direction of moving away.

このようにすると、無風時においては、太陽光発電モジュールに設置された錘の作用により、太陽光発電モジュールは、引張材の材軸廻りに対して所定の角度位置でバランスし、その状態で姿勢を保持する。   In this way, when there is no wind, the solar power generation module is balanced at a predetermined angular position with respect to the axis of the tensile material by the action of the weight installed in the solar power generation module, and in that state Hold.

一方、一定の風が吹いて、太陽光発電モジュールの板面に平行でかつ引張材の材軸に垂直な成分の風が2つの部位に設けられた風荷重抵抗手段にそれぞれ作用したとき、該各風荷重抵抗手段は、引張材に向かう方向より該引張材から遠ざかる方向で作用荷重が大きくなるように構成してあるので、風下側に位置する風荷重抵抗手段により多くの風荷重が作用する。   On the other hand, when a constant wind blows and a wind of a component parallel to the plate surface of the photovoltaic power generation module and perpendicular to the material axis of the tensile material acts on the wind load resistance means provided at the two parts, Since each wind load resistance means is configured such that the acting load is larger in the direction away from the tensile material than in the direction toward the tensile material, more wind load acts on the wind load resistance means located on the leeward side. .

そのため、太陽光発電モジュールは、風下側に位置する風荷重抵抗手段が、より風下に近い側へと移動する方向に回転し、その結果、角度が付いている場合には風向きと平行になる方向に向かう。   Therefore, the photovoltaic power generation module rotates in a direction in which the wind load resistance means located on the leeward side moves to the side closer to the leeward side, and as a result, in a direction parallel to the wind direction when the angle is attached Head for.

したがって、太陽光発電モジュールに作用する風荷重が低減するとともに、それに伴って引張材に生ずる引張力も減少し、かくして風荷重に対する太陽光発電モジュールや引張材の設計条件が緩和され、太陽光発電モジュールの設置コストを大幅に引き下げることが可能となる。   Therefore, the wind load acting on the photovoltaic power generation module is reduced, and the tensile force generated in the tensile material is also reduced accordingly, thus the design conditions of the photovoltaic power generation module and the tensile material against the wind load are eased, and the photovoltaic power generation module The installation cost can be greatly reduced.

太陽光発電モジュールは、太陽電池パネル、太陽電池モジュールとも呼ばれているものであって、市販のものを適宜採用することが可能であり、矩形板状をなすものが典型例となる。   The solar power generation module is also called a solar cell panel or a solar cell module, and a commercially available one can be used as appropriate, and a rectangular plate is a typical example.

引張材は、ケーブル、ワイヤー等で呼称される部材を包摂する。また、引張材は、任意の材料で構成することが可能であって、例えばPC鋼線やPC鋼より線で構成することができる。なお、引張材の張設方向は、必ずしも水平である必要はないし、二点間でたわみが形成された状態でもかまわない。   The tensile material includes a member called a cable, a wire, or the like. Moreover, a tension | tensile_strength material can be comprised with arbitrary materials, for example, can be comprised with a wire from PC steel wire or PC steel. The tensioning direction of the tensile material does not necessarily have to be horizontal, and may be a state in which a deflection is formed between two points.

引張材が張設される二点をどのように形成するかは任意であり、例えば、互いに離隔配置された2つの塔状構造物の各頂点とすることができるし、川や谷を挟む2つの山の山頂あるいは山腹とすることも可能である。   How to form the two points where the tensile material is stretched is arbitrary, for example, it can be set as the apexes of two tower-like structures that are spaced apart from each other, and sandwiches a river or valley 2 It can also be the summit or hillside of two mountains.

錘は、重力バランサーとして機能するものであって、太陽光発電モジュールを含めた重心位置が引張材による該太陽光発電モジュールの支点位置よりも低くなるように太陽光発電モジュールに設置される限り、具体的な構成は任意であるが、風の影響をできるだけ受けずなおかつ姿勢安定性の高い構成とするのが望ましく、例えば質量密度の高い金属材料で形成し、トラス材を介して太陽光発電モジュールの下方に吊持する構成を採用することができる。   As long as the weight functions as a gravity balancer and is installed in the photovoltaic module so that the position of the center of gravity including the photovoltaic module is lower than the fulcrum position of the photovoltaic module by the tensile material, Although the specific configuration is arbitrary, it is desirable to have a configuration that is not affected by the wind as much as possible and has high posture stability. For example, it is formed of a metal material having a high mass density, and a photovoltaic power generation module through a truss material It is possible to employ a configuration that is suspended below the sway.

錘は、無風時の太陽光発電モジュールの姿勢が任意の角度(仰角)となるように該太陽光発電モジュールに設置するのが望ましく、かかる構成によれば、太陽高度を考慮した発電効率の向上を図ることが可能となる。   It is desirable to install the weight on the solar power generation module so that the attitude of the solar power generation module at no wind is at an arbitrary angle (elevation angle). According to such a configuration, the power generation efficiency is improved in consideration of the solar altitude. Can be achieved.

本発明では、太陽光発電モジュールの板面に対し垂直に吹き付ける風は対象外であるが、このような風が長時間吹き続ける状況を想定する必要性は高くないため、現実面ではほとんど問題とならない。   In the present invention, wind that blows perpendicularly to the plate surface of the photovoltaic power generation module is out of scope, but it is not necessary to assume a situation where such wind continues to blow for a long time. Don't be.

