JP2017078611A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2017078611A
JP2017078611A JP2015205993A JP2015205993A JP2017078611A JP 2017078611 A JP2017078611 A JP 2017078611A JP 2015205993 A JP2015205993 A JP 2015205993A JP 2015205993 A JP2015205993 A JP 2015205993A JP 2017078611 A JP2017078611 A JP 2017078611A
Authority
JP
Japan
Prior art keywords
light
light receiving
mirror
reflected
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205993A
Other languages
Japanese (ja)
Inventor
智久 平井
Tomohisa Hirai
智久 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2015205993A priority Critical patent/JP2017078611A/en
Publication of JP2017078611A publication Critical patent/JP2017078611A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device with which the uniformity of distance measurement accuracy in a direction of an object is enhanced.SOLUTION: The measurement device comprises: a mirror unit 142 in which an angle formed by an outgoing light from a light source and a reflection measurement light of the outgoing light oscillates centering round an oscillation axis 146 in a range from a maximum angle to a minimum angle; a light-receiving element 160 for receiving a reflected light 161 of the reflection measurement light from a measurement object via the mirror unit 142; and a light-receiving optical unit 150a located on a light-receiving optical axis linking the mirror unit 142 having a prescribed mirror width in a direction perpendicular to the oscillation axis 146 and the light-receiving element 160, the light-receiving optical unit 150a having a light shielding member 151 as a received light limiting unit for limiting the amount of transmitted light with a smaller limit width than the projected dimension in the direction of the light-receiving optical axis of the mirror width when the angle is a minimum angle.SELECTED DRAWING: Figure 7

Description

本発明は、対象物までの距離を測定するための測定装置に関する。   The present invention relates to a measuring apparatus for measuring a distance to an object.

従来、可動ミラーを用いてレーザ光を複数方向に射出し、対象物で反射したレーザ光を、当該可動ミラーを介して受光する測定装置がある(例えば、特許文献1を参照)。   Conventionally, there is a measuring apparatus that emits laser light in a plurality of directions using a movable mirror and receives the laser light reflected by an object through the movable mirror (see, for example, Patent Document 1).

国際公開第2008/149851号International Publication No. 2008/149851

しかしながら、上記従来の測定装置では、受光素子に到達する対象物からの反射光の光量が、可動ミラーの向きに応じて変化する。その結果、受光素子におけるSN(Signal−Noise)比が対象物の方向に依存して変化することで、測距精度の一様性が損なわれる。   However, in the conventional measuring apparatus, the amount of reflected light from the object that reaches the light receiving element changes according to the direction of the movable mirror. As a result, the SN (Signal-Noise) ratio in the light receiving element changes depending on the direction of the object, thereby impairing the uniformity of distance measurement accuracy.

そこで、本発明は、対象物の方向に対する測距精度の一様性を高めた測定装置を提供する。   Therefore, the present invention provides a measurement apparatus that improves the uniformity of distance measurement accuracy with respect to the direction of an object.

上記目的を達成するために、本発明の一態様に係る測定装置は、光源からの出射光と該出射光の反射測定光のなす角度が最小角度から最大角度の範囲で揺動軸を中心に揺動し、前記揺動軸に垂直な方向に所定のミラー幅有するミラー部と、前記反射測定光の測定物の反射光を前記ミラー部を介して受光する受光素子と、前記ミラー部と前記受光素子とを結ぶ受光光軸上にある受光光学部とを備え、前記受光光学部は、前記角度が前記最小角度のときの前記ミラー幅の前記受光光軸方向への投影寸法よりも小さい制限幅で透過光量を制限する受光量制限部を有する。   In order to achieve the above object, a measuring apparatus according to one aspect of the present invention is configured so that an angle formed between light emitted from a light source and reflected measurement light of the emitted light is in a range from a minimum angle to a maximum angle with respect to an oscillation axis. A mirror portion that swings and has a predetermined mirror width in a direction perpendicular to the swing axis, a light receiving element that receives the reflected light of the measurement object of the reflected measurement light through the mirror portion, the mirror portion, A light receiving optical unit that is on a light receiving optical axis connecting to the light receiving element, and the light receiving optical unit is smaller than a projection size of the mirror width in the light receiving optical axis direction when the angle is the minimum angle. A received light amount limiting unit that limits the amount of transmitted light by the width is provided.

ここで、前記ミラー幅の前記受光光軸方向への投影寸法は、前記ミラー部の傾きに応じて異なる。そのため、前記受光素子での前記反射光の受光量は、前記投影寸法に応じて変動する。前記受光量の変動は、対象物の方向に応じた測距精度の一様性が阻害される。   Here, the projected dimension of the mirror width in the direction of the light receiving optical axis varies depending on the inclination of the mirror portion. Therefore, the amount of the reflected light received by the light receiving element varies depending on the projection size. The variation in the amount of received light hinders the uniformity of distance measurement accuracy according to the direction of the object.

これに対し、前記構成によれば、前記受光量制限部によって、前記制限幅で制限された量の反射光が前記受光素子に到達するので、前記受光素子において受光される前記反射光の最大量が抑制される。その結果、前記受光量の変動が縮小され、対象物の方向に対する測距精度の一様性が向上する。   On the other hand, according to the configuration, since the amount of reflected light limited by the limit width reaches the light receiving element by the light receiving amount limiting unit, the maximum amount of the reflected light received by the light receiving element. Is suppressed. As a result, the variation in the amount of received light is reduced, and the uniformity of distance measurement accuracy with respect to the direction of the object is improved.

また、前記受光量制限部は、前記揺動軸に垂直な方向に前記制限幅を有する透光部を持つ遮光部材であってもよい。   The light receiving amount limiting unit may be a light shielding member having a light transmitting unit having the limiting width in a direction perpendicular to the swing axis.

この構成によれば、前記遮光部材によって、前記受光素子において受光される前記反射光の量を前記制限幅で制限することができる。   According to this configuration, the amount of the reflected light received by the light receiving element can be limited by the limit width by the light blocking member.

また、前記透光部は、前記揺動軸の方向に、前記ミラー部以上の高さを有してもよい。   The translucent part may have a height higher than the mirror part in the direction of the swing axis.

前記構成によれば、前記ミラー部の前記高さの全域で反射された前記反射光が、前記透光部を通して前記受光素子へ到達するので、前記ミラー部の高さが無駄にならない。また、前記受光素子から見た前記ミラー部の高さは、前記ミラー部の傾きに依らず一定であるため、前記ミラー部で反射した前記反射光を高さについて制限しなくとも、受光量の変動を抑制する効果が損なわれることはない。   According to the configuration, the reflected light reflected in the entire area of the height of the mirror part reaches the light receiving element through the light transmitting part, so that the height of the mirror part is not wasted. Further, since the height of the mirror portion viewed from the light receiving element is constant regardless of the inclination of the mirror portion, the amount of received light can be reduced without limiting the height of the reflected light reflected by the mirror portion. The effect of suppressing fluctuations is not impaired.

