JP2017075478A - Cavity filling detector - Google Patents

Cavity filling detector Download PDF

Info

Publication number
JP2017075478A
JP2017075478A JP2015203040A JP2015203040A JP2017075478A JP 2017075478 A JP2017075478 A JP 2017075478A JP 2015203040 A JP2015203040 A JP 2015203040A JP 2015203040 A JP2015203040 A JP 2015203040A JP 2017075478 A JP2017075478 A JP 2017075478A
Authority
JP
Japan
Prior art keywords
light
optical fiber
cavity
filling
incident end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015203040A
Other languages
Japanese (ja)
Other versions
JP6587346B2 (en
Inventor
真一 芥川
Shinichi Akutagawa
真一 芥川
山本 拓治
Takuji Yamamoto
拓治 山本
伊達 健介
Kensuke Date
健介 伊達
泰宏 横田
Yasuhiro Yokota
泰宏 横田
悠 小泉
Yu Koizumi
悠 小泉
厚 井本
Atsushi Imoto
厚 井本
剛幸 道上
Takeyuki Michigami
剛幸 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
KFC Ltd
Original Assignee
Kajima Corp
KFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, KFC Ltd filed Critical Kajima Corp
Priority to JP2015203040A priority Critical patent/JP6587346B2/en
Publication of JP2017075478A publication Critical patent/JP2017075478A/en
Application granted granted Critical
Publication of JP6587346B2 publication Critical patent/JP6587346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable secure confirmation of completion of filling with a filling material in filling an underground cavity whose inside is incapable of being viewed from the outside with the filling material, and implement excellent profitability and work efficiency.SOLUTION: A cavity filling detector 1 comprises: a light source unit 2 that is disposed outside a cavity to be filled with a filling material; a detection unit 3 disposed outside the cavity; a light transmission optical fiber 4 that has a light emission end 41 provided inside the cavity and transmits light from the light source unit 2; and a light reception optical fiber 5 that has a light incidence end 51 provided inside the cavity and transmits light received by the light incidence end 51 to the detection unit 3. The light emission end 41 of the light transmission optical fiber 4 and the light incidence end 51 of the light reception optical fiber 5 are arranged so that light emitted from the light emission end 41 is guided, with a constant path and a constant distance, to the light incidence end 51 apart from the light emission end 41. The detection unit 3 recognizably shows that light reception intensity of light input from the light reception optical fiber 5 has been equal to or lower than or lower than a set and stored threshold.SELECTED DRAWING: Figure 2

Description

本発明は、例えば既設トンネルの覆工背面に存在する空洞、トンネル構築時に移動式型枠の背面側に設けられる覆工コンクリート打設用の空洞、自然空洞、地盤沈下で形成された建物下の空洞等の各種地下空洞に充填材を充填する際に、空洞への充填材の充填状況を確認するための空洞充填検知装置に関する。   The present invention is, for example, a cavity existing on the backside of an existing tunnel, a cavity for placing concrete on the backside of a movable formwork at the time of tunnel construction, a natural cavity, a building under the ground subsidence The present invention relates to a cavity filling detection device for confirming a filling state of a filler into a cavity when filling various underground cavities such as a cavity with the filler.

従来、空洞への充填材の充填状況を確認するための装置として、特許文献1のトンネル覆工背面空洞充填確認装置がある。この装置は、セメントモルタルについて水分の誘電率を利用した静電容量式若しくはパルス反射波を用いるTDR方式の感知部、発泡ウレタンについて発泡時の圧力を感知する感知部と、感知部の感知を計測する記録装置を備えるものであり、感知部を一定の測定長を有するものとして上端を空洞の上端に接触させ、測定長の範囲内で連続的に充填完了までの状態を監視するものである。   Conventionally, there is a tunnel lining back surface cavity filling confirmation device of Patent Document 1 as a device for confirming a filling state of a filler into a cavity. This device measures capacitance of cement mortar using a capacitance type using a dielectric constant of moisture or a TDR type detection unit using pulsed reflected waves, a detection unit detecting foaming pressure for urethane foam, and measuring the detection of the detection unit. The sensor has a fixed measurement length, the upper end is brought into contact with the upper end of the cavity, and the state until filling is continuously monitored within the measurement length is monitored.

特開平11−287092号公報Japanese Patent Laid-Open No. 11-287092

ところで、特許文献1の装置は、静電容量式、TDR方式の感知部或いは圧力を感知する感知部と、記録装置に電気信号を送信する配線が必要な構造であるが、斯様な感知部や電気配線の構造は複雑で高コストのものとなる。そして、充填材の充填後にはこれらの構造を充填材内に残置せざるを得なくなるため、経済性に非常に劣るという問題がある。   By the way, the device of Patent Document 1 has a structure that requires a capacitance type or TDR type detection unit or a pressure detection unit, and a wiring for transmitting an electric signal to the recording device. And the structure of the electrical wiring is complicated and expensive. And after filling with a filler, since these structures must be left in the filler, there is a problem that the cost is very poor.

このような充填材に残置されることになる部分の費用抑制を図ることができる装置として、本願出願人は先に特願2014−153328(非公知文献)の装置を提案している。この装置は、送光用光ファイバーからトンネル空洞壁面に光を照射し、受光用光ファイバーでトンネル空洞壁面で反射された反射光を受光し、受光情報に応じて充填材の充填状況、充填高さを連続的に検知するものであり、送光用光ファイバーの側面に光漏れが生ずる開口部を設け、この開口部が充填材の充填で漸次遮蔽されるようにして、詳細な充填状況の変化を検知可能にしている。   As an apparatus capable of reducing the cost of the portion left in such a filler, the applicant of the present application has previously proposed an apparatus disclosed in Japanese Patent Application No. 2014-153328 (unknown document). This device irradiates the tunnel cavity wall surface with light from the optical fiber for light transmission, receives the reflected light reflected by the wall surface of the tunnel cavity with the optical fiber for light reception, and determines the filling status and filling height of the filler according to the received light information. Detects changes in the filling condition in detail by providing an opening where light leakage occurs on the side of the optical fiber for light transmission, and this opening is gradually shielded by filling with filler. It is possible.

しかしながら、送光用光ファイバーの側面の被覆を故意に破って一定の開口部を形成し、光が漏れるようにするには加工に手間がかかり、製造コストが高くなる。   However, it takes a lot of processing to make a certain opening by deliberately breaking the coating on the side surface of the optical fiber for light transmission, and the manufacturing cost increases.

また、充填材の充填高さの増加に応じて受光強度が増加し、最終段階で受光強度が0になって充填材の充填完了を検知する処理では、リアルタイムに充填状況をモニタリングしておかないと、充填材の充填高さが不十分で受光強度が少ないのか、充填完了で受光強度が少なくなっているのか分からない場合も生ずる。例えば既設トンネルの覆工背面空洞に充填材として可塑性材料を充填するケースでは、数分間で充填完了するわけではなく、施工翌日まで充填状況が変化し、最初に注入した材料が硬化してから未充填箇所への追加注入を翌日施すこともあり、ずっとモニタリングしているのは非現実的である。実際に空洞に充填材を充填する施工では、充填材の充填状況をリアルタイムで把握することよりも、確実に充填材の充填完了を確認できることが求められる。   In addition, the received light intensity increases as the filling height of the filler increases, and in the process of detecting the filling completion when the received light intensity becomes zero at the final stage, the filling status is not monitored in real time. In some cases, it is not known whether the filling height of the filler is insufficient and the received light intensity is low, or whether the received light intensity is low after the filling is completed. For example, in the case where a plastic material is filled as a filler in the lining of the existing tunnel lining, the filling is not completed within a few minutes. It may be unrealistic to monitor all the time because additional injections to the filling site may be given the next day. In the construction of actually filling the cavity with the filler, it is required that the filling of the filler can be reliably confirmed rather than grasping the filling state of the filler in real time.

また、トンネル空洞壁面で反射された反射光を受光用ファイバーで受光して充填材の充填を検知する手法では、図19(a)のように、地山205の湧水が溜水209となっている空洞210に充填材208としてセメント系グラウト材を充填していった場合に、溜水209が懸濁して受光用ファイバー204による受光量が低下又はない状態が継続し、まだ未充填なのに充填完了と認識されてしまったり、又、図19(b)のように、トンネル空洞壁面206の凹凸により反射光が受光用光ファイバー204の光入射端で捉えることができずに受光強度が0になって充填完了とみなされてしまうケースも考えられる(図19中、201は光源部、202は検知部、203は送光用光ファイバー、204は受光用光ファイバー、205は地山、206はトンネル空洞壁面、207は覆工コンクリート、208は充填材、209は溜水、210は空洞である)。   In the method of detecting the filling of the filler by receiving the reflected light reflected by the wall surface of the tunnel cavity with the light receiving fiber, the spring water of the natural ground 205 becomes the accumulated water 209 as shown in FIG. When the cement-type grout material is filled in the cavity 210 as the filling material 208, the water 209 is suspended and the amount of light received by the light-receiving fiber 204 continues to decrease or is not filled. In addition, as shown in FIG. 19B, the reflected light cannot be captured at the light incident end of the light receiving optical fiber 204 due to the unevenness of the tunnel cavity wall surface 206 as shown in FIG. In FIG. 19, 201 is a light source unit, 202 is a detection unit, 203 is a light transmission optical fiber, 204 is a light reception optical fiber, and 205 is a natural ground. 206 tunnel cavity wall 207 lining concrete, 208 filler, 209 accumulated water, 210 is hollow).

本発明は上記課題に鑑み提案するものであって、外部から内部が見えない地下空洞に充填材を充填する際に、充填材の充填完了を確実に確認することができると共に、経済性と作業効率に優れる空洞充填検知装置を提供することを目的とする。   The present invention is proposed in view of the above problems, and when filling the underground cavity where the inside cannot be seen from the outside, it is possible to reliably confirm the completion of the filling of the filler, as well as economy and work. An object of the present invention is to provide a cavity filling detection device having excellent efficiency.

本発明の空洞充填検知装置は、充填材が充填される空洞外に配置される光源部と、前記空洞外に配置される検知部と、前記空洞内に光出射端が設けられ、前記光源部の光を伝送する送光用光ファイバーと、前記空洞内に光入射端が設けられ、前記光入射端で受光する光を前記検知部に伝送する受光用光ファイバーとを備え、前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが、前記光出射端からの出射光が前記光出射端と離間する前記光入射端に一定経路と一定距離で導入されるように配置され、前記検知部が、前記受光用光ファイバーから入力される光の受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能に提示することを特徴とする。
これによれば、送光用光ファイバーの光出射端からの出射光が離間する受光用光ファイバーの光入射端に一定経路と一定距離で導入されることから、空洞内の溜水の懸濁、空洞壁面の凹凸での光反射等に影響されずに、出射光を受光用光ファイバーで安定して受光することが可能となり、この安定した受光が充填された充填材の光路遮断で急減することで充填材の充填完了を確実に認識することができる。また、充填された充填材内に残置する部分が送光用光ファイバー、受光用光ファイバー等の安価なものに限られ、又、送光用光ファイバーの被覆を故意に破って一定の開口部を形成する等の加工も不要であり、経済性に優れる。また、充填材を充填する施工において、充填状況のリアルタイムのモニタリングすることも不要となり、優れた作業効率で充填材の充填確認を行うことができる。
The cavity filling detection device of the present invention includes a light source unit disposed outside a cavity filled with a filler, a detection unit disposed outside the cavity, and a light emitting end provided in the cavity. A light-transmitting optical fiber for transmitting the light, and a light incident end provided in the cavity, and a light-receiving optical fiber for transmitting light received at the light incident end to the detection unit, The light exit end and the light incident end of the light receiving optical fiber are arranged so that the emitted light from the light exit end is introduced at a constant path and a constant distance into the light incident end separated from the light exit end, The detecting unit presents the light receiving intensity of the light input from the light receiving optical fiber so that it can be recognized that the light receiving intensity is equal to or less than a threshold value that is set and stored.
According to this, since the outgoing light from the light emitting end of the light transmitting optical fiber is introduced at a constant path and a constant distance into the light incident end of the receiving optical fiber, the suspended water in the cavity, the cavity It is possible to stably receive the outgoing light with the optical fiber for receiving light without being affected by light reflections on the wall surface unevenness, etc. It is possible to reliably recognize the completion of the material filling. Further, the portion to be left in the filled material is limited to inexpensive ones such as a light transmitting optical fiber and a light receiving optical fiber, and the coating of the light transmitting optical fiber is intentionally broken to form a certain opening. Such processing is unnecessary, and it is economical. In addition, in the construction for filling the filler, it is not necessary to monitor the filling state in real time, and the filling of the filler can be confirmed with excellent work efficiency.