また、本発明の風荷重抵抗手段は、風向きが逆転して風上と風下が入れ替わったり、斜め上からの風が斜め下からの風に変わった場合であっても、その作用が維持されるよう、引張材を中心とした左右対称構造あるいはそれに近い構造でかつ太陽光発電モジュールの板面を中心とした上下対称構造あるいはそれに近い構造とする必要があるが、このような対称構造とすることにより、太陽光発電モジュールの板面に垂直な風荷重成分は、引張材の両側で相殺し合って太陽光発電モジュールの回転には影響しないし、引張材と平行な風荷重成分については、太陽光発電モジュールの回転にそもそも寄与しない。   In addition, the wind load resistance means of the present invention maintains its action even when the wind direction is reversed and the windward and leeward are switched, or the wind from diagonally upward is changed to the wind from diagonally downward. Therefore, it is necessary to have a symmetrical structure with a tensile material as the center or a structure close to it, and a vertically symmetrical structure with the plate surface of the photovoltaic power module as the center or a structure close to it. Therefore, the wind load component perpendicular to the plate surface of the solar power generation module cancels out on both sides of the tensile material and does not affect the rotation of the solar power generation module. In the first place, it does not contribute to the rotation of the photovoltaic module.

そのため、風荷重抵抗手段は、太陽光発電モジュールの板面に平行でかつ引張材の材軸に垂直な成分だけを考慮すれば足りる。   Therefore, it is sufficient for the wind load resistance means to consider only a component parallel to the plate surface of the photovoltaic power generation module and perpendicular to the material axis of the tensile material.

風荷重抵抗手段は、引張材に向かう方向より該引張材から遠ざかる方向で作用荷重が大きくなるように構成される限り、その具体的構成は任意であり、例えば、C字状横断面の湾曲状抵抗部材をその開放側が引張材の側を向くように太陽光発電モジュールの縁部に配置して構成することができるし、太陽光発電モジュールの板面に対する垂直位置から引張材の側に傾斜させた形で該太陽光発電モジュールの各面にそれぞれ配置された一対の平板状抵抗部材で構成することも可能である。   As long as the wind load resistance means is configured so that the applied load is larger in the direction away from the tensile material than in the direction toward the tensile material, the specific configuration thereof is arbitrary, for example, the curved shape of the C-shaped cross section. The resistance member can be arranged at the edge of the photovoltaic module so that the open side faces the tension material side, and the resistance member is inclined from the vertical position to the plate surface of the photovoltaic module to the tension material side. It is also possible to form a pair of flat resistance members respectively arranged on each surface of the photovoltaic power generation module.

さらには、引張材の側で板面と平行に延びる角度から該角度を基準としたときに前記板面と180゜未満となる角度までの範囲内で回動可能となるように、太陽光発電モジュールの各面にそれぞれ取り付けられた一対の可動平板状抵抗部材で構成することも可能であり、かかる構成によれば、風上側の風荷重抵抗手段に作用する風荷重が実質的にゼロとなるため、太陽光発電モジュールの姿勢を風向きに合わせやすくなる。   Further, the photovoltaic power generation is such that it can rotate within a range from an angle extending parallel to the plate surface on the side of the tensile material to an angle that is less than 180 ° with respect to the plate surface when the angle is used as a reference. It is also possible to configure with a pair of movable flat plate resistance members attached to each surface of the module. According to such a configuration, the wind load acting on the wind load resistance means on the windward side is substantially zero. Therefore, it becomes easy to match the attitude of the photovoltaic power generation module with the wind direction.

特に、上述した角度範囲の上限を前記板面に対し90゜より大きい角度としたならば、風下側の風荷重抵抗手段に作用する荷重が過大になるのを避けることができるため、風荷重抵抗手段の損傷を防止することが可能となる。   In particular, if the upper limit of the above-mentioned angle range is set to an angle larger than 90 ° with respect to the plate surface, it is possible to avoid an excessive load acting on the wind load resistance means on the leeward side. It is possible to prevent damage to the means.

本実施形態に係る太陽光発電モジュールの設置構造1を示した図であり、(a)は全体側面図、(b)は太陽光発電モジュール6及びその関連構成の斜視図。It is the figure which showed the installation structure 1 of the photovoltaic power generation module which concerns on this embodiment, (a) is a whole side view, (b) is a perspective view of the photovoltaic power generation module 6 and its related structure. 太陽光発電モジュール6をケーブル3の材軸方向から見た側面図であり、(a)は全体側面図、(b)は支持点と重心の各位置に着目した詳細側面図。It is the side view which looked at the photovoltaic power generation module 6 from the material-axis direction of the cable 3, (a) is a whole side view, (b) is the detailed side view which paid its attention to each position of a support point and a gravity center. 太陽光発電モジュール6を構成する風荷重抵抗手段としての湾曲状抵抗部材7をケーブル3の材軸方向から見た側面図。The side view which looked at the curved resistance member 7 as a wind load resistance means which comprises the solar power generation module 6 from the material-axis direction of the cable 3. FIG. 太陽光発電モジュールの設置構造1の作用を示した説明図。Explanatory drawing which showed the effect | action of the installation structure 1 of a solar power generation module. 錘9に関する変形例をケーブル3の材軸方向から見た側面図。The side view which looked at the modification regarding the weight 9 from the material-axis direction of the cable 3. FIG. 風荷重抵抗手段を一対の平板状抵抗部材61,61で構成した変形例をケーブル3の材軸方向から見た側面図。The side view which looked at the modification which comprised the wind load resistance means with a pair of flat resistance members 61 and 61 from the material-axis direction of the cable 3. FIG. 風荷重抵抗手段を一対の可動平板状抵抗部材71,71で構成した変形例をケーブル3の材軸方向から見た側面図。The side view which looked at the modification which comprised the wind load resistance means with a pair of movable flat resistance members 71 and 71 from the material-axis direction of the cable 3. FIG. 風荷重抵抗手段を一対の可動平板状抵抗部材81,81で構成した別の変形例をケーブル3の材軸方向から見た側面図。The side view which looked at another modification which comprised the wind load resistance means with a pair of movable flat resistance members 81 and 81 from the material-axis direction of the cable 3. FIG.

