JP2017076595A - Non-fixed type seawater battery - Google Patents

Non-fixed type seawater battery Download PDF

Info

Publication number
JP2017076595A
JP2017076595A JP2016002976A JP2016002976A JP2017076595A JP 2017076595 A JP2017076595 A JP 2017076595A JP 2016002976 A JP2016002976 A JP 2016002976A JP 2016002976 A JP2016002976 A JP 2016002976A JP 2017076595 A JP2017076595 A JP 2017076595A
Authority
JP
Japan
Prior art keywords
seawater
anode
battery
slot body
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016002976A
Other languages
Japanese (ja)
Other versions
JP6200005B2 (en
Inventor
光哲 李
Kwang-Chul Lee
光哲 李
群賢 蔡
Chun Hsien Tsai
群賢 蔡
群栄 蔡
Chun Jung Tsai
群栄 蔡
庭鵑 李
Ting Chuan Lee
庭鵑 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Carbon Nano Technology Corp
Original Assignee
Taiwan Carbon Nanotube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Carbon Nanotube Co Ltd filed Critical Taiwan Carbon Nanotube Co Ltd
Publication of JP2017076595A publication Critical patent/JP2017076595A/en
Application granted granted Critical
Publication of JP6200005B2 publication Critical patent/JP6200005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seawater battery that is improved in assembly configuration and easy in exchange of a battery.SOLUTION: In a seawater battery, a first battery 10 includes a first slot body 11, first seawater electrolytic solution 12, and a first electrode component 13. The first electrode component includes a first anode 131 installed at the bottom of the first slot body, and a first cathode 132 floating on the first seawater electrolytic solution. A second battery 20 includes a second slot body 21, second seawater electrolytic solution 22, and a second electrode component 23. The second electrode component includes a second anode 231 installed at the bottom of the second slot body, and a second cathode 232 floating on the second seawater electrolytic solution. A electrically conductive component 30 is electrically connected to the first electrode component and the second electrode component. An electrode can be easily exchanged by merely taking out old first anode and second anode, and inserting new first anode and second anode.SELECTED DRAWING: Figure 1

Description

本発明は、海水電池、特に非固定式の海水電池に関するものである。   The present invention relates to a seawater battery, and more particularly to a non-fixed seawater battery.

増加し続ける全世界の人口及び科学の進歩に伴い、人類のエネルギーに対する需要も増加し続け、石油、石炭といった従来の化石燃料の供給が次第に不足することから、再生可能エネルギーが徐々に重要視され、なかでも、海水は、地表面のおよそ70%の面積を占めており、このため、海水を利用して発電することも、エネルギー発展のキーポイントの一つとなっている。   As the world's ever-growing population and scientific advances continue, human demand for energy will continue to increase, and the supply of conventional fossil fuels such as oil and coal will gradually become scarce. In particular, seawater occupies approximately 70% of the surface of the earth, and power generation using seawater is one of the key points of energy development.

海水を利用して発電する主な方法として、潮汐発電、海水温度差発電及び海水電池があるが、そのうち、海水電池は、海水を電解液として利用し、電極を海水に浸漬するだけで発電することができ、この応用からとりわけ注目されており、より大きな電力出力を得るため、この応用の大部分は、複数の海水電池を直列に或いは並列に接続する構成に設計されており、例えば、特許文献1のような「マグネシウム海水電池」は、陽極と、並列に接続した複数の惰性陰極と、複数の電池フレームと、前記陽極を囲繞するネットとを包括し、これ等電池フレームはいずれも前記ネット上に設置され、これ等惰性陰極は前記陽極に近接するこれ等電池フレームの一端に設置し、海水が前記陽極及び前記惰性陰極と接触して発電することができる。   There are tidal power generation, seawater temperature difference power generation and seawater battery as the main methods of generating power using seawater. Among them, seawater battery uses seawater as electrolyte and generates electricity just by immersing electrodes in seawater. In order to obtain greater power output, most of this application is designed to connect multiple seawater batteries in series or in parallel, for example, patents The “magnesium seawater battery” as in Document 1 includes an anode, a plurality of inertial cathodes connected in parallel, a plurality of battery frames, and a net surrounding the anode, and these battery frames are all described above. It is installed on a net, and these negative cathodes are installed at one end of these battery frames close to the anode, and seawater can contact the anode and the negative cathode to generate electricity.