また、前記受光量制限部は、前記揺動軸に垂直な方向に前記制限幅を有するレンズである。   The received light amount limiting unit is a lens having the limiting width in a direction perpendicular to the swing axis.

この構成によれば、前記レンズによって、前記受光素子において受光される前記反射光の量を前記制限幅で制限することができる。   According to this configuration, the amount of the reflected light received by the light receiving element can be limited by the limit width by the lens.

また、前記レンズは、前記揺動軸の方向に、前記ミラー部以上の高さを有する。   Further, the lens has a height higher than that of the mirror part in the direction of the swing axis.

前記構成によれば、前記ミラー部の前記高さの全域で反射された前記反射光が、前記レンズを通して前記受光素子へ到達するので、前記ミラー部の高さが無駄にならない。また、前記受光素子から見た前記ミラー部の高さは、前記ミラー部の傾きに依らず一定であるため、前記ミラー部で反射した前記反射光を高さについて制限しなくとも、受光量の変動を抑制する効果が損なわれることはない。   According to the above configuration, the reflected light reflected over the entire height of the mirror portion reaches the light receiving element through the lens, so that the height of the mirror portion is not wasted. Further, since the height of the mirror portion viewed from the light receiving element is constant regardless of the inclination of the mirror portion, the amount of received light can be reduced without limiting the height of the reflected light reflected by the mirror portion. The effect of suppressing fluctuations is not impaired.

また、前記レンズは、前記ミラー部で反射した前記反射光を前記受光素子に集光してもよい。   The lens may condense the reflected light reflected by the mirror unit on the light receiving element.

この構成によれば、前記反射光の量を前記制限幅で制限することと、制限された前記反射光を前記受光素子に集光することとを、前記集光レンズだけで行うことができるので、部品点数の削減による前記測定装置の小型化、低コスト化に役立つ。   According to this configuration, the amount of the reflected light can be limited by the limit width, and the limited reflected light can be condensed on the light receiving element only by the condensing lens. This is useful for reducing the size and cost of the measuring device by reducing the number of parts.

また、前記受光光学部は、前記ミラー部へ入射する前記反射光の光路のうち、前記揺動軸と直交する方向に前記制限幅を有する領域の外に配置されてもよい。   The light receiving optical unit may be disposed outside a region having the limit width in a direction orthogonal to the swing axis in the optical path of the reflected light incident on the mirror unit.

この構成によれば、前記反射光の光路のうち前記受光光学部によって前記受光素子へ到達しない反射光が通る光路上に、前記受光光学部が配置される。これにより、前記受光光学部の配置の自由度が向上するので、前記測定装置の小型化や、デザイン性の向上に役立つ。   According to this configuration, the light receiving optical unit is disposed on the optical path of the reflected light that passes through the reflected light that does not reach the light receiving element by the light receiving optical unit. As a result, the degree of freedom of arrangement of the light receiving optical unit is improved, which is useful for reducing the size of the measuring apparatus and improving the design.

本発明の測定装置によれば、対象物の方向に応じた測距精度の一様性を高めた測定装置が得られる。   According to the measuring apparatus of the present invention, a measuring apparatus with improved uniformity of ranging accuracy according to the direction of the object can be obtained.

実施の形態1に係る測定装置の構成の一例を示す正面図である。2 is a front view illustrating an example of a configuration of a measuring apparatus according to Embodiment 1. FIG. 実施の形態1に係る測定装置の送光領域の構成の一例を示す断面図である。3 is a cross-sectional view illustrating an example of a configuration of a light transmission region of the measurement apparatus according to Embodiment 1. FIG. 実施の形態1に係る測定装置の受光領域の構成の一例を示す断面図である。3 is a cross-sectional view illustrating an example of a configuration of a light receiving region of the measurement apparatus according to Embodiment 1. FIG. 実施の形態1に係る測定装置の機能的な構成の一例を示すブロック図である。3 is a block diagram illustrating an example of a functional configuration of the measurement apparatus according to Embodiment 1. FIG. 実施の形態1に係る反射光の経路の一例を模式的に示す図である。6 is a diagram schematically illustrating an example of a path of reflected light according to Embodiment 1. FIG. 実施の形態1に係る反射光の経路の一例を模式的に示す図である。6 is a diagram schematically illustrating an example of a path of reflected light according to Embodiment 1. FIG. 実施の形態1に係る反射光の経路の一例を模式的に示す図である。6 is a diagram schematically illustrating an example of a path of reflected light according to Embodiment 1. FIG. 実施の形態1に係る受光ミラーの投影形状の一例を示す図である。6 is a diagram illustrating an example of a projection shape of a light receiving mirror according to Embodiment 1. FIG. 実施の形態1に係る受光光学部の構成の一例を示す概念図である。3 is a conceptual diagram illustrating an example of a configuration of a light receiving optical unit according to Embodiment 1. FIG. 実施の形態1に係る受光光学部の外観の一例を示す斜視図である。2 is a perspective view illustrating an example of an appearance of a light receiving optical unit according to Embodiment 1. FIG. 実施の形態2に係る受光光学部の構成の一例を示す概念図である。5 is a conceptual diagram illustrating an example of a configuration of a light receiving optical unit according to Embodiment 2. FIG. 実施の形態2に係る受光光学部の外観の一例を示す斜視図である。6 is a perspective view illustrating an example of an appearance of a light receiving optical unit according to Embodiment 2. FIG. 比較例に係る受光光学部の配置の一例を示す概念図である。It is a conceptual diagram which shows an example of arrangement | positioning of the light reception optical part which concerns on a comparative example. 実施の形態3に係る受光光学部の配置の一例を示す概念図である。6 is a conceptual diagram illustrating an example of an arrangement of light receiving optical units according to Embodiment 3. FIG. 実施の形態3に係る受光光学部の配置の一例を示す概念図である。6 is a conceptual diagram illustrating an example of an arrangement of light receiving optical units according to Embodiment 3. FIG.

(実施の形態1)
以下、実施の形態について、図面を参照しながら具体的に説明する。
(Embodiment 1)
Hereinafter, embodiments will be specifically described with reference to the drawings.

なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。   It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims are described as arbitrary constituent elements.

また、以下における各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては、同一の符号を付し、重複する説明を省略又は簡略化する。   Further, the following drawings are schematic diagrams and are not necessarily shown strictly. In each drawing, substantially the same configuration is denoted by the same reference numeral, and redundant description is omitted or simplified.

(測定装置の基本的な構造)
本実施の形態に係る測定装置は、光を用いて対象物901、902までの距離を測定する装置である。具体的には、当該測定装置は、当該測定装置の外部の目的範囲を走査する測定光を射出し、当該目的範囲内にある対象物からの当該測定光の反射光を受光することにより、当該測定装置と対象物との間の距離を測定する。
(Basic structure of measuring device)
The measurement apparatus according to the present embodiment is an apparatus that measures the distance to the objects 901 and 902 using light. Specifically, the measurement device emits measurement light that scans a target range outside the measurement device, and receives reflected light of the measurement light from an object within the target range. Measure the distance between the measuring device and the object.