以下、本発明に係る太陽光発電モジュールの設置構造の実施の形態について、添付図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a solar power generation module installation structure according to the present invention will be described with reference to the accompanying drawings.

図1(a)は、本実施形態に係る太陽光発電モジュールの設置構造1を示した全体側面図である。同図でわかるように、太陽光発電モジュールの設置構造1は、異なる二点間に立設された塔状構造物2,2の各頂部に引張材としてのケーブル3を張設してその両端をアンカー4,4を介して地盤5に定着するとともに、ケーブル3に沿って列状となるように該ケーブルに太陽光発電モジュール6を複数配置して構成してある。   Fig.1 (a) is the whole side view which showed the installation structure 1 of the solar power generation module which concerns on this embodiment. As can be seen from the figure, the installation structure 1 of the photovoltaic power generation module has a cable 3 as a tensile material stretched between the tops of the tower-like structures 2 and 2 erected between two different points. Are fixed to the ground 5 via anchors 4 and 4, and a plurality of photovoltaic power generation modules 6 are arranged on the cable so as to form a line along the cable 3.

太陽光発電モジュール6は、塔状構造物2,2を例えば川や谷を挟む形で立設し、それらを跨ぐようにケーブル3を張設することで、川や谷の上方空間をそれらの設置スペースとして有効利用することが可能である。   The photovoltaic power generation module 6 stands on the tower-like structures 2 and 2 with, for example, rivers and valleys sandwiched between them, and the cables 3 are stretched across the rivers and valleys so that the upper spaces of the rivers and valleys It can be used effectively as an installation space.

太陽光発電モジュール6は、太陽光発電モジュールをはじめ、太陽電池パネル、太陽電池モジュール等の名称で市販されているものを適宜用いればよい。   What is necessary is just to use suitably what is marketed by names, such as a solar power generation module, a solar cell panel, a solar cell module, as a solar power generation module.

ケーブル3は、複数の太陽光発電モジュール6を含む総重量にもよるが、例えばPC鋼より線で構成することで、必要な引張強度を余裕をもって確保することが可能である。   Although the cable 3 depends on the total weight including the plurality of solar power generation modules 6, it is possible to ensure a necessary tensile strength with a margin by configuring the cable 3 with a PC steel wire, for example.

太陽光発電モジュール6は同図(b)に示す通り、全体が矩形板状をなし、ケーブル3の材軸と板面がほぼ平行になるように、かつケーブル3の材軸廻りに回動自在となるように該ケーブルに連結してあるとともに、ケーブル3の材軸と平行でかつ該ケーブルを挟む2つの縁部、同図では2つの短手側縁部を本発明の2つの部位とし、該各短手側縁部に風荷重抵抗手段としての湾曲状抵抗部材7をそれぞれ取り付けてある。   As shown in FIG. 2B, the photovoltaic power generation module 6 has a rectangular plate shape as a whole, and is rotatable around the material axis of the cable 3 so that the material axis of the cable 3 is substantially parallel to the plate surface. Are connected to the cable so as to be, and two edges that are parallel to the material axis of the cable 3 and sandwich the cable, in the figure, two short side edges are two parts of the present invention, Curved resistance members 7 as wind load resistance means are attached to the respective short side edges.

一方、太陽光発電モジュール6の下方にはトラス材8を介して錘9を吊持してある。   On the other hand, a weight 9 is suspended below the solar power generation module 6 via a truss member 8.

錘9は図2(a)に示すように、太陽光発電モジュール6を含めた重心位置Gがケーブル3による該太陽光発電モジュールの支点位置Rよりも低くなるように、その重量を適宜設定してあり、ケーブル3の材軸廻りに沿った所定の角度位置で太陽光発電モジュール6をバランスさせ、その姿勢を保持することができるようになっている。   As shown in FIG. 2 (a), the weight 9 is appropriately set so that its center of gravity G including the solar power generation module 6 is lower than the fulcrum position R of the solar power generation module by the cable 3. Thus, the photovoltaic power generation module 6 can be balanced at a predetermined angular position along the axis of the cable 3 and the posture can be maintained.

錘9は、風の影響をできるだけ受けずなおかつ姿勢安定性の高い構成とするのが望ましく、例えば質量密度の高い金属材料で構成するのがよい。   It is desirable that the weight 9 is not affected by the wind as much as possible and has a high posture stability. For example, the weight 9 may be made of a metal material having a high mass density.

なお、太陽光発電モジュール6の下面には同図(b)に示すように、スリーブ21が溶接されたベースプレート22を取り付けてあり、該スリーブにケーブル3を挿通する形で該ケーブルに連結することにより、太陽光発電モジュール6をケーブル3の材軸廻りに回動自在とすることができるようになっている。   As shown in FIG. 2B, a base plate 22 with a sleeve 21 welded thereto is attached to the lower surface of the photovoltaic power generation module 6, and the cable 3 is inserted into the sleeve and connected to the cable. Accordingly, the photovoltaic power generation module 6 can be rotated around the material axis of the cable 3.

スリーブ21は図1(b)で示したように、太陽光発電モジュール6の長手側縁部を越えて若干寸法だけ延設させてあり、隣り合う太陽光発電モジュール6,6の回動動作が互いに干渉しないようになっている。   As shown in FIG. 1B, the sleeve 21 extends slightly beyond the long side edge of the photovoltaic power generation module 6 so that the adjacent photovoltaic power generation modules 6 and 6 can rotate. They do not interfere with each other.