しかし、前記陽極はこれ等惰性陰極と一定の距離に保持させるため、これ等電池フレームを設置してこれ等惰性陰極を固定しなければならず、構成的に複雑化し、前記陽極及びこれ等惰性陰極の交換を行い難くなることから、どのように、海水電池の組立構成が複雑で、電極の交換が行い辛いという問題を解決するかが大きな課題となっている。   However, in order to keep the anode at a certain distance from these negative cathodes, it is necessary to install these battery frames to fix these negative cathodes, which complicates the structure, and the anode and these negative characteristics. Since it becomes difficult to replace the cathode, how to solve the problem that the assembly configuration of the seawater battery is complicated and it is difficult to replace the electrode is a major issue.

中国特許公開第1543001号Chinese Patent Publication No. 1543001

本発明の主な目的は、海水電池の組立構成が複雑で、電極の交換が行い辛いという問題を解決することにある。   The main object of the present invention is to solve the problem that the assembly configuration of a seawater battery is complicated and it is difficult to replace electrodes.

上述した目的を達成するため、本発明は、第一電池と、前記第一電池上に設置する第二電池と、導電コンポーネントとを包括する非固定式海水電池を提供し、前記第一電池は、第一スロット体と、前記第一スロット体内に収容する第一海水電解液と、前記第一海水電解液と接触する第一電極コンポーネントとを包括し、さらに前記第一電極コンポーネントは、前記第一スロット体底部に設置する第一陽極と、前記第一陽極と間隔を取り合い且つ前記第一海水電解液上に浮遊する第一陰極とを包括し、前記第二電池は、第二スロット体と、前記第二スロット体内に収容する第二海水電解液と、前記第二海水電解液と接触する第二電極コンポーネントとを包括し、さらに前記第二電極コンポーネントは、前記第二スロット体底部に設置する第二陽極と、前記第二陽極と間隔を取り合い且つ前記第二海水電解液上に浮遊する第二陰極とを包括し、前記導電コンポーネントは、前記第一電極コンポーネント及び前記第二電極コンポーネントに電気的に接続している。   In order to achieve the above-described object, the present invention provides a non-fixed seawater battery including a first battery, a second battery installed on the first battery, and a conductive component. The first slot body, the first seawater electrolyte accommodated in the first slot body, and the first electrode component in contact with the first seawater electrolyte, and the first electrode component further comprises the first A first anode installed at the bottom of one slot body, and a first cathode that is spaced apart from the first anode and floats on the first seawater electrolyte, and the second battery comprises: A second seawater electrolyte housed in the second slot body and a second electrode component in contact with the second seawater electrolyte, and the second electrode component is installed at the bottom of the second slot body Second sun And a second cathode that is spaced apart from the second anode and floats on the second seawater electrolyte, wherein the conductive component is electrically connected to the first electrode component and the second electrode component doing.

上述したことから、本発明は以下のような利点を有している。   As described above, the present invention has the following advantages.

第一に、前記第一陽極及び前記第二陽極を前記第一スロット体底部及び前記第二スロット体底部にそれぞれ設置、前記第一陰極及び前記第二陰極を前記第一海水電解液及び前記第二海水電解液上にそれぞれ浮遊させることで、前記第一陽極及び前記第一陰極と、前記第二陽極及び前記第二陰極とがそれぞれ接触し合って短絡するという問題を防ぐことができる。   First, the first anode and the second anode are installed at the bottom of the first slot body and the bottom of the second slot body, respectively, and the first cathode and the second cathode are the first seawater electrolyte and the first anode, respectively. By floating on the two seawater electrolytes, it is possible to prevent the first anode and the first cathode, the second anode and the second cathode from contacting each other and short-circuiting each other.