本発明の空洞充填検知装置は、前記検知部が、前記受光用光ファイバーから入力される光の受光強度と設定記憶されている閾値を比較し、前記受光強度が前記閾値以下若しくは未満の場合に、前記光出射端及び前記光入射端の周辺領域の前記充填材の充填完了を認識可能に提示することを特徴とする。
これによれば、検知部の演算処理により、一層明確に光出射端及び光入射端の周辺領域の充填材の充填完了を認識することができる。
In the cavity filling detection apparatus of the present invention, the detection unit compares the received light intensity of light input from the light receiving optical fiber with a threshold value stored and set, and when the received light intensity is less than or less than the threshold value, Completion of filling of the filler in the peripheral region of the light emitting end and the light incident end is presented in a recognizable manner.
According to this, it is possible to recognize the completion of filling of the filler in the peripheral region of the light emitting end and the light incident end more clearly by the calculation processing of the detection unit.

本発明の空洞充填検知装置は、前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが離間して対向配置されることを特徴とする。
これによれば、送光用光ファイバーの光出射端と受光用光ファイバーの光入射端との間に充填材の充填で状態が変化する光路を確保することができると共に、送光用光ファイバーの光出射端から受光用光ファイバーの光入射端に一定経路、一定距離で確実に光を導入することができる。
The cavity filling detection device of the present invention is characterized in that a light emitting end of the light transmitting optical fiber and a light incident end of the light receiving optical fiber are arranged to be opposed to each other.
According to this, an optical path whose state is changed by filling with the filler can be secured between the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber, and the light emitting of the light transmitting optical fiber can be secured. Light can be reliably introduced from the end to the light incident end of the light receiving optical fiber at a constant path and a constant distance.

本発明の空洞充填検知装置は、前記送光用光ファイバーの光出射端からの出射光が一若しくは複数の反射面を介して前記受光用光ファイバーの光入射端に導入されることを特徴とする。
これによれば、送光用光ファイバーの光出射端と受光用光ファイバーの光入射端との間に充填材の充填で状態が変化する光路を確保することができると共に、送光用光ファイバーの光出射端から受光用光ファイバーの光入射端に一定経路、一定距離で確実に光を導入することができる。
The cavity filling detection apparatus of the present invention is characterized in that light emitted from the light emitting end of the light transmitting optical fiber is introduced into the light incident end of the light receiving optical fiber via one or a plurality of reflecting surfaces.
According to this, an optical path whose state is changed by filling with the filler can be secured between the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber, and the light emitting of the light transmitting optical fiber can be secured. Light can be reliably introduced from the end to the light incident end of the light receiving optical fiber at a constant path and a constant distance.

本発明の空洞充填検知装置は、前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが棒状のガイド部材の先端近傍で支持されることを特徴とする。
これによれば、棒状のガイド部材で空洞内の所要位置に、簡単な作業で送光用光ファイバーの光出射端と受光用光ファイバーの光入射端を設置することができる。
The cavity filling detection device of the present invention is characterized in that the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are supported in the vicinity of the tip of a rod-shaped guide member.
According to this, the light emitting end of the optical fiber for light transmission and the light incident end of the optical fiber for light reception can be installed at a required position in the cavity with a rod-shaped guide member by a simple operation.

本発明の空洞充填検知装置は、前記ガイド部材が筒状の充填材注入管であり、前記送光用光ファイバーと前記受光用光ファイバーとが前記ガイド部材に略沿って前記ガイド部材の外側に取り付けられることを特徴とする。
これによれば、ガイド部材を筒状の充填材注入管とすることにより、充填材注入管を充填材の注入に加え、送光用光ファイバーの光出射端と受光用光ファイバーの光入射端の設置に利用することができ、別途にガイド部材を用いることが不要となる。
In the cavity filling detection device of the present invention, the guide member is a cylindrical filler injection tube, and the light transmitting optical fiber and the light receiving optical fiber are attached to the outside of the guide member substantially along the guide member. It is characterized by that.
According to this, by setting the guide member as a cylindrical filler injection tube, in addition to filling the filler injection tube, the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are installed. Therefore, it is not necessary to use a separate guide member.

本発明の空洞充填検知装置は、前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが1〜7mm離間して対向配置されることを特徴とする。
これによれば、送光用光ファイバーの光出射端と受光用光ファイバーの光入射端とを離間して対向配置する対向型の構成において、より確実に充填材の充填完了を確認することができる。
The cavity filling detection device of the present invention is characterized in that the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are arranged to face each other with a separation of 1 to 7 mm.
According to this, in the opposed type configuration in which the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are arranged to be opposed to each other, it is possible to confirm the completion of filling of the filler more reliably.

本発明の空洞充填検知装置は、前記送光用光ファイバーの光出射端からの出射光が一若しくは複数の反射面を介して前記受光用光ファイバーの光入射端に導入され、前記送光用光ファイバーの光出射端から前記反射面を介して前記受光用光ファイバーの光入射端に至るまでの距離が6〜16mmに設定されることを特徴とする。
これによれば、送光用光ファイバーの光出射端の出射光を反射面を介して受光用光ファイバーの光入射端に導入する反射型の構成において、より確実に充填材の充填完了を確認することができる。
In the cavity filling detection device of the present invention, the light emitted from the light emitting end of the light transmitting optical fiber is introduced into the light incident end of the light receiving optical fiber through one or a plurality of reflecting surfaces, and the light transmitting optical fiber The distance from the light emitting end to the light incident end of the light receiving optical fiber through the reflecting surface is set to 6 to 16 mm.
According to this, in the reflection type configuration in which the light emitted from the light emitting end of the light transmitting optical fiber is introduced to the light incident end of the light receiving optical fiber via the reflecting surface, the completion of filling of the filler can be confirmed more reliably. Can do.

本発明の空洞充填検知装置によれば、外部から内部が見えない地下空洞に充填材を充填する際に、優れた経済性と作業効率で充填材の充填完了を確実に確認することができる。   According to the cavity filling detection device of the present invention, when filling a filling material into an underground cavity where the inside cannot be seen from the outside, completion of filling of the filling material can be surely confirmed with excellent economic efficiency and work efficiency.

本発明による実施形態の空洞充填検知装置を示すブロック図。The block diagram which shows the cavity filling detection apparatus of embodiment by this invention. 実施形態の空洞充填検知装置を既存の矢板式トンネルの覆工背面空洞に充填材を充填する際に適用する場合の例を示す横断説明図。Cross-sectional explanatory drawing which shows the example in the case of applying the cavity filling detection apparatus of embodiment to the lining back cavity of the existing sheet pile type tunnel with a filler. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第1例を示す部分拡大斜視図。The partial expansion perspective view which shows the 1st example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the front-end | tip vicinity of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第2例を示す部分拡大斜視図。The partial expansion perspective view which shows the 2nd example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the tip vicinity of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第3例を示す部分拡大斜視図。The partial expansion perspective view which shows the 3rd example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the front-end | tip vicinity of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第4例を示す部分拡大斜視図。The partial expansion perspective view which shows the 4th example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the front-end | tip vicinity of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第5例を示す部分拡大斜視図。The partial expansion perspective view which shows the 5th example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the front-end | tip vicinity of a guide member. 第5例の変形例である第6例の概念説明図。The conceptual explanatory view of the 6th example which is a modification of the 5th example. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第7例を示す斜視説明図。FIG. 10 is an explanatory perspective view showing a seventh example of a structure for supporting a light-transmitting optical fiber and a light-receiving optical fiber in the vicinity of the tip of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第8例を示す斜視説明図。FIG. 10 is an explanatory perspective view illustrating an eighth example of a structure for supporting a light-transmitting optical fiber and a light-receiving optical fiber in the vicinity of the tip of a guide member. 送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第9例を示す部分拡大斜視図。The partial expansion perspective view which shows the 9th example of the structure which supports the optical fiber for light transmission, and the optical fiber for light reception in the front-end | tip vicinity of a guide member. (a)は送光用光ファイバーと受光用光ファイバーをガイド部材の先端近傍で支持する構造の第10例を示す部分拡大斜視図、(b)は第10例のガイド部材の先端近傍を示す部分拡大斜視図。(A) is a partially enlarged perspective view showing a tenth example of a structure for supporting a light transmitting optical fiber and a light receiving optical fiber in the vicinity of the tip of the guide member, and (b) is a partially enlarged view showing the vicinity of the tip of the guide member of the tenth example. Perspective view. 実施形態の空洞充填検知装置を用いる充填材の充填完了の検知処理を示すフローチャート。The flowchart which shows the detection process of the filling completion of the filler using the cavity filling detection apparatus of embodiment. トンネルの延びる方向にセンサー部を複数設置する実施形態の空洞充填検知装置の別使用例を示す縦断説明図。The longitudinal section explanatory drawing which shows another example of use of the cavity filling detection apparatus of embodiment which installs multiple sensor parts in the direction where a tunnel extends. 空洞の両端近傍にセンサー部を設置する実施形態の空洞充填検知装置の別使用例を示す断面説明図。Cross-sectional explanatory drawing which shows another use example of the cavity filling detection apparatus of embodiment which installs a sensor part in the both ends vicinity of a cavity. (a)はトンネルの天端にセンサー部を設置する実施形態の空洞充填検知装置の別使用例を示す横断説明図、(b)はその斜視説明図。(A) is the cross-sectional explanatory drawing which shows another usage example of the cavity filling detection apparatus of embodiment which installs a sensor part in the ceiling end of a tunnel, (b) is the perspective explanatory drawing. (a)は実験例の対面型センサー部の送光用光ファイバーと受光用光ファイバーの配置を示す説明図、(b)は実験例の反射型センサー部の送光用光ファイバーと受光用光ファイバーと反射板の配置を示す説明図。(A) is explanatory drawing which shows arrangement | positioning of the optical fiber for light transmission and optical fiber for light reception of the facing type sensor part of an experiment example, (b) is the optical fiber for light transmission, optical fiber for light reception, and a reflecting plate of the reflection type sensor part of an experiment example Explanatory drawing which shows arrangement | positioning. (a)は対向型センサー部のセメント系充填材の充填進行に伴う受光強度の変化を示すグラフ、(b)は反射型センサー部のセメント系充填材の充填進行に伴う受光強度の変化を示すグラフ、(c)は対向型センサー部のウレタン系充填材の充填進行に伴う受光強度の変化を示すグラフ。(A) is a graph showing a change in received light intensity as the filling of the cement-type filler in the opposed sensor portion progresses, (b) shows a change in received light intensity as the filling of the cement-type filler in the reflective sensor portion progresses. A graph and (c) are graphs showing a change in received light intensity as the filling of the urethane-based filler in the opposed sensor portion progresses. (a)は従来の充填検知方法による溜水の問題点を示す断面説明図、(b)は従来の充填検知方法による空洞壁面の凹凸による反射の問題点を示す断面説明図。(A) is sectional explanatory drawing which shows the problem of stored water by the conventional filling detection method, (b) is sectional explanatory drawing which shows the problem of the reflection by the unevenness | corrugation of the cavity wall surface by the conventional filling detection method.