湾曲状抵抗部材7は図1,2に示したように横断面がC字状をなし、その開放側がケーブル3の側を向くように太陽光発電モジュール6に配置してあるが、かかる湾曲状抵抗部材7は図3に示すように、太陽光発電モジュール6の板面に対して垂直でない方向からの風であって、その板面に平行でかつケーブル3の材軸に垂直な成分の風を受けたとき、その作用荷重が、ケーブル3に向かう方向((a)に描かれた細い実線の矢印)より、該ケーブルから遠ざかる方向((b)に描かれた細い実線の矢印)で大きくなるように構成してあり、同図(a)、(b)では、太い矢印の長さとして示してある。   As shown in FIGS. 1 and 2, the curved resistance member 7 has a C-shaped cross section and is disposed in the photovoltaic power generation module 6 so that the open side faces the cable 3 side. As shown in FIG. 3, the resistance member 7 is wind from a direction that is not perpendicular to the plate surface of the photovoltaic power generation module 6, and has a component that is parallel to the plate surface and perpendicular to the material axis of the cable 3. When the load is applied, the working load is larger in the direction away from the cable (thin solid arrow drawn in (b)) than in the direction toward the cable 3 (thin solid arrow drawn in (a)). In FIGS. 4A and 4B, the length of the thick arrow is shown.

ここで、同図(b)の太い矢印のうち、実線で表示された矢印は、太陽光発電モジュール6に対して斜め右上から吹き付ける風による風荷重の作用方向及び作用位置を、破線で表示された矢印は、太陽光発電モジュール6に対して斜め右下から吹き付ける風による風荷重の作用方向及び作用位置をそれぞれ示す。   Here, among the thick arrows in FIG. 7 (b), the arrows indicated by solid lines indicate the action direction and action position of the wind load caused by the wind blown obliquely from the upper right to the photovoltaic power generation module 6 by broken lines. The arrows indicate the action direction and the action position of the wind load due to the wind blown obliquely from the lower right on the photovoltaic power generation module 6.

湾曲状抵抗部材7は、太陽光発電モジュール6の各短手側縁部から取付け用アーム(図示せず)を板面に平行な方向に延設してその先端に固着するなど、任意の方法で該各短手側縁部に取り付けることができるが、太陽光発電モジュール6に対して斜め方向から吹き付ける風が、湾曲状抵抗部材7のうち、その吹付け側に突設する部分に確実に作用するよう、換言すればその反対側に突設する部分に作用しないよう、図3に示すように、太陽光発電モジュール6の各短手側縁部との間に風の通過を阻止する遮断部材31を設けておくのが望ましい。   The curved resistance member 7 can be attached by any method such as extending a mounting arm (not shown) from each short side edge of the photovoltaic power generation module 6 in a direction parallel to the plate surface and fixing it to the tip thereof. However, the wind blown from the oblique direction to the photovoltaic power generation module 6 is surely applied to the portion of the curved resistance member 7 protruding from the blowing side. In order to act, in other words, so as not to act on the part projecting on the opposite side, as shown in FIG. It is desirable to provide the member 31.

本実施形態に係る太陽光発電モジュールの設置構造1においては、太陽光発電モジュール6をケーブル3に配置するにあたり、該太陽光発電モジュールがケーブル3の材軸廻りに回動自在となるように該ケーブルに連結するとともに、太陽光発電モジュール6を含めた重心位置Gが、ケーブル3による該太陽光発電モジュールの支点位置Rよりも低くなるように、太陽光発電モジュール6に錘9を設置する一方、太陽光発電モジュール6の板面に対し垂直でない方向からの風であって該板面に平行でかつケーブル3の材軸に垂直な成分を受けたとき、その作用荷重が、ケーブル3に向かう方向より該ケーブルから遠ざかる方向で大きくなるように、太陽光発電モジュール6の各短手側縁部に湾曲状抵抗部材7をそれぞれ設けてある。   In the solar power generation module installation structure 1 according to the present embodiment, when the solar power generation module 6 is disposed on the cable 3, the solar power generation module is rotatable about the material axis of the cable 3. While connecting to the cable, the weight 9 is installed on the photovoltaic module 6 so that the center of gravity G including the photovoltaic module 6 is lower than the fulcrum position R of the photovoltaic module by the cable 3. When the component receives wind from a direction that is not perpendicular to the plate surface of the photovoltaic module 6 and is parallel to the plate surface and perpendicular to the material axis of the cable 3, the acting load is directed to the cable 3. A curved resistance member 7 is provided on each short side edge portion of the photovoltaic power generation module 6 so as to be larger in the direction away from the cable than the direction.

このようにすると、無風時においては、太陽光発電モジュール6に設置された錘9の作用により、太陽光発電モジュール6は、ケーブル3の材軸廻りに対して所定の角度位置でバランスし、その状態で姿勢を保持する(図2(a)参照)。   In this way, when there is no wind, the solar power generation module 6 is balanced at a predetermined angular position with respect to the material axis of the cable 3 by the action of the weight 9 installed in the solar power generation module 6. Hold the posture in the state (see FIG. 2 (a)).

一方、一定の風が吹いて、太陽光発電モジュール6の板面に平行でかつケーブル3の材軸に垂直な成分の風が湾曲状抵抗部材7,7にそれぞれ作用したとき、該各湾曲状抵抗部材は、ケーブル3に向かう方向より該ケーブルから遠ざかる方向で作用荷重が大きくなるように構成してあるので、図4(a)に示すように、風下側に位置する湾曲状抵抗部材7、同図では右側の湾曲状抵抗部材7により多くの風荷重が作用する。   On the other hand, when a constant wind blows and winds of components that are parallel to the plate surface of the photovoltaic power generation module 6 and perpendicular to the material axis of the cable 3 act on the curved resistance members 7 and 7, respectively, Since the resistance member is configured so that the acting load is larger in the direction away from the cable 3 than in the direction toward the cable 3, as shown in FIG. 4A, the curved resistance member 7 positioned on the leeward side, In the figure, a large wind load acts on the curved resistance member 7 on the right side.