第二に、前記第一陽極及び前記第二陽極だけ前記第一スロット体底部及び前記第二スロット体底部にそれぞれ設置し、前記第一陰極及び前記第二陰極を任意に浮遊させるため、構成上の複雑性及び製造コストを低減することができる。   Second, only the first anode and the second anode are installed at the bottom of the first slot body and the bottom of the second slot body, respectively, and the first cathode and the second cathode are arbitrarily floated. Complexity and manufacturing costs can be reduced.

第三に、新しい前記第一陽極及び前記第二陽極を新たに投入するだけで、発電を継続的に行うことができるため、容易に交換ができるという利点を有している。   Thirdly, since power generation can be performed continuously only by newly introducing the first anode and the second anode, there is an advantage that they can be easily replaced.

本発明に係る好ましい実施例の断面構成を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the preferable Example which concerns on this invention.

本発明の詳細な説明及び技術的内容について、図面を参照しつつ以下において説明する。   Detailed description and technical contents of the present invention will be described below with reference to the drawings.

本発明に係る好ましい実施例の断面構成を示す模式図である図1を参照すると、本発明は、第一電池10と、前記第一電池10上に設置する第二電池20と、導電コンポーネント30とを包括する非固定式海水電池であって、前記第一電池10は、第一スロット体11と、前記第一スロット体11内に収容する第一海水電解液12と、前記第一海水電解液12と接触する第一電極コンポーネント13とを包括し、さらに前記第一電極コンポーネント13は、前記第一スロット体11底部に設置する第一陽極131と、前記第一陽極131と間隔を取り合い且つ前記第一海水電解液12上に浮遊する第一陰極132とを包括し、前記第二電池20は、第二スロット体21と、前記第二スロット体21内に収容する第二海水電解液22と、前記第二海水電解液22と接触する第二電極コンポーネント23とを包括し、さらに前記第二電極コンポーネント23は、前記第二スロット体21底部に設置する第一陽極231と、前記第二陽極231と間隔を取り合い且つ前記第二海水電解液22上に浮遊する第二陰極232とを包括し、前記導電コンポーネント30は、前記第一電極コンポーネント13及び前記第二電極コンポーネント23に電気的に接続している。   Referring to FIG. 1, which is a schematic diagram illustrating a cross-sectional configuration of a preferred embodiment according to the present invention, the present invention includes a first battery 10, a second battery 20 installed on the first battery 10, and a conductive component 30. The first battery 10 includes a first slot body 11, a first seawater electrolyte 12 accommodated in the first slot body 11, and the first seawater electrolysis. A first electrode component 13 in contact with the liquid 12, and the first electrode component 13 is spaced from the first anode 131 and the first anode 131 installed at the bottom of the first slot body 11; The second battery 20 includes a second slot body 21 and a second seawater electrolyte solution 22 accommodated in the second slot body 21, including a first cathode 132 floating on the first seawater electrolyte solution 12. And the above A second electrode component 23 in contact with the seawater electrolyte solution 22; and the second electrode component 23 is spaced from the first anode 231 installed at the bottom of the second slot body 21 and the second anode 231. The conductive component 30 is electrically connected to the first electrode component 13 and the second electrode component 23, including a second cathode 232 that is in contact with and floats on the second seawater electrolyte 22.

そのうち、前記第一陰極132及び前記第二陰極232の材料は、カーボン、グラフェン、カーボンブラック、カーボンナノチューブ或いはカーボンファイバ等のカーボン材とすることができ、且つ多孔隙の特性を有することから、気体を孔隙中に充満させることにより、前記第一海水電解液12及び前記第二海水電解液22上で浮遊することができ、また、前記第一陰極132及び前記第二陰極232の厚さは、1ミリメートル(mm)から10ミリメートル(mm)の間、好ましくは3ミリメートル(mm)から10ミリメートル(mm)の間に介しており、前記第一陽極131及び前記第二陽極231の材料は、アルミニウム、マグネシウム或いはこれ等を組合わせて形成する合金とすることができる。   Among them, the material of the first cathode 132 and the second cathode 232 can be a carbon material such as carbon, graphene, carbon black, carbon nanotube, or carbon fiber, and has a porosity characteristic, so that the gas Can be floated on the first seawater electrolyte 12 and the second seawater electrolyte 22, and the thicknesses of the first cathode 132 and the second cathode 232 are as follows: 1 mm (mm) to 10 mm (mm), preferably 3 mm (mm) to 10 mm (mm), and the material of the first anode 131 and the second anode 231 is aluminum. , Magnesium, or an alloy formed by combining these.