〔実施形態の空洞充填検知装置〕
本発明による実施形態の空洞充填検知装置1は、図1に示すように、充填材が充填される空洞外に配置されるメタルハライドランプ、発光ダイオード等の光源部2と、空洞外に配置される検知部3と、空洞内に光出射端41が設けられ、光源部2の光を伝送する送光用光ファイバー4と、空洞内に光入射端51が設けられ、光入射端51で受光する光を検知部3に伝送する受光用光ファイバー5を備え、検知部3と光源部2で検知装置本体6を構成する。
[Cavity Filling Detection Device of Embodiment]
As shown in FIG. 1, a cavity filling detection device 1 according to an embodiment of the present invention is disposed outside a cavity and a light source unit 2 such as a metal halide lamp and a light emitting diode disposed outside the cavity filled with a filler. The light emitting end 41 is provided in the cavity with the detection unit 3, the optical fiber 4 for transmitting light from the light source unit 2, and the light incident end 51 is provided in the cavity, and the light received by the light incident end 51. Is received, and the detection device main body 6 is configured by the detection unit 3 and the light source unit 2.

検知部3は、CPU等の制御処理部31と、ハードディスク、RAM、EEPROM等の記憶部32と、フォトダイオード等の受光部33と、液晶ディスプレイ等の表示部34と、閾値等のデータを入力する入力部35を有し、記憶部32には、制御処理部31に実行させる制御プログラムを格納するプログラム格納部321と、設定された受光強度の閾値を格納する閾値格納部322と、閾値以外のデータを格納するデータ格納部323が設けられている。受光部33は、受光用光ファイバー5から伝送された光を受光して受光強度を取得するようになっている。   The detection unit 3 receives a control processing unit 31 such as a CPU, a storage unit 32 such as a hard disk, a RAM, and an EEPROM, a light receiving unit 33 such as a photodiode, a display unit 34 such as a liquid crystal display, and data such as a threshold value. The storage unit 32 includes a program storage unit 321 that stores a control program to be executed by the control processing unit 31, a threshold storage unit 322 that stores a threshold value of the set received light intensity, and other than the threshold value. A data storage unit 323 for storing the data is provided. The light receiving unit 33 receives the light transmitted from the light receiving optical fiber 5 and acquires the received light intensity.

検知部3の制御処理部31は、格納されている制御プログラムに従い、受光用光ファイバー5から受光部33を介して入力される光の受光強度と閾値格納部322に設定記憶されている閾値とを比較し、受光強度が閾値以下若しくは未満の場合に、送光用光ファイバー4の光出射端及び受光用光ファイバー5の光入射端の周辺領域における、充填材の充填完了として検知し、当該領域の充填材の充填完了を認識可能に提示するようになっている。なお、本発明に用いる光の受光強度は絶対値ではなく、光射出端41と光入射端51が位置する空洞の状況に応じ、検知される受光強度を相対的に表示可能とするようキャリブレーションされた値を用い、その受光強度の相対値に基づいて閾値が設定される。充填材の充填完了の提示には、例えば表示部34に充填完了の旨を表示して報知するが、充填完了の報知の仕方は、例えば別途に検知部3に充填完了灯或いはブザーを付設し、充填完了灯を点灯或いはブザーを鳴らすなど、適宜の仕方を採用できる。   The control processing unit 31 of the detection unit 3 determines the received light intensity of the light input from the light receiving optical fiber 5 via the light receiving unit 33 and the threshold value set and stored in the threshold value storage unit 322 according to the stored control program. In comparison, when the received light intensity is less than or less than the threshold value, it is detected that the filling of the filler is completed in the peripheral region of the light emitting end of the light transmitting optical fiber 4 and the light incident end of the light receiving optical fiber 5, and the filling of the region is performed. The completion of material filling is presented in a recognizable manner. The light reception intensity used in the present invention is not an absolute value, and calibration is performed so that the detected light reception intensity can be displayed relatively according to the situation of the cavity where the light emission end 41 and the light incidence end 51 are located. The threshold value is set based on the relative value of the received light intensity. In order to present the completion of filling of the filling material, for example, the display unit 34 displays a notification of the completion of filling. For example, a filling completion lamp or buzzer is separately attached to the detection unit 3 for example. An appropriate method such as turning on a filling completion lamp or sounding a buzzer can be adopted.

送光用光ファイバー4と受光用光ファイバー5は、例えばコアとこれを被覆するクラッドがプラスチック製の安価な光ファイバーを所望の長さに切断しただけのものであり、側面は全て被覆され、その切断された両端部でコアだけがそれぞれ外部に露出して発光或いは受光可能になっている。送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とは、互いに接近して配置されると共に、光出射端41からの出射光が光出射端41と離間する光入射端51に一定経路と一定距離で導入されるように配置される。送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51は棒状のガイド部材の先端近傍で支持して配置するようにすると好ましい。送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51と出射光の導入経路により、センサー部7が構成される。   The optical fiber 4 for light transmission and the optical fiber 5 for light reception are, for example, a core and a clad covering the core, which are obtained by cutting an inexpensive optical fiber made of plastic into a desired length, and all sides are coated and cut. At both ends, only the core is exposed to the outside and can emit or receive light. The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are arranged close to each other, and the light incident from the light emitting end 41 is separated from the light emitting end 41. The end 51 is arranged so as to be introduced at a constant path and a constant distance. The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are preferably supported and arranged in the vicinity of the tip of the rod-shaped guide member. The sensor unit 7 is configured by the light emitting end 41 of the light transmitting optical fiber 4, the light incident end 51 of the light receiving optical fiber 5, and the outgoing light introduction path.

送光用光ファイバー4と受光用光ファイバー5或いはセンサー部7は、1つの検知部3に対して一組若しくは複数組設けることが可能であり、又、光源部2は、送光用光ファイバー4と受光用光ファイバー5の組数或いはセンサー部7の数に対応して1つ若しくは複数設けることが可能である。また、検知部3は、受光用光ファイバー5から入力される受光強度の時間経過に伴う推移を表示部34にて表示し、且つ記録していく構成とすると参考情報が得られて好適であるが、受光強度の経時的な推移を表示せずに、充填材の充填完了を検知し、表示部34等で報知する構成とすることも可能である。   The light transmission optical fiber 4 and the light receiving optical fiber 5 or the sensor unit 7 can be provided in one set or a plurality of sets for one detection unit 3, and the light source unit 2 includes the light transmission optical fiber 4 and the light receiving unit. One or a plurality of optical fibers 5 can be provided corresponding to the number of optical fibers 5 or the number of sensor units 7. In addition, it is preferable that the detection unit 3 has a configuration in which the display unit 34 displays and records the transition of the received light intensity input from the light receiving optical fiber 5 over time, so that reference information can be obtained. It is also possible to adopt a configuration in which the completion of filling of the filler is detected and displayed on the display unit 34 or the like without displaying the temporal change of the received light intensity.

尚、本発明の検知部には、上記検知部3の構成以外に、受光用光ファイバー5から入力される光の受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能に提示するものであれば適宜の構成が含まれ、例えば横軸:時間−縦軸:光強度のグラフを表示部34で表示すると共に、当該グラフに光強度の設定閾値を横線として表示し、表示部34を見た作業者が、受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能にする構成等が含まれる。   In addition to the configuration of the detection unit 3 described above, the detection unit of the present invention can recognize that the received light intensity of the light input from the light receiving optical fiber 5 is less than or less than a threshold value that is set and stored. The display unit 34 displays a graph of the horizontal axis: time-vertical axis: light intensity, and displays the light intensity setting threshold value as a horizontal line on the graph. For example, a configuration in which an operator who has viewed 34 can recognize that the received light intensity is less than or less than a threshold value that is set and stored is included.

本実施形態の空洞充填検知装置1は、例えば図2に示す既存の矢板式トンネルの覆工背面空洞に充填材を充填する際に適用することができる。図2の矢板式トンネルにおいて、91は地山、92はトンネル延長方向に所定間隔で設置された支保工(不図示)に架け渡すことで地山壁面に倣って配置されている矢板、93は矢板92の内側に形成されている覆工コンクリートであり、94は覆工背面の空洞、95は空洞94に途中まで充填された充填材である。   The cavity filling detection device 1 of the present embodiment can be applied, for example, when filling a filling material into a lining back cavity of an existing sheet pile type tunnel shown in FIG. In the sheet pile type tunnel of FIG. 2, 91 is a natural mountain, 92 is a sheet pile arranged following the natural mountain wall surface over a support work (not shown) installed at predetermined intervals in the tunnel extension direction, 93 The cover concrete is formed on the inner side of the sheet pile 92, 94 is a cavity on the back of the cover, and 95 is a filler filled in the cavity 94 partway.

図2の矢板式トンネルの空洞94には、5つのセンサー部7a、7b、7c、7d、7eが空洞94の天井面にそれぞれ近接して設けられており、又、センサー部7a、7b、7c、7d、7eは、それぞれ相互にある程度距離を開けて5箇所の異なる箇所に離間して配置されている。各センサー部7a、7b、7c、7d、7eをそれぞれ光出射端41と光入射端51で構成する送光用光ファイバー4と受光用光ファイバー5は、棒状のガイド部材8で先端近傍を支持されて空洞94内に導入されており、ガイド部材8で支持されて各センサー部7a、7b、7c、7d、7eは所定位置に設けられている。ガイド部材8は筒状の充填材注入管とすると充填材注入管を充填材95の注入に加え、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51の設置に利用することができ、別途にガイド部材を用いることが不要となって好ましい。   In the cavity 94 of the sheet pile tunnel of FIG. 2, five sensor parts 7a, 7b, 7c, 7d, 7e are provided close to the ceiling surface of the cavity 94, respectively, and the sensor parts 7a, 7b, 7c are provided. , 7d, and 7e are spaced apart from each other at five different positions with a certain distance from each other. Each of the sensor portions 7a, 7b, 7c, 7d, and 7e is composed of a light emitting end 41 and a light incident end 51. The light transmitting optical fiber 4 and the light receiving optical fiber 5 are supported by the rod-shaped guide member 8 in the vicinity of the tip. The sensor portions 7a, 7b, 7c, 7d, and 7e are introduced into the cavity 94 and supported by the guide member 8, and are provided at predetermined positions. If the guide member 8 is a cylindrical filler injection tube, the filler injection tube is used to install the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 in addition to the injection of the filler 95. It is preferable that a separate guide member is not required.

