JP2017076530A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2017076530A
JP2017076530A JP2015203451A JP2015203451A JP2017076530A JP 2017076530 A JP2017076530 A JP 2017076530A JP 2015203451 A JP2015203451 A JP 2015203451A JP 2015203451 A JP2015203451 A JP 2015203451A JP 2017076530 A JP2017076530 A JP 2017076530A
Authority
JP
Japan
Prior art keywords
temperature
power
power supply
supply system
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015203451A
Other languages
Japanese (ja)
Other versions
JP6196650B2 (en
Inventor
文屋 潤
Jun Fumiya
潤 文屋
郁朗 菅
Ikuro Suga
郁朗 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015203451A priority Critical patent/JP6196650B2/en
Publication of JP2017076530A publication Critical patent/JP2017076530A/en
Application granted granted Critical
Publication of JP6196650B2 publication Critical patent/JP6196650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system capable of suppressing a progression of life degradation of storage means charged with electric power from an external power source and supplying electric power to a control load compared with the conventional method.SOLUTION: The power supply system includes electric storage means charged with electric power from an external electric power source and supplying electric power to a control load. The power supply system includes: cooling means for cooling the electric storage means; heating means for heating the electric storage means; and temperature control means for operating the cooling means when the temperature of the storage means is higher than a first temperature and for operating the heating means when the temperature is lower than a second temperature.SELECTED DRAWING: Figure 1

Description

本発明は、外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段を備える電力供給システム、及び電力供給システムに具備される蓄電手段の温度管理に関する。   The present invention relates to a power supply system including a power storage unit that is charged with power from an external power source and supplies power to a control load, and to temperature management of the power storage unit included in the power supply system.

従来の電力供給システムにおいては、蓄電池を充放電に適した温度にするため、蓄電池の温度を検出する蓄電池温度検出手段と、内燃機関の排熱を利用して生成された温水で給湯を行うコージェネレーションユニットによって生成された温水で蓄電池を昇温させる蓄電池昇温手段と、検出された温度に基づいて蓄電池昇温手段の動作を制御する蓄電池温度制御手段とを備えた構成が開示されている。(例えば、特許文献1参照)   In a conventional power supply system, in order to bring the storage battery to a temperature suitable for charging and discharging, a storage battery temperature detecting means for detecting the temperature of the storage battery, and a hot water supply using hot water generated by utilizing the exhaust heat of the internal combustion engine. A configuration is disclosed that includes a storage battery temperature raising means for raising the temperature of the storage battery with warm water generated by the generation unit, and a storage battery temperature control means for controlling the operation of the storage battery temperature raising means based on the detected temperature. (For example, see Patent Document 1)

特開2014−182934JP2014-182934

従来の電力供給システムでは、外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段の寿命劣化の進行を抑制可能に構成されたものではなく、簡便な方法で蓄電手段の寿命劣化の進行を抑制することに対応できないという課題があった。   The conventional power supply system is not configured to be able to suppress the progress of the life deterioration of the power storage means that is charged with power from the external power source and supplies power to the control load, but the life of the power storage means is deteriorated by a simple method. There was a problem that it was not possible to cope with the suppression of the progress.

この発明は、上述のような課題を解決するためになされたもので、外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段の寿命劣化の進行を、従来より抑制することが可能な電力供給システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and suppresses the progress of the life deterioration of the power storage means that is charged with power from an external power source and supplies power to the control load. The aim is to obtain a possible power supply system.

本発明の電力供給システムは、外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段を備える電力供給システムであって、蓄電手段を冷却する冷却手段と、蓄電手段を加熱する加熱手段と、蓄電手段の温度が第1温度より高い場合は、冷却手段を動作させ、第2温度より低い場合は加熱手段を動作させる温度制御手段とを備えるものである。   The power supply system of the present invention is a power supply system that includes power storage means that is charged with power from an external power source and supplies power to a control load, and includes cooling means for cooling the power storage means, and heating for heating the power storage means. And a temperature control means for operating the cooling means when the temperature of the power storage means is higher than the first temperature and operating the heating means when the temperature is lower than the second temperature.

本発明は、外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段の温度を一定範囲内に制御するため、従来より蓄電手段の寿命劣化の進行を抑制することができるという効果を奏する。   The present invention controls the temperature of the power storage means that is charged with power from the external power source and supplies power to the control load within a certain range, and therefore, it is possible to suppress the progress of the life deterioration of the power storage means than before. Play.

本発明に係る実施の形態1における電力供給システムの構成図である。It is a block diagram of the electric power supply system in Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の電力供給システムにおける二次電池の温度に対する温度閾値の設定例である。It is a setting example of the temperature threshold with respect to the temperature of the secondary battery in the power supply system of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1における電力供給システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electric power supply system in Embodiment 1 which concerns on this invention. 本発明に係る実施の形態2における電力供給システムの構成図である。It is a block diagram of the electric power supply system in Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2における電力供給システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electric power supply system in Embodiment 2 which concerns on this invention. 本発明に係る実施の形態3における電力供給システムの構成図である。It is a block diagram of the electric power supply system in Embodiment 3 which concerns on this invention.

実施の形態1.
図1から図3を参照して、本発明の実施の形態1について説明する。
図1は、本発明に係る実施の形態1における電力供給システムの構成図である。
電力供給システム100は、系統電源200と直流電源300の外部電源を接続可能で、この外部電源からの電力供給により宅内負荷400に電力を供給する構成である。系統電源200は商用電源等の交流電力が供給される。直流電源300は、例えば、EV(Electric Vehicle)、又は太陽光発電で構成され直流電力が供給される。宅内負荷400は、例えばIHクッキングヒータ、冷蔵庫、及び照明などの家電機器である。宅内負荷400には、電力変換手段の具体的な構成である電力変換回路3から出力される交流電力、又は系統電源200から出力される交流電力が供給される。
外部電源からの電力供給の無いとき(以下「待機状態時」と記載)、電力供給システム100内の制御負荷7(例えば、CPU、リモコン、電圧電流状態監視センサ等)への待機電力を供給するために、蓄電手段の具体的な構成である二次電池1を搭載する。この二次電池1には、例えば鉛蓄電池を使用してもよい。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a configuration diagram of a power supply system according to Embodiment 1 of the present invention.
The power supply system 100 can be connected to an external power supply of the system power supply 200 and the DC power supply 300, and is configured to supply power to the home load 400 by supplying power from the external power supply. System power supply 200 is supplied with AC power such as commercial power. The DC power supply 300 is configured by, for example, EV (Electric Vehicle) or solar power generation and is supplied with DC power. Home load 400 is household appliances, such as an IH cooking heater, a refrigerator, and lighting, for example. The in-home load 400 is supplied with AC power output from the power conversion circuit 3, which is a specific configuration of the power conversion means, or AC power output from the system power supply 200.
When there is no power supply from an external power source (hereinafter referred to as “in a standby state”), standby power is supplied to a control load 7 (for example, a CPU, a remote controller, a voltage / current state monitoring sensor, etc.) in the power supply system 100. Therefore, the secondary battery 1 that is a specific configuration of the power storage means is mounted. For example, a lead storage battery may be used for the secondary battery 1.