そして、同図のように太陽光発電モジュール6に対して斜め左下から吹き付ける風の場合、該太陽光発電モジュールの板面に平行な成分の風荷重は、湾曲状抵抗部材7の下方突設部分に作用するとともに、その作用位置が支点位置Rから偏心距離eだけ離隔することから、同図矢印方向の回転モーメントが太陽光発電モジュール6に作用し、太陽光発電モジュール6は同図(b)に示すように、風下側に位置する湾曲状抵抗部材7、同図では右側に位置する湾曲状抵抗部材7が、より風下に近い側へと移動する方向に回転し、その結果、角度が付いている場合には風向きと平行になる方向に向かう。   In the case of wind blowing obliquely from the lower left to the photovoltaic power generation module 6 as shown in the same figure, the wind load of the component parallel to the plate surface of the photovoltaic power generation module is the downward projecting portion of the curved resistance member 7 Since the acting position is separated from the fulcrum position R by the eccentric distance e, the rotational moment in the direction of the arrow acts on the photovoltaic power generation module 6, and the photovoltaic power generation module 6 is shown in FIG. As shown, the curved resistance member 7 located on the leeward side, the curved resistance member 7 located on the right side in the figure, rotates in a direction to move closer to the leeward side, resulting in an angle. If so, head to the direction parallel to the wind direction.

なお、このときの太陽光発電モジュール6の姿勢は錘9との兼ね合いで決定され、錘9が重くなるほど、また重心位置Gが下がるほど、湾曲状抵抗部材7による姿勢変化割合が小さくなって、風荷重の低減度合いが小さくなるため、無風状態の安定姿勢を考慮しつつ、風荷重ができるだけ低減されるように錘9の構成を決定するのが望ましい。   The attitude of the photovoltaic power generation module 6 at this time is determined in consideration of the weight 9, and as the weight 9 becomes heavier and the gravity center position G lowers, the attitude change rate by the curved resistance member 7 becomes smaller. Since the degree of reduction of the wind load is reduced, it is desirable to determine the configuration of the weight 9 so that the wind load is reduced as much as possible in consideration of a stable posture in a windless state.

以上説明したように、本実施形態に係る太陽光発電モジュールの設置構造1によれば、湾曲状抵抗部材7の作用により、太陽光発電モジュール6が回転して風向きと平行になる方向に向かうので、太陽光発電モジュール6に作用する風荷重が低減するとともに、それに伴ってケーブル3に生ずる引張力も減少し、かくして風荷重に対する太陽光発電モジュール6やケーブル3の設計条件が緩和され、太陽光発電モジュール6の設置コストを大幅に引き下げることが可能となる。   As described above, according to the solar power generation module installation structure 1 according to the present embodiment, the solar power generation module 6 rotates and moves in a direction parallel to the wind direction by the action of the curved resistance member 7. The wind load acting on the solar power generation module 6 is reduced, and the tensile force generated in the cable 3 is also reduced accordingly, and thus the design conditions of the solar power generation module 6 and the cable 3 with respect to the wind load are relaxed, and the solar power generation The installation cost of the module 6 can be greatly reduced.

また、ケーブル3に生ずる引張力が減少することから、該ケーブルを張設する二点間距離を大きくすることが可能となり、川や谷を跨いだ太陽光発電モジュール6の設置がより実現しやすくなる。   Further, since the tensile force generated in the cable 3 is reduced, the distance between the two points where the cable is stretched can be increased, and the installation of the solar power generation module 6 across the river and valley is easier to realize. Become.

本実施形態では特に言及しなかったが、無風時の太陽光発電モジュール6の姿勢は、図5に示すようにトラス材8の長さを調整することで、任意の角度(仰角)に調整することが可能であり、太陽高度を考慮した発電効率の向上を図ることができる。   Although not particularly mentioned in the present embodiment, the attitude of the photovoltaic power generation module 6 when there is no wind is adjusted to an arbitrary angle (elevation angle) by adjusting the length of the truss member 8 as shown in FIG. It is possible to improve the power generation efficiency in consideration of the solar altitude.

また、本実施形態では、ケーブル3をスリーブ21に挿通するように構成したが、かかるスリーブ21を例えば半筒状部材の組み合わせで構成した場合、ケーブル3からの太陽光発電モジュール3の取り外し、ひいては該太陽光発電モジュールの保守点検が容易となる。   In the present embodiment, the cable 3 is configured to be inserted into the sleeve 21. However, when the sleeve 21 is configured by, for example, a combination of semi-cylindrical members, the photovoltaic power generation module 3 is removed from the cable 3, and thus Maintenance and inspection of the solar power generation module is facilitated.

また、本実施形態では、本発明の風荷重抵抗手段を湾曲状抵抗部材7で構成したが、これに代えて、図6に示すように太陽光発電モジュール6の板面に背中合わせに取り付けられてなる一対の平板状抵抗部材61,61で構成してもよい。   Moreover, in this embodiment, although the wind load resistance means of this invention was comprised by the curved-shaped resistance member 7, it replaced with this and is attached to the plate | board surface of the photovoltaic power generation module 6 back to back as shown in FIG. You may comprise by a pair of flat resistance members 61 and 61 which become.