このことから、前記第一陽極131及び前記第二陽極231を前記第一スロット11体底部及び前記第二スロット体21底部にそれぞれ設置することで、前記第一陽極131が前記第一海水電解液12上で浮遊する前記第一陰極132と接触して短絡が発生することと、前記第二陽極231が前記第二海水電解液22上で浮遊する前記第二陰極232と接触して短絡が発生することとを防ぐことができ、前記第一陽極131及び前記第二陽極231だけ前記第一スロット体11底部及び前記第二スロット体21底部にそれぞれ設置し、前記第一陰極及び前記第二陰極の位置を設定しないため、構成上の複雑性及び製造コストを低減することができる。   Accordingly, the first anode 131 and the second anode 231 are installed at the bottom of the first slot 11 body and the bottom of the second slot body 21, respectively, so that the first anode 131 becomes the first seawater electrolyte. A short circuit occurs when the first anode 132 floats on the first electrode 132 and the second anode 231 contacts the second cathode 232 that floats on the second seawater electrolyte 22. Only the first anode 131 and the second anode 231 are installed at the bottom of the first slot body 11 and the bottom of the second slot body 21, respectively, and the first cathode and the second cathode Since no position is set, it is possible to reduce structural complexity and manufacturing cost.

また、本実施例において、前記第一スロット体11の側面に設置する第一穿孔40と、前記第二スロット体21の側面に設置する第二穿孔41とをさらに包括しており、前記第一穿孔40及び前記第二穿孔41は、前記導電コンポーネント30を貫通させることで、前記第一陽極131は前記第二陰極232に電気的に接続し、前記第二陽極231は前記第一陰極132に電気的に接続することができ、且つ前記第一陽極131と前記第二陰極232との間に負荷80を直列に接続し、電池直列接続構成を形成することで、出力する電圧は増大するが、並列に接続する構成を形成することもでき、本実施例の例示に限定するものではない。   In the present embodiment, the first perforation 40 installed on the side surface of the first slot body 11 and the second perforation 41 installed on the side surface of the second slot body 21 are further included. The perforation 40 and the second perforation 41 penetrate the conductive component 30 so that the first anode 131 is electrically connected to the second cathode 232, and the second anode 231 is connected to the first cathode 132. The voltage output can be increased by connecting the load 80 in series between the first anode 131 and the second cathode 232 to form a battery series connection configuration. In addition, a configuration connected in parallel can be formed, and the present invention is not limited to the example of this embodiment.

また、第一電池10は、前記第一スロット体11の側面に設置する、前記第一海水電解液12を注入するための第一注入口14、及び前記第一海水電解液12を排出するための第一排出口15をさらに包括しており、本実施例において、前記第一注入口14及び前記第一排出口15は、前記第一電池10の相対し合う両側にそれぞれ設置しているが、需要に応じて異なる位置に設置することもでき、これに限定するものではなく、また、第二電池20は、前記第二スロット体21の側面に設置する、前記第二海水電解液22を注入するための第二注入口24、及び前記第二海水電解液22を排出するための第二排出口25をさらに包括しており、上記と同様に、前記第二注入口24及び前記第二排出口25の位置は、需要に応じて設置することができる。前記第一海水電解液12及び前記第二海水電解液22が継続的に注入及び排出することで、前記第一スロット体11及び前記第二スロット体21の中にある前記第一海水電解液12及び前記第二海水電解液22のイオン濃度を維持し、発生した電流を安定にすることができる。   In addition, the first battery 10 is installed on the side surface of the first slot body 11 to discharge the first seawater electrolyte 12 and the first inlet 14 for injecting the first seawater electrolyte 12. In the present embodiment, the first inlet 14 and the first outlet 15 are installed on opposite sides of the first battery 10, respectively. However, the present invention is not limited to this, and the second battery 20 is provided with the second seawater electrolyte solution 22 installed on the side surface of the second slot body 21. A second inlet 24 for injecting and a second outlet 25 for discharging the second seawater electrolyte 22 are further included. Similarly to the above, the second inlet 24 and the second The location of the outlet 25 should be installed according to demand. Can. The first seawater electrolyte 12 and the second seawater electrolyte 22 are continuously injected and discharged, so that the first seawater electrolyte 12 in the first slot body 11 and the second slot body 21 is provided. In addition, the ion concentration of the second seawater electrolyte 22 can be maintained, and the generated current can be stabilized.