電力供給システム100は、主たる構成部として、主回路20、二次電池温度調節部21、及びバックアップ用電源となる二次電池1を備えている。系統電源200から供給される交流電力は、主回路20を介さずに宅内負荷400に供給され、一方で、主回路20にも供給される。主回路20は、系統電源200から供給される交流電力を、整流手段の具体的な構成である整流回路4によって直流電力に変換して制御電源5を介して直流負荷である制御負荷7に供給する。二次電池1の出力は、外部電源から電力が供給されないとき、制御負荷7に供給する。   The power supply system 100 includes a main circuit 20, a secondary battery temperature adjustment unit 21, and a secondary battery 1 serving as a backup power source as main components. The AC power supplied from the system power supply 200 is supplied to the residential load 400 without passing through the main circuit 20, and is also supplied to the main circuit 20. The main circuit 20 converts the AC power supplied from the system power source 200 into DC power by the rectifier circuit 4 which is a specific configuration of the rectifier, and supplies the DC power to the control load 7 which is a DC load via the control power source 5. To do. The output of the secondary battery 1 is supplied to the control load 7 when power is not supplied from an external power source.

主回路20は、EV等の直流電源300から供給される直流電力を交流電力に変換する電力変換回路3と、系統電源200または電力変換回路3から供給される交流電圧を整流する整流回路4と、整流回路4の出力を第1の直流電圧Vaに変換して制御負荷7に印加する制御電源5と、整流回路4の出力を第1の直流電圧Vaよりも低い第2の直流電圧Vbで二次電池1を充電する、バッテリ充電手段の具体的な構成であるバッテリ充電回路(以下「BCG」と記載)6と、BCG6をオンオフ制御する制御部(図示せず。)と、一端であるカソードが制御電源5の出力端側に電気的に接続され、他端であるアノードがBCG6の出力端側に電気的に接続され、制御電源5からの電流が二次電池1に流れ込むのを阻止する向きに接続され、一方向性素子の具体的な構成である分離ダイオード2と、を備えている。分離ダイオード2の存在により、制御電源5の出力によって二次電池1が充電されるのが防止されると共に、系統電源200及び直流電源300のうちの少なくとも一つから電力が供給されるとき(以下「通常状態時」と記載)には、二次電池1から制御負荷7への放電が防止される。
この通常状態であるか否かの判定は、制御部(図示省略。)で実施しており、具体的には整流回路4又は制御電源5の入力電圧値で判定される。
The main circuit 20 includes a power conversion circuit 3 that converts DC power supplied from a DC power source 300 such as an EV into AC power, and a rectifier circuit 4 that rectifies an AC voltage supplied from the system power source 200 or the power conversion circuit 3. The control power supply 5 that converts the output of the rectifier circuit 4 into the first DC voltage Va and applies it to the control load 7, and the output of the rectifier circuit 4 at the second DC voltage Vb that is lower than the first DC voltage Va. A battery charging circuit (hereinafter referred to as “BCG”) 6 that is a specific configuration of a battery charging unit that charges the secondary battery 1, and a control unit (not shown) that controls on / off of the BCG 6 are one end. The cathode is electrically connected to the output end side of the control power supply 5, and the anode as the other end is electrically connected to the output end side of the BCG 6, thereby preventing current from the control power supply 5 from flowing into the secondary battery 1. Connected in one direction And isolation diode 2 is a specific configuration of the tropic elements, and a. Due to the presence of the separation diode 2, the secondary battery 1 is prevented from being charged by the output of the control power source 5, and when power is supplied from at least one of the system power source 200 and the DC power source 300 (hereinafter referred to as the power source). In the “normal state”, discharge from the secondary battery 1 to the control load 7 is prevented.
The determination of whether or not this is a normal state is performed by a control unit (not shown), and specifically, is determined by the input voltage value of the rectifier circuit 4 or the control power supply 5.

待機状態時は、二次電池1から制御負荷7に向けて待機電力分の放電動作が実施されるため自己発熱は発生しない。また電力供給システム100内の発熱回路(電力変換回路3、制御電源5、BCG6が相当)は動作していないため発熱がなく、二次電池1の本体温度は電力供給システム100の外気温度で決定される。   In the standby state, since the discharge operation for the standby power is performed from the secondary battery 1 toward the control load 7, self-heating does not occur. Further, since the heat generation circuit (the power conversion circuit 3, the control power supply 5, and the BCG 6) in the power supply system 100 is not operated, there is no heat generation, and the body temperature of the secondary battery 1 is determined by the outside air temperature of the power supply system 100. Is done.

一方、通常状態時には、BCG6により二次電池1が充電されるため、二次電池1には自己発熱が発生する。BCG6は、電力変換回路3又は系統電源200からの出力が入力されると、二次電池1の入力に対して定電圧制御を行い、二次電池1への充電動作を行う。
例えば、BCG6からの充電電圧は6セル構成の鉛蓄電池に対しては約13.5Vが一般的であり、鉛蓄電池の2個を直列接続した構成(12V×2=24V使用)であれば、約27Vで充電を行う。
On the other hand, since the secondary battery 1 is charged by the BCG 6 in the normal state, the secondary battery 1 generates self-heating. When the output from the power conversion circuit 3 or the system power supply 200 is input, the BCG 6 performs constant voltage control on the input of the secondary battery 1 and performs a charging operation on the secondary battery 1.
For example, the charging voltage from the BCG 6 is generally about 13.5 V for a lead storage battery having a 6-cell configuration, and if two lead storage batteries are connected in series (using 12 V × 2 = 24 V), Charge at about 27V.

また制御電源5も同様に動作し、制御負荷7へ電力供給を行う。制御電源5の出力電圧はBCG6の出力(約27V)よりも高く、例えば28.5Vに設定される。図1に示すように逆流防止ダイオード2を設けることにより、通常状態時は制御電源5から制御負荷7へ電力供給動作、BCG6から二次電池1へ充電動作を行うことが可能となる。
通常状態時は、二次電池1の充電による自己発熱に加え、電力変換回路3と制御電源5の動作での発熱の発生、即ち電力供給システム100内部の温度上昇により、二次電池1の本体温度(電池の周囲温度含む)が上昇することとなる。二次電池1は温度上昇によりアレニウスの法則に従って寿命が低下するため、寿命劣化の進行を防止(軽減)するためには温度上昇の抑制が必要となる。
The control power supply 5 operates in the same manner and supplies power to the control load 7. The output voltage of the control power supply 5 is higher than the output of the BCG 6 (about 27V), and is set to 28.5V, for example. By providing the backflow prevention diode 2 as shown in FIG. 1, it is possible to perform a power supply operation from the control power supply 5 to the control load 7 and a charging operation from the BCG 6 to the secondary battery 1 in the normal state.
In the normal state, in addition to self-heating due to charging of the secondary battery 1, heat generated by the operation of the power conversion circuit 3 and the control power source 5, that is, due to a temperature rise inside the power supply system 100, the main body of the secondary battery 1 The temperature (including the ambient temperature of the battery) will rise. Since the lifetime of the secondary battery 1 decreases according to Arrhenius's law due to the temperature rise, it is necessary to suppress the temperature rise in order to prevent (reduce) the progress of the life degradation.

