JP2017075863A5 - - Google Patents

Download PDF

Info

Publication number
JP2017075863A5
JP2017075863A5 JP2015203586A JP2015203586A JP2017075863A5 JP 2017075863 A5 JP2017075863 A5 JP 2017075863A5 JP 2015203586 A JP2015203586 A JP 2015203586A JP 2015203586 A JP2015203586 A JP 2015203586A JP 2017075863 A5 JP2017075863 A5 JP 2017075863A5
Authority
JP
Japan
Prior art keywords
target
target surface
unit
small unmanned
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015203586A
Other languages
Japanese (ja)
Other versions
JP6375503B2 (en
JP2017075863A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015203586A priority Critical patent/JP6375503B2/en
Priority claimed from JP2015203586A external-priority patent/JP6375503B2/en
Priority to PCT/JP2016/079910 priority patent/WO2017065102A1/en
Publication of JP2017075863A publication Critical patent/JP2017075863A/en
Publication of JP2017075863A5 publication Critical patent/JP2017075863A5/ja
Application granted granted Critical
Publication of JP6375503B2 publication Critical patent/JP6375503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (10)

複数の回転翼と、該複数の回転翼による飛行を制御する制御部と、を有する小型無人飛行機と、
前記小型無人飛行機に取り付けられ、面状の検査対象である対象面の状態を非接触にて検査する検査部と、
前記対象面までの距離である対象距離を複数の計測方向に対して計測する測距部と、を備える飛行型検査装置において、
前記制御部は、前記測距部によって計測された前記対象距離の情報に基づいて、前記検査部の前記対象面に対する角度および該角度における前記対象面からの距離よりなる対面パラメータを推定する推定手段を備え、
前記飛行型検査装置は、前記推定手段における推定結果に基づいて、前記検査部の前記対象面に対する前記対面パラメータを一定に維持しながら、前記対象面に沿って前記小型無人飛行機を移動させ、前記対象面の複数の位置に対して前記検査部による検査を行い、
第一の推定制御および第二の推定制御のいずれか少なくとも一方を実行することを特徴とする飛行型検査装置。
前記第一の推定制御においては、前記制御部が、前記対象面の第一の部位に対する前記検査部の前記対面パラメータを一定に維持する第一の制御を行いながら、前記小型無人飛行機を前記第一の部位に平行に移動させている状態において、
前記推定手段は、前記計測方向の関数としての前記対象距離に2つの極小点が存在し、該2つの極小点のうち前記小型無人飛行機の移動方向前方の計測方向に位置する極小点における対象距離が、前記小型無人飛行機の移動に伴って小さくなるのを検出すると、前記移動方向の前方に、前記小型無人飛行機に近づく方向に面を向けた第二の部位が前記対象面に存在すると推定し、
前記制御部は、前記2つの極小点における前記対象距離が等しくなった時に、前記第二の部位に対する前記検査部の前記対面パラメータを一定に維持する第二の制御に、前記第一の制御から移行する。
前記第二の推定制御においては、前記制御部が、前記対象面の第三の部位に対する前記検査部の前記対面パラメータを一定に維持する第三の制御を行いながら、前記小型無人飛行機を前記第三の部位に平行に移動させている状態において、
前記推定手段は、前記計測方向の関数としての前記対象距離が無限大となる挙動を検出すると、前記小型無人飛行機の移動方向の前方に、前記小型無人飛行機から離れる方向に面を向けた第四の部位が前記対象面に存在すると推定し、
前記制御部は、前記対象距離が無限大となる計測方向よりも前記移動方向後方の計測方向において、極小点を挟んで前記対象距離が対称となった状態を検出した時に、前記第四の部位に対する前記検査部の前記対面パラメータを一定に維持する第四の制御に、前記第三の制御から移行する。
A small unmanned aerial vehicle having a plurality of rotor blades and a control unit that controls flight by the plurality of rotor blades;
An inspection unit that is attached to the small unmanned aerial vehicle and inspects the state of the target surface that is a planar inspection target in a non-contact manner,
A flight type inspection apparatus comprising: a distance measuring unit that measures a target distance that is a distance to the target surface in a plurality of measurement directions;
The control unit is configured to estimate a facing parameter including an angle of the inspection unit with respect to the target surface and a distance from the target surface at the angle based on information on the target distance measured by the distance measuring unit. With
The flight type inspection apparatus moves the small unmanned airplane along the target surface while maintaining the facing parameter with respect to the target surface of the inspection unit constant based on the estimation result in the estimation unit, There line inspection by the inspection unit for a plurality of locations of the target surface,
A flight type inspection apparatus that executes at least one of first estimation control and second estimation control .