放電が行われると、前記第一陽極131及び前記第二陽極231は、それぞれ前記第一海水電解液12及び前記第二海水電解液22と反応して副生成物を発生し、副生成物は、流動する前記第一海水電解液12及び前記第二海水電解液22によって排出され、前記第一陽極131及び前記第二陽極231が枯渇していしまうと、古い前記第一陽極131及び前記第二陽極231を取出して新しい前記第一陽極131及び前記第二陽極231を再度投入するだけで、発電を継続的に行うことができるため、容易に交換ができるという利点を有している。   When the discharge is performed, the first anode 131 and the second anode 231 react with the first seawater electrolyte 12 and the second seawater electrolyte 22 to generate a byproduct, and the byproduct is When the first anode 131 and the second anode 231 are exhausted by the flowing first seawater electrolyte 12 and the second seawater electrolyte 22, the old first anode 131 and the second anode 231 are exhausted. By simply taking out the anode 231 and re-inserting the new first anode 131 and the second anode 231 again, power generation can be performed continuously, so that there is an advantage that it can be easily replaced.

以上のことから、本願発明は、以下のような特徴を有している。   From the above, the present invention has the following features.

前記第一陽極及び前記第二陽極を前記第一スロット体底部及び前記第二スロット体底部にそれぞれ設置することで、前記第一陽極が前記第一海水電解液上に浮遊する前記第一陰極と接触したり、前記第二陽極が前記第二海水電解液上に浮遊する前記第二陰極と接触したりして短絡が発生することを防いでいる。   The first anode and the second anode are respectively installed at the bottom of the first slot body and the bottom of the second slot body, so that the first anode floats on the first seawater electrolyte; It is prevented that a short circuit occurs due to contact with the second anode or the second cathode floating on the second seawater electrolyte.

第二に、前記第一陽極及び前記第二陽極だけ前記第一スロット体底部及び前記第二スロット体底部にそれぞれ設置し、前記第一陰極及び前記第二陰極を設置する位置が必要ないため、構成上の複雑性及び製造コストを低減することができる。   Secondly, only the first anode and the second anode are installed at the bottom of the first slot body and the bottom of the second slot body, respectively, and there is no need to install the first cathode and the second cathode. Structural complexity and manufacturing costs can be reduced.

第三に、前記第一陽極及び前記第二陽極が枯渇すれば、新しい前記第一陽極及び前記第二陽極を再度投入するだけで、発電を継続的に行うことができるため、容易に交換ができるという利点を有している。   Third, if the first anode and the second anode are depleted, it is possible to continuously perform power generation simply by turning on the new first anode and the second anode again. It has the advantage of being able to.

第四に、前記第一注入口、前記第一排出口、前記第二注入口及び前記第二排出口を設置することで、前記第一スロット体及び前記第二スロット体の中にある前記第一海水電解液及び前記第二海水電解液のイオン濃度を維持し、発生した電流を安定にすることができる。   Fourth, by installing the first inlet, the first outlet, the second inlet, and the second outlet, the first slot body and the second slot body are in the first slot body. The ion concentration of the one seawater electrolyte and the second seawater electrolyte can be maintained, and the generated current can be stabilized.