次に、二次電池温度調節部21の構成を説明する。
二次電池温度調節部21内に配置される二次電池1は、温度上昇を抑制するため、冷却用風路の風上に配置される。冷却手段の具体的な構成である冷却ファン12によって外気を導入し、この外気で放熱材10(ヒートシンク、ヒートパイプなど)が空冷され、二次電池1が冷却される。
さらに、二次電池1の本体温度を検出するための、温度検出手段の具体的な構成である温度検出部11と、放熱材10を冷却するための冷却ファン12と、外気を導入する冷却用風路31と、二次電池1を加熱するため、加熱手段の具体的な構成である加熱用風路30と、加熱用風路30内の加熱空気の流れを調整する風量調整手段の具体的構成である加熱用弁8と、冷却ファン12と加熱用弁8を制御するため、温度制御手段の具体的な構成である温度制御部9とを備えている。
Next, the configuration of the secondary battery temperature adjustment unit 21 will be described.
The secondary battery 1 disposed in the secondary battery temperature adjusting unit 21 is disposed on the windward side of the cooling air passage in order to suppress a temperature rise. Outside air is introduced by the cooling fan 12 which is a specific configuration of the cooling means, and the heat radiating material 10 (heat sink, heat pipe, etc.) is air-cooled by this outside air, and the secondary battery 1 is cooled.
Furthermore, a temperature detection unit 11 that is a specific configuration of the temperature detection means for detecting the body temperature of the secondary battery 1, a cooling fan 12 for cooling the heat dissipation material 10, and cooling for introducing outside air In order to heat the air passage 31 and the secondary battery 1, a heating air passage 30 which is a specific configuration of the heating means, and a specific air volume adjusting means for adjusting the flow of the heating air in the heating air passage 30 In order to control the heating valve 8 which is a structure, and the cooling fan 12 and the heating valve 8, the temperature control part 9 which is a specific structure of a temperature control means is provided.

温度検出部11は、例えば、サーミスタを放熱材10に取り付け、二次電池1の温度を間接的に測定する構成であっても良い。また、赤外線センサを用いる構成であれば、二次電池1の温度を非接触で検出するので、冷却用風路31上に温度検出部11が無くなり、冷却空気の圧損を低減することが可能になる。
尚、図1中の冷却用風路31と加熱用風路30に記載する矢印は、空気の流れる方向を模式的に示すものである。また、加熱用弁8、温度検出部11、及び冷却ファン12と温度制御部9との間に記載される矢印は、信号の入出力方向を模式的に示すものである。
For example, the temperature detection unit 11 may have a configuration in which a thermistor is attached to the heat radiating material 10 and the temperature of the secondary battery 1 is indirectly measured. Further, if the configuration uses an infrared sensor, the temperature of the secondary battery 1 is detected in a non-contact manner, so that the temperature detection unit 11 is not provided on the cooling air passage 31 and the pressure loss of the cooling air can be reduced. Become.
In addition, the arrows described in the cooling air passage 31 and the heating air passage 30 in FIG. 1 schematically indicate the direction in which the air flows. Moreover, the arrows described between the heating valve 8, the temperature detection unit 11, and the cooling fan 12 and the temperature control unit 9 schematically indicate the input / output direction of the signal.

温度検出部11及び温度制御部9により、二次電池1の温度が高いと判断されたときは、冷却ファン12を動作し冷却用風路31を経由した外気によって二次電池1を冷却する。温度検出部11の温度に応じて、温度制御部9によるファン12の風量(風速)制御を行い、二次電池1を適切な温度に保つことになる。
温度検出部11及び温度制御部9により、二次電池1の温度が低いと判断されたときは、温度制御部9が加熱用弁8を開口するように制御する。加熱用弁8は、電力変換回路3の発熱を二次電池1に供給する加熱用風路30上に配置され、加熱用弁8の開口量に応じて加熱された空気が供給され、二次電池1の温度が上昇する構成になる。
When the temperature detection unit 11 and the temperature control unit 9 determine that the temperature of the secondary battery 1 is high, the cooling fan 12 is operated to cool the secondary battery 1 with outside air via the cooling air passage 31. Depending on the temperature of the temperature detector 11, the air volume (wind speed) of the fan 12 is controlled by the temperature controller 9, and the secondary battery 1 is kept at an appropriate temperature.
When the temperature detector 11 and the temperature controller 9 determine that the temperature of the secondary battery 1 is low, the temperature controller 9 controls the heating valve 8 to open. The heating valve 8 is disposed on a heating air passage 30 that supplies heat generated by the power conversion circuit 3 to the secondary battery 1, and is supplied with air heated according to the opening amount of the heating valve 8. The temperature of the battery 1 is increased.

上述したように、二次電池1を風上に配置し、二次電池1に放熱材10を取り付けることで、電力供給システム100内の最も低温の空気での冷却が可能となる。また、電力変換回路3の発熱を二次電池1に供給することで、二次電池1の温度を上げることが可能になり、二次電池1の周囲温度を常に一定範囲に設定することが可能になる。   As described above, by placing the secondary battery 1 on the windward side and attaching the heat dissipation material 10 to the secondary battery 1, cooling with the coldest air in the power supply system 100 is possible. Further, by supplying the heat generated by the power conversion circuit 3 to the secondary battery 1, the temperature of the secondary battery 1 can be raised, and the ambient temperature of the secondary battery 1 can always be set within a certain range. become.

つぎに、二次電池1の冷却及び加熱動作と温度閾値の関係を説明する。
図2は、本発明に係る実施の形態1の電力供給システムにおける二次電池の温度に対する温度閾値の設定例である。温度制御部9の記憶部には、二次電池1の温度を判定するため、複数の温度閾値が設けられ、判定結果に応じて二次電池1の冷却及び加熱動作を行う。
図2において、二次電池1の温度が高いところから、冷却動作の必要領域、適正温度、加熱動作の必要領域を示している。複数の温度閾値は、冷却動作の必要領域であるか否かを判定する温度閾値が閾値A1、適正温度であるか否かを判定する温度閾値の上限が閾値A2、下限が閾値B2、加熱動作の必要領域であるか否かを判定する温度閾値が閾値B1である。
Next, the relationship between the cooling and heating operation of the secondary battery 1 and the temperature threshold will be described.
FIG. 2 is a setting example of the temperature threshold with respect to the temperature of the secondary battery in the power supply system according to the first embodiment of the present invention. In order to determine the temperature of the secondary battery 1, a plurality of temperature thresholds are provided in the storage unit of the temperature control unit 9, and the secondary battery 1 is cooled and heated according to the determination result.
In FIG. 2, from the place where the temperature of the secondary battery 1 is high, the necessary region for the cooling operation, the appropriate temperature, and the necessary region for the heating operation are shown. The plurality of temperature thresholds are a threshold temperature A1 for determining whether or not the region is a necessary region for the cooling operation, an upper limit of the threshold temperature for determining whether or not the temperature is appropriate, a threshold A2, a lower limit is the threshold B2, and a heating operation The temperature threshold value for determining whether or not the required area is the threshold value B1.