送光用光ファイバー4と受光用光ファイバー5の5組は、検知装置本体6内の1つの検知部3に接続され、又、各組の送光用光ファイバー4に対応して、検知装置本体6内には5個の送光用の光源部2が設けられている。検知装置本体6の検知部3では、5箇所のセンサー部7a、7b、7c、7d、7eのそれぞれについて、例えば受光用光ファイバー5から入力される受光強度の時間経過に伴う推移を表示部34にて表示し、且つ記録していく。これらの5箇所の推移画面は、例えば表示部34で複数画面で並行表示する、或いは入力部35からの画面切り替えの入力に応じて切替表示する構成等とすることが可能である。   Five sets of the light transmission optical fiber 4 and the light receiving optical fiber 5 are connected to one detection unit 3 in the detection device main body 6, and in the detection device main body 6 corresponding to each pair of the light transmission optical fibers 4. Five light source portions 2 for light transmission are provided. In the detection unit 3 of the detection device main body 6, for each of the five sensor units 7 a, 7 b, 7 c, 7 d, and 7 e, for example, the display unit 34 displays changes with time of received light intensity input from the optical fiber 5 for light reception. Display and record. These five transition screens can be configured to be displayed in parallel on a plurality of screens, for example, on the display unit 34, or to be switched and displayed in accordance with screen switching input from the input unit 35.

そして、検知部3は、5箇所のそれぞれについて、受光用光ファイバー5から受光部33を介して入力される光の受光強度と閾値格納部322に設定記憶されている閾値とを比較し、受光強度が閾値以下若しくは未満の場合に、送光用光ファイバー4の光出射端及び受光用光ファイバー5の光入射端の周辺領域における、充填材の充填完了として検知し、提示する処理を行う(図1参照)。図2の推移画面においては、光強度の設定閾値に対応する充填完了を認識可能な点線の横線を表示している。尚、検知部3が、入力される受光強度を経時的な推移で表示すると共に、光強度の設定閾値に対応する充填完了を認識可能な横線を表示し、表示部34を見た作業者が、受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能にする構成とすることも可能である。尚、図2の示例では、センサー部7a、7b、7d、7eが設置されている領域では充填材95の充填が完了し、センサー部7cが設置されている天端部の領域では充填材95の充填が未完である。   The detection unit 3 compares the received light intensity of the light input from the light receiving optical fiber 5 via the light receiving unit 33 with the threshold value stored in the threshold storage unit 322 for each of the five locations, and the received light intensity. Is less than or less than the threshold value, it is detected that the filling of the filler is completed in the peripheral region of the light emitting end of the light transmitting optical fiber 4 and the light incident end of the light receiving optical fiber 5, and a process of presenting is performed (see FIG. 1). ). In the transition screen of FIG. 2, a dotted horizontal line capable of recognizing completion of filling corresponding to the light intensity setting threshold is displayed. The detector 3 displays the input received light intensity over time, and displays a horizontal line that can recognize filling completion corresponding to the set threshold value of the light intensity. Also, it is possible to make it possible to recognize that the received light intensity is less than or less than the threshold value that is set and stored. In the example shown in FIG. 2, the filling of the filler 95 is completed in the area where the sensor parts 7a, 7b, 7d and 7e are installed, and the filler 95 is filled in the area of the top end where the sensor part 7c is installed. Incomplete filling.

ここで、送光用光ファイバー4と受光用光ファイバー5を棒状のガイド部材の先端近傍で支持する構造例について説明する。図3の第1例では、例えば円筒形の塩ビ管の充填材注入管等の筒状のガイド部材8aの先端近傍の外周面に透明材料で形成されている支持具11が設けられている。支持具11の底面はガイド部材8aの外周面に倣う形状になっており接着等で外周面に固定されている。支持具11は、略直方体形であり、中央に凹部12が形成され、その両側の対応する位置に一対の挟持部13が形成されており、挟持部13のスリット14が側方を向くようにして支持部11はガイド部材8aに取り付けられている。送光用光ファイバー4と受光用光ファイバー5はガイド部材8aに略沿うように設けられ、ガイド部材8aの外側に結束バンド15で結束して取り付けられている。   Here, a structural example in which the light transmitting optical fiber 4 and the light receiving optical fiber 5 are supported in the vicinity of the tip of a rod-shaped guide member will be described. In the first example of FIG. 3, for example, a support 11 made of a transparent material is provided on the outer peripheral surface in the vicinity of the tip of a cylindrical guide member 8a such as a cylindrical PVC pipe filler injection pipe. The bottom surface of the support 11 has a shape that follows the outer peripheral surface of the guide member 8a, and is fixed to the outer peripheral surface by bonding or the like. The support 11 has a substantially rectangular parallelepiped shape, a recess 12 is formed at the center, and a pair of clamping parts 13 are formed at corresponding positions on both sides thereof, so that the slits 14 of the clamping part 13 face sideways. The support portion 11 is attached to the guide member 8a. The light transmitting optical fiber 4 and the light receiving optical fiber 5 are provided so as to be substantially along the guide member 8a, and are attached to the outside of the guide member 8a by being bound by a binding band 15.

送光用光ファイバー4の先端近傍は、一方の挟持部13に挟持されて固定され、受光用光ファイバー5の先端近傍は、他方の挟持部13に挟持されて固定され、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とが凹部12の幅と略対応する距離だけ離間して対向配置される。対向配置されている送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51との離間距離は1〜7mm程度とすることが好ましい。   The vicinity of the front end of the light transmission optical fiber 4 is sandwiched and fixed by one sandwiching section 13, and the vicinity of the front end of the light receiving optical fiber 5 is sandwiched and fixed by the other sandwiching section 13, and the light of the light transmission optical fiber 4 is fixed. The emitting end 41 and the light incident end 51 of the light receiving optical fiber 5 are arranged to face each other with a distance substantially corresponding to the width of the recess 12. It is preferable that the distance between the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 which are arranged to face each other is about 1 to 7 mm.

また、図4の第2例では、例えば円筒形の塩ビ管からなる充填材注入管等の筒状のガイド部材8aの先端がL字形に切り欠かれ、そこに蝶番等のL字状の板材16が、一方の面が切り欠かれ端面81a側に配置され、他方の面が切り欠かれた部分の残りである突出部82aに沿うように配置され、突出部82aに或いは突出部82aと端面81aに接着等で固定されている。透明材料で形成されている支持具11aは第1例と異なり底面が平面になっており、板材16の一方の面上に載置するようにして支持具11a設けられ、接着等で固定されている。その他の支持具11aの構成は第1例の支持具11と同一である。支持具11aは、ガイド部材8aの先端開口の一部を占めるように設けられ、挟持部13のスリット14が側方を向くようにして取り付けられている。スリット14が横方向を向いていると、充填材95が飛び跳ねたり泥や湧水が降ってきて光射出端41と光入射端51間の光の経路が塞がれることが防止され、常時適正な光強度を検出することができる。   In the second example of FIG. 4, for example, the tip of a cylindrical guide member 8a such as a filler injection pipe made of a cylindrical PVC pipe is cut out in an L shape, and an L-shaped plate material such as a hinge is provided there. 16 is arranged such that one surface is cut out and disposed on the end surface 81a side, and the other surface is disposed along the protruding portion 82a which is the remaining portion of the notched portion, and is disposed on the protruding portion 82a or the protruding portion 82a and the end surface. It is fixed to 81a by adhesion or the like. Unlike the first example, the support 11a made of a transparent material has a flat bottom surface. The support 11a is provided so as to be placed on one surface of the plate 16 and fixed by bonding or the like. Yes. Other configurations of the support 11a are the same as those of the support 11 of the first example. The support 11a is provided so as to occupy a part of the distal end opening of the guide member 8a, and is attached so that the slit 14 of the sandwiching portion 13 faces sideways. When the slit 14 faces in the lateral direction, it is possible to prevent the filler 95 from jumping or mud or spring water from falling and blocking the light path between the light emitting end 41 and the light incident end 51, and is always appropriate. A high light intensity can be detected.

そして、第1例と同様に、ガイド部材8aに略沿うように設けられ、ガイド部材8aの外側に結束バンド15で結束して取り付けられている送光用光ファイバー4、受光用光ファイバー5について、送光用光ファイバー4の先端近傍が一方の挟持部13に挟持されて固定され、受光用光ファイバー5の先端近傍が他方の挟持部13に挟持されて固定されている。送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とは、凹部12の幅と略対応する距離だけ例えば1〜7mm離間して対向配置されている。   As in the first example, the optical fiber for light transmission 4 and the optical fiber for light reception 5 that are provided so as to substantially follow the guide member 8a and are bound and attached by the binding band 15 to the outside of the guide member 8a. The vicinity of the tip of the optical fiber for light 4 is sandwiched and fixed by one sandwiching portion 13, and the vicinity of the tip of the optical fiber for light reception 5 is sandwiched and fixed by the other sandwiching portion 13. The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are opposed to each other with a distance of approximately 1 to 7 mm, for example, corresponding to the width of the recess 12.

また、図5の第3例は、第2例において、送光用光ファイバー4、受光用光ファイバー5をガイド部材8aの外側に結束バンド15で結束して取り付ける構成に代え、送光用光ファイバー4、受光用光ファイバー5をガイド部材8a内部に挿入し、光源部2、検知部3まで導出しているものである。筒状のガイド部材8aが充填材注入管でない場合には、第3例のように送光用光ファイバー4、受光用光ファイバー5をガイド部材8aに内挿して設けることが可能である。図5中、25は充填材注入管である。その他の構成は第2例と同一である。   Further, the third example of FIG. 5 is the same as the second example, except that the light transmitting optical fiber 4 and the light receiving optical fiber 5 are attached to the outside of the guide member 8a by being bound by a binding band 15 and attached. The light receiving optical fiber 5 is inserted into the guide member 8 a and led out to the light source unit 2 and the detection unit 3. When the cylindrical guide member 8a is not a filler injection tube, the light transmitting optical fiber 4 and the light receiving optical fiber 5 can be inserted into the guide member 8a as in the third example. In FIG. 5, 25 is a filler injection tube. Other configurations are the same as those of the second example.

また、図6の第4例は、第2例において、支持具11aを挟持部13のスリット14が側方を向くようにして取り付ける構成に代え、支持具11aを挟持部13のスリット14が上方を向くようにして取り付けられているものであり、スリット14が上方を向いた挟持部13・13で、送光用光ファイバー4の先端近傍、受光用光ファイバー5の先端近傍が挟持されて固定されている。スリット14が上方を向いた挟持部13・13による挟持では、送光用光ファイバー4、受光用光ファイバー5が挟持部13・13から外れにくくなり、より取り付け状態が安定する。本例でも送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とが、凹部12の幅と略対応する距離だけ離間、好ましくは1〜7mm離間して対向配置されている。その他の構成は第2例と同一である。   In addition, the fourth example of FIG. 6 is different from the second example in that the support tool 11a is attached so that the slit 14 of the sandwiching portion 13 faces sideways, and the support tool 11a is positioned above the slit 14 of the sandwiching portion 13. The sandwiching portions 13 and 13 with the slit 14 facing upward are sandwiched and fixed near the tip of the light transmitting optical fiber 4 and the tip of the light receiving optical fiber 5. Yes. When the slit 14 is held by the holding portions 13 and 13 facing upward, the light transmitting optical fiber 4 and the light receiving optical fiber 5 are not easily detached from the holding portions 13 and 13, and the attachment state is further stabilized. Also in this example, the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are spaced apart from each other by a distance substantially corresponding to the width of the recess 12, preferably 1 to 7 mm away from each other. Yes. Other configurations are the same as those of the second example.

また、図7の第5例は、第1例〜第4例が送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とが離間して対向配置される対向型であるのに対して、送光用光ファイバー4の光出射端41からの出射光が1つの反射板を介して受光用光ファイバー5の光入射端51に導入される反射型の構造例である。   The fifth example of FIG. 7 is a facing type in which the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are spaced apart from each other in the first to fourth examples. On the other hand, this is a reflection type structure in which the light emitted from the light emitting end 41 of the light transmitting optical fiber 4 is introduced into the light incident end 51 of the light receiving optical fiber 5 through one reflector.