以上において、本発明に係る詳細な説明を行ったが、上述したものは、本発明に係る好ましい実施例に過ぎず、本発明に係る実施の範囲を限定するものではなく、本発明に係る請求の範囲に基づいて行われたいずれの変更及び修正は、本発明に係る請求の範囲に属するものである。   In the above, a detailed description has been given of the present invention. However, the above description is only a preferred embodiment according to the present invention, and does not limit the scope of implementation according to the present invention. Any changes and modifications made based on the scope of the present invention belong to the scope of the claims of the present invention.

10 第一電池
11 第一スロット体
12 第一海水電解液
13 第一電極コンポーネント
131 第一陽極
132 第一陰極
14 第一注入口
15 第一排出口
20 第二電池
21 第二スロット体
22 第二海水電解液
23 第二電極コンポーネント
231 第二陽極
232 第二陰極
24 第二注入口
25 第二排出口
30 導電コンポーネント
40 第一穿孔
41 第二穿孔
80 負荷
DESCRIPTION OF SYMBOLS 10 1st battery 11 1st slot body 12 1st seawater electrolyte 13 1st electrode component 131 1st anode 132 1st cathode 14 1st injection port 15 1st discharge port 20 2nd battery 21 2nd slot body 22 2nd Seawater electrolyte 23 Second electrode component 231 Second anode 232 Second cathode 24 Second inlet 25 Second outlet 30 Conductive component 40 First perforation 41 Second perforation 80 Load

Claims (10)

第一スロット体と、前記第一スロット体内に収容する第一海水電解液と、前記第一海水電解液と接触する第一電極コンポーネントとを包括し、さらに前記第一電極コンポーネントは、前記第一スロット体底部に設置する第一陽極と、前記第一陽極と間隔を取り合い且つ前記第一海水電解液上に浮遊する第一陰極とを包括する第一電池と、
前記第一電池上に設置し、第二スロット体と、前記第二スロット体内に収容する第二海水電解液と、前記第二海水電解液と接触する第二電極コンポーネントとを包括し、さらに前記第二電極コンポーネントは、前記第二スロット体底部に設置する第一陽極と、前記第二陽極と間隔を取り合い且つ前記第二海水電解液上に浮遊する第二陰極とを包括する第二電池と、
前記第一電極コンポーネント及び前記第二電極コンポーネントに電気的に接続する導電コンポーネントと、を包括することを特徴とする非固定式海水電池。
A first slot body, a first seawater electrolyte accommodated in the first slot body, and a first electrode component in contact with the first seawater electrolyte; A first battery that includes a first anode installed at the bottom of the slot body and a first cathode that is spaced apart from the first anode and floats on the first seawater electrolyte;
A second slot body, a second seawater electrolyte accommodated in the second slot body, and a second electrode component in contact with the second seawater electrolyte; A second battery comprising a first anode installed at the bottom of the second slot body and a second cathode that is spaced apart from the second anode and floats on the second seawater electrolyte; ,
A non-fixed seawater battery comprising: the first electrode component; and a conductive component electrically connected to the second electrode component.