電力供給システム100の通常状態は、系統電源200又は直流電源300のうち、少なくともどちらか一方から電力が供給される状態である。系統電源200から交流電力が供給される状態では、整流回路4に交流電力が入力される。又は、直流電源300から電力が供給される状態では、直流電力が電力変換回路3でDC/AC変換された後、整流回路4に入力される。   The normal state of the power supply system 100 is a state in which power is supplied from at least one of the system power supply 200 or the DC power supply 300. In a state where AC power is supplied from the system power supply 200, AC power is input to the rectifier circuit 4. Alternatively, in a state where power is supplied from the DC power supply 300, DC power is DC / AC converted by the power conversion circuit 3 and then input to the rectifier circuit 4.

制御電源5は制御負荷7へ電力供給を行うと共に、二次電池1はBCG6により充電される。電力変換回路3、制御電源5、及びBCG6動作タイミングにて、温度検出部11が二次電池1の温度を検出し、この検出温度に応じて温度制御部9が以下の制御を実施する。   The control power source 5 supplies power to the control load 7 and the secondary battery 1 is charged by the BCG 6. The temperature detection unit 11 detects the temperature of the secondary battery 1 at the operation timing of the power conversion circuit 3, the control power supply 5, and the BCG 6, and the temperature control unit 9 performs the following control according to the detected temperature.

二次電池1の温度が、第1温度の具体的な値である閾値A1(例えば57℃)を超えると、温度制御部9は温度検出部11の出力に応じて冷却動作を行う。この冷却動作の一つとして、冷却ファン12を動作させるための入力の電圧可変、又はPWM(Pulse Width Modulation)制御により冷却ファン12の風量を調整する制御を行う。この制御は、例えば温度検出部11が検出した温度が高いほど風量が増加する動作を行う。同時に、温度検出部11の出力に応じてBCG6の出力電圧を可変する制御を行う。この制御は、例えば温度検出部11が検出した温度が高いほど、BCG6の出力電圧を下げる動作を行う。尚、冷却ファン12とBCG6の制御は、どちらか一方の制御を実行することでも問題ない。   When the temperature of the secondary battery 1 exceeds a threshold value A1 (for example, 57 ° C.) that is a specific value of the first temperature, the temperature control unit 9 performs a cooling operation according to the output of the temperature detection unit 11. As one of the cooling operations, control is performed to adjust the air volume of the cooling fan 12 by variable input voltage for operating the cooling fan 12 or PWM (Pulse Width Modulation) control. In this control, for example, the air volume increases as the temperature detected by the temperature detection unit 11 increases. At the same time, control is performed to vary the output voltage of the BCG 6 according to the output of the temperature detector 11. In this control, for example, the higher the temperature detected by the temperature detection unit 11, the lower the output voltage of the BCG 6 is. The cooling fan 12 and BCG 6 can be controlled by executing either one of the controls.

冷却ファン12は外気の取り込みにより、二次電池1を冷却する。この外気の温度は、夏であれば例えば37℃になる。
冷却ファン12の動作等により、二次電池1の温度は低下し、温度検出部11で検出する二次電池1の温度が閾値A2(例えば53℃)まで達すると、上述の冷却動作を停止させる。温度制御部9は冷却動作を継続する制御をしてもよいが、電力消費を極力抑えるために冷却動作を停止させる制御としている。このように閾値A1、A2に対する冷却動作にヒステリシス特性を持たせる制御とすることが望ましい。
The cooling fan 12 cools the secondary battery 1 by taking in outside air. The temperature of the outside air is 37 ° C. in summer, for example.
The temperature of the secondary battery 1 decreases due to the operation of the cooling fan 12 and the like, and the above-described cooling operation is stopped when the temperature of the secondary battery 1 detected by the temperature detection unit 11 reaches a threshold A2 (for example, 53 ° C.). . Although the temperature control unit 9 may perform control to continue the cooling operation, the temperature control unit 9 performs control to stop the cooling operation in order to suppress power consumption as much as possible. As described above, it is desirable that the cooling operation with respect to the threshold values A1 and A2 is controlled to have hysteresis characteristics.

二次電池1の温度が、第2温度の具体的な値である閾値B1(例えば0℃)を下回ると、温度制御部9は温度検出部11の出力に応じて加熱動作を行う。この加熱動作の一つとして、加熱用弁8が温度制御部9の指令に応じて開口する。加熱用弁8は、電力変換回路3の排熱を二次電池1に誘導する加熱用風路30に設置されており、加熱用弁8が開口すると、電力変換回路3の発熱が二次電池1に送風される構成となっている。電力変換回路3の損失による発熱により、電力供給システム100内の温度に対し、例えば20℃ほど高い温度が、二次電池1に送風されることで、二次電池1の温度は上昇する。   When the temperature of the secondary battery 1 falls below a threshold value B1 (for example, 0 ° C.) that is a specific value of the second temperature, the temperature control unit 9 performs a heating operation according to the output of the temperature detection unit 11. As one of the heating operations, the heating valve 8 opens in response to a command from the temperature control unit 9. The heating valve 8 is installed in the heating air passage 30 that guides the exhaust heat of the power conversion circuit 3 to the secondary battery 1. When the heating valve 8 is opened, the heat generation of the power conversion circuit 3 is generated by the secondary battery. 1 is blown. Due to the heat generated by the loss of the power conversion circuit 3, the temperature of the secondary battery 1 rises when the secondary battery 1 is blown at a temperature that is, for example, about 20 ° C. higher than the temperature in the power supply system 100.

これら動作により、二次電池1の温度は上昇し、温度検出部11による二次電池1の温度が閾値B2(例えば10℃)まで達すると、上述の加熱動作を停止させる。加熱動作の継続は、逆に二次電池1の過昇を招く恐れがあるため、二次電池1の温度が閾値B2に達したら加熱動作を停止させる。このように閾値B1、B2に対する加熱動作にヒステリシス特性を持たせる制御とすることが望ましい。   By these operations, the temperature of the secondary battery 1 rises, and when the temperature of the secondary battery 1 by the temperature detection unit 11 reaches a threshold value B2 (for example, 10 ° C.), the above-described heating operation is stopped. Continuing the heating operation may cause the secondary battery 1 to overheat, so the heating operation is stopped when the temperature of the secondary battery 1 reaches the threshold value B2. As described above, it is desirable that the heating operation for the threshold values B1 and B2 is controlled to have hysteresis characteristics.

つぎに、電力システム100における二次電池1の冷却及び加熱時の動作をフローチャートを用いて説明する。
図3は、実施の形態1における電力供給システムの動作を示すフローチャートである。なお、図3では、電力供給システムの各構成部に付される符号の表記を省略している。
Next, operations during cooling and heating of the secondary battery 1 in the power system 100 will be described with reference to flowcharts.
FIG. 3 is a flowchart showing the operation of the power supply system in the first embodiment. In addition, in FIG. 3, the description of the code | symbol attached | subjected to each component of a power supply system is abbreviate | omitted.