In the first estimation control, the control unit performs the first control to keep the facing parameter of the inspection unit constant with respect to the first part of the target surface, and the small unmanned airplane is In a state where it is moved parallel to one part,
The estimation means includes two minimum points in the target distance as a function of the measurement direction, and the target distance at the minimum point located in the measurement direction ahead of the moving direction of the small unmanned airplane among the two minimum points. However, when the small unmanned airplane is detected to decrease as the small unmanned airplane moves, it is estimated that there is a second part on the target surface in the direction of approaching the small unmanned airplane in front of the moving direction. ,
When the target distance at the two local minimum points becomes equal, the control unit maintains the facing parameter of the inspection unit with respect to the second part from the first control. Transition.
In the second estimation control, the control unit performs the third control of maintaining the facing parameter of the inspection unit with respect to the third part of the target surface, and the small unmanned airplane is In the state of moving parallel to the three parts,
When the estimation means detects a behavior in which the target distance as an infinite function is infinite, a fourth direction in which a surface is directed in a direction away from the small unmanned airplane in front of the moving direction of the small unmanned airplane. Is estimated to exist on the target surface,
The control unit detects the state in which the target distance is symmetric with respect to a minimum point in the measurement direction behind the movement direction with respect to the measurement direction in which the target distance is infinite. The process shifts from the third control to the fourth control for maintaining the facing parameter of the inspection unit to be constant.
前記測距部は、測距軸に垂直に複数の計測方向に対して前記対象距離を計測し、
前記推定手段は、前記検査部の前記対象面に対する角度として、前記測距軸に垂直な面内における前記検査部の角度を推定することを特徴とする請求項1に記載の飛行型検査装置。
The distance measuring unit measures the target distance in a plurality of measurement directions perpendicular to the distance measuring axis,
The flight type inspection apparatus according to claim 1, wherein the estimation unit estimates an angle of the inspection unit in a plane perpendicular to the distance measuring axis as an angle of the inspection unit with respect to the target surface.
前記測距軸は、前記小型無人飛行機のヨー軸上または該ヨー軸と平行に設けられることを特徴とする請求項2に記載の飛行型検査装置。   The flight type inspection apparatus according to claim 2, wherein the distance measuring axis is provided on a yaw axis of the small unmanned airplane or in parallel with the yaw axis. 前記制御部は、外部からの信号に基づいて、前記小型無人飛行機の位置および姿勢を変更することができ、前記検査部による検査を行う間は、前記小型無人飛行機の前記対象面に対する前記対面パラメータの制御を、前記外部からの信号に基づかず、前記推定手段における推定結果に基づいて行うとともに、前記小型無人飛行機の前記対象面に沿った位置の制御を、前記外部からの信号に基づいて行うことを特徴とする請求項1から3のいずれか1項に記載の飛行型検査装置。   The control unit can change the position and orientation of the small unmanned aerial vehicle based on a signal from the outside, and during the inspection by the inspection unit, the facing parameter for the target surface of the small unmanned aircraft Is controlled based on the estimation result of the estimation means, not based on the signal from the outside, and the position of the small unmanned airplane along the target surface is controlled based on the signal from the outside The flight type inspection apparatus according to any one of claims 1 to 3, wherein 前記測距部は、前記小型無人飛行機に回転可能に取り付けられており、該回転によって前記対象距離を前記複数の計測方向に対して計測することを特徴とする請求項1から4のいずれか1項に記載の飛行型検査装置。   