まず、本実施の形態に係る測定装置の基本的な構造について、図1〜図3を用いて説明する。   First, the basic structure of the measuring apparatus according to the present embodiment will be described with reference to FIGS.

図1は、実施の形態1に係る測定装置100の正面図である。   FIG. 1 is a front view of a measuring apparatus 100 according to the first embodiment.

図2及び図3は、実施の形態1に係る測定装置100の断面図である。具体的には、図2は、図1のII−II切断線における測定装置100の断面図である。また、図3は、図1のIII−III切断線における測定装置100の断面図である。なお、以降の図では、見えない部分を破線で表す。   2 and 3 are cross-sectional views of the measuring apparatus 100 according to the first embodiment. Specifically, FIG. 2 is a cross-sectional view of the measuring apparatus 100 taken along the line II-II in FIG. 3 is a cross-sectional view of the measuring apparatus 100 taken along the line III-III in FIG. In the following drawings, invisible parts are indicated by broken lines.

図1〜図3に示すように、測定装置100は、筐体110と、遮光板119と、光源120と、送光光学部130と、ミラー部140と、受光光学部150と、受光素子160と、を備える。   As shown in FIGS. 1 to 3, the measuring apparatus 100 includes a housing 110, a light shielding plate 119, a light source 120, a light transmission optical unit 130, a mirror unit 140, a light receiving optical unit 150, and a light receiving element 160. And comprising.

筐体110は、光源120、送光光学部130、ミラー部140、受光光学部150、及び受光素子160を格納する。筐体110の内部は、遮光板119によって、主に光源120からの出射光が通過する送光領域113と、主に対象物からの反射光が通過する受光領域114とに区切られている。筐体110には、筐体110内から筐体110外へ測定光121を通過させるための送光窓111と、筐体110外から筐体110内へ反射光161を通過させるための受光窓112とが設けられている。   The housing 110 stores the light source 120, the light transmitting optical unit 130, the mirror unit 140, the light receiving optical unit 150, and the light receiving element 160. The interior of the housing 110 is divided by a light shielding plate 119 into a light transmission region 113 through which light emitted from the light source 120 mainly passes and a light receiving region 114 through which light reflected mainly from the object passes. The housing 110 includes a light transmission window 111 for allowing the measurement light 121 to pass from the inside of the housing 110 to the outside of the housing 110, and a light receiving window for allowing the reflected light 161 to pass from the outside of the housing 110 to the housing 110. 112.

光源120は、光(例えばレーザ光)を射出する。光源120は、例えば、レーザダイオードで構成されてもよい。送光光学部130は、コリメートレンズ131及び遮光部材132を含んでもよい。光源120からの測定光121は、送光光学部130で平行光に変換され、ミラー部140で反射し、送光窓111を通過して、筐体110の外部に射出され、対象物901、902に到達する(図2を参照)。送光光学部130は、コリメートレンズ131及び遮光部材132を含んでもよい。   The light source 120 emits light (for example, laser light). The light source 120 may be composed of a laser diode, for example. The light transmission optical unit 130 may include a collimating lens 131 and a light shielding member 132. The measurement light 121 from the light source 120 is converted into parallel light by the light transmission optical unit 130, reflected by the mirror unit 140, passes through the light transmission window 111, and is emitted to the outside of the housing 110. 902 is reached (see FIG. 2). The light transmission optical unit 130 may include a collimating lens 131 and a light shielding member 132.

対象物901、902からの反射光161は、ミラー部140及び受光光学部150を介して、受光素子160に到達する。受光素子160は、例えばフォトダイオード(PD;Photo Diode)、又は、当該フォトダイオードよりも高感度なアバランシェフォトダイオード(APD:Avalanche Photo Diode)を含む。受光光学部150は、遮光部材151及び集光レンズ152を含んでもよい。受光光学部150については、後ほど詳しく説明する。   The reflected light 161 from the objects 901 and 902 reaches the light receiving element 160 via the mirror unit 140 and the light receiving optical unit 150. The light receiving element 160 includes, for example, a photodiode (PD) or an avalanche photodiode (APD) that is more sensitive than the photodiode. The light receiving optical unit 150 may include a light shielding member 151 and a condenser lens 152. The light receiving optical unit 150 will be described in detail later.

対象物901、902からの反射光161は、受光窓112を通過し、ミラー部140で反射して、受光素子160に到達する。   The reflected light 161 from the objects 901 and 902 passes through the light receiving window 112, is reflected by the mirror unit 140, and reaches the light receiving element 160.

ミラー部140は、いわゆるスキャンミラーであり、光源120からの出射光と該出射光の反射測定光のなす角度が最小角度から最大角度の範囲で揺動軸146を中心として揺動することにより、光源120からの測定光121で目的範囲Aを走査する。また、ミラー部140は、目的範囲A内にある対象物901、902からの反射光161を受光素子160に向けて反射する。   The mirror unit 140 is a so-called scan mirror, and the angle formed between the light emitted from the light source 120 and the reflected measurement light of the emitted light is swung around the rocking shaft 146 in the range from the minimum angle to the maximum angle. The target range A is scanned with the measurement light 121 from the light source 120. The mirror unit 140 reflects the reflected light 161 from the objects 901 and 902 within the target range A toward the light receiving element 160.

ミラー部140は、例えば、揺動器(図示せず)によって揺動軸146を中心に少なくとも測定範囲Bで揺動するMEMS(Micro Electro Mechanical System)ミラーであってもよい。ミラー部140は、実際には、測定範囲Bよりも広い揺動範囲内で揺動し、測定範囲Bの外側の領域は、揺動動作のフィードバック制御のために用いられてもよい。   The mirror unit 140 may be, for example, a MEMS (Micro Electro Mechanical System) mirror that swings at least in the measurement range B around the swing shaft 146 by a swinger (not shown). The mirror unit 140 actually swings within a swing range wider than the measurement range B, and the region outside the measurement range B may be used for feedback control of the swing operation.

(測定装置の機能構成)
次に、測定装置100の機能構成について、図4を用いて説明する。
(Functional configuration of measuring device)
Next, the functional configuration of the measuring apparatus 100 will be described with reference to FIG.

図4は、実施の形態1に係る測定装置100の機能構成を示すブロック図である。図4に示すように、測定装置100は、機能的に、光源120と、送光光学部130と、送光ミラー141及び受光ミラー142を含むミラー部140と、受光光学部150と、受光素子160と、光源駆動部170と、ミラー駆動部180と、制御部190と、を含む。   FIG. 4 is a block diagram illustrating a functional configuration of the measuring apparatus 100 according to the first embodiment. As shown in FIG. 4, the measuring apparatus 100 functionally includes a light source 120, a light transmitting optical unit 130, a mirror unit 140 including a light transmitting mirror 141 and a light receiving mirror 142, a light receiving optical unit 150, and a light receiving element. 160, a light source driving unit 170, a mirror driving unit 180, and a control unit 190.

光源駆動部170は、光源120を駆動する。例えば、光源駆動部170は、制御部190から出力される変調信号に従って光源120にレーザ光を射出させる。   The light source driving unit 170 drives the light source 120. For example, the light source driving unit 170 causes the light source 120 to emit laser light in accordance with the modulation signal output from the control unit 190.