温度制御部9の記憶部に温度検出用として図2に記載された複数の温度閾値が設けられることを前提として、フローチャートを説明する。尚、図3のフローチャート内の判定動作では、閾値A1、A2、B1、B2という4つの温度閾値を例示するが、温度閾値の種類はこれに限定されるものではない。   The flow chart will be described on the assumption that a plurality of temperature threshold values described in FIG. 2 are provided for temperature detection in the storage unit of the temperature control unit 9. In the determination operation in the flowchart of FIG. 3, four temperature threshold values A1, A2, B1, and B2 are exemplified, but the type of the temperature threshold value is not limited to this.

通常状態がスタート(ステップS30)すると、電力変換回路3の動作(ステップS31)と、制御電源5から制御負荷7への電力供給(ステップS32)と、BCG6による二次電池1への充電(ステップS33)と、温度検出部11により二次電池1の温度を検出(ステップS34)とを実行する。
その後、温度制御部9は、温度検出部11が検出した温度、すなわち二次電池2の温度が第1の閾値である閾値A1以上であるか否かを判定する第1の判定処理を行う(ステップS35)。
二次電池2の温度が閾値A1以上の場合には(ステップS35、Yes)、冷却動作を開始(ステップS36)し、温度検出部11の検出温度に基づきBCG6の出力電圧を加減(ステップS37)する。このステップS36とS37の動作は、どちらか一方のみを実行するフローチャートであっても問題ない。
When the normal state starts (step S30), the operation of the power conversion circuit 3 (step S31), the power supply from the control power source 5 to the control load 7 (step S32), and the charging of the secondary battery 1 by the BCG 6 (step S31) (S33) and the temperature detector 11 detects the temperature of the secondary battery 1 (step S34).
Thereafter, the temperature control unit 9 performs a first determination process for determining whether or not the temperature detected by the temperature detection unit 11, that is, whether the temperature of the secondary battery 2 is equal to or higher than the first threshold value A1 ( Step S35).
When the temperature of the secondary battery 2 is equal to or higher than the threshold value A1 (step S35, Yes), the cooling operation is started (step S36), and the output voltage of the BCG 6 is adjusted based on the temperature detected by the temperature detector 11 (step S37). To do. The operation of steps S36 and S37 may be a flowchart that executes only one of them.

次に、二次電池2の温度が第2の閾値である閾値A2以下であるか否かを判定する第2の判定処理を行う(ステップS38)。二次電池1の温度が閾値A2超過の場合(ステップS38、No)には、ステップS38の処理を繰り返す。二次電池1の温度が第2の閾値である閾値A2以下(ステップS38、Yes)であれば、冷却動作を停止する(ステップS39)。その後、通常状態であるか否かを判定(ステップS44)し、通常状態を継続するのであれば、第1の判定処理(ステップS35)に戻る。   Next, a second determination process is performed to determine whether or not the temperature of the secondary battery 2 is equal to or lower than a threshold A2 that is a second threshold (step S38). When the temperature of the secondary battery 1 exceeds the threshold value A2 (step S38, No), the process of step S38 is repeated. If the temperature of the secondary battery 1 is equal to or lower than the second threshold value A2 (step S38, Yes), the cooling operation is stopped (step S39). Thereafter, it is determined whether or not the normal state is maintained (step S44). If the normal state is continued, the process returns to the first determination process (step S35).

二次電池1の温度が閾値A1未満の場合には(ステップS35、No)、二次電池2の温度が第3の閾値である閾値B1以下であるか否かを判定する第3の判定処理を行う(ステップS40)。
二次電池2の温度が閾値B1より大きい場合には(ステップS40、No)、第1の判定処理を再度行う(ステップS35)。
二次電池1の温度が閾値B1以下の場合には(ステップS40、Yes)、温度検出部11が検出した温度に基づき加熱用弁を開口(ステップS37)し、二次電池1を加熱する。
次に、二次電池1の温度が第4の閾値である閾値B2以上であるか否かを判定する第4の判定処理を行う(ステップS42)。二次電池1の温度が閾値B2未満の場合には(ステップS42、No)、ステップS42の処理を繰り返す。二次電池1の温度が第4の閾値である閾値B2以上(ステップS42、Yes)であれば、加熱用弁8を閉口し加熱動作を停止する(ステップS43)。
その後、通常状態であるか否かを判定(ステップS44)し、通常状態が終了であると判定すると、動作は終了(ステップS45)となる。
When the temperature of the secondary battery 1 is less than the threshold value A1 (No in step S35), a third determination process for determining whether or not the temperature of the secondary battery 2 is equal to or lower than the threshold value B1 that is the third threshold value. Is performed (step S40).
When the temperature of the secondary battery 2 is higher than the threshold value B1 (No at Step S40), the first determination process is performed again (Step S35).
When the temperature of the secondary battery 1 is equal to or lower than the threshold B1 (step S40, Yes), the heating valve is opened based on the temperature detected by the temperature detection unit 11 (step S37), and the secondary battery 1 is heated.
Next, a fourth determination process is performed to determine whether or not the temperature of the secondary battery 1 is equal to or higher than a threshold value B2 that is a fourth threshold value (step S42). When the temperature of the secondary battery 1 is less than the threshold value B2 (No at Step S42), the process at Step S42 is repeated. If the temperature of the secondary battery 1 is equal to or higher than the fourth threshold value B2 (step S42, Yes), the heating valve 8 is closed and the heating operation is stopped (step S43).
Thereafter, it is determined whether or not the normal state is reached (step S44). If it is determined that the normal state is the end, the operation is ended (step S45).

以上のように、二次電池1の温度に応じて冷却動作及び加熱動作を行うことにより、二次電池1を適正温度に保つため、寿命劣化の進行を抑制することが可能となり、長寿命化による二次電池1の交換頻度が減り、交換費用削減、即ちコスト削減を図ることができる。また、交換頻度の減少により、使用者の使い勝手が向上する。   As described above, by performing the cooling operation and the heating operation according to the temperature of the secondary battery 1, the secondary battery 1 can be maintained at an appropriate temperature, so that it is possible to suppress the progress of the life deterioration, and the life extension. Thus, the replacement frequency of the secondary battery 1 is reduced, and the replacement cost can be reduced, that is, the cost can be reduced. In addition, the convenience of the user is improved by reducing the replacement frequency.