第5例においては、例えば円筒形の塩ビ管からなる筒状のガイド部材8aの先端がL字形に切り欠かれ、そこに蝶番等のL字状の板材16が、一方の面が切り欠かれ端面81aと逆側に配置され、他方の面が切り欠かれた部分の残りである突出部82aに沿うように配置され、突出部82aに接着等で固定されている。板材16の一方の面には、端面81aと対向するように反射板17が固着されている。尚、本例では板材16の一方の面が屋根として機能し、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51が別途設けられる充填材注入管から充填される充填材を被りにくくなる。   In the fifth example, the tip of a cylindrical guide member 8a made of, for example, a cylindrical PVC pipe is cut out in an L shape, and an L-shaped plate member 16 such as a hinge is cut out on one side thereof. It arrange | positions along the protrusion part 82a which is arrange | positioned on the opposite side to the end surface 81a, and the other surface is the remainder of the part notched, and is being fixed to the protrusion part 82a by adhesion | attachment etc. The reflective plate 17 is fixed to one surface of the plate member 16 so as to face the end surface 81a. In this example, one surface of the plate 16 functions as a roof, and filling is performed from a filling material injection tube in which the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are separately provided. It becomes difficult to wear the material.

図示例においては透明材料で形成されている支持具11bは、略直方体形であり、所定距離離間して一対の挟持部13・13が並行して設けられている。支持具11bは、ガイド部材8aの先端開口の一部を占めるように設けられており、その底面が板材16の他方の面に沿うように配置され、接着等で固定されていると共に、一対の挟持部13・13が、ガイド部材8aの軸方向に延びるように配置されている。   In the illustrated example, the support 11b formed of a transparent material has a substantially rectangular parallelepiped shape, and is provided with a pair of holding portions 13 and 13 in parallel at a predetermined distance. The support 11b is provided so as to occupy a part of the front end opening of the guide member 8a, and the bottom surface thereof is disposed along the other surface of the plate 16 and is fixed by bonding or the like. The clamping parts 13 and 13 are arranged so as to extend in the axial direction of the guide member 8a.

送光用光ファイバー4、受光用光ファイバー5をガイド部材8aに内挿して設けられ、送光用光ファイバー4の光出射端41と、受光用光ファイバー5の光入射端51は、それぞれ反射板17の反射面に向けられて挟持部13・13で挟持され、反射板17の反射面に近接して並列配置されている。光出射端41と反射板17の反射面、反射板17の反射面と光入射端51とはそれぞれ離間しており、光出射端41から反射板17の反射面までの距離と、反射板17の反射面から光入射端51までの距離の合計距離は、例えばそれぞれの距離を4〜7mmに設定することで、8〜14mmに設定すると好ましい。   The light transmitting optical fiber 4 and the light receiving optical fiber 5 are provided by being inserted into the guide member 8a. The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are reflected by the reflecting plate 17, respectively. It is directed to the surface and is sandwiched between the sandwiching portions 13 and 13 and is arranged in parallel near the reflecting surface of the reflecting plate 17. The light emitting end 41 and the reflecting surface of the reflecting plate 17, and the reflecting surface of the reflecting plate 17 and the light incident end 51 are separated from each other. The distance from the light emitting end 41 to the reflecting surface of the reflecting plate 17, and the reflecting plate 17. The total distance from the reflecting surface to the light incident end 51 is preferably set to 8 to 14 mm, for example, by setting each distance to 4 to 7 mm.

図8の第6例は、第5例の変形例であり、複数の反射面を介して送光用光ファイバー4の光出射端41からの出射光を受光用光ファイバー5の光入射端51に導入するものである。第6例では、L字状の取付板18の内側に三角柱状の反射体19を設けた反射具を2つ用い、2つの反射体19・19の反射面20・20での反射により、送光用光ファイバー4の光出射端41からの出射光を90度ずつ角度を変えて屈折、反射させ、コ字形の光路になるように設定し、受光用光ファイバー5の光入射端51に導入するものである。取付板18・18は、例えば第5例の板材16の一方の面に接着等で固定して設けられ、反射体19・19の反射面20・20が所定位置となるようにして反射具が配置される。   The sixth example of FIG. 8 is a modification of the fifth example, and the light emitted from the light emitting end 41 of the light transmitting optical fiber 4 is introduced into the light incident end 51 of the light receiving optical fiber 5 through a plurality of reflecting surfaces. To do. In the sixth example, two reflectors each provided with a triangular prism-like reflector 19 inside the L-shaped mounting plate 18 are used, and the reflection by the reflecting surfaces 20 and 20 of the two reflectors 19 and 19 is performed. The light emitted from the light exit end 41 of the optical fiber 4 for light is refracted and reflected by changing the angle by 90 degrees so as to form a U-shaped optical path and introduced into the light incident end 51 of the light receiving optical fiber 5 It is. The mounting plates 18 and 18 are provided, for example, by being fixed to one surface of the plate material 16 of the fifth example by bonding or the like, so that the reflecting surfaces 20 and 20 of the reflectors 19 and 19 are in a predetermined position. Be placed.

この場合の光出射端41から出射光が入射する第1の反射面20までの距離、第1の反射面20による反射光が入射する第2の反射面20までの距離、第2の反射面20による反射光が入射する光入射端51までの距離の合計も、例えば8〜14mmに設定すると好ましい。   In this case, the distance from the light emitting end 41 to the first reflecting surface 20 where the emitted light is incident, the distance to the second reflecting surface 20 where the reflected light from the first reflecting surface 20 is incident, the second reflecting surface The total distance to the light incident end 51 on which the reflected light 20 is incident is preferably set to 8 to 14 mm, for example.

また、図9の第7例は、対向型であり、棒状のガイド部材に相当する細長板状のガイド部材8bを有し、ガイド部材8bの先端に固定板81bが設けられている。送光用光ファイバー4、受光用光ファイバー5はガイド部材8bの一方の面に沿うように設けられ、間隔を開けて設けられる結束具21で取り付けられている。   The seventh example of FIG. 9 is an opposing type, has an elongated plate-like guide member 8b corresponding to a rod-like guide member, and a fixed plate 81b is provided at the tip of the guide member 8b. The optical fiber for light transmission 4 and the optical fiber for light reception 5 are provided along one surface of the guide member 8b, and are attached by a binding tool 21 provided at an interval.

送光用光ファイバー4の光出射端41側、受光用光ファイバー5の光入射端51側は、固定板81b下に配置されるように引き延ばされ、固定板81b下において、光出射端41と光入射端51が対応する位置で離間して対向するようにして、送光用光ファイバー4と受光用光ファイバー5は図示省略する固定具で固定されている。これにより、固定板81bが屋根として機能し、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51が充填材等を被って充填前に光強度がなくなることが防止される。送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51は、ガイド部材8bの先端近傍で支持される。本例でも送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とは、例えば1〜7mm離間して対向配置することが好ましい。   The light emitting end 41 side of the light transmitting optical fiber 4 and the light incident end 51 side of the light receiving optical fiber 5 are extended so as to be disposed below the fixed plate 81b. The light transmitting optical fiber 4 and the light receiving optical fiber 5 are fixed by a fixture (not shown) so that the light incident ends 51 face each other at a corresponding position. As a result, the fixing plate 81b functions as a roof, and the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are covered with the filler and the light intensity is prevented from being lost before filling. The The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are supported near the tip of the guide member 8b. Also in this example, it is preferable that the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are disposed to face each other with a separation of 1 to 7 mm, for example.

また、図10の第8例は、反射型であり、棒状のガイド部材に相当する細長板状のガイド部材8cを有し、ガイド部材8cの先端に、L字状板材81cが一方の面をガイド部材8cに対して略垂直にし、他方の面をガイド部材8cの背面に沿わせるようにして設けられ、L字状板材81cの他方の面がガイド部材8cに接着等で固定されている。L字状部材81cの一方の面のガイド部材8c側には反射板17が設けられている。   The eighth example of FIG. 10 is a reflection type, and has an elongated plate-like guide member 8c corresponding to a rod-like guide member, and an L-shaped plate member 81c has one surface at the tip of the guide member 8c. The other surface of the L-shaped plate member 81c is fixed to the guide member 8c by bonding or the like so as to be substantially perpendicular to the guide member 8c and have the other surface along the back surface of the guide member 8c. A reflecting plate 17 is provided on the guide member 8c side of one surface of the L-shaped member 81c.

送光用光ファイバー4、受光用光ファイバー5はガイド部材8cの前面に沿うように並行して設けられ、間隔を開けて設けられる結束具21で取り付けられている。送光用光ファイバー4の光出射端41と、受光用光ファイバー5の光入射端51は、並行な状態で最先の結束具21で固定され、ガイド部材8cの先端近傍で支持されており、反射板17の反射面に向けられている。光出射端41と反射板17の反射面、反射板17の反射面と光入射端51とはそれぞれ離間しており、光出射端41から反射板17の反射面までの距離と、反射板17の反射面から光入射端51までの距離の合計距離は、例えばそれぞれの距離を4〜7mmに設定することで、8〜14mmに設定すると好ましい。   The optical fiber for light transmission 4 and the optical fiber for light reception 5 are provided in parallel along the front surface of the guide member 8c, and are attached by a binding tool 21 provided at an interval. The light emitting end 41 of the light-transmitting optical fiber 4 and the light incident end 51 of the light-receiving optical fiber 5 are fixed in parallel with the first binding tool 21 and supported near the tip of the guide member 8c for reflection. It is directed to the reflecting surface of the plate 17. The light emitting end 41 and the reflecting surface of the reflecting plate 17, and the reflecting surface of the reflecting plate 17 and the light incident end 51 are separated from each other. The distance from the light emitting end 41 to the reflecting surface of the reflecting plate 17, and the reflecting plate 17. The total distance from the reflecting surface to the light incident end 51 is preferably set to 8 to 14 mm, for example, by setting each distance to 4 to 7 mm.

また、図11の第9例は、対向型であり、棒状のガイド部材に相当する細長板状のガイド部材8dを有し、ガイド部材8dの先端に略C字状のC字部81dが形成されている。送光用光ファイバー4、受光用光ファイバー5はガイド部材8dの一方の面に沿うように設けられ、間隔を開けて設けられる結束バンド15で取り付けられていると共に、送光用光ファイバー4、受光用光ファイバー5の先端近傍は、略コ字形の取付具22を外側から嵌め込むことでガイド部材8d及びC字部81dに取り付けられている。   Further, the ninth example of FIG. 11 is an opposing type and has an elongated plate-like guide member 8d corresponding to a rod-shaped guide member, and a substantially C-shaped C-shaped portion 81d is formed at the tip of the guide member 8d. Has been. The optical fiber for light transmission 4 and the optical fiber for light reception 5 are provided along one surface of the guide member 8d, and are attached by a binding band 15 provided at an interval, and the optical fiber for light transmission 4, the optical fiber for light reception. 5 is attached to the guide member 8d and the C-shaped portion 81d by fitting a substantially U-shaped attachment 22 from the outside.

送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51は、C字部81dのスリットを挟んで対応する位置で対向するように配置され、ガイド部材8dの先端近傍で支持される。本例でも送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とは、例えば1〜7mm離間して対向配置することが好ましい。   The light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are arranged so as to face each other at the corresponding positions across the slit of the C-shaped portion 81d, and are supported near the tip of the guide member 8d. Is done. Also in this example, it is preferable that the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are disposed to face each other with a separation of 1 to 7 mm, for example.