ミラー駆動部180は、ミラー部140(つまり、送光ミラー141及び受光ミラー142)を駆動する。例えば、ミラー駆動部180は、制御部190からの駆動信号に基づいて、ミラー部140を駆動するための駆動電流を生成する。ミラー駆動部180は、生成した駆動電流を図示していない揺動器に出力する。これにより、送光ミラー141及び受光ミラー142が揺動器によって揺動軸146を中心に一体的に揺動する。   The mirror driving unit 180 drives the mirror unit 140 (that is, the light transmission mirror 141 and the light receiving mirror 142). For example, the mirror driving unit 180 generates a driving current for driving the mirror unit 140 based on a driving signal from the control unit 190. The mirror drive unit 180 outputs the generated drive current to an oscillator not shown. As a result, the light transmission mirror 141 and the light receiving mirror 142 are integrally swung around the rocking shaft 146 by the rocker.

制御部190は、測定装置100を制御するコントローラである。制御部190は、例えば、システムLSI(Large Scale Integration)、IC(Integrated Circuit)又はマイクロコントローラ等で構成されている。   The control unit 190 is a controller that controls the measurement apparatus 100. The control unit 190 includes, for example, a system LSI (Large Scale Integration), an IC (Integrated Circuit), or a microcontroller.

具体的には、制御部190は、光源駆動部170及びミラー駆動部180を制御する。例えば、制御部190は、光源駆動部170に変調信号を出力するとともに、ミラー駆動部180に駆動信号を出力する。   Specifically, the control unit 190 controls the light source driving unit 170 and the mirror driving unit 180. For example, the control unit 190 outputs a modulation signal to the light source driving unit 170 and outputs a driving signal to the mirror driving unit 180.

さらに、制御部190は、光源120から射出された光と受光素子160で受光された光との間の位相差に基づいて、測定装置100から対象物901、902までの距離を算出する。具体的には、制御部190は、例えば、光源駆動部170に出力した変調信号及び受光素子160から入力した受光信号に基づいて上記位相差を算出する。制御部190は、算出された位相差を用いて光源120から射出された光が受光素子160に到達するまでの時間を算出する。そして、制御部190は、算出された時間の1/2に光速を乗算することにより、測定装置100から対象物901、902までの距離を算出する。   Furthermore, the control unit 190 calculates the distances from the measurement apparatus 100 to the objects 901 and 902 based on the phase difference between the light emitted from the light source 120 and the light received by the light receiving element 160. Specifically, the control unit 190 calculates the phase difference based on, for example, the modulation signal output to the light source driving unit 170 and the light reception signal input from the light receiving element 160. The control unit 190 calculates the time until the light emitted from the light source 120 reaches the light receiving element 160 using the calculated phase difference. And the control part 190 calculates the distance from the measuring apparatus 100 to the target object 901,902 by multiplying the light speed by 1/2 of the calculated time.

また、制御部190は、送光ミラー141の傾きから、測定装置100に対する対象物901、902の方向を特定する。ここで、傾きとは、揺動中の送光ミラー141の揺動軸146周りの回転位置を示す角度値である。   In addition, the control unit 190 identifies the direction of the objects 901 and 902 relative to the measuring apparatus 100 from the inclination of the light transmission mirror 141. Here, the inclination is an angle value indicating a rotational position around the swing axis 146 of the light transmitting mirror 141 during swinging.

制御部190は、所定の位置に設置されたフォトダイオード(図示せず)からの信号に基づいて、送光ミラー141の傾きを検出してもよい。当該フォトダイオードは、送光ミラー141が測定範囲B外の所定の傾きまで回転したときに送光ミラー141で反射した測定光121が入射する位置に設置されてもよい。   The control unit 190 may detect the tilt of the light transmission mirror 141 based on a signal from a photodiode (not shown) installed at a predetermined position. The photodiode may be installed at a position where the measurement light 121 reflected by the light transmission mirror 141 is incident when the light transmission mirror 141 is rotated to a predetermined inclination outside the measurement range B.

(測定装置の受光動作)
次に、測定装置100における受光動作の詳細について、図5A、図5B、図5Cを用いて説明する。
(Light receiving operation of measuring device)
Next, details of the light receiving operation in the measuring apparatus 100 will be described with reference to FIGS. 5A, 5B, and 5C.

図5A、図5B、及び図5Cは、それぞれ、受光ミラー142が測定範囲の中央、一端及び他端にあるときに、受光素子160に到達する反射光161の経路一例を模式的に示す図である。   5A, 5B, and 5C are diagrams schematically illustrating an example of a path of the reflected light 161 that reaches the light receiving element 160 when the light receiving mirror 142 is at the center, one end, and the other end of the measurement range, respectively. is there.

以下の説明では、簡明のため、次の前提を設ける。   In the following description, the following assumptions are made for the sake of brevity.

すなわち、受光ミラー142の揺動範囲内での位置を意味する傾きaを、揺動していない送光ミラー141の静止位置を基準としかつ時計回りを正として、受光ミラー142の揺動軸146周りの回転角度により定義する。前記静止位置が受光ミラー142が揺動する測定範囲の中央であるとする。図示のための限定的でない具体例として、測定範囲の中央、一端、及び他端にある受光ミラー142の傾きを、それぞれa0=0度、a1=−22.5度(<0度)、a2=+22.5度(>0度)とする。静止位置の受光ミラー142から受光素子160へ向かう光軸と受光ミラー142の法線とがなす角度を、受光ミラー142の取り付け角度と定義し、同様の具体例として45度とする。   That is, the inclination a, which means the position of the light receiving mirror 142 within the rocking range, is based on the stationary position of the non-rocking light transmitting mirror 141 and the clockwise direction is positive, and the rocking shaft 146 of the light receiving mirror 142 is positive. It is defined by the surrounding rotation angle. It is assumed that the stationary position is the center of the measurement range in which the light receiving mirror 142 swings. As a non-limiting specific example for illustration, the inclinations of the light receiving mirrors 142 at the center, one end, and the other end of the measurement range are a0 = 0 degree, a1 = -22.5 degrees (<0 degree), and a2 respectively. = + 22.5 degrees (> 0 degrees). The angle formed by the optical axis from the light receiving mirror 142 at the stationary position toward the light receiving element 160 and the normal line of the light receiving mirror 142 is defined as the mounting angle of the light receiving mirror 142, and is 45 degrees as a similar specific example.

このような前提の下で、受光素子160に到達することができる反射光161の入射角θは、受光ミラー142の取り付け角度から、受光ミラー142の傾きaを減じた角度である。入射角θは、傾きaが大きいほど小さい。   Under such a premise, the incident angle θ of the reflected light 161 that can reach the light receiving element 160 is an angle obtained by subtracting the inclination a of the light receiving mirror 142 from the mounting angle of the light receiving mirror 142. The incident angle θ is smaller as the inclination a is larger.