平板状抵抗部材61,61は、太陽光発電モジュール6の板面に対する垂直位置からケーブル3の側に傾斜させた形で該太陽光発電モジュールの各面に背中合わせに取り付けてあるが、その作用効果は上述した実施形態と概ね同様であり、その説明についてはここでは省略する。また、本変形例においても、錘9及びトラス材8を上述した実施形態と同様に配置する必要があるが、便宜上、図6からはこれらを省略する。   The plate-like resistance members 61, 61 are attached back to back on each surface of the photovoltaic module in such a manner that they are inclined to the cable 3 side from a position perpendicular to the plate surface of the photovoltaic module 6. Is substantially the same as the above-described embodiment, and the description thereof is omitted here. Also in this modified example, the weight 9 and the truss member 8 need to be arranged in the same manner as in the above-described embodiment, but these are omitted from FIG. 6 for convenience.

また、本発明の風荷重抵抗手段を、湾曲状抵抗部材7に代えて図7(a)に示すように、太陽光発電モジュール6の板面に対して回動可能となるように、該太陽光発電モジュールの各面にそれぞれ取り付けられた一対の可動平板状抵抗部材71,71で構成してもよい。   Further, the wind load resistance means of the present invention can be rotated with respect to the plate surface of the solar power generation module 6 as shown in FIG. 7A instead of the curved resistance member 7. You may comprise by a pair of movable flat resistance members 71 and 71 each attached to each surface of the photovoltaic module.

ここで、太陽光発電モジュール6の各短手側縁部にはストッパー72を取り付けてあり、可動平板状抵抗部材71の回動範囲を、ケーブル3の側で太陽光発電モジュール6の板面と平行に延びる角度から該角度を基準としたときに該板面と概ね90゜程度なる範囲に制限するようになっている。   Here, a stopper 72 is attached to each short side edge of the solar power generation module 6, and the rotation range of the movable flat plate-like resistance member 71 is set to the plate surface of the solar power generation module 6 on the cable 3 side. The angle extending in parallel is limited to a range of approximately 90 ° with respect to the plate surface when the angle is used as a reference.

かかる構成において図7(b)に示す風が吹くと、風上側、同図では左側の可動平板状抵抗部材71,71は、太陽光発電モジュール6の板面に平行でかつケーブル3の材軸に垂直な成分の風を受けてケーブル3の側に倒れ、該板面と平行になるため、風荷重はほとんど作用しない。   When the wind shown in FIG. 7 (b) blows in such a configuration, the movable plate-like resistance members 71, 71 on the windward side, on the left side in the figure, are parallel to the plate surface of the photovoltaic power generation module 6 and the material axis of the cable 3 Since the wind component is perpendicular to the cable 3 and falls to the cable 3 side and becomes parallel to the plate surface, the wind load hardly acts.

一方、風下側、同図では右側の可動平板状抵抗部材71,71は、下方に位置する可動平板状抵抗部材71が上述の風を受けて太陽光発電モジュール6の板面と概ね90゜になる角度まで回動して該角度位置で風荷重が作用するとともに、該回動位置では、風の作用位置が、支点位置Rから偏心距離eだけ離隔することから、同図矢印方向の回転モーメントが太陽光発電モジュール6に作用し、太陽光発電モジュール6は同図(c)に示すように、風下側に位置する可動平板状抵抗部材71が、より風下に近い側へと移動する方向に回転し、その結果、角度が付いている場合には風向きと平行になる方向に向かう。   On the other hand, the movable plate-like resistance members 71, 71 on the leeward side, on the right side in FIG. Since the wind load acts at the angular position and the wind acting position is separated from the fulcrum position R by the eccentric distance e, the rotational moment in the arrow direction in FIG. Acts on the photovoltaic power generation module 6, and in the photovoltaic power generation module 6, the movable flat plate-like resistance member 71 located on the leeward side moves to the side closer to the leeward side, as shown in FIG. As a result, it turns in the direction parallel to the wind direction when it is angled.

そのため、上述した実施形態と同様の効果を奏するほか、風上側での可動平板状抵抗部材71,71に作用する風荷重が実質的にゼロとなるため、太陽光発電モジュール6の姿勢を風向きに合わせやすくなる。   Therefore, in addition to the same effects as those of the above-described embodiment, the wind load acting on the movable plate-like resistance members 71 and 71 on the windward side is substantially zero. It becomes easy to match.

特に、ストッパー72を調整することにより、上述した角度範囲の上限を、太陽光発電モジュール6の板面に対して90゜より大きい角度、例えば図8(a)に示すように120゜程度に設定したならば、風下側の可動平板状抵抗部材81に作用する風荷重を同図(b)に示すように小さくすることができるため、該可動平板状抵抗部材の損傷を未然に防止することが可能となる。   In particular, by adjusting the stopper 72, the upper limit of the above-mentioned angle range is set to an angle larger than 90 ° with respect to the plate surface of the photovoltaic power generation module 6, for example, about 120 ° as shown in FIG. If this is done, the wind load acting on the movable flat plate-like resistance member 81 on the leeward side can be reduced as shown in FIG. 5B, so that the movable flat plate-like resistance member can be prevented from being damaged in advance. It becomes possible.

ここで、このときの太陽光発電モジュール6の姿勢は、上述の実施形態で説明したと同様、錘9との兼ね合いで決定され、錘9が重くなるほど、また重心位置Gが下がるほど、可動平板状抵抗部材81,81による姿勢変化割合が小さくなって、風荷重の低減度合いが小さくなるため、無風状態の安定姿勢を考慮しつつ、風荷重ができるだけ低減されるように錘9の構成を決定するのが望ましい。   Here, the attitude of the photovoltaic power generation module 6 at this time is determined by the balance with the weight 9 as described in the above-described embodiment, and as the weight 9 becomes heavier and the gravity center position G falls, the movable plate Since the posture change rate by the resistance members 81 and 81 is reduced and the reduction degree of the wind load is reduced, the configuration of the weight 9 is determined so that the wind load is reduced as much as possible while considering the stable posture in the no-wind state. It is desirable to do.