また、図12の第10例は、対向型であり、棒状のガイド部材に相当する細長板状のガイド部材8eを有し、ガイド部材8eの先端の略中央には凹部81eが形成されている。ガイド部材8eの一方の面側には、導入溝82e・82eが離間した位置に一対で形成されている。導入溝82e・82eは、ガイド部材8eの長手方向に延ばされ、先端付近で内側に曲げられ、凹部81eで先端が開放されており、対応する位置で対向配置されている。   The tenth example of FIG. 12 is an opposing type, and has an elongated plate-like guide member 8e corresponding to a rod-like guide member, and a recess 81e is formed at the approximate center of the tip of the guide member 8e. . On one surface side of the guide member 8e, a pair of introduction grooves 82e and 82e are formed at spaced positions. The introduction grooves 82e and 82e are extended in the longitudinal direction of the guide member 8e, bent inward in the vicinity of the distal end, opened at the recessed portion 81e, and opposed to each other at corresponding positions.

送光用光ファイバー4、受光用光ファイバー5は、それぞれ導入溝82e・82e内に嵌め込まれ、先端近傍においても導入溝82e・82eで支持されガイド部材8eからの離脱が防止されている。凹部81eにおいて、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51は離間して配置され、対応する位置で対向配置されている。本例でも送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とは、例えば1〜7mm離間して対向配置することが好ましい。   The optical fiber for light transmission 4 and the optical fiber for light reception 5 are fitted in the introduction grooves 82e and 82e, respectively, and are supported by the introduction grooves 82e and 82e even in the vicinity of the tip to prevent separation from the guide member 8e. In the recess 81e, the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are spaced apart from each other, and are disposed opposite to each other at corresponding positions. Also in this example, it is preferable that the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are disposed to face each other with a separation of 1 to 7 mm, for example.

本実施形態の空洞充填検知装置1で充填材の充填完了の検知処理を行う際には、図13に示すように、ガイド部材8を用いて所要個数のセンサー部7を空洞の所定箇所に設置する(S1)。例えば図2の矢板式トンネルの空洞94の場合には、センサー部7a、7b、7c、7d、7eを、トンネル周面方向に相互に距離を開けて5箇所の異なる箇所に離間して配置する。   When performing the filling completion detection process of the filling material in the cavity filling detection device 1 of the present embodiment, as shown in FIG. 13, a required number of sensor units 7 are installed at predetermined positions of the cavity using the guide member 8. (S1). For example, in the case of the cavity 94 of the sheet pile tunnel of FIG. 2, the sensor portions 7a, 7b, 7c, 7d, and 7e are spaced apart from each other in five different locations in the tunnel circumferential surface direction. .

次いで、光源部2をON状態にして、送光用光ファイバー4の光出射端41からの出射光を受光用光ファイバー5の光入射端51が受光し、検知部3で受光強度を時間経過に沿って取得する状態とする(S2)。この状態で充填材95等の注入、充填を開始する(S3)。   Next, the light source unit 2 is turned on, and the light incident end 51 of the light receiving optical fiber 5 receives the light emitted from the light emitting end 41 of the light transmitting optical fiber 4. (S2). In this state, injection and filling of the filler 95 and the like are started (S3).

充填材の充填進行に伴い、充填完了した領域に設置されているセンサー部7について、検知部3は、受光用光ファイバー5から入力される光の受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能に提示する。そして、設置した全てのセンサー部7について充填が完了した場合には、全てのセンサー部7について、検知部3は、受光用光ファイバー5から入力される光の受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能に提示し、充填材の充填が完了する(S4、S5、S6)。   As the filling of the filling material progresses, for the sensor unit 7 installed in the filled region, the detection unit 3 causes the received light intensity of the light input from the light receiving optical fiber 5 to be less than or less than a set threshold value. Present it so that it can be recognized. When filling is completed for all the sensor units 7 installed, the detection unit 3 for all the sensor units 7 has a light reception intensity of light input from the light receiving optical fiber 5 equal to or less than a threshold value that is set and stored. Alternatively, the fact that it has become less can be recognized and filling of the filler is completed (S4, S5, S6).

本実施形態によれば、送光用光ファイバー4の光出射端41からの出射光が離間する受光用光ファイバー5の光入射端51に一定経路と一定距離で導入されることから、空洞内の溜水の懸濁、空洞壁面の凹凸での光反射等に影響されずに、出射光を受光用光ファイバー5で安定して受光することが可能となり、この安定した受光が充填された充填材の光路遮断で急減することで充填材の充填完了を確実に認識することができる。また、充填された充填材内に残置する部分が送光用光ファイバー4、受光用光ファイバー5等の安価なものに限られ、又、送光用光ファイバー4の被覆を故意に破って一定の開口部を形成する等の加工も不要であり、経済性に優れる。また、充填材を充填する施工において、充填状況のリアルタイムのモニタリングすることも不要となり、優れた作業効率で充填材の充填確認を行うことができる。また、検知部3の演算処理により、一層明確に光出射端41及び光入射端51の周辺領域の充填材の充填完了を認識することができる。   According to the present embodiment, the light emitted from the light emitting end 41 of the light transmitting optical fiber 4 is introduced into the light incident end 51 of the light receiving optical fiber 5 that is separated from the light emitting end 41 by a constant path and a constant distance. The outgoing light can be stably received by the light receiving optical fiber 5 without being affected by the suspension of water, the light reflection on the unevenness of the cavity wall surface, and the optical path of the filling material filled with this stable light reception. It is possible to reliably recognize the completion of filling with the filler by rapidly decreasing by the interruption. Further, the portions to be left in the filled material are limited to inexpensive ones such as the light transmitting optical fiber 4 and the light receiving optical fiber 5, and the opening of the light transmitting optical fiber 4 is deliberately broken to have a certain opening. Processing such as forming is also unnecessary, and is excellent in economic efficiency. In addition, in the construction for filling the filler, it is not necessary to monitor the filling state in real time, and the filling of the filler can be confirmed with excellent work efficiency. Further, the completion of the filling of the filler in the area around the light emitting end 41 and the light incident end 51 can be recognized more clearly by the calculation processing of the detection unit 3.

また、対向型のセンサー部7、或いは反射型のセンサー部7により、送光用光ファイバーの光出射端と受光用光ファイバーの光入射端との間に充填材の充填で状態が変化する光路を確実に確保することができると共に、送光用光ファイバーの光出射端から受光用光ファイバーの光入射端に一定経路、一定距離で確実に光を導入することができる。また、棒状のガイド部材8で空洞内の所要位置に、簡単な作業で送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51を設置することができる。   In addition, the opposing sensor unit 7 or the reflective sensor unit 7 ensures an optical path whose state changes due to filling with a filler between the light emitting end of the light transmitting optical fiber and the light incident end of the receiving optical fiber. In addition, the light can be reliably introduced from the light emitting end of the light transmitting optical fiber to the light incident end of the light receiving optical fiber with a constant path and a constant distance. Further, the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 can be installed at a required position in the cavity by the rod-shaped guide member 8 by a simple operation.

また、ガイド部材8を筒状の充填材注入管とする場合には、充填材注入管を充填材の注入に加え、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51の設置に利用することができ、別途にガイド部材を用いることが不要となる。   When the guide member 8 is a cylindrical filler injection tube, the filler injection tube is added to the filler injection, and the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end of the light receiving optical fiber 5 are added. 51 can be used for installation, and it is not necessary to use a separate guide member.

〔実施形態の空洞充填検知装置の別使用例〕
次に、実施形態の空洞充填検知装置の別使用例について説明する。図14はトンネルの延びる方向にセンサー部7f〜7jを複数設置する使用例であり、地山101と既存の覆工コンクリート102との間に空洞103が形成され、空洞103がトンネルの延びる方向に延びて形成されている。そして、トンネル延在方向に間隔を開けた位置において、覆工コンクリート102を貫通するようにガイド部材8を設け、ガイド部材8の先端近傍で支持される送光用光ファイバー4と受光用光ファイバー5を空洞103内に導入し、センサー部7f〜7jを空洞103内に設置するものである。送光用光ファイバー4と受光用光ファイバー5は検知装置本体6に接続される。尚、図14中、104は充填材である。
[Another use example of the cavity filling detection device of the embodiment]
Next, another usage example of the cavity filling detection device of the embodiment will be described. FIG. 14 is an example of use in which a plurality of sensor portions 7f to 7j are installed in the direction in which the tunnel extends. A cavity 103 is formed between the natural ground 101 and the existing lining concrete 102, and the cavity 103 extends in the direction in which the tunnel extends. It is formed to extend. Then, a guide member 8 is provided so as to penetrate the lining concrete 102 at a position spaced in the tunnel extending direction, and the light transmitting optical fiber 4 and the light receiving optical fiber 5 supported in the vicinity of the tip of the guide member 8 are provided. It is introduced into the cavity 103 and the sensor parts 7f to 7j are installed in the cavity 103. The light transmitting optical fiber 4 and the light receiving optical fiber 5 are connected to the detection device body 6. In FIG. 14, reference numeral 104 denotes a filler.

また、図15は空洞112の両端近傍にセンサー部7k、7lを設置する使用例であり、地山111の地下に空洞112が形成されている。地山111には、充填材113を充填すると共に送光用光ファイバー4と受光用光ファイバー5を導入するための注入穴114が形成されており、検知装置本体6から送光用光ファイバー4と受光用光ファイバー5が延ばされ、注入穴114に挿入され、センサー部7k、7lが空洞112の両端近傍に設置されている。この使用例は、例えば地下採石場、廃坑跡、防空壕、石灰岩やシラスによる自然空洞等の充填を行う際に、充填材の充填領域を仕切り、その端部近傍にセンサー部を配置する場合等に使用する。   FIG. 15 shows a usage example in which the sensor portions 7k and 7l are installed in the vicinity of both ends of the cavity 112. The cavity 112 is formed in the underground of the natural ground 111. In the natural ground 111, an injection hole 114 for filling the filler 113 and introducing the light transmitting optical fiber 4 and the light receiving optical fiber 5 is formed, and the light transmitting optical fiber 4 and the light receiving optical fiber 4 are received from the detection device main body 6. The optical fiber 5 is extended and inserted into the injection hole 114, and the sensor portions 7 k and 7 l are installed near both ends of the cavity 112. For example, when filling a natural cavity with underground quarries, abandoned mine sites, air defense pits, limestone or shirasu, etc., when filling the filler filling area and placing the sensor near the end, etc. use.

また、図16はトンネルの天端に単一のセンサー部7mを設置する使用例であり、地山121の周面に吹付コンクリート122が打設され、吹付コンクリート122から離間して型枠123が周状に配置されている状態において、吹付コンクリート122と型枠123との間の覆工コンクリート打設用の空洞124に充填材注入管125の吹上口126からコンクリートを充填材として注入、充填する場合の使用例である。   FIG. 16 is an example of use in which a single sensor portion 7m is installed at the top of the tunnel. The shotcrete 122 is placed on the peripheral surface of the ground 121, and the mold 123 is separated from the shotcrete 122. In the state of being arranged in a circumferential shape, the concrete is injected and filled into the cavity 124 for placing the lining concrete between the shotcrete 122 and the mold 123 from the blow-up port 126 of the filler injection pipe 125 as a filler. This is a usage example.

検知装置本体6からは送光用光ファイバー4と受光用光ファイバー5が延ばされ、その先端のセンサー部7mは天端の吹付コンクリート122に近接して配置されている。このようにトンネル新築時には、既存のトンネルの覆工背面空洞のように、充填領域のアーチ天端形状が複雑ではないので、センサー部7を多点設置しなくても充填材の充填完了を確認することが可能である。尚、図14〜図16の各使用例のセンサー部7f〜7j、センサー部7k、7l、センサー部7mには、対向型のセンサー部と反射型のセンサー部のいずれを用いてもよい。   A light transmitting optical fiber 4 and a light receiving optical fiber 5 are extended from the detection device main body 6, and a sensor portion 7 m at the tip thereof is disposed close to the top shot concrete 122. In this way, when the tunnel is newly constructed, the arch top end shape of the filling area is not complicated like the cavities behind the existing tunnel lining, so it is confirmed that the filling of the filling material has been completed without installing multiple sensor parts 7. Is possible. In addition, as for the sensor parts 7f to 7j, the sensor parts 7k and 7l, and the sensor part 7m of each usage example of FIGS.