さて、図5A、図5B、及び図5Cに示されるように、反射光161が、受光ミラー142よりも大きく広がった光束161aであるとする。このとき、光束161aのうち受光ミラー142で反射された一部の光束161bは受光素子160に到達するが、残部の光束161cは受光素子160に到達できず失われる。   Now, as shown in FIGS. 5A, 5B, and 5C, it is assumed that the reflected light 161 is a light beam 161a that spreads larger than the light receiving mirror 142. At this time, a part of the light beam 161b reflected by the light receiving mirror 142 of the light beam 161a reaches the light receiving element 160, but the remaining light beam 161c cannot reach the light receiving element 160 and is lost.

受光素子160に到達する光束161bの大きさ、つまり反射光161の受光素子160での受光量は、受光素子160から見た受光ミラー142の外観、つまり、受光ミラー142の、受光素子160と受光ミラー142とを結ぶ受光光軸方向への投影形状の大きさに比例する。   The size of the light beam 161b reaching the light receiving element 160, that is, the amount of the reflected light 161 received by the light receiving element 160 is the appearance of the light receiving mirror 142 viewed from the light receiving element 160, that is, the light receiving element 160 and the light receiving element of the light receiving mirror 142. This is proportional to the size of the projected shape in the direction of the light receiving optical axis connecting the mirror 142.

図6は、受光ミラー142の前記投影形状の一例を示す図である。図6では、測定範囲内で最も大きく見える傾きにある受光ミラー142(図5Cに対応)の投影形状142aを細線で示し、測定範囲内で最も小さく見える傾きにある受光ミラー142(図5Bに対応)の投影形状142bを太線で示している。   FIG. 6 is a diagram illustrating an example of the projected shape of the light receiving mirror 142. In FIG. 6, the projection shape 142a of the light receiving mirror 142 (corresponding to FIG. 5C) having the largest inclination in the measurement range is indicated by a thin line, and the light receiving mirror 142 having the smallest inclination in the measurement range (corresponding to FIG. 5B). ) Is indicated by a thick line.

図6に示されるように、受光ミラー142の揺動軸146と直交する方向の寸法であるミラー幅の投影寸法(以下、開口幅と表記する)は、受光ミラー142の傾きに応じて、最小値Wminと最大値Wmaxとの間で変動する。なお、受光ミラー142の揺動軸146に平行な方向の投影寸法(以下、高さと表記する)は一定値Hである。   As shown in FIG. 6, the projected dimension of the mirror width (hereinafter referred to as the opening width), which is a dimension in the direction orthogonal to the swing axis 146 of the light receiving mirror 142, is minimum depending on the inclination of the light receiving mirror 142. It fluctuates between the value Wmin and the maximum value Wmax. The projected dimension (hereinafter referred to as height) of the light receiving mirror 142 in the direction parallel to the swing axis 146 is a constant value H.

これにより、受光素子160での反射光161の受光量は、受光ミラー142の傾きに応じて、最小の開口幅Wminに対応する受光量と最大の開口幅Wmaxに対応する受光量との間で変動する。   As a result, the amount of the reflected light 161 received by the light receiving element 160 varies between the amount of received light corresponding to the minimum opening width Wmin and the amount of received light corresponding to the maximum opening width Wmax according to the inclination of the light receiving mirror 142. fluctuate.

このように、受光ミラー142の傾きに応じて、当該傾きの対応方向にある対象物からの反射光161の受光素子160での受光量が変動することが、背景技術の欄で指摘した、対象物の方向に対する測距精度の一様性が損なわれる直接的な要因である。   As described above, in the background art section, it is pointed out that the amount of light reflected by the light receiving element 160 of the reflected light 161 from the object in the direction corresponding to the tilt varies according to the tilt of the light receiving mirror 142. This is a direct factor that impairs the uniformity of ranging accuracy with respect to the direction of the object.

(受光光学部の詳細)
そこで、受光光学部150において、受光ミラー142で反射して受光素子160へ向かう反射光161のうち、揺動軸146と直交する方向に所定の制限幅を有する領域を通る反射光が受光素子160に到達する。ここで、前記所定の制限幅は、受光ミラー142の開口幅の測定範囲内での最大値よりも狭い。
(Details of light receiving optics)
Therefore, in the light receiving optical unit 150, the reflected light 161 reflected by the light receiving mirror 142 and traveling toward the light receiving element 160 is reflected light passing through a region having a predetermined limit width in a direction orthogonal to the swing axis 146. To reach. Here, the predetermined limit width is narrower than the maximum value within the measurement range of the opening width of the light receiving mirror 142.

図7は、受光光学部150の一例としての受光光学部150aの構成の一例を示す概念図である。受光光学部150aは、略矩形の透光部151aを有する遮光部材151と、集光レンズ152とを含む。   FIG. 7 is a conceptual diagram illustrating an example of a configuration of a light receiving optical unit 150 a as an example of the light receiving optical unit 150. The light receiving optical unit 150 a includes a light shielding member 151 having a substantially rectangular light transmitting unit 151 a and a condensing lens 152.

図8は、遮光部材151及び集光レンズ152の外観の一例を示す斜視図である。   FIG. 8 is a perspective view showing an example of the appearance of the light shielding member 151 and the condenser lens 152.

遮光部材151は、例えば、遮光性の樹脂板または金属板で構成されてもよい。透光部151aは、遮光部材151に設けられた開口であってもよく、当該開口には透光性の樹脂板がはめ込まれていてもよい。また、遮光部材151は、透光性の樹脂板で構成され、透光部151aを除く領域に遮光性の塗装が施されていてもよい。   The light shielding member 151 may be formed of, for example, a light shielding resin plate or a metal plate. The light transmitting portion 151a may be an opening provided in the light shielding member 151, and a light transmitting resin plate may be fitted into the opening. Further, the light shielding member 151 may be formed of a light transmissive resin plate, and light shielding coating may be applied to a region excluding the light transmissive portion 151a.

集光レンズ152は、樹脂またはガラスで構成されてもよい。   The condensing lens 152 may be made of resin or glass.

図7及び図8に示されるように、透光部151aは、揺動軸146と直交する方向に制限幅wを有する。制限幅wは、受光ミラー142の開口幅の最大値Wmaxよりも小さければよく、具体的な大きさは限定されない。制限幅wは、例えば、受光ミラー142の開口幅の最小値Wminと等しくてもよい。   As shown in FIGS. 7 and 8, the light transmitting portion 151 a has a limited width w in a direction orthogonal to the swing shaft 146. The limit width w only needs to be smaller than the maximum value Wmax of the opening width of the light receiving mirror 142, and the specific size is not limited. For example, the limit width w may be equal to the minimum value Wmin of the opening width of the light receiving mirror 142.

この構成によれば、受光素子160での反射光161の受光量の変動が、開口幅の最小値Wminに対応する受光量と制限幅wに対応する受光量との間での変動に制限されるので、対象物の方向に対する測距精度の一様性が向上する。   According to this configuration, the variation in the amount of the reflected light 161 received by the light receiving element 160 is limited to the variation between the amount of received light corresponding to the minimum value Wmin of the aperture width and the amount of received light corresponding to the limit width w. Therefore, the uniformity of ranging accuracy with respect to the direction of the object is improved.