実施の形態2.
図4を参照して、本発明の実施の形態2について説明する。
図4は、本発明に係る実施の形態2における電力供給システムの構成図である。
実施の形態1と異なる構成は、強制冷却手段の具体的な構成である強制冷却部13を備えることである。
図4において、冷却ファン12の最大風量での冷却で、二次電池1が設定時間内に閾値A2まで低下しない場合、温度制御部9は強制冷却部13を動作させ、二次電池1の温度を低下させる構成である。強制冷却部13は、例えばペルチェ素子による外気の冷却であり、外気温(例えば37℃)を例えば30℃にまで低下させた冷却風を、冷却ファン12によって二次電池1に送風することで、一層の温度低下を実現させる。尚、ペルチェ素子の発熱は、電力供給システム100の外に排熱する。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a configuration diagram of the power supply system according to the second embodiment of the present invention.
The configuration different from the first embodiment is that a forced cooling unit 13 that is a specific configuration of the forced cooling means is provided.
In FIG. 4, when the secondary battery 1 is not lowered to the threshold value A2 within the set time by cooling with the maximum air volume of the cooling fan 12, the temperature control unit 9 operates the forced cooling unit 13 and the temperature of the secondary battery 1 is reached. It is the structure which lowers. The forced cooling unit 13 is, for example, cooling of the outside air by a Peltier element, and the cooling fan 12 blows the cooling air whose outside air temperature (for example, 37 ° C.) is reduced to, for example, 30 ° C. to the secondary battery 1. A further temperature reduction is realized. The heat generated by the Peltier element is exhausted outside the power supply system 100.

強制冷却部13は、外気温より低い温度の空気を冷却ファン12に供給する構成であり、外気温で送風される空気によって、二次電池1の温度を適正な温度にまで冷却できないときに作動させる。このため、真夏など、外気温が高い時にも二次電池1の温度を適正に保つことが可能となり、従来より確実に二次電池1の寿命劣化の進行を抑制することができる。   The forced cooling unit 13 is configured to supply air having a temperature lower than the outside air temperature to the cooling fan 12 and operates when the temperature of the secondary battery 1 cannot be cooled to an appropriate temperature by the air blown at the outside air temperature. Let For this reason, it becomes possible to keep the temperature of the secondary battery 1 appropriate even when the outside air temperature is high, such as midsummer, and the progress of the deterioration of the life of the secondary battery 1 can be suppressed more reliably than before.

つぎに、実施の形態2に係る電力システムにおける二次電池の冷却及び加熱時の動作を説明する。
図5は、実施の形態2における電力供給システムの動作を示すフローチャートである。以下の説明では、実施の形態1のフローチャートと異なる箇所を主に説明する。
図5において、二次電池1の温度が閾値A2以下であるか否かを判定(ステップS38、No)後、二次電池1の冷却動作が設定時間を経過した場合(ステップS46、Yes)に強制冷却部13を動作(ステップS47)させ、二次電池1を冷却する動作になる。二次電池1の温度が閾値A2以下(ステップS38、Yes)の場合、冷却動作を停止する。
Next, operations during cooling and heating of the secondary battery in the power system according to Embodiment 2 will be described.
FIG. 5 is a flowchart showing the operation of the power supply system in the second embodiment. In the following description, a different part from the flowchart of Embodiment 1 is mainly demonstrated.
In FIG. 5, after determining whether or not the temperature of the secondary battery 1 is equal to or lower than the threshold value A2 (step S38, No), the cooling operation of the secondary battery 1 has passed the set time (step S46, Yes). The forced cooling unit 13 is operated (step S47), and the secondary battery 1 is cooled. When the temperature of the secondary battery 1 is equal to or lower than the threshold value A2 (step S38, Yes), the cooling operation is stopped.

実施の形態3.
図6を参照して、本発明の実施の形態3ついて説明する。
図6は、本発明に係る実施の形態3における電力供給システムの構成図である。この構成図は、電力供給システムを設置した状態を模式的に示している。
実施の形態3は、実施の形態1及び2と冷却用風路の構成が異なっている。電力供給システム100内の内部発熱体としては、電力変換回路3、制御電源5、及び二次電池1があり、実施の形態1及び2では、二次電池1を冷却及び加熱する構成を説明した。実施の形態3では、電力供給システム100内の上述の内部発熱体と二次電池1を冷却する風路構成について説明する。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a configuration diagram of the power supply system according to the third embodiment of the present invention. This configuration diagram schematically shows a state in which the power supply system is installed.
The third embodiment is different from the first and second embodiments in the configuration of the cooling air passage. As internal heating elements in the power supply system 100, there are a power conversion circuit 3, a control power source 5, and a secondary battery 1. In the first and second embodiments, the configuration for cooling and heating the secondary battery 1 has been described. . In the third embodiment, an air path configuration for cooling the internal heating element and the secondary battery 1 in the power supply system 100 will be described.

図6において、電力供給システム100を収納する筐体50は支持部51を備えており、この支持部51が筐体50と設置面52との間に配置される。
第1風路40は内部発熱体を冷却するための外気を導入する風路であり、図6に筐体50の下端から吸気し、上端から排気する構成を示しているが、この構成に限定されるものではない。尚、矢印60が示す方向が筐体50の上方向を示す。
一方、第1風路40とは別に、二次電池1の近傍に第2風路41を形成し二次電池1を冷却する。この第2風路41は、第1風路40と同様の筐体50の下端からの吸気とする必要はなく、筐体50の上端からの吸気でも構わない。その際は、第1風路40の排気を第2風路41が吸気として取り込まないような、ショートサイクル防止のための構造設計を留意すればよい。
In FIG. 6, the housing 50 that houses the power supply system 100 includes a support portion 51, and the support portion 51 is disposed between the housing 50 and the installation surface 52.
The first air passage 40 is an air passage for introducing outside air for cooling the internal heating element, and FIG. 6 shows a configuration in which air is sucked from the lower end of the housing 50 and exhausted from the upper end, but this configuration is limited. Is not to be done. Note that the direction indicated by the arrow 60 indicates the upward direction of the housing 50.
On the other hand, a second air passage 41 is formed in the vicinity of the secondary battery 1 separately from the first air passage 40 to cool the secondary battery 1. The second air passage 41 does not need to be intake air from the lower end of the housing 50 similar to the first air passage 40, and may be intake air from the upper end of the housing 50. In that case, it is only necessary to pay attention to a structural design for preventing a short cycle so that the second air passage 41 does not take in the exhaust air from the first air passage 40 as intake air.

第2風路41は、二次電池1を冷却するための専用風路としているため、第1風路40の構成を考慮することなく電力供給システム100内に二次電池1を配置することが可能になる。例えば、第2風路41を筐体50の上端からの吸気とすれば、二次電池1交換時のアクセスが容易となるように二次電池1を電力供給システム100の筐体50の上部に配置することが可能になり、二次電池1交換時の施工性向上を図ることができる。   Since the second air passage 41 is a dedicated air passage for cooling the secondary battery 1, the secondary battery 1 can be arranged in the power supply system 100 without considering the configuration of the first air passage 40. It becomes possible. For example, if the second air passage 41 is sucked from the upper end of the casing 50, the secondary battery 1 is placed on the upper part of the casing 50 of the power supply system 100 so that access when the secondary battery 1 is replaced is easy. Therefore, it is possible to improve the workability when replacing the secondary battery 1.