〔対向型センサー部と反射型センサー部の実験例〕
次に、対向型センサー部と反射型センサー部の充填材の充填進行に伴う受光強度の変化を確認した実験例について説明する。対向型センサー部の実験例では、図17(a)に示すように、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とを距離d1を開けて離間させ、対応位置で対向配置し、この構造を維持して、光出射端41の出射光を光入射端51に受光させながら充填材を充填していき、検知部3において充填進行に伴う対向型の受光強度の変化を確認した。
[Experimental example of opposed sensor unit and reflective sensor unit]
Next, a description will be given of an experimental example in which a change in the received light intensity with the progress of filling of the filling material of the opposed sensor unit and the reflective sensor unit is confirmed. In the experiment example of the opposed sensor unit, as shown in FIG. 17A, the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are spaced apart by a distance d1. While maintaining the structure, the filling material is filled while receiving the light emitted from the light emitting end 41 at the light incident end 51, and the light receiving intensity of the opposed type as the filling proceeds in the detection unit 3. The change of was confirmed.

反射型センサー部の実験例では、図17(b)に示すように、送光用光ファイバー4と受光用光ファイバー5を並行配置し、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51を反射板28に向けて配置している。送光用光ファイバー4の光出射端41と反射板28との距離、受光用光ファイバー5の光入射端51と反射板28との距離は、同一距離で距離d2としており、送光用光ファイバー4の光出射端41から受光用光ファイバー5の光入射端51に受光されるまでの距離はd2の2倍になっている。この構造を維持して、光出射端41の出射光を光入射端51に受光させながら充填材を充填していき、検知部3において充填進行に伴う反射型の受光強度の変化を確認した。   In the experiment example of the reflection type sensor unit, as shown in FIG. 17B, the light transmitting optical fiber 4 and the light receiving optical fiber 5 are arranged in parallel, and the light emitting end 41 of the light transmitting optical fiber 4 and the light receiving optical fiber 5 are arranged. The light incident end 51 is disposed toward the reflecting plate 28. The distance between the light emitting end 41 of the light transmitting optical fiber 4 and the reflecting plate 28 and the distance between the light incident end 51 of the light receiving optical fiber 5 and the reflecting plate 28 are the same distance as the distance d2. The distance from the light emitting end 41 to the light incident end 51 of the light receiving optical fiber 5 is twice d2. While maintaining this structure, the filling material was filled while receiving the light emitted from the light emitting end 41 at the light incident end 51, and the detection unit 3 confirmed the change in the reflection-type received light intensity as the filling progressed.

図18(a)、(b)の実験において、図17(a)の対向型センサー部、図17(b)の反射型センサー部を設置した空洞は、水が存在する空洞であり、この空洞に充填材を充填して実験した。この水が存在する空洞は、充填材の充填進行に伴って空洞内の水が懸濁するものであり、送光用光ファイバーから出射した光を空洞面で反射させ、受光用光ファイバーで受光して充填材の充填完了を確認する構造では、充填完了を正確に確認することが困難なものである。   In the experiment of FIGS. 18A and 18B, the cavity where the opposed sensor unit of FIG. 17A and the reflective sensor unit of FIG. 17B are installed is a cavity in which water exists. An experiment was conducted by filling a filler. The cavity where this water exists is the one in which the water in the cavity is suspended as the filling of the filler progresses, and the light emitted from the optical fiber for light transmission is reflected by the cavity surface and received by the optical fiber for light reception. In the structure for confirming the completion of filling of the filler, it is difficult to accurately confirm the completion of filling.

図18(a)は対向型センサー部を空洞の上端付近に設置し、セメント系充填材を空洞に充填した場合に、セメント系充填材の充填進行に伴う受光強度の変化を表したものである。距離d1を1mm、4mm、7mmのいずれとした場合でも、充填材の充填完了時には受光強度が急低下するため、受光強度の閾値を設定することにより、明確にセメント系充填材の充填完了を認識できることが分かる。   FIG. 18 (a) shows the change in the received light intensity with the progress of filling of the cement-based filler when the opposed sensor portion is installed near the upper end of the cavity and the cavity is filled with the cement-based filler. . Regardless of whether the distance d1 is 1 mm, 4 mm, or 7 mm, the received light intensity suddenly drops when the filling of the filler is completed. By setting a threshold value for the received light intensity, the completion of filling of the cement-based filler is clearly recognized. I understand that I can do it.

図18(b)は反射型センサー部を空洞の上端付近に設置し、セメント系充填材を空洞に充填した場合に、セメント系充填材の充填進行に伴う受光強度の変化を表したものである。距離d2を4mm、7mmのいずれとした場合でも、充填材の充填完了時には受光強度が急低下するため、受光強度の閾値を設定することにより、明確にセメント系充填材の充填完了を認識できることが分かる。尚、距離d2を1mmとした場合には、d2が小さすぎて受光強度を正しく計測することができなかった。   FIG. 18B shows a change in received light intensity with the progress of filling of the cement filler when the reflective sensor portion is installed near the upper end of the cavity and the cavity is filled with the cement filler. . Regardless of whether the distance d2 is 4 mm or 7 mm, the light receiving intensity suddenly decreases when the filling of the filler is completed, so that the completion of filling of the cement-based filler can be clearly recognized by setting a threshold of the light receiving intensity. I understand. When the distance d2 was 1 mm, the received light intensity could not be correctly measured because d2 was too small.

図18(c)の実験においては、図17(a)の対向型センサー部を空洞の上端付近に設置し、発泡ウレタン系充填材を空洞に充填した場合に、発泡ウレタン系充填材の充填進行に伴う受光強度の変化を表したものである。距離d1を1mm、4mm、7mmのいずれとした場合でも、充填材の充填完了時には受光強度が急低下するため、受光強度の閾値を設定することにより、明確に発泡ウレタン系充填材の充填完了を認識できることが分かる。尚、距離d1を1mmとした場合では、充填前より光強度が不規則に変化し,充填により一旦受光強度が0になった後,光強度が再上昇する傾向が見られた。これは,黒色で溶液状のウレタンが光の送受信間を充填し,光を一旦遮断したものの,その後の発泡による体積膨張に伴って密度が低下し,光が再び透過し始めたためと考えられる。   In the experiment of FIG. 18 (c), when the opposed sensor portion of FIG. 17 (a) is installed near the upper end of the cavity and the urethane foam filler is filled in the cavity, the filling progress of the urethane foam filler is progressed. This represents a change in the received light intensity due to. Regardless of whether the distance d1 is 1 mm, 4 mm, or 7 mm, the received light intensity suddenly drops when the filling of the filler is completed. By setting a threshold value of the received light intensity, the filling of the urethane foam filler is clearly completed. It can be recognized. When the distance d1 was 1 mm, the light intensity changed irregularly before filling, and after the light receiving intensity once became zero due to filling, there was a tendency for the light intensity to rise again. This is thought to be because the black and solution-like urethane filled the space between light transmission and reception and once blocked the light, but the density decreased with the subsequent volume expansion due to foaming and the light began to transmit again.

以上の実験例によれば、空洞の状況や充填材の性状、送光用光ファイバー4の光射出端41と受光用光ファイバー5の光入射端51の配置様態により、充填進行に伴う受光強度の変化状態は異なるものの、光射出端41から射出される光が一定経路と一定距離で光入射端51に導入されるように配置しておくことにより、受光強度が一定以下となったことを確認すれば充填完了を明確に認識することができる点が明らかとなった。但し、反射型センサー部においては、図17(b)に示す反射板28との距離d2が2mm以下では受光強度の変化を検出することが難しくなってしまう為、距離d2が適正、即ち光射出端41から光入射端51までの距離が6〜16mm程度に設定されていることが望ましいことが確認された。   According to the above experimental example, the change in received light intensity with the progress of filling depends on the condition of the cavity, the properties of the filler, and the arrangement of the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5. Although the state is different, it is confirmed that the light receiving intensity is below a certain level by arranging the light emitted from the light emitting end 41 to be introduced into the light incident end 51 at a constant path and a constant distance. It became clear that the completion of filling could be clearly recognized. However, in the reflective sensor unit, it is difficult to detect a change in received light intensity when the distance d2 from the reflecting plate 28 shown in FIG. It was confirmed that the distance from the end 41 to the light incident end 51 is preferably set to about 6 to 16 mm.

〔実施形態の変形例等〕
本明細書開示の発明は、各発明、実施形態、各例の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものを含むものである。
[Modifications of Embodiment, etc.]
The invention disclosed in this specification is specified by changing these partial configurations to other configurations disclosed in this specification, in addition to the respective inventions, embodiments, and examples, to the extent applicable. It includes those specified by adding other configurations disclosed in this specification to these configurations, or those obtained by deleting these partial configurations to the extent that partial effects can be obtained and specifying them as superordinate concepts. .

例えば送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とを離間して対向配置する対向型の構成、或いは送光用光ファイバー4の光出射端41からの出射光を反射面を介して受光用光ファイバー5の光入射端51に導入する反射型の構成は上記例以外にも適宜であり、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51とが、光出射端41からの出射光が光入射端51に一定経路と一定距離で導入されるように配置されるものであれば包含される。   For example, the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 are spaced apart from each other, or the light emitted from the light emitting end 41 of the light transmitting optical fiber 4 is used. The reflection type configuration introduced into the light incident end 51 of the light receiving optical fiber 5 through the reflecting surface is appropriate in addition to the above example, and the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end of the light receiving optical fiber 5 are appropriate. 51 is included if it is arranged so that the light emitted from the light emitting end 41 is introduced into the light incident end 51 at a constant path and a constant distance.

また、送光用光ファイバー4の光出射端41と受光用光ファイバー5の光入射端51の支持構造は上記例以外にも適宜である。また、送光用光ファイバー4の光出射端41から受光用光ファイバー5の光入射端51に至るまでの光路の距離は、充填材の充填完了を確認できる範囲で適宜である。   Further, the support structure of the light emitting end 41 of the light transmitting optical fiber 4 and the light incident end 51 of the light receiving optical fiber 5 is appropriate in addition to the above example. Further, the distance of the optical path from the light emitting end 41 of the light transmitting optical fiber 4 to the light incident end 51 of the light receiving optical fiber 5 is appropriate as long as the filling of the filler can be confirmed.

本発明は、例えば既設トンネルの覆工背面に存在する空洞、トンネル構築時に移動式型枠の背面側に設けられる覆工コンクリート打設用の空洞、地下採石場、廃坑跡、防空壕、石灰岩やシラスによる自然空洞、地盤沈下で形成された建物下の空洞等の各種地下空洞に充填材を充填する際に利用することができる。   The present invention includes, for example, a cavity existing on the backside of an existing tunnel, a cavity for placing concrete on the backside of a movable formwork when a tunnel is constructed, an underground quarry, an abandoned mine site, an air pit, a limestone, and a shirasu It can be used to fill various underground cavities such as natural cavities due to the ground and cavities under buildings formed by ground subsidence.