特に、制限幅wが開口幅の最小値Wminと等しい場合、受光素子160での反射光161の受光量は、測定範囲の全域で開口幅の最小値Wminに対応する一定の受光量となる。これにより、受光ミラー142の傾きに応じた前記受光量の変動がなくなり、その結果、対象物の方向に対する測距精度の一様性が向上する。   In particular, when the limit width w is equal to the minimum value Wmin of the aperture width, the received light amount of the reflected light 161 at the light receiving element 160 becomes a constant received light amount corresponding to the minimum value Wmin of the aperture width over the entire measurement range. Thereby, the variation in the amount of received light according to the inclination of the light receiving mirror 142 is eliminated, and as a result, the uniformity of distance measurement accuracy with respect to the direction of the object is improved.

なお、透光部151aの揺動軸146と平行な方向における高さhは、受光ミラー142の高さH(図6を参照)と等しいかより大きくてもよい。   The height h in the direction parallel to the swing shaft 146 of the light transmitting portion 151a may be equal to or greater than the height H of the light receiving mirror 142 (see FIG. 6).

この構成によれば、受光ミラー142の高さの全域で反射された反射光161が透光部151aを通して受光素子160へ到達するので、受光ミラー142の高さが無駄にならない。また、受光素子160から見た受光ミラー142の高さHは、受光ミラー142の傾きに依らず一定であるため、受光ミラー142で反射した反射光161を高さについて制限しなくとも、受光量の変動を抑制する効果が損なわれることはない。   According to this configuration, the reflected light 161 reflected over the entire height of the light receiving mirror 142 reaches the light receiving element 160 through the light transmitting portion 151a, so that the height of the light receiving mirror 142 is not wasted. Further, since the height H of the light receiving mirror 142 viewed from the light receiving element 160 is constant regardless of the inclination of the light receiving mirror 142, the amount of received light can be obtained without limiting the height of the reflected light 161 reflected by the light receiving mirror 142. The effect of suppressing the fluctuation is not impaired.

また、図7、図8では示していないが、受光光学部150は、さらに、測定光121の帯域の光を通過するバンドパスフィルタを含んでもよい。   Although not shown in FIGS. 7 and 8, the light receiving optical unit 150 may further include a band-pass filter that passes light in the band of the measurement light 121.

(実施の形態2)
次に、実施の形態2に係る受光光学部150について説明する。
(Embodiment 2)
Next, the light receiving optical unit 150 according to Embodiment 2 will be described.

図9は、受光光学部150の一例としての受光光学部150bの構成の一例を示す概念図である。受光光学部150bは、実施の形態1の受光光学部150aと比べて、遮光部材151が省略され、集光レンズ153が変更される。   FIG. 9 is a conceptual diagram illustrating an example of a configuration of a light receiving optical unit 150 b as an example of the light receiving optical unit 150. The light receiving optical unit 150b is different from the light receiving optical unit 150a of the first embodiment in that the light shielding member 151 is omitted and the condenser lens 153 is changed.

図10は、集光レンズ153の外観の一例を示す斜視図である。集光レンズ153は、樹脂またはガラスで構成されてもよい。   FIG. 10 is a perspective view illustrating an example of the appearance of the condenser lens 153. The condensing lens 153 may be made of resin or glass.

図9及び図10に示されるように、集光レンズ153の透光部151aの揺動軸146と直交する方向における寸法は制限幅wである。制限幅wは、受光ミラー142の開口幅の最大値Wmaxよりも小さければよく、具体的な大きさは限定されない。制限幅wは、例えば、受光ミラー142の開口幅の最小値Wminと等しくてもよい。   As shown in FIGS. 9 and 10, the dimension of the light transmitting portion 151 a of the condenser lens 153 in the direction perpendicular to the swing shaft 146 is the limit width w. The limit width w only needs to be smaller than the maximum value Wmax of the opening width of the light receiving mirror 142, and the specific size is not limited. For example, the limit width w may be equal to the minimum value Wmin of the opening width of the light receiving mirror 142.

この構成によれば、受光素子160での反射光161の受光量の変動が、開口幅の最小値Wminに対応する受光量と制限幅wに対応する受光量との間での変動に制限されるので、対象物の方向に対する測距精度の一様性が向上する。   According to this configuration, the variation in the amount of the reflected light 161 received by the light receiving element 160 is limited to the variation between the amount of received light corresponding to the minimum value Wmin of the aperture width and the amount of received light corresponding to the limit width w. Therefore, the uniformity of ranging accuracy with respect to the direction of the object is improved.

特に、制限幅wが開口幅の最小値Wminと等しい場合、受光素子160での反射光161の受光量は、測定範囲の全域で開口幅の最小値Wminに対応する受光量となる。これにより、受光ミラー142の傾きに応じた前記受光量の変動がなくなり、その結果、対象物の方向に対する測距精度の一様性が向上する。   In particular, when the limit width w is equal to the minimum value Wmin of the aperture width, the amount of light reflected by the light receiving element 160 is the amount of light received corresponding to the minimum value Wmin of the aperture width over the entire measurement range. Thereby, the variation in the amount of received light according to the inclination of the light receiving mirror 142 is eliminated, and as a result, the uniformity of distance measurement accuracy with respect to the direction of the object is improved.

なお、集光レンズ153の揺動軸146と平行な方向における高さhは、受光ミラー142の高さH(図6を参照)と等しいかより大きくてもよい。   Note that the height h of the condenser lens 153 in the direction parallel to the swing axis 146 may be equal to or greater than the height H of the light receiving mirror 142 (see FIG. 6).

この構成によれば、受光ミラー142の高さの全域で反射された反射光161が集光レンズ153を通して受光素子160へ到達するので、受光ミラー142の高さが無駄にならない。また、受光素子160から見た受光ミラー142の高さHは、受光ミラー142の傾きに依らず一定であるため、受光ミラー142で反射した反射光161を高さについて制限しなくとも、受光量の変動を抑制する効果が損なわれることはない。   According to this configuration, the reflected light 161 reflected over the entire height of the light receiving mirror 142 reaches the light receiving element 160 through the condenser lens 153, so that the height of the light receiving mirror 142 is not wasted. Further, since the height H of the light receiving mirror 142 viewed from the light receiving element 160 is constant regardless of the inclination of the light receiving mirror 142, the amount of received light can be obtained without limiting the height of the reflected light 161 reflected by the light receiving mirror 142. The effect of suppressing the fluctuation is not impaired.

集光レンズ153は、上述の幅及び高さを満たすために、所望の集光特性を有するレンズの、揺動軸146と直交する方向での左右辺と、揺動軸146に平行な方向での上下辺とを、それぞれ切り落とした形状であってもよい。ただし、集光レンズ153が、左右辺及び上下辺を切り落とされた形状を有していることは必須ではなく、例えば、左右辺だけが切り落とされた形状を有していてもよい。   In order to satisfy the above-described width and height, the condensing lens 153 has a right and left side in a direction orthogonal to the rocking shaft 146 and a direction parallel to the rocking shaft 146 in order to satisfy the above-described width and height. The upper and lower sides may be cut off. However, it is not essential that the condenser lens 153 has a shape in which the left and right sides and the upper and lower sides are cut off. For example, the condensing lens 153 may have a shape in which only the left and right sides are cut off.