前記第一陰極及び前記第二陰極の材料は、カーボン、グラフェン、カーボンブラック、カーボンナノチューブ、カーボンファイバ或いはこれ等を組合わせて形成する群のいずれかであることを特徴とする請求項1に記載の非固定式海水電池。   The material of the first cathode and the second cathode is any one of carbon, graphene, carbon black, carbon nanotube, carbon fiber, or a group formed by combining these materials. Non-fixed seawater battery. 前記第一陽極及び前記第二陽極の材料は、アルミニウム、マグネシウム或いはこれ等を組合わせて形成する合金のいずれかであることを特徴とする請求項1に記載の非固定式海水電池。   2. The non-fixed seawater battery according to claim 1, wherein a material of the first anode and the second anode is any one of aluminum, magnesium, or an alloy formed by combining them. 第一電池は、前記第一スロット体の側面に設置する、前記第一海水電解液を注入するための第一注入口、及び前記第一海水電解液を排出するための第一排出口をさらに包括することを特徴とする請求項1に記載の非固定式海水電池。   The first battery further includes a first inlet for injecting the first seawater electrolyte, and a first outlet for discharging the first seawater electrolyte, which are installed on a side surface of the first slot body. The non-fixed seawater battery according to claim 1, wherein the non-fixed seawater battery is included. 第二電池は、前記第二スロット体の側面に設置する、前記第二海水電解液を注入するための第二注入口、及び前記第二海水電解液を排出するための第二排出口をさらに包括することを特徴とする請求項1に記載の非固定式海水電池。   The second battery further includes a second inlet for injecting the second seawater electrolyte, and a second outlet for discharging the second seawater electrolyte, installed on a side surface of the second slot body. The non-fixed seawater battery according to claim 1, wherein the non-fixed seawater battery is included. 前記第一スロット体の側面に設置する、前記導電コンポーネントを貫通させるための第一穿孔をさらに包括することを特徴とする請求項1に記載の非固定式海水電池。   The non-fixed type seawater battery according to claim 1, further comprising a first perforation for penetrating the conductive component, which is installed on a side surface of the first slot body. 前記第二スロット体の側面に設置する、前記導電コンポーネントを貫通させるための第二穿孔をさらに包括することを特徴とする請求項1に記載の非固定式海水電池。   2. The non-fixed seawater battery according to claim 1, further comprising a second perforation for penetrating the conductive component, which is installed on a side surface of the second slot body. 前記第一陰極の厚さは、1ミリメートル(mm)から10ミリメートル(mm)の間、好ましくは3ミリメートル(mm)から10ミリメートル(mm)の間に介することを特徴とする請求項1に記載の非固定式海水電池。   The thickness of the first cathode is between 1 millimeter (mm) and 10 millimeters (mm), preferably between 3 millimeters (mm) and 10 millimeters (mm). Non-fixed seawater battery. 前記第二陰極の厚さは、1ミリメートル(mm)から10ミリメートル(mm)の間、好ましくは3ミリメートル(mm)から10ミリメートル(mm)の間に介することを特徴とする請求項1に記載の非固定式海水電池。   The thickness of the second cathode is between 1 millimeter (mm) and 10 millimeters (mm), preferably between 3 millimeters (mm) and 10 millimeters (mm). Non-fixed seawater battery. 前記第一陽極と前記第二陽極との間に負荷を直列に接続することを特徴とする請求項1に記載の非固定式海水電池。   The non-fixed seawater battery according to claim 1, wherein a load is connected in series between the first anode and the second anode.
JP2016002976A 2015-10-16 2016-01-08 Non-fixed seawater battery Active JP6200005B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104133997A TWI539651B (en) 2015-10-16 2015-10-16 Non-stationary seawater battery
TW104133997 2015-10-16