1…空洞充填検知装置 2…光源部 3…検知部 31…制御処理部 32…記憶部 321…プログラム格納部 322…閾値格納部 323…データ格納部 33…受光部 34…表示部 35…入力部 4…送光用光ファイバー 41…光出射端 5…受光用光ファイバー 51…光入射端 6…検知装置本体 7、7a、7b、7c、7d、7e、7f、7g、7h、7i、7j、7k、7l、7m…センサー部 8、8a、8b、8c、8d…ガイド部材 81a…端面 82a…突出部 81b…固定板 81c…L字状板材 81d…C字部 11、11a、11b…支持具 12…凹部 13…挟持部 14…スリット 15…結束バンド 16…板材 17…反射板 18…取付板 19…反射体 20…反射面 21…結束具 22…取付具 25…充填材注入管 28…反射板 91…地山 92…矢板 93…覆工コンクリート 94…空洞 95…充填材 101…地山 102…覆工コンクリート 103…空洞 104…充填材 111…地山 112…空洞 113…充填材 114…注入穴 121…地山 122…吹付コンクリート 123…型枠 124…空洞 125…充填材注入管 126…吹上口 201…光源部、202…検知部、203…送光用光ファイバー、204…受光用光ファイバー、205…地山、206…トンネル空洞壁面、207…覆工コンクリート、208…充填材、209…溜水、210…空洞 d1、d2…距離
DESCRIPTION OF SYMBOLS 1 ... Cavity filling detection apparatus 2 ... Light source part 3 ... Detection part 31 ... Control processing part 32 ... Memory | storage part 321 ... Program storage part 322 ... Threshold storage part 323 ... Data storage part 33 ... Light receiving part 34 ... Display part 35 ... Input part DESCRIPTION OF SYMBOLS 4 ... Optical fiber for light transmission 41 ... Light emission end 5 ... Optical fiber for light reception 51 ... Light incident end 6 ... Main body of detection device 7, 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7i, 7j, 7k, 7l, 7m ... sensor part 8, 8a, 8b, 8c, 8d ... guide member 81a ... end face 82a ... projecting part 81b ... fixed plate 81c ... L-shaped plate material 81d ... C-shaped part 11, 11a, 11b ... support tool 12 ... Concave part 13 ... clamping part 14 ... slit 15 ... binding band 16 ... plate material 17 ... reflecting plate 18 ... mounting plate 19 ... reflector 20 ... reflecting surface 21 ... binding tool 22 ... mounting tool 25 ... filler injection tube 28 ... Spray plate 91 ... Ground mountain 92 ... Sheet pile 93 ... Covering concrete 94 ... Cavity 95 ... Filler 101 ... Ground mountain 102 ... Covering concrete 103 ... Cavity 104 ... Filler 111 ... Ground mountain 112 ... Cavity 113 ... Filler 114 ... Injection hole 121 ... Ground mountain 122 ... Sprayed concrete 123 ... Formwork 124 ... Cavity 125 ... Filler injection pipe 126 ... Blowing port 201 ... Light source part, 202 ... Detection part, 203 ... Optical fiber for light transmission, 204 ... Optical fiber for light reception, 205 ... natural ground, 206 ... tunnel cavity wall surface, 207 ... lining concrete, 208 ... filler, 209 ... accumulated water, 210 ... cavity d1, d2 ... distance

Claims (8)

充填材が充填される空洞外に配置される光源部と、
前記空洞外に配置される検知部と、
前記空洞内に光出射端が設けられ、前記光源部の光を伝送する送光用光ファイバーと、
前記空洞内に光入射端が設けられ、前記光入射端で受光する光を前記検知部に伝送する受光用光ファイバーとを備え、
前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが、前記光出射端からの出射光が前記光出射端と離間する前記光入射端に一定経路と一定距離で導入されるように配置され、
前記検知部が、前記受光用光ファイバーから入力される光の受光強度が設定記憶されている閾値以下若しくは未満になったことを認識可能に提示する
ことを特徴とする空洞充填検知装置。
A light source unit disposed outside the cavity filled with the filler,
A detector disposed outside the cavity;
A light emitting end provided in the cavity, and an optical fiber for transmitting light that transmits light of the light source unit;
A light incident end is provided in the cavity, and a light receiving optical fiber that transmits light received at the light incident end to the detection unit,
The light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are introduced at a constant path and a constant distance into the light incident end where the light emitted from the light emitting end is separated from the light emitting end. Arranged so that
The cavity filling detection apparatus, wherein the detection unit presents in a recognizable manner that the received light intensity of the light input from the light receiving optical fiber is less than or less than a threshold value that is set and stored.
前記検知部が、前記受光用光ファイバーから入力される光の受光強度と設定記憶されている閾値を比較し、前記受光強度が前記閾値以下若しくは未満の場合に、前記光出射端及び前記光入射端の周辺領域の前記充填材の充填完了を認識可能に提示する
ことを特徴とする請求項1記載の空洞充填検知装置。
The detection unit compares the received light intensity of the light input from the light receiving optical fiber with a threshold value stored and set, and when the received light intensity is less than or less than the threshold value, the light emitting end and the light incident end The cavity filling detection device according to claim 1, wherein the filling completion of the filler in the peripheral region of the object is presented in a recognizable manner.
前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが離間して対向配置されることを特徴とする請求項1又は2記載の空洞充填検知装置。   The cavity filling detection device according to claim 1 or 2, wherein a light emitting end of the light transmitting optical fiber and a light incident end of the light receiving optical fiber are spaced apart from each other. 前記送光用光ファイバーの光出射端からの出射光が一若しくは複数の反射面を介して前記受光用光ファイバーの光入射端に導入されることを特徴とする請求項1又は2記載の空洞充填検知装置。   3. The cavity filling detection according to claim 1, wherein light emitted from a light emitting end of the light transmitting optical fiber is introduced into the light incident end of the light receiving optical fiber through one or a plurality of reflecting surfaces. apparatus. 前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが棒状のガイド部材の先端近傍で支持されることを特徴とする請求項1〜4の何れかに記載の空洞充填検知装置。   5. The cavity filling detection according to claim 1, wherein a light emitting end of the light transmitting optical fiber and a light incident end of the light receiving optical fiber are supported in the vicinity of the tip of a rod-shaped guide member. apparatus. 前記ガイド部材が筒状の充填材注入管であり、
前記送光用光ファイバーと前記受光用光ファイバーとが前記ガイド部材に略沿って前記ガイド部材の外側に取り付けられることを特徴とする請求項5記載の空洞充填検知装置。
The guide member is a cylindrical filler injection tube;
6. The cavity filling detection device according to claim 5, wherein the optical fiber for light transmission and the optical fiber for light reception are attached to the outside of the guide member substantially along the guide member.
前記送光用光ファイバーの光出射端と前記受光用光ファイバーの光入射端とが1〜7mm離間して対向配置されることを特徴とする請求項3、5又は6記載の空洞充填検知装置。   7. The cavity filling detection device according to claim 3, wherein the light emitting end of the light transmitting optical fiber and the light incident end of the light receiving optical fiber are disposed to face each other with a distance of 1 to 7 mm. 前記送光用光ファイバーの光出射端からの出射光が一若しくは複数の反射面を介して前記受光用光ファイバーの光入射端に導入され、
前記送光用光ファイバーの光出射端から前記反射面を介して前記受光用光ファイバーの光入射端に至るまでの距離が6〜16mmに設定されることを特徴とする請求項4、5又は6記載の空洞充填検知装置。
Outgoing light from the light emitting end of the light transmitting optical fiber is introduced into the light incident end of the light receiving optical fiber through one or a plurality of reflecting surfaces,
7. The distance from the light emitting end of the light transmitting optical fiber to the light incident end of the light receiving optical fiber through the reflecting surface is set to 6 to 16 mm. Cavity filling detection device.
JP2015203040A 2015-10-14 2015-10-14 Cavity filling detector Active JP6587346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203040A JP6587346B2 (en) 2015-10-14 2015-10-14 Cavity filling detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203040A JP6587346B2 (en) 2015-10-14 2015-10-14 Cavity filling detector

Publications (2)

Publication Number Publication Date
JP2017075478A true JP2017075478A (en) 2017-04-20
JP6587346B2 JP6587346B2 (en) 2019-10-09

Family

ID=58551081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203040A Active JP6587346B2 (en) 2015-10-14 2015-10-14 Cavity filling detector

Country Status (1)

Country Link
JP (1) JP6587346B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155416A (en) * 2016-02-29 2017-09-07 株式会社鴻池組 Installation management method of lining concrete of tunnel
CN109026067A (en) * 2018-08-14 2018-12-18 福建工程学院 A kind of circumferential intelligent ruggedized construction of shield tunnel and reinforcement means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156149A (en) * 1976-09-02 1979-05-22 Honeywell Inc. Optical material level probe
JP2000230393A (en) * 1999-02-12 2000-08-22 Sho Bond Constr Co Ltd Apparatus and method for back-filling for tunnel
JP2001027678A (en) * 1999-07-13 2001-01-30 Toray Ind Inc Sensor for detecting liquid body and manufacture of frp structural body
JP2012007351A (en) * 2010-06-24 2012-01-12 Jdc Corp Concrete filling detector and concrete filling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156149A (en) * 1976-09-02 1979-05-22 Honeywell Inc. Optical material level probe
JP2000230393A (en) * 1999-02-12 2000-08-22 Sho Bond Constr Co Ltd Apparatus and method for back-filling for tunnel
JP2001027678A (en) * 1999-07-13 2001-01-30 Toray Ind Inc Sensor for detecting liquid body and manufacture of frp structural body
JP2012007351A (en) * 2010-06-24 2012-01-12 Jdc Corp Concrete filling detector and concrete filling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155416A (en) * 2016-02-29 2017-09-07 株式会社鴻池組 Installation management method of lining concrete of tunnel
CN109026067A (en) * 2018-08-14 2018-12-18 福建工程学院 A kind of circumferential intelligent ruggedized construction of shield tunnel and reinforcement means

Also Published As

Publication number Publication date
JP6587346B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
CN110318795B (en) Coal mine tunnel surrounding rock deformation characteristic combined monitoring system and monitoring method
US10345139B2 (en) Non-isotropic acoustic cable
JP6587346B2 (en) Cavity filling detector
US5790248A (en) Laser beam levelling device
KR101129692B1 (en) underground displacement measuring instrument
KR20110010316A (en) Breakage detecting pipeline system
KR20150025853A (en) assembly for displacement meter
JP6553479B2 (en) Monitoring system, monitoring method
US9389271B2 (en) Security system for underground conduit
CN112326805B (en) Tunnel dome online monitoring method and system, electronic equipment and storage medium
KR20110115870A (en) A pin for measuring a tunnel convergence and crown settlement
JPH0252222A (en) Landslide sensor using optical fiber and its disposing method
JP7483076B2 (en) Stress measurement method
JP2000292216A (en) Optical fiber sensor
JP6396710B2 (en) Filling status detector
US3885423A (en) Method of measuring changes in the area surrounding a mining cavity
KR100957179B1 (en) Target apparatus
KR101433176B1 (en) Fire monitoring apparatus for tunnel or underground roadway
Mollahasani Madjdabadi Experimental evaluation of a distributed fiber optic sensor for mining application
KR101482052B1 (en) method for measuring displacement ahead of tunnel
KR101015092B1 (en) Remote control system for measuring gradient of temporary earth retaining structure and installing method thereof
JP2017155416A (en) Installation management method of lining concrete of tunnel
JP2002267575A (en) Detecting device for structure crack
KR100956687B1 (en) Health monitoring method of earthanchor structure using optial fiber embeded wire strand
KR101170025B1 (en) Apparatus for measuring water content and measuring method using the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6587346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250