また、図9、図10では示していないが、受光光学部150は、さらに、測定光121の帯域の光を通過するバンドパスフィルタを含んでもよい。   Although not shown in FIGS. 9 and 10, the light receiving optical unit 150 may further include a band-pass filter that passes light in the band of the measurement light 121.

(実施の形態3)
実施の形態1、2では、受光光学部150において、受光ミラー142で反射して受光素子160へ向かう反射光161のうち、揺動軸146と直交する方向に所定の制限幅を有する領域を通る反射光が受光素子160に到達する構成について説明した。この構成によれば、対象物の方向に対する測距精度の一様性を向上する効果が得られる。
(Embodiment 3)
In the first and second embodiments, in the light receiving optical unit 150, the reflected light 161 reflected by the light receiving mirror 142 and traveling toward the light receiving element 160 passes through a region having a predetermined limit width in a direction orthogonal to the swing axis 146. The configuration in which the reflected light reaches the light receiving element 160 has been described. According to this configuration, an effect of improving the uniformity of distance measurement accuracy with respect to the direction of the object can be obtained.

実施の形態3では、前述の効果に加えて、測定装置100の小型化に有利な受光光学部の配置について説明する。   In the third embodiment, in addition to the above-described effects, the arrangement of the light receiving optical unit that is advantageous for reducing the size of the measuring apparatus 100 will be described.

図11は、比較例に係る受光光学部の配置の一例を示す概念図である。図11の比較例では、反射光161を制限幅で制限しない一般的な場合を想定して、反射光161の光束のうち、受光ミラー142の開口幅の最大値Wmaxと等しい大きさの光束を、集光レンズ154にて受光素子160に集光している。   FIG. 11 is a conceptual diagram illustrating an example of the arrangement of the light receiving optical units according to the comparative example. In the comparative example of FIG. 11, assuming a general case where the reflected light 161 is not limited by the limiting width, a luminous flux having a size equal to the maximum value Wmax of the opening width of the light receiving mirror 142 is selected from the luminous flux of the reflected light 161. The light is condensed on the light receiving element 160 by the condenser lens 154.

この場合、反射光161について開口幅の最大値Wmaxと等しい幅の光路を確保するために、集光レンズ154を含む受光光学部を前記光路外に配置する必要がある。   In this case, in order to secure an optical path having a width equal to the maximum value Wmax of the aperture width for the reflected light 161, it is necessary to dispose a light receiving optical unit including the condenser lens 154 outside the optical path.

例えば、図11の例では、集光レンズ154の端部Pが前記光路内に進入するため、集光レンズ154を受光ミラー142にこれ以上近づけることができない。つまり、集光レンズ154と受光ミラー142との近接配置による小型化に制約がある。   For example, in the example of FIG. 11, since the end portion P of the condenser lens 154 enters the optical path, the condenser lens 154 cannot be brought closer to the light receiving mirror 142. That is, there is a restriction on downsizing due to the close arrangement of the condenser lens 154 and the light receiving mirror 142.

この制約は、反射光161を制限幅wで制限する構成において緩和される。   This restriction is relaxed in the configuration in which the reflected light 161 is limited by the limit width w.

図12は、受光光学部150aの配置の一例を示す概念図である。   FIG. 12 is a conceptual diagram showing an example of the arrangement of the light receiving optical unit 150a.

図13は、受光光学部150bの配置の一例を示す概念図である。   FIG. 13 is a conceptual diagram showing an example of the arrangement of the light receiving optical unit 150b.

図12、図13に示されるように、反射光161が制限幅wで制限される構成では、受光ミラー142へ入射する反射光161の光束のうち、揺動軸と直交する方向に制限幅wを有する領域の外を通る光束161dは受光素子160に到達しない。そこで、図12、図13で網点を付して示した光束161dが通る光路上に、受光光学部150a、150bを配置する。   As shown in FIGS. 12 and 13, in the configuration in which the reflected light 161 is limited by the limit width w, the limit width w in the direction orthogonal to the oscillation axis of the light flux of the reflected light 161 incident on the light receiving mirror 142. The light beam 161 d that passes outside the region having the light does not reach the light receiving element 160. Therefore, the light receiving optical units 150a and 150b are arranged on the optical path through which the light beam 161d shown with halftone dots in FIGS.

つまり、受光光学部150a、150bを、受光ミラー142へ入射する反射光161の光路のうち、前記揺動軸と直交する方向に制限幅wを有する領域の外に位置する光路上に、意図的に配置する。   That is, the light receiving optical units 150a and 150b are intentionally placed on an optical path located outside the region having the limit width w in the direction orthogonal to the swing axis in the optical path of the reflected light 161 incident on the light receiving mirror 142. To place.

この構成によれば、受光光学部150a、150bを、端部Pが反射光161の光路のうち制限幅wの光路に接する位置まで、受光ミラー142に近接して配置することができる。これにより、受光光学部150a、150bの配置の自由度が向上するので、測定装置100の小型化や、デザイン性の向上に役立つ。   According to this configuration, the light receiving optical units 150 a and 150 b can be arranged close to the light receiving mirror 142 until the end P is in contact with the optical path of the limit width w in the optical path of the reflected light 161. As a result, the degree of freedom of arrangement of the light receiving optical units 150a and 150b is improved, which is useful for reducing the size of the measuring apparatus 100 and improving the design.

特に、図10に示される、幅が制限幅wの集光レンズ153を用いる構成では、集光レンズ153だけで反射光161の制限と集光とができるので、部品点数の削減による測定装置100の小型化、低コスト化に役立つ。   In particular, in the configuration using the condensing lens 153 having the width w of the limit shown in FIG. 10, the reflected light 161 can be limited and condensed only by the condensing lens 153, so that the measuring apparatus 100 by reducing the number of components is used. Useful for downsizing and cost reduction.

また、例えば、図10に示される集光レンズ153を、上下辺で保持してもよい。集光レンズ153を上下辺で保持し、集光レンズの153左右には他の部材を設けないことで、集光レンズ153を、図13に示される端部Pが制限幅wの光路に進入する直前の位置まで、受光ミラー142に最近接させることができる。   Further, for example, the condenser lens 153 shown in FIG. 10 may be held by the upper and lower sides. By holding the condenser lens 153 on the upper and lower sides and not providing other members on the left and right sides of the condenser lens 153, the condenser lens 153 enters the optical path with the end portion P shown in FIG. The light receiving mirror 142 can be brought closest to the position immediately before.

この構成によれば、測定装置100のさらなる小型化に役立つ。   This configuration is useful for further miniaturization of the measuring apparatus 100.

以上、本発明の実施の形態に係る測定装置について説明したが、本発明は、個々の実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。   Although the measurement apparatus according to the embodiments of the present invention has been described above, the present invention is not limited to the individual embodiments. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, or a form constructed by combining components in different embodiments is also possible. It may be included within the scope of the embodiments.