以上のように、電力供給システム100の内部の第1風路40とは別に、二次電池1を冷却するための専用の第2風路41を設けることで、第2風路41の吸気風は必ず外気温になる。この吸気風は、電力供給システム100内の発熱による温度上昇の影響を受けないので、筐体50内の温度より低温を維持できる。このため、二次電池1の効率的な冷却を実現することが可能となる。
また、電力供給システム100内部の第1風路40と関係なく二次電池1を配置することができるため、二次電池1を交換する時の施工性を向上する等の内部配置にすることが可能となる。
As described above, by providing the dedicated second air passage 41 for cooling the secondary battery 1 separately from the first air passage 40 inside the power supply system 100, the intake air in the second air passage 41 is provided. Will always be outside temperature. Since the intake air is not affected by the temperature rise due to heat generation in the power supply system 100, the intake air can be kept at a lower temperature than the temperature in the housing 50. For this reason, it is possible to realize efficient cooling of the secondary battery 1.
Moreover, since the secondary battery 1 can be arrange | positioned irrespective of the 1st air path 40 inside the electric power supply system 100, it is set as internal arrangement | positioning etc. which improve the workability | operativity when replacing the secondary battery 1. It becomes possible.

さらに、上述した二次電池1を冷却する風路構成は、二次電池1の温度上昇を低減するので、寿命劣化の進行を抑制できる。例えば、電力供給システム100の製品寿命15年に対し、二次電池1の交換が3回から2回、又は2回から0回に削減できる。このように、二次電池1の交換頻度を下げることが可能となり、交換費用を削減する効果がある。   Furthermore, since the air path configuration for cooling the secondary battery 1 described above reduces the temperature rise of the secondary battery 1, it is possible to suppress the progress of life deterioration. For example, the replacement of the secondary battery 1 can be reduced from 3 times to 2 times or from 2 times to 0 times with respect to the product life of 15 years of the power supply system 100. As described above, the replacement frequency of the secondary battery 1 can be reduced, and the replacement cost can be reduced.

尚、上記の実施例では、二次電池1の冷却に外気を取り込む気体流路を設ける構成としたが、その限りではなく、冷却方式として水冷式を用いても構わない。水冷式による冷却の場合は、二次電池1の温度に応じて水流(水量)を可変させる制御を行う。   In the above-described embodiment, the gas flow path for taking in the outside air is provided for cooling the secondary battery 1. However, the present invention is not limited to this, and a water-cooled type may be used as the cooling method. In the case of cooling by the water cooling method, control is performed to vary the water flow (water amount) according to the temperature of the secondary battery 1.

また、本発明は、上述した実施の形態に限定されることはなく、本発明の主旨を逸脱しない範囲で、種々に変形することが可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

1 二次電池、2 ダイオード、3 電力変換回路、4 整流回路、5 制御電源、6 バッテリ充電回路、7 制御負荷、8 加熱用弁、9 温度制御部、10 放熱部、11 温度検出部、12 冷却ファン、13 強制冷却部、20 主回路、21 二次電池温度調節部、30 加熱用風路、31 冷却用風路、40 第1風路、41 第2風路、50 筐体、51 支持部、52 設置面、60 矢印、100 電力供給システム、200 系統電源、300 直流電源、400 宅内負荷 DESCRIPTION OF SYMBOLS 1 Secondary battery, 2 Diode, 3 Power converter circuit, 4 Rectifier circuit, 5 Control power supply, 6 Battery charging circuit, 7 Control load, 8 Heating valve, 9 Temperature control part, 10 Heat radiation part, 11 Temperature detection part, 12 Cooling fan, 13 forced cooling section, 20 main circuit, 21 secondary battery temperature control section, 30 heating air path, 31 cooling air path, 40 first air path, 41 second air path, 50 housing, 51 support Part, 52 installation surface, 60 arrows, 100 power supply system, 200 system power supply, 300 DC power supply, 400 residential load

Claims (10)

外部電源からの電力で充電され、制御負荷に電力を供給する蓄電手段を備える電力供給システムであって、
前記蓄電手段を冷却する冷却手段と、
前記蓄電手段を加熱する加熱手段と、
前記蓄電手段の温度が第1温度より高い場合は前記冷却手段を動作させ、第2温度より低い場合は前記加熱手段を動作させる温度制御手段と、を備える
ことを特徴とする電力供給システム。
A power supply system that is charged with power from an external power source and includes power storage means for supplying power to a control load,
Cooling means for cooling the power storage means;
Heating means for heating the power storage means;
And a temperature control unit that operates the cooling unit when the temperature of the power storage unit is higher than the first temperature, and operates the heating unit when the temperature is lower than the second temperature.
前記蓄電手段の温度を検出する温度検出手段を備える
ことを特徴とする請求項1に記載の電力供給システム。
The power supply system according to claim 1, further comprising a temperature detection unit that detects a temperature of the power storage unit.
前記冷却手段は、前記蓄電手段の発熱を放熱するヒートシンクと、前記ヒートシンクを冷却する冷却ファンとで構成される
ことを特徴とする請求項1又は2に記載の電力供給システム。
The power supply system according to claim 1, wherein the cooling unit includes a heat sink that dissipates heat generated by the power storage unit and a cooling fan that cools the heat sink.
前記冷却手段は、導入する外気の温度を下げる強制冷却手段をさらに有し、前記強制冷却手段の風下に前記冷却ファンが配置される
ことを特徴とする請求項1から3のいずれか1項に記載の電力供給システム。
4. The cooling device according to claim 1, wherein the cooling unit further includes a forced cooling unit that lowers a temperature of the introduced outside air, and the cooling fan is disposed leeward of the forced cooling unit. 5. The power supply system described.
前記外部電源が供給する直流電力を交流電力に変換する電力変換手段と、
前記電力変換手段又は前記外部電源が供給する交流電力を整流する整流手段と、
前記整流手段の出力を降圧して前記制御負荷に供給する制御電源と、
前記整流手段の出力を降圧して前記蓄電手段を充電するバッテリ充電手段と、をさらに備える電力供給システムにおいて、
前記加熱手段は、前記電力変換手段、前記制御電源、及び前記バッテリ充電手段の少なくとも一つからの発熱で加熱された空気を前記蓄電手段に送風する加熱用風路と、
前記加熱用風路内の風量を調整する風量調整手段と、を備える
ことを特徴とする請求項1から4のいずれか1項に記載の電力供給システム。
Power conversion means for converting DC power supplied by the external power source into AC power;
Rectifying means for rectifying AC power supplied from the power conversion means or the external power source;
A control power supply for stepping down the output of the rectifying means and supplying it to the control load;
In a power supply system further comprising: battery charging means for stepping down the output of the rectifying means and charging the power storage means;
The heating means includes a heating air passage that blows air heated by heat generated from at least one of the power conversion means, the control power source, and the battery charging means to the power storage means,
The power supply system according to any one of claims 1 to 4, further comprising: an air volume adjusting unit that adjusts an air volume in the heating air path.
前記温度制御手段は、前記温度検出手段で検出した温度に応じて、前記風量調整手段を制御する
ことを特徴とする請求項5に記載の電力供給システム。
The power supply system according to claim 5, wherein the temperature control unit controls the air volume adjustment unit according to the temperature detected by the temperature detection unit.
前記温度制御手段は、前記温度検出手段で検出した温度に応じて、前記冷却ファンの風量を調整する
ことを特徴とする請求項2から6のいずれか1項に記載の電力供給システム。
The power supply system according to any one of claims 2 to 6, wherein the temperature control unit adjusts an air volume of the cooling fan according to a temperature detected by the temperature detection unit.
前記温度制御手段は、前記温度検出手段で検出した温度に応じて、前記バッテリ充電手段の出力電圧を調整する
ことを特徴とする請求項2から7のいずれか1項に記載の電力供給システム。
The power supply system according to any one of claims 2 to 7, wherein the temperature control unit adjusts an output voltage of the battery charging unit according to a temperature detected by the temperature detection unit.
前記温度検出手段は、サーミスター又は赤外線センサーで構成される
ことを特徴とする請求項2から8のいずれか1項に記載の電力供給システム。
The power supply system according to any one of claims 2 to 8, wherein the temperature detection unit includes a thermistor or an infrared sensor.
前記冷却手段は、水冷式で構成される
ことを特徴とする請求項1から9のいずれか1項に記載の電力供給システム。
The power supply system according to any one of claims 1 to 9, wherein the cooling unit is configured by a water cooling method.
JP2015203451A 2015-10-15 2015-10-15 Power supply system Active JP6196650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203451A JP6196650B2 (en) 2015-10-15 2015-10-15 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203451A JP6196650B2 (en) 2015-10-15 2015-10-15 Power supply system