Publications (2)

Publication Number Publication Date
JP2017076595A true JP2017076595A (en) 2017-04-20
JP6200005B2 JP6200005B2 (en) 2017-09-20

Family

ID=56756022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002976A Active JP6200005B2 (en) 2015-10-16 2016-01-08 Non-fixed seawater battery

Country Status (3)

Country Link
JP (1) JP6200005B2 (en)
CN (1) CN106602098B (en)
TW (1) TWI539651B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034321A (en) * 2019-02-21 2019-07-19 浙江海洋大学 A kind of microbial fuel cell unit for marine culture wastewater of degrading
US20200006828A1 (en) * 2018-06-29 2020-01-02 Form Energy Inc., Metal air electrochemical cell architecture
KR20210074219A (en) * 2019-12-11 2021-06-21 한국기계연구원 Generator sustainably generating power
CN114672826A (en) * 2022-03-04 2022-06-28 化学与精细化工广东省实验室 Double-cathode electrolytic tank capable of switching production of hydrogen peroxide or hydrogen
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910198B (en) * 2020-07-28 2022-12-27 山西师范大学 Gradient electric field synthesis device of metal-graphene composite material and preparation method thereof
TWI731827B (en) * 2020-12-22 2021-06-21 國立高雄科技大學 Seawater battery reactant pumping device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137733U (en) * 1978-03-09 1979-09-25
JPS57203502U (en) * 1981-06-23 1982-12-24
CN1543001A (en) * 2003-11-06 2004-11-03 李华伦 Magnesium sea water battery
JP2011003313A (en) * 2009-06-16 2011-01-06 Toyota Motor Corp Metal gas battery
JP2014212111A (en) * 2013-04-17 2014-11-13 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 Sea water battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914813A (en) * 1974-09-18 1975-10-28 Yardney Electric Corp Emergency light means
CN1393950A (en) * 2001-07-04 2003-01-29 张道光 Method and product for using seawater to provide electric energy
CN102479961B (en) * 2010-11-29 2014-01-01 中国科学院大连化学物理研究所 Oxygen dissolving type seawater battery
CN202333035U (en) * 2011-12-05 2012-07-11 中国电子科技集团公司第十八研究所 Compound electrode seawater battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137733U (en) * 1978-03-09 1979-09-25
JPS57203502U (en) * 1981-06-23 1982-12-24
CN1543001A (en) * 2003-11-06 2004-11-03 李华伦 Magnesium sea water battery
JP2011003313A (en) * 2009-06-16 2011-01-06 Toyota Motor Corp Metal gas battery
JP2014212111A (en) * 2013-04-17 2014-11-13 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 Sea water battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
US20200006828A1 (en) * 2018-06-29 2020-01-02 Form Energy Inc., Metal air electrochemical cell architecture
CN112805868A (en) * 2018-06-29 2021-05-14 福恩能源公司 Metal air electrochemical cell frame
CN110034321A (en) * 2019-02-21 2019-07-19 浙江海洋大学 A kind of microbial fuel cell unit for marine culture wastewater of degrading
KR20210074219A (en) * 2019-12-11 2021-06-21 한국기계연구원 Generator sustainably generating power
KR102526366B1 (en) 2019-12-11 2023-05-02 한국기계연구원 Generator sustainably generating power
CN114672826A (en) * 2022-03-04 2022-06-28 化学与精细化工广东省实验室 Double-cathode electrolytic tank capable of switching production of hydrogen peroxide or hydrogen
CN114672826B (en) * 2022-03-04 2024-01-12 化学与精细化工广东省实验室 Double cathode electrolytic tank capable of producing hydrogen peroxide or hydrogen in switching mode

Also Published As

Publication number Publication date
CN106602098A (en) 2017-04-26
TWI539651B (en) 2016-06-21
TW201715779A (en) 2017-05-01
CN106602098B (en) 2019-05-24
JP6200005B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6200005B2 (en) Non-fixed seawater battery
US20160036060A1 (en) Composite electrode for flow battery
TW201511386A (en) Battery cell stack and redox flow battery
KR20110113513A (en) A redox flow secondary cell having metal foam electrodes
Kandah Enhancement of water electrolyzer efficiency
US11339480B2 (en) Electrolytic cell and hydrogen production apparatus
CN202601423U (en) Super-capacitance lithium-air battery
JP5618485B2 (en) Electrochemical cell operation method
KR102048572B1 (en) Environment-friendly energy generation/storage system using halophyte-based battery and seawater battery
CN202474081U (en) Tubular solid oxide fuel battery pack with high space utilization ratio
JP2015141862A (en) metal-air battery
US10541428B2 (en) Water-activated power generating device
CN109075367A (en) Redox flow batteries
TWI574454B (en) Water-activated power generating device
SA517382132B1 (en) Enhanced Electrochemical Oxidation of Carbonaceous Deposits in Liquid-Hydrocarbon Fueled Solid Oxide Fuel Cells
KR101228763B1 (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same
KR102106110B1 (en) Redox flow battery
KR102296102B1 (en) Sustainably power-generating fuel cell using sea water
Suresh et al. Investigation of Graphite and SWCNT Composite Electrode for Zinc-Bromine Redox Flow Batteries
CN102544565A (en) Tubular solid oxide fuel battery pack with three-ring combined structure
KR102526366B1 (en) Generator sustainably generating power
US12087951B2 (en) Electrochemical cell integrates electrolysis and fuel cell functions
KR101736505B1 (en) Anode for Slurry circulation type zn/air battery unit cell
JP5913655B1 (en) Injection power generator
JP2017079188A (en) Magnesium battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6200005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250