The distance measuring unit is rotatably attached to the small unmanned aerial vehicle, and measures the target distance in the plurality of measurement directions by the rotation. The flight type inspection apparatus according to the item. 前記推定手段は、前記計測方向の関数としての前記対象距離が極小値をとる計測方向を、前記対象面に直交する面直方向であるとして、前記対面パラメータの推定を行うことを特徴とする請求項1から5のいずれか1項に記載の飛行型検査装置。   The estimation means estimates the facing parameter, assuming that a measurement direction in which the target distance as a function of the measurement direction takes a minimum value is a perpendicular direction perpendicular to the target surface. Item 6. The flight type inspection apparatus according to any one of Items 1 to 5. 前記推定手段は、前記対象距離をL、前記対象面に直交する面直方向を基準とした前記計測方向をθ、前記面直方向に沿った前記測距部から前記対象面までの距離をL0として、L=L0/cosθの関数形を用いて、前記対面パラメータの推定を行うことを特徴とする請求項1から6のいずれか1項に記載の飛行型検査装置。 The estimating means sets the target distance to L, the measurement direction with reference to the plane perpendicular direction orthogonal to the target plane as θ, and the distance from the distance measuring unit along the plane perpendicular direction to the target plane as L0. The flight type inspection apparatus according to claim 1, wherein the facing parameter is estimated using a function form of L = L 0 / cos θ. 前記測距部は、3つ以上の計測方向に対して前記対象距離を計測し、前記推定手段は、一部の計測方向における対象距離と計測方向との間の関係が、該一部以外の計測方向における該関係から推定される関数形から逸脱していれば、該一部の計測方向の計測結果を無視して前記対面パラメータの推定を行うことを特徴とする請求項1から7のいずれか1項に記載の飛行型検査装置。   The distance measuring unit measures the target distance with respect to three or more measurement directions, and the estimation unit has a relationship between the target distance and the measurement direction in some measurement directions other than the part. 8. The face-to-face parameter is estimated by ignoring the measurement result in the part of the measurement direction if it deviates from the function form estimated from the relationship in the measurement direction. The flight type inspection apparatus according to claim 1. 請求項1からのいずれか1項に記載の飛行型検査装置を用いて面状の検査対象である対象面の状態を検査することを特徴とする検査方法。 Inspection method characterized by checking the status of the target surface is a planar test object using a flying type testing apparatus according to any one of claims 1 to 8. 前記対象面に対して固定され、前記小型無人飛行機よりも離れた位置から前記対象面を撮影する撮影手段と、前記撮影手段に撮影された前記対象面の撮影像を基に、前記小型無人飛行機の位置および姿勢を制御することができる外部制御手段と、を用い、
前記制御部によって、前記検査部の前記対象面に対する前記対面パラメータを一定に維持しながら、前記外部制御手段によって、前記対象面に沿って前記小型無人飛行機を移動させ、前記対象面の検査を行うことを特徴とする請求項に記載の検査方法。
The small unmanned aerial vehicle is based on a photographing unit that is fixed with respect to the target surface and that photographs the target surface from a position farther than the small unmanned airplane, and a photographed image of the target surface photographed by the photographing unit. Using external control means capable of controlling the position and posture of
The external control means moves the small unmanned airplane along the target surface and inspects the target surface while the control unit maintains the facing parameter of the inspection unit with respect to the target surface constant. The inspection method according to claim 9 .
JP2015203586A 2015-10-15 2015-10-15 Flight type inspection apparatus and inspection method Active JP6375503B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015203586A JP6375503B2 (en) 2015-10-15 2015-10-15 Flight type inspection apparatus and inspection method
PCT/JP2016/079910 WO2017065102A1 (en) 2015-10-15 2016-10-07 Flying-type inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203586A JP6375503B2 (en) 2015-10-15 2015-10-15 Flight type inspection apparatus and inspection method