本発明は、測定装置に利用できる。   The present invention can be used for a measuring apparatus.

100 測定装置
110 筐体
111 送光窓
112 受光窓
113 送光領域
114 受光領域
119 遮光板
120 光源
121 測定光
130 送光光学部
131 コリメートレンズ
132 遮光部材
140 ミラー部
141 送光ミラー
142 受光ミラー
143 遮光板
142a、142b 受光ミラーの投影形状
146 揺動軸
150、150a、150b 受光光学部
151 遮光部材
151a 透光部
152、153、154 集光レンズ
160 受光素子
161 反射光
161a、161b、161c、161d 光束
170 光源駆動部
180 ミラー駆動部
190 制御部
901、902 対象物
DESCRIPTION OF SYMBOLS 100 Measuring apparatus 110 Case 111 Light transmission window 112 Light reception window 113 Light transmission area 114 Light reception area 119 Light shielding plate 120 Light source 121 Measurement light 130 Light transmission optical part 131 Collimating lens 132 Light shielding member 140 Mirror part 141 Light transmission mirror 142 Light reception mirror 143 Light shielding plate 142a, 142b Projection shape of light receiving mirror 146 Oscillating shaft 150, 150a, 150b Light receiving optical part 151 Light shielding member 151a Light transmitting part 152, 153, 154 Condensing lens 160 Light receiving element 161 Reflected light 161a, 161b, 161c, 161d Light flux 170 Light source drive unit 180 Mirror drive unit 190 Control unit 901, 902 Object

Claims (7)

光源からの出射光と該出射光の反射測定光のなす角度が最小角度から最大角度の範囲で揺動軸を中心に揺動し、前記揺動軸に垂直な方向に所定のミラー幅有するミラー部と、
前記反射測定光の測定物の反射光を前記ミラー部を介して受光する受光素子と、
前記ミラー部と前記受光素子とを結ぶ受光光軸上にある受光光学部とを備え、
前記受光光学部は、前記角度が前記最小角度のときの前記ミラー幅の前記受光光軸方向への投影寸法よりも小さい制限幅で透過光量を制限する受光量制限部を有する測定装置。
A mirror having a predetermined mirror width in a direction perpendicular to the swing axis, with the angle formed between the light emitted from the light source and the reflected measurement light of the light emitted from the minimum angle to the maximum angle. And
A light receiving element that receives the reflected light of the measurement object of the reflected measurement light via the mirror unit;
A light receiving optical part on a light receiving optical axis connecting the mirror part and the light receiving element;
The measuring device having a received light amount limiting unit that limits a transmitted light amount with a limited width smaller than a projection size of the mirror width in the light receiving optical axis direction when the angle is the minimum angle.
前記受光量制限部は、前記揺動軸に垂直な方向に前記制限幅を有する透光部を持つ遮光部材である、
請求項1に記載の測定装置。
The light receiving amount limiting portion is a light shielding member having a light transmitting portion having the limiting width in a direction perpendicular to the swing axis.
The measuring apparatus according to claim 1.
前記透光部は、前記揺動軸の方向に、前記ミラー部以上の高さを有する、
請求項2に記載の測定装置。
The translucent part has a height equal to or higher than the mirror part in the direction of the swing axis.
The measuring apparatus according to claim 2.
前記受光量制限部は、前記揺動軸に垂直な方向に前記制限幅を有するレンズである、
請求項1に記載の測定装置。
The received light amount limiting unit is a lens having the limiting width in a direction perpendicular to the swing axis.
The measuring apparatus according to claim 1.
前記レンズは、前記揺動軸の方向に、前記ミラー部以上の高さを有する、
請求項4に記載の測定装置。
The lens has a height equal to or higher than the mirror part in the direction of the swing axis;
The measuring apparatus according to claim 4.
前記レンズは、前記ミラー部で反射した前記反射光を前記受光素子に集光する、
請求項4又は5に記載の測定装置。
The lens condenses the reflected light reflected by the mirror unit on the light receiving element,
The measuring apparatus according to claim 4 or 5.
前記受光光学部は、前記ミラー部へ入射する前記反射光の光路のうち、前記揺動軸と直交する方向に前記制限幅を有する領域の外に配置される、
請求項1から6の何れか1項に記載の測定装置。
The light receiving optical unit is disposed outside a region having the limit width in a direction orthogonal to the swing axis in an optical path of the reflected light incident on the mirror unit.
The measuring apparatus according to any one of claims 1 to 6.
JP2015205993A 2015-10-20 2015-10-20 Measurement device Pending JP2017078611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205993A JP2017078611A (en) 2015-10-20 2015-10-20 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205993A JP2017078611A (en) 2015-10-20 2015-10-20 Measurement device

Publications (1)

Publication Number Publication Date
JP2017078611A true JP2017078611A (en) 2017-04-27

Family

ID=58666194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205993A Pending JP2017078611A (en) 2015-10-20 2015-10-20 Measurement device

Country Status (1)

Country Link
JP (1) JP2017078611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076725A (en) * 2017-12-22 2019-07-02 주식회사 에스오에스랩 Device and method for controlling detection signal of lidar
JP2022505031A (en) * 2018-11-13 2022-01-14 ニューロ・インコーポレーテッド LIDAR for detecting blind spots in vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076725A (en) * 2017-12-22 2019-07-02 주식회사 에스오에스랩 Device and method for controlling detection signal of lidar
KR102132519B1 (en) * 2017-12-22 2020-07-10 주식회사 에스오에스랩 Device and method for controlling detection signal of lidar
JP2022505031A (en) * 2018-11-13 2022-01-14 ニューロ・インコーポレーテッド LIDAR for detecting blind spots in vehicles

Similar Documents

Publication Publication Date Title
JP6676916B2 (en) measuring device
US11125876B2 (en) Lidar system and method for ascertaining a system state of a lidar system
US10031213B2 (en) Laser scanner
JP2017106833A (en) Measuring apparatus
JP6672715B2 (en) measuring device
EP3190428B1 (en) Electronic distance measuring instrument
US10067222B2 (en) Laser rangefinder
JP6460445B2 (en) Laser range finder
JP6724663B2 (en) Scanner mirror
JP2017072466A (en) Light wave distance measuring device
JP2023029347A (en) optical device
JP6372819B2 (en) Optical distance measuring device
JP2017078611A (en) Measurement device
CN112213853A (en) Optical scanning device, object detection device, optical scanning method, object detection method, and program
JP6388383B2 (en) Laser range finder
JP2016020831A (en) Laser rangefinder
JP2017125771A (en) Optical scanner
JP2017090094A (en) Measurement device
JP6372820B2 (en) Laser range finder and method of manufacturing oscillating mirror
JP2018165810A (en) Light emitting device and distance measuring system
JP6993195B2 (en) Distance measuring device
JP2017020917A (en) Measurement device
CN111656214A (en) Optical radar device
JP2006226881A (en) Automatic collimator for survey equipment
WO2023119568A1 (en) Optical device and sensor device