また、上述した変形例では、可動平板状抵抗部材71,71や可動平板状抵抗部材81,81が、太陽光発電モジュール6の各面でそれぞれ独立に起伏するものとしたが、かかる構成に代えて、可動平板状抵抗部材71,71の起伏動作が太陽光発電モジュール6の両面で連動するように該可動平板状抵抗部材を構成し、あるいは可動平板状抵抗部材81,81の起伏動作が太陽光発電モジュール6の両面で連動するように該可動平板状抵抗部材を構成してもかまわない。   In the above-described modification, the movable flat plate resistance members 71 and 71 and the movable flat plate resistance members 81 and 81 are undulated independently on each surface of the photovoltaic power generation module 6. Thus, the movable plate-like resistance member 71 is configured so that the undulation operation of the movable plate-like resistance members 71 and 71 is interlocked on both surfaces of the photovoltaic power generation module 6, or the undulation operation of the movable plate-like resistance members 81 and 81 You may comprise this movable flat resistance member so that it may interlock | cooperate with both surfaces of the photovoltaic module 6. FIG.

可動平板状抵抗部材71,71や可動平板状抵抗部材81,81の起伏動作が太陽光発電モジュール6の各面で独立して行われる構成の場合においては、風向きのゆらぎ、すなわち、図7や図8で言えば太陽光発電モジュール6に対して斜め左下から吹き上げたり、斜め左上から吹き降ろしたりといった風向きの小変動に対し、あらたに風圧を受ける側の可動平板状抵抗部材71や可動平板状抵抗部材81の起立動作が遅れる懸念があるが、上述した連動構成としておけば、風上側では、太陽光発電モジュール6の両面で可動平板状抵抗部材71,71や可動平板状抵抗部材81,81が常時倒伏し、風下側では同じくその両面で常時起立する状態となるため、風向きのゆらぎに対する動作の遅れを懸念する必要がなくなる。   In the case where the undulation operation of the movable plate-like resistance members 71, 71 and the movable plate-like resistance members 81, 81 is performed independently on each surface of the photovoltaic power generation module 6, the fluctuation of the wind direction, that is, FIG. Speaking in FIG. 8, the movable flat plate-like resistance member 71 or the movable flat plate on the side that is newly subjected to wind pressure with respect to small fluctuations in the wind direction such as blowing up from the lower left of the photovoltaic power generation module 6 or blowing down from the upper left of the diagonal. Although there is a concern that the standing operation of the resistance member 81 is delayed, if the above-described interlocking configuration is used, on the windward side, the movable flat plate resistance members 71 and 71 and the movable flat plate resistance members 81 and 81 are provided on both sides of the photovoltaic power generation module 6. Is always lying on the leeward side and is always standing on both sides of the leeward side, so there is no need to worry about a delay in operation due to fluctuations in the wind direction.

なお、これらの変形例についても、錘9及びトラス材8を上述した実施形態と同様に配置する必要があるが、便宜上、図7及び図8からはこれらを省略する。   In these modified examples, it is necessary to dispose the weight 9 and the truss member 8 in the same manner as in the above-described embodiment. However, for the sake of convenience, these are omitted from FIGS.

1 太陽光発電モジュールの設置構造
3 ケーブル(引張材)
6 太陽光発電モジュール
7 湾曲状抵抗部材(風荷重抵抗手段)
9 錘
61 平板状抵抗部材(風荷重抵抗手段)
71 可動平板状抵抗部材(風荷重抵抗手段)
81 可動平板状抵抗部材(風荷重抵抗手段)
1 Solar power module installation structure 3 Cable (tensile material)
6 Photovoltaic module 7 Curved resistance member (wind load resistance means)
9 Weight 61 Flat resistance member (wind load resistance means)
71 Movable flat plate resistance member (wind load resistance means)
81 Movable flat plate resistance member (wind load resistance means)

Claims (5)