Publications (3)

Publication Number Publication Date
JP2017075863A JP2017075863A (en) 2017-04-20
JP2017075863A5 true JP2017075863A5 (en) 2018-04-26
JP6375503B2 JP6375503B2 (en) 2018-08-22

Family

ID=58518118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203586A Active JP6375503B2 (en) 2015-10-15 2015-10-15 Flight type inspection apparatus and inspection method

Country Status (2)

Country Link
JP (1) JP6375503B2 (en)
WO (1) WO2017065102A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441421B1 (en) * 2017-07-28 2018-12-19 株式会社TonTon External material inspection system
US10791275B2 (en) 2017-09-25 2020-09-29 The Boeing Company Methods for measuring and inspecting structures using cable-suspended platforms
US10788428B2 (en) * 2017-09-25 2020-09-29 The Boeing Company Positioning system for aerial non-destructive inspection
KR101956472B1 (en) * 2017-09-29 2019-03-15 경성대학교 산학협력단 Structure inspection apparatus and system for inspecting ballast tank
US20220019222A1 (en) * 2017-11-28 2022-01-20 Acsl Ltd. Unmanned Aerial Vehicle, Unmanned Aerial Vehicle Flight Control Device, Unmanned Aerial Vehicle Flight Control Method and Program
JP7012522B2 (en) * 2017-12-01 2022-01-28 三菱電機株式会社 Measurement system, measurement instruction device, and program
US20210061465A1 (en) * 2018-01-15 2021-03-04 Hongo Aerospace Inc. Information processing system
JP2021101494A (en) * 2018-03-28 2021-07-08 シャープ株式会社 Imaging device, imaging control device, imaging system, imaging device control method, imaging program, and recording medium
CN108846325A (en) * 2018-05-28 2018-11-20 广州极飞科技有限公司 Planing method, device, storage medium and the processor of target area operation
KR102234697B1 (en) * 2018-11-02 2021-04-02 광주과학기술원 Fish net surveillance apparatus using Remotely-Operated underwater Vehicle, controlling method of the same
CN111587382A (en) * 2018-12-18 2020-08-25 深圳市大疆创新科技有限公司 Laser measuring device and unmanned vehicles
JP7160666B2 (en) * 2018-12-26 2022-10-25 株式会社クボタ Inspection method, inspection device and aircraft
JP2020118641A (en) * 2019-01-28 2020-08-06 一般財団法人電力中央研究所 Multi-copter
CN109839954A (en) * 2019-02-22 2019-06-04 国家电网有限公司 A kind of multi-rotor unmanned aerial vehicle intelligent inspection system
KR102170907B1 (en) * 2019-05-09 2020-10-28 주식회사 이쓰리 Apparatus for measuring fine dust using unmanned aerial vehicle
WO2021010907A2 (en) * 2019-06-07 2021-01-21 Ptt Exploration And Production Public Company Limited A system for steady movement toward a curved wall of an unmanned aerial vehicle (uav) and method for movement toward said curved wall
JP6730763B1 (en) * 2019-10-25 2020-07-29 株式会社センシンロボティクス Flight body flight path creation method and management server
US11946771B2 (en) 2020-04-01 2024-04-02 Industrial Technology Research Institute Aerial vehicle and orientation detection method using same
TWI728770B (en) * 2020-04-01 2021-05-21 財團法人工業技術研究院 Aerial vehicle and orientation detection method using same
JP2021067670A (en) * 2020-06-30 2021-04-30 株式会社センシンロボティクス Method of creating flight route for flying object and management server
JPWO2022153390A1 (en) * 2021-01-13 2022-07-21
JPWO2022153391A1 (en) * 2021-01-13 2022-07-21
WO2022153392A1 (en) * 2021-01-13 2022-07-21 株式会社Acsl Self-position estimation system and method for uncrewed aircraft, uncrewed aircraft, program, and recording medium
CN114839196B (en) * 2022-07-01 2022-10-14 中国标准化研究院 System of non-contact quality measurement research method based on computer vision

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026097A (en) * 2001-07-17 2003-01-29 Yoshikazu Kikuoka Helicopter
JP2005289127A (en) * 2004-03-31 2005-10-20 Nagasaki Prefecture Posture and position controlling system and posture and position controlling device for flying device
AT507035B1 (en) * 2008-07-15 2020-07-15 Airbus Defence & Space Gmbh SYSTEM AND METHOD FOR AVOIDING COLLISION
GB0920636D0 (en) * 2009-11-25 2010-01-13 Cyberhawk Innovations Ltd Unmanned aerial vehicle
DE102011017564B4 (en) * 2011-04-26 2017-02-16 Airbus Defence and Space GmbH Method and system for inspecting a surface for material defects
US8818572B1 (en) * 2013-03-15 2014-08-26 State Farm Mutual Automobile Insurance Company System and method for controlling a remote aerial device for up-close inspection
JP5775632B2 (en) * 2014-09-16 2015-09-09 株式会社トプコン Aircraft flight control system

Similar Documents

Publication Publication Date Title
JP2017075863A5 (en)
JP6375503B2 (en) Flight type inspection apparatus and inspection method
EP3887859B1 (en) Automation methods for uav perching on pipes
EP3460392A3 (en) Positioning system for aerial non-destructive inspection
US9643736B1 (en) Systems and methods for landing lights
EP2818835B1 (en) Control surface calibration system
WO2015013418A3 (en) Method for processing feature measurements in vision-aided inertial navigation
WO2018236853A8 (en) 3-d image system for vehicle control
KR101705328B1 (en) A device for measuring the angular positions of rotorcraft blade element relative to a rotor hub, an associated rotor, and a corresponding measurement method
EP2772725A3 (en) Aerial Photographing System
JP2013186088A5 (en)
JP2015526726A (en) Wind vector estimation
Ho et al. Adaptive gain control strategy for constant optical flow divergence landing
JP2019536994A (en) Multi-copter wind speed measurement
KR101549526B1 (en) Ground effect test apparatus built-in surface collision protection function
JP2018020759A5 (en)
CN112712565A (en) Unmanned aerial vehicle winding positioning method for aircraft skin damage based on fusion of vision and IMU
Strydom et al. Uav guidance: a stereo-based technique for interception of stationary or moving targets
Dotenco et al. Autonomous approach and landing for a low-cost quadrotor using monocular cameras
Gibert et al. New pose estimation scheme in perspective vision system during civil aircraft landing
JP6200297B2 (en) Locating method and program
CN105444722A (en) Method for detecting changes of postures of platform
US9650137B2 (en) Movement detection of hanging loads
CN105675013B (en) Civil aircraft inertial navigation dynamic calibration method
KR101821992B1 (en) Method and apparatus for computing 3d position of target using unmanned aerial vehicles