Publications (2)

Publication Number Publication Date
JP2017076530A true JP2017076530A (en) 2017-04-20
JP6196650B2 JP6196650B2 (en) 2017-09-13

Family

ID=58550335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203451A Active JP6196650B2 (en) 2015-10-15 2015-10-15 Power supply system

Country Status (1)

Country Link
JP (1) JP6196650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106639A1 (en) * 2019-11-26 2021-06-03 ネクストエナジー・アンド・リソース株式会社 Temperature control device and electricity storage device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767209A (en) * 1993-08-20 1995-03-10 Mitsubishi Motors Corp Electric automobile
JP2000021457A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Capacitor system
JP2001025176A (en) * 1999-07-05 2001-01-26 Kobe Steel Ltd Uninterruptible power facility
JP2001143769A (en) * 1999-11-18 2001-05-25 Hitachi Ltd Cell module and power supply
JP2006213210A (en) * 2005-02-04 2006-08-17 Valeo Thermal Systems Japan Corp On-vehicle battery cooling device
JP2007106316A (en) * 2005-10-14 2007-04-26 Toyota Motor Corp Cooling structure of electricity storage device
JP2008204992A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Electric storage device
JP2008218352A (en) * 2007-03-07 2008-09-18 Nec Corp Uninterruptible power supply unit, method for adjusting battery temperature used for same, and battery temperature adjusting program
JP2011109783A (en) * 2009-11-16 2011-06-02 Panasonic Electric Works Co Ltd Power distribution system
JP2011187227A (en) * 2010-03-05 2011-09-22 Sony Corp Battery pack, electronic equipment, equipment system, control method for battery pack cooling unit, and program
US20120085109A1 (en) * 2010-10-07 2012-04-12 Eaton Corporation Contained UPS System with Temperature Control
JP2013145689A (en) * 2012-01-13 2013-07-25 Toyota Motor Corp Battery pack for vehicle and vehicle
JP2013152821A (en) * 2012-01-24 2013-08-08 Denso Corp Battery temperature control apparatus
JP2013187040A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Battery and manufacturing method thereof
JP2013191285A (en) * 2012-03-12 2013-09-26 Toyota Industries Corp Battery temperature raising device
JP2014107207A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Power supply device
JP2014117038A (en) * 2012-12-07 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply unit
JPWO2014049662A1 (en) * 2012-09-28 2016-08-18 パナソニックIpマネジメント株式会社 Power storage system

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767209A (en) * 1993-08-20 1995-03-10 Mitsubishi Motors Corp Electric automobile
JP2000021457A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Capacitor system
JP2001025176A (en) * 1999-07-05 2001-01-26 Kobe Steel Ltd Uninterruptible power facility
JP2001143769A (en) * 1999-11-18 2001-05-25 Hitachi Ltd Cell module and power supply
JP2006213210A (en) * 2005-02-04 2006-08-17 Valeo Thermal Systems Japan Corp On-vehicle battery cooling device
JP2007106316A (en) * 2005-10-14 2007-04-26 Toyota Motor Corp Cooling structure of electricity storage device
JP2008204992A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Electric storage device
JP2008218352A (en) * 2007-03-07 2008-09-18 Nec Corp Uninterruptible power supply unit, method for adjusting battery temperature used for same, and battery temperature adjusting program
JP2011109783A (en) * 2009-11-16 2011-06-02 Panasonic Electric Works Co Ltd Power distribution system
JP2011187227A (en) * 2010-03-05 2011-09-22 Sony Corp Battery pack, electronic equipment, equipment system, control method for battery pack cooling unit, and program
US20120085109A1 (en) * 2010-10-07 2012-04-12 Eaton Corporation Contained UPS System with Temperature Control
JP2013145689A (en) * 2012-01-13 2013-07-25 Toyota Motor Corp Battery pack for vehicle and vehicle
JP2013152821A (en) * 2012-01-24 2013-08-08 Denso Corp Battery temperature control apparatus
JP2013187040A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Battery and manufacturing method thereof
JP2013191285A (en) * 2012-03-12 2013-09-26 Toyota Industries Corp Battery temperature raising device
JPWO2014049662A1 (en) * 2012-09-28 2016-08-18 パナソニックIpマネジメント株式会社 Power storage system
JP2014107207A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Power supply device
JP2014117038A (en) * 2012-12-07 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106639A1 (en) * 2019-11-26 2021-06-03 ネクストエナジー・アンド・リソース株式会社 Temperature control device and electricity storage device

Also Published As

Publication number Publication date
JP6196650B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
CN105485858B (en) The control method and air conditioner of air conditioner
JP7030850B2 (en) Air conditioner
US20120305045A1 (en) Thermo-electric generator system
KR101466766B1 (en) Photovoltaic system equipped with inverter having improved performance and elongated lifespan
JP6300785B2 (en) Inverter system
GB2562532B (en) Heat and power generation and storage system
JP6196650B2 (en) Power supply system
US20110204853A1 (en) Power storage system
CN109983836B (en) Electric radiator type heating device comprising a voltage converter
CN107317388B (en) Method for controlling UPS input current and UPS controller
KR101878033B1 (en) Constant voltage control method and system of fuel cell vehicle
JP6047929B2 (en) Battery control device
JP2016146737A (en) Cooling apparatus
JP2009188159A (en) Power converter
JP4208792B2 (en) Cogeneration system
CN116317066B (en) Photovoltaic energy storage device and charge and discharge control method
JP2011087407A (en) Vehicle controller and vehicle control method
JP6755367B2 (en) Air conditioner
KR101458511B1 (en) Co-generation system and a method of the same
JP4798597B2 (en) Cogeneration system
JP2014073044A (en) Power conditioner and power storage system having the same
JP2012064832A (en) Photovoltaic heat utilization system
JP2013200979A (en) Control device
JP6096828B2 (en) Power supply system
KR101523514B1 (en) Photovoltaic system with properties of low noise, low vibration and long lifespan applied with high-performance heat sinking system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250