板状に形成された太陽光発電モジュールを、異なる二点間に張設された引張材の材軸と板面がほぼ平行になるように該引張材に配置した太陽光発電モジュールの設置構造において、
前記太陽光発電モジュールを、該太陽光発電モジュールが前記引張材の材軸廻りに回動自在となるように該引張材に連結するとともに、前記太陽光発電モジュールを含めた重心位置が前記引張材による該太陽光発電モジュールの支点位置よりも低くなるように前記太陽光発電モジュールに錘を設置し、
前記太陽光発電モジュールの板面に対し垂直でない方向からの風であって前記板面に平行でかつ前記引張材の材軸に垂直な成分を受けたとき、その作用荷重が、前記引張材に向かう方向より該引張材から遠ざかる方向で大きくなるように、前記太陽光発電モジュールであって前記引張材を挟んだ2つの部位に風荷重抵抗手段をそれぞれ設けたことを特徴とする太陽光発電モジュールの設置構造。
In a photovoltaic module installation structure in which a photovoltaic power generation module formed in a plate shape is arranged on a tensile material so that the axis of the tensile material stretched between two different points and the plate surface are substantially parallel to each other ,
The solar power generation module is connected to the tension member such that the solar power generation module is rotatable about the material axis of the tension member, and the center of gravity including the solar power generation module is positioned at the tension member. The weight is installed on the photovoltaic module so as to be lower than the fulcrum position of the photovoltaic module by
When the wind is from a direction that is not perpendicular to the plate surface of the photovoltaic power generation module and receives a component that is parallel to the plate surface and perpendicular to the axis of the tensile material, the acting load is applied to the tensile material. A solar power generation module provided with wind load resistance means in each of two portions of the solar power generation module sandwiching the tensile material so as to be larger in a direction away from the tensile material than in a direction toward Installation structure.
前記各風荷重抵抗手段を、C字状横断面の湾曲状抵抗部材をその開放側が前記引張材の側を向くように前記太陽光発電モジュールの縁部に配置して構成した請求項1記載の太陽光発電モジュールの設置構造。 2. The wind power resistance means according to claim 1, wherein a curved resistance member having a C-shaped cross section is arranged at an edge of the photovoltaic power generation module such that an open side faces the tensile material. Installation structure of solar power generation module. 前記各風荷重抵抗手段を、前記太陽光発電モジュールの板面に対する垂直位置から前記引張材の側に傾斜させた形で該太陽光発電モジュールの各面にそれぞれ取り付けられた一対の平板状抵抗部材で構成した請求項1記載の太陽光発電モジュールの設置構造。 A pair of plate-like resistance members attached to each surface of the photovoltaic power generation module in such a manner that each wind load resistance means is inclined toward the tensile material side from a position perpendicular to the plate surface of the photovoltaic power generation module. The installation structure of the solar power generation module according to claim 1, which is configured by: 前記各風荷重抵抗手段を、前記引張材の側で前記板面と平行に延びる角度から該角度を基準としたときに前記板面と180゜未満となる角度までの範囲内で回動可能となるように前記太陽光発電モジュールの各面にそれぞれ取り付けられた一対の可動平板状抵抗部材で構成した請求項1記載の太陽光発電モジュールの設置構造。 Each wind load resistance means can be rotated within a range from an angle extending parallel to the plate surface on the tension material side to an angle that is less than 180 ° with respect to the plate surface when the angle is used as a reference. The installation structure of the solar power generation module according to claim 1, wherein the solar power generation module is configured by a pair of movable plate-like resistance members attached to the respective surfaces of the solar power generation module. 前記角度範囲の上限を前記板面に対し90゜より大きい角度とした請求項4記載の太陽光発電モジュールの設置構造。 The installation structure of the solar power generation module according to claim 4, wherein the upper limit of the angle range is an angle larger than 90 ° with respect to the plate surface.
JP2015206707A 2015-10-20 2015-10-20 Photovoltaic module installation structure Expired - Fee Related JP6728626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206707A JP6728626B2 (en) 2015-10-20 2015-10-20 Photovoltaic module installation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206707A JP6728626B2 (en) 2015-10-20 2015-10-20 Photovoltaic module installation structure

Publications (2)

Publication Number Publication Date
JP2017079548A true JP2017079548A (en) 2017-04-27
JP6728626B2 JP6728626B2 (en) 2020-07-22

Family

ID=58665597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206707A Expired - Fee Related JP6728626B2 (en) 2015-10-20 2015-10-20 Photovoltaic module installation structure

Country Status (1)

Country Link
JP (1) JP6728626B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417068B1 (en) * 2018-06-18 2018-10-31 コナース コーポレーション Solar cell module
CN111095787A (en) * 2017-08-02 2020-05-01 Ino科技株式会社 Solar cell module, solar cell module device provided with same, and solar power generation device using same
CN114189199A (en) * 2021-12-07 2022-03-15 阳光新能源开发股份有限公司 Photovoltaic system and flexible support thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095787A (en) * 2017-08-02 2020-05-01 Ino科技株式会社 Solar cell module, solar cell module device provided with same, and solar power generation device using same
CN111095787B (en) * 2017-08-02 2023-09-15 Ino科技株式会社 Solar cell module, solar cell module device, and solar power generation device
JP6417068B1 (en) * 2018-06-18 2018-10-31 コナース コーポレーション Solar cell module
JP2019220522A (en) * 2018-06-18 2019-12-26 コナース コーポレーション Solar cell module
CN114189199A (en) * 2021-12-07 2022-03-15 阳光新能源开发股份有限公司 Photovoltaic system and flexible support thereof

Also Published As

Publication number Publication date
JP6728626B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
EP3443220B1 (en) A multirotor wind turbine
KR101326625B1 (en) A supporting system for solar panel array
US20100269888A1 (en) System for mounting and selectable adjustment of angle of elevation of groups of PV panels
JP2017079548A (en) Installation structure of solar power generation module
KR101232314B1 (en) Water surface floating type solar photovoltaic power generator
KR101215402B1 (en) Solar power plant on water
KR102413949B1 (en) T-PARA BOLT for for installing solar structure
JP4141935B2 (en) Buildings that have both solar and wind power generators
KR200462612Y1 (en) A fixing structure for frame of solar cell and post
JP6723508B2 (en) Photovoltaic module installation structure
US20210221480A1 (en) Stabilisation system, in particular for a floating support, comprising multiple u-shaped damping devices
US20230299709A1 (en) Photovoltaic system having a cable support structure
JP6151928B2 (en) Power generation device, water current power generation device and wind power / water current power generation device
KR101716662B1 (en) Frameless solar modules and support structure for supporting the same
JP2011021468A (en) Construction method of solar cell module, and folded plate roof structure
KR101216444B1 (en) Apparatus for angle controlling of solar module panel
JP6296222B2 (en) Solar panel support structure
CN207442743U (en) Flexible photovoltaic stent and photovoltaic bracket system
JP6933715B2 (en) Solar power system
KR200486184Y1 (en) Solar panels using the elec-poles
CN217883294U (en) Wind-resistant variable-angle photovoltaic power generation device
CN217428039U (en) Photovoltaic support and photovoltaic power plant
JP2015228729A (en) Solar panel site
US20120031471A1 (en) Solar panel module
JP2017208975A (en) Photovoltaic power generation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees