JP2017072571A - 分析対象液中の特定物質の分析方法及びその分析システム - Google Patents

分析対象液中の特定物質の分析方法及びその分析システム Download PDF

Info

Publication number
JP2017072571A
JP2017072571A JP2015201625A JP2015201625A JP2017072571A JP 2017072571 A JP2017072571 A JP 2017072571A JP 2015201625 A JP2015201625 A JP 2015201625A JP 2015201625 A JP2015201625 A JP 2015201625A JP 2017072571 A JP2017072571 A JP 2017072571A
Authority
JP
Japan
Prior art keywords
liquid
adsorbent
dispersion
specific substance
analyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015201625A
Other languages
English (en)
Inventor
神谷 昌岳
Masatake Kamiya
昌岳 神谷
充記 近藤
Mitsuki Kondo
充記 近藤
和也 島
Kazuya Shima
和也 島
なお美 伴
Naomi Ban
なお美 伴
正直 梶田
Masanao Kajita
正直 梶田
中平 敦
Atsushi Nakahira
敦 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Corp
Original Assignee
Makino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Corp filed Critical Makino Corp
Priority to JP2015201625A priority Critical patent/JP2017072571A/ja
Publication of JP2017072571A publication Critical patent/JP2017072571A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

【課題】より短時間で分析対象液中の特定物質を分析することができる分析方法及び分析システムを提供する。【解決手段】特定物質が水に溶解した分析対象液9に対し、水中で特定物質を吸着可能な無機系の吸着剤1を分散させ、分析対象分散液13を得る。次いで、分析対象分散液13を核磁気共鳴(NMR)方式の評価装置5によって評価し、分析対象分散液13中における吸着剤1の粒子界面特性を把握する。そして、吸着剤1に基づく基準データと、評価装置5から出力される出力信号とから分析対象液9を分析する。【選択図】図2

Description

本発明は、分析対象液中の特定物質の分析方法と、その分析システムとに関する。
例えば、地層開発により、地中に含まれるカドミウム(Cd)やヒ素(As)等、人にとっての有害物質が地下水に含有され、その地下水が流出したり、その地下水を含む土砂が搬出される場合がある。人がその地下水やその土砂によって生育した食糧を摂取すると、その人は中毒となり、寿命の低下を生じる。一方、人にとって有益な物質を水に積極的に含有させ、その水を産業等に利用する場合もある。このため、そのような分析対象液がどのような特定物質を含有し、どの程度の濃度でその特定物質を含有しているかを分析することは極めて重要である。
従来の分析対象液中の特定物質の分析方法又はその分析システムとしては、例えば、特許文献1に開示されているように、フレーム原子吸光光度法等の原子吸光光度法を用いることが一般的である。
特開2010−2724号公報
しかし、従来の分析方法又はその分析システムでは、分析対象液に対して酸分解等を行う前処理が必要であるとともに、原子吸光光度法自体も手間を要する。このため、分析対象液の分析に長時間を要してしまう。また、分析を専門機関に依頼すると、一検体1万円以上の費用が必要となり、多くの企業では多点数の分析を行うことが難しい。
本発明は、上記従来の実情に鑑みてなされたものであって、より短時間でかつ容易に分析対象液中の特定物質を分析することができる分析方法及び分析システムを提供することを解決すべき課題としている。
本発明の分析対象液中の特定物質の分析方法は、特定物質が水に溶解した分析対象液に対し、水中で前記特定物質を吸着可能な無機系の吸着剤を分散させ、分析対象分散液を得る分散工程と、
前記分析対象分散液を核磁気共鳴(NMR)方式の評価装置によって評価し、前記分析対象分散液中における前記吸着剤の粒子界面特性を把握する評価工程と、
前記吸着剤に基づく基準データと、前記評価装置から出力される出力信号とから前記分析対象液を分析することを特徴とする。
また、本発明の分析対象液中の特定物質の分析システムは、特定物質が水に溶解した分析対象液に対し、水中で前記特定物質を吸着可能な無機系の吸着剤を分散させ、分析対象分散液を得る分散手段と、
前記分析対象分散液を核磁気共鳴(NMR)によって評価し、前記分析対象分散液中における前記吸着剤の粒子界面特性を把握可能な評価装置と、
前記吸着剤に基づく基準データと、前記評価装置から出力される出力信号とから前記分析対象液を分析する制御装置とを備えていることを特徴とする。
本発明の分析方法又は分析システムでは、核磁気共鳴(NMR)方式の評価装置を採用している。この評価装置によれば、水中のH+により、各粒子の界面の重要なパラメーターが得られる。このため、分析対象液に対して無機系の吸着剤を分散させ、分析対象分散液を得た後、分析対象分散液をその評価装置によって評価すれば、吸着に伴うH+の移動を捉えることで、分析対象分散液中における吸着剤の粒子界面特性を把握することができる。
すなわち、分析対象分散液中では、図1に示すように、例えば、特定物質であるCd等の2価の金属イオンX2+は、イオン交換によって各吸着剤1に吸着していることがわかっている。また、例えば、特定物質としてのAsを含む亜ヒ酸(H3AsO3)は、酸性下においては、配位子交換によって各吸着剤1に吸着し、塩基性下においては、イオン交換によって各吸着剤1に吸着していることがわかっている。こうして特定物質が各吸着剤1に吸着する際、吸着剤1の界面では、H+が吸着と脱着とを繰り返している。つまり、分析対象分散液中に吸着剤1と親和性の高い特定物質のイオン種が存在すると、そのイオン種とH+とのイオン交換又は配位子交換が生じる。このため、吸着剤1を分析の際にデバイスとして採用し、これらに特定物質のイオンを吸着させると、H+の吸着及び脱着の挙動様式に変化が生じる。
一方、イオン交換に伴うH+の移動量は核磁気共鳴(NMR)方式の評価装置によって検出することが可能である。こうして、本発明では、評価装置によって種々の吸着剤1とイオン種との組み合わせによるH+の挙動変化の特徴を捉え、分析対象液に溶存している特定物質を特定したり、その濃度を測定することができる。
しかも、評価装置による計測時間は、5分以内/回である。このため、従来のように分析に長時間を要することがない。また、近年、この評価装置は、永久磁石及び高周波パルスを使用することにより小型化し、機動的に計測が可能となってきている。
したがって、本発明によれば、より短時間でかつ容易に分析対象液中の特定物質を分析することが可能となる。
特定物質としては、水に溶解してイオンとなるとともに、吸着剤に吸着可能なものであれば、種々の物質が挙げられる。例えば、有害物質としてのCd、As、Cr、Pb、Zn、F-、Cl-等である。
吸着剤は、水中で特定物質を吸着可能な無機系のものである。無機系であれば、水中で界面にH+を生じやすいからである。発明者らは、有害物質への吸着能が確認されている二酸化ジルコニウム(ジルコニア)、酸化セリウム(セリア)、ハイドロタルサイト等の層状複水酸化物(Layered Double Hydroxide:LDH)、ポーラスシリカ等を本発明に係る吸着剤として採用できることを確認している。具体的には、(株)マエダマテリアル製セリア(CeO2)(平均粒径:7.21μm(レーザー回折法により測定)、BET比表面積:5.71(m2/g))、(株)アイテック製ナノジルコニア(ZrO2)(平均粒径:0.13μm(遠心沈降法により測定)、BET比表面積:211(m2/g))、ハイドロタルサイト(Mg6Al2(OH)16CO3・4H2O)(平均粒径:2.64μm(レーザー回折法により測定)、BET比表面積:90.8(m2/g))を採用することが好ましい。
基準データは、特定物質の種類、その濃度、吸着剤の種類、その濃度によって異なる。この基準データは予め事前試験によって取得しておく必要がある。
発明者らの試験によれば、分析対象液のpHにより、吸着剤が吸着する特定物質の種類が異なるとともに、その吸着率(%)が異なる。このため、分散工程前には、分析対象液のpHに応じて吸着剤を選択することが好ましい。pHの相違により、特定物質を吸着しやすい吸着剤が異なるからである。また、分散工程前には、吸着剤に応じて分析対象液のpHを調整することも好ましい。これにより、ある吸着剤で特定物質を吸着しやすくすることができるからである。これらの場合、特定物質の特定や濃度をより正確に分析することに繋がる。
発明者らの試験によれば、本発明の分析方法では、複数種類の濃度で前記特定物質が水に溶解した基準液を用意する第1工程と、
前記各基準液中にそれぞれ複数種類の0を含む濃度で前記吸着剤を分散させた分散基準液を得る第2工程と、
前記各分散基準液を前記評価装置により評価し、経過時間と出力強度との関係である緩和時間プロファイルを得る第3工程とを実行し、
前記各緩和時間プロファイルを前記基準データとすることが可能である。
吸着剤の界面に拘束されたH+の量が多い程、緩和時間プロファイルは初期勾配が大きくなることがわかっている。これはイオン交換反応の様式を反映したものと考えられる。このため、吸着剤の種類とイオン種との関係性からイオン種を特定できる。つまり、こうして得られた基準データを採用すれば、分析対象液中の特定物質が何であるかを特定することが可能である。
特に、本発明の分析方法では、さらに、前記基準液中に前記吸着剤を分散させないブランク緩和時間プロファイルに基づいてブランク緩和時間逆数Rbを算出するとともに、前記基準液中に前記吸着剤を分散させた分散緩和時間プロファイルに基づいて分散緩和時間逆数Ravを算出する第4工程と、
以下の式により緩和率Rspを算出する第5工程と、
Rsp=(Rav−Rb)/Rb
前記分散基準液中における前記吸着剤の濃度と前記緩和率Rspとの関係を算出する第6工程と、
前記分散基準液中における前記特定物質の濃度と前記緩和率Rspの変化率との関係を算出し、相関関係を得る第7工程とを実行し、
前記相関関係を前記基準データとすることが好ましい。
こうして得られた基準データを採用すれば、分析対象液中の特定物質の濃度を特定することが可能である。
本発明の分析方法又は分析システムによれば、より短時間でかつ容易に分析対象液中の特定物質を分析することができる。このため、分析対象液の分析を任意の場所でほぼリアルタイムに行うことができる。
図1は、基準液に吸着剤を分散させた分散基準液又は分析対象液における各吸着剤の周囲を示す模式図である。 図2は、実施例の分析システムの模式構造図である。 図3は、実施例の分析システムに係り、評価装置の模式図である。 図4は、事前試験例1に係り、時間と出力強度との関係を示すグラフである3個の緩和時間プロファイルを示す第1基準データである。 図5は、事前試験例1に係り、吸着剤の濃度と緩和率R2spとの関係を示すグラフである。 図6は、事前試験例1及び試験例1に係り、Cd濃度と緩和率R2spの変化率との関係である相関関係を示すグラフである第2基準データである。 図7は、事前試験例2に係り、分散基準液又は分析対象液のpHと特定物質の吸着率との関係を示すグラフである。 図8は、事前試験例2に係り、3個の分散緩和時間プロファイルを示すグラフである。 図9は、事前試験例2に係り、pHと緩和率R2spの変化率との関係を示すグラフである。
以下、本発明を具体化した実施例、事前試験例1、2及び試験例1を図面を参照しつつ説明する。
(実施例)
実施例の分析システムは、図2に示すように、分散装置3と、評価装置5と、コンピュータ7とを備えている。
分散装置3は吸着剤1を収容している。また、分散装置3は、分析対象液9又は基準液11に吸着剤1を添加し、かつ分析対象分散液13又は分散基準液15を撹拌して吸着剤1を分散させることができるようになっている。
評価装置5は米国のXigo Nanotools社製(販売元はXigo Nanotools Asia社)の「Acorn Area」である。この評価装置5は、粒子表面に接触又は吸着している液体とバルク液(粒子表面と接触していない自由な状態の液体)とでは磁場の変化に対する応答が異なることに基づき、パルス核磁気共鳴(NMR)方式で粒子界面の特性を評価可能である。評価装置5は、図3に示すように、対をなす磁石23、25を有している。磁石23、25間の試料室27には磁石23、25によって磁界が生じるようになっている。この試料室27には、グラディエントコイル(Gradient Coils)29と、RFコイル(RF Coil)31とが配置されている。RFコイル31内には、サンプル管33を配置できるようになっている。
この評価装置5は、図2に示すように、コンピュータ7と接続されている。コンピュータ7は評価装置5を制御する。また、コンピュータ7は、後述する第1、2基準データを記憶しているとともに、評価装置5が検知したスラリー中のH+に基づく出力信号により、分析対象分散液13又は分散基準液15の緩和時間プロファイル、分析対象分散液13又は分散基準液15に含まれる各吸着剤1の緩和率Rsp、緩和率Rspの変化率、ひいては相関関係を計算する。そして、コンピュータ7は、緩和時間プロファイル又は相関関係である第1、2基準データと、評価装置5から出力される出力信号とから分析対象液9を分析する。コンピュータ7が制御装置に相当する。
(事前試験例1)
特定物質である重金属としてCdを挙げた第1、2基準データを取得するため、以下の事前試験を行った。まず、吸着剤1としては、Cdとの親和性が高いこと、吸着速度が速いことが求められる。また、ナノ粒子は比表面積が大きく、表面活性が高いため、Cdに対する応答性が優れていると考えられる。このため、吸着剤1として、(株)アイテック製ナノジルコニアを用意した。
そして、第1工程として、Cd(和光純薬工業(株)製)が溶解した濃度の異なる複数の基準液11を複数用意し、全ての基準液11で以下の工程を行う。事前試験例1では、Cdの濃度が0ppm、0.01ppm、0.1ppm、1ppm、10ppmである基準液11を用意した。
次いで、第2工程として、各基準液11に吸着剤1を添加しない分散基準液15と、各基準液11に吸着剤1を0.5wt%の濃度で分散させた分散基準液15と、各基準液11に吸着剤1を1wt%の濃度で分散させた分散基準液15とを得た。
この後、第3工程として、図2及び図3に示すように、各分散基準液15の一部をサンプル管33に移し、各分散基準液15が入ったサンプル管33により評価装置5により評価した。この評価装置5では、磁場による励起モードとして、スピン−格子緩和モードT1又はスピン−スピン緩和モードT2により、H+の緩和時間プロファイルを決定できる。
スピン−格子緩和モードT1での緩和時間プロファイルは以下の式により決定される。ここで、M(t)は時間tでの出力強度、M0はt=0での出力強度、tは測定時間である。
M(t)=M0{1−2exp(−t/T1)}
また、同様にスピン−スピン緩和モードT2での緩和時間プロファイルは以下の式により決定される。
M(t)=M0exp(−t/T2
スピン−格子緩和モードT1、スピン−スピン緩和モードT2ともに、M(t)、M0及びtの測定値に基づいて計算される。
図4にスピン−スピン緩和モードT2での時間(ms)と出力強度との関係を示すグラフである3個の緩和時間プロファイルを示す。ここで、実線は吸着剤1を添加しない分散基準液15の緩和時間プロファイル(ブランク緩和時間プロファイル)である。一点鎖線は吸着剤1を0.5wt%の濃度で分散させた分散基準液15の緩和時間プロファイル(分散緩和時間プロファイル)であり、破線は吸着剤1を1wt%の濃度で分散させた分散基準液15の緩和時間プロファイル(分散緩和時間プロファイル)である。これらの緩和時間プロファイルは第1基準データである。
さらに、第4工程として、ブランク緩和時間の逆数であるブランク緩和時間逆数Rbと、分散基準液の緩和時間の逆数である分散緩和時間逆数Ravとを算出する。
次いで、第5工程として、以下の式により、スピン−スピン緩和モードT2での緩和率R2spを算出する。この緩和率R2spは、イオン交換により移動したH+の相対量が見積もられ、吸着剤1の界面に存在するイオンの存在量に関する情報である。
2sp=(Rav−Rb)/Rb
そして、第6工程として、分散基準液15中における吸着剤1の濃度(mg/mL)と緩和率R2spとの関係を算出する。この関係を図5に示す。
また、第7工程として、分散基準液15中におけるCd濃度(ppm)と緩和率R2spの変化率との関係を算出し、相関関係を得る。この相関関係を図6に示す。相関関係が第2基準データである。
(試験例1)
事前試験1による第1、2基準データの下、図2に示す実施例の分析システムを用いて分析対象液9中の特定物質を分析する。まず、分散工程として、分析対象液9に対して吸着剤1を分散させ、分析対象分散液13を得る。
続いて、評価工程として、分析対象分散液13の一部をサンプル管33に移し、分析対象分散液13が入ったサンプル管33により評価装置5により評価した。これにより、分析対象分散液13中における吸着剤1の粒子界面特性を把握することができる。
そして、図4に示す第1基準データと評価装置5から出力される出力信号とから、分析対象液13はCdを含むことが特定される。
また、図6に示す第2基準データと、評価装置5から出力される出力信号の緩和率R2spの変化率とから、Cdの濃度に関する情報が得られる。例えば、緩和率R2spの変化率が0.077であれば、分析対象液9は0.5ppmのCdを含むことがわかる。
(事前試験例2)
第1工程として、特定物質であるCdを含むCd標準溶液(和光純薬工業(株)製)と、同じくAsを含む亜ヒ酸(和光純薬工業(株)製)とをそれぞれ10ppmに希釈し、基準液11とした。各基準液11のpHを酸又は塩基を用いて3種に調整した。酸としてはHClを用い、塩基としてはNaOHを用いた。
次いで、第2工程として、事前試験例1と同様、各基準液11に吸着剤1を0.5mg/mL又は1mg/mL添加し、加振によって吸着剤1を分散させ、分散基準液15とした。
この後、各分散基準液15のろ液を誘導結合プラズマ発光分光分析装置(ICP)により分析し、各分散基準液15のイオン濃度を測定した。ICPの測定結果を図7に示す。図7からわかるように、Cdは、酸性又は中性域では吸着され難かったが、アルカリ性では高い吸着性が確認された。一方、いずれのpHの分散基準液15においても、Asに対しては高い吸着能が確認された。
このため、分散工程前には、分析対象液のpHに応じて吸着剤を選択することが好ましいことがわかる。また、分散工程前には、吸着剤に応じて分析対象液のpHを調整することも好ましいことがわかる。
また、第3工程として、図2及び図3に示すように、10ppmのCd水溶液に基づく各分散基準液15が入ったサンプル管33により評価装置5により評価した。評価装置5によるスピン−スピン緩和モードT2での緩和時間プロファイルを図8に示す。
図8は、吸着剤を添加しない分散基準液15の緩和時間プロファイル(ブランク緩和時間プロファイル)と、吸着剤を1wt%の濃度で分散させた分散基準液15の緩和時間プロファイル(分散緩和時間プロファイル)に基づいている。実線は吸着剤を添加していないpH10.5の分散基準液15の分散緩和時間プロファイルである。破線は吸着剤を1wt%の濃度で分散させ、かつpH2.67に調整した分散基準液15の分散緩和時間プロファイルであり、一点鎖線は吸着剤を1wt%の濃度で分散させ、かつpH10.50に調整した分散基準液15の分散緩和時間プロファイルである。図8からわかるように、pH10.5では一点鎖線の曲線の形が実線の曲線とほぼ変わらず、pH2.7で傾きが大きくなっている。これは、pH10.5でより多くのCdイオンが吸着し、液中にフリーのH+が増加したことを示唆している。
上記事前試験1と同様、第4〜7工程を実行し、pH毎における緩和率R2spの変化率を図9に示す。
図9からわかるように、Cdはアルカリ性になるにつれて変化率が小さくなっている。吸着剤の界面のOHとCdとがイオン交換されることで、CdはOを介して吸着剤に吸着されるからである。よって、H+が分散基準液15中に放出され、フリーのH+が増加するためであると考えられる。一方、Asはアルカリ性領域で変化率が大きくなった。これは、pHによって分散基準液15中の亜ヒ酸がH3AsO3からH2AsO3 -へと変化し、吸着機構が変化した可能性を示唆している。
このため、Cdが特定物質である場合には、分析対象液9のpHにさほど関係なく、緩和率R2spの変化率が正確に得られることがわかる。このため、この場合には、分析対象液9のpHにさほど関係なく、図6に示す相関関係からCdの濃度を分析することができる。
以上において、本発明を実施例、事前試験例1、2及び試験例1に即して説明したが、本発明はこれらに制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
本発明は、汚染水における汚染源の同定、濃度測定、産業用水の濃度測定等に利用可能である。
9…分析対象液
1…吸着剤
13…分析対象分散液
5…評価装置
11…基準液
15…分散基準液
3…分散手段
7…制御装置

Claims (6)

  1. 特定物質が水に溶解した分析対象液に対し、水中で前記特定物質を吸着可能な無機系の吸着剤を分散させ、分析対象分散液を得る分散工程と、
    前記分析対象分散液を核磁気共鳴(NMR)方式の評価装置によって評価し、前記分析対象分散液中における前記吸着剤の粒子界面特性を把握する評価工程と、
    前記吸着剤に基づく基準データと、前記評価装置から出力される出力信号とから前記分析対象液を分析することを特徴とする分析対象液中の特定物質の分析方法。
  2. 前記分散工程前には、前記分析対象液のpHに応じて前記吸着剤を選択する請求項1記載の分析対象液中の特定物質の分析方法。
  3. 前記分散工程前には、前記吸着剤に応じて前記分析対象液のpHを調整する請求項1又は2記載の分析対象液中の特定物質の分析方法。
  4. 複数種類の濃度で前記特定物質が水に溶解した基準液を用意する第1工程と、
    前記各基準液中にそれぞれ複数種類の0を含む濃度で前記吸着剤を分散させた分散基準液を得る第2工程と、
    前記各分散基準液を前記評価装置により評価し、経過時間と出力強度との関係である緩和時間プロファイルを得る第3工程とを実行し、
    前記各緩和時間プロファイルを前記基準データとする請求項1乃至3のいずれか1項記載の分析対象液中の特定物質の分析方法。
  5. さらに、前記基準液中に前記吸着剤を分散させないブランク緩和時間プロファイルに基づいてブランク緩和時間逆数Rbを算出するとともに、前記基準液中に前記吸着剤を分散させた分散緩和時間プロファイルに基づいて分散緩和時間逆数Ravを算出する第4工程と、
    以下の式により緩和率Rspを算出する第5工程と、
    Rsp=(Rav−Rb)/Rb
    前記分散基準液中における前記吸着剤の濃度と前記緩和率Rspとの関係を算出し、第1相関関係を得る第6工程と、
    前記分散基準液中における前記特定物質の濃度と前記緩和率Rspの変化率との関係を算出し、第2相関関係を得る第7工程とを実行し、
    前記第2相関関係を前記基準データとする請求項4記載の分析対象液中の特定物質の分析方法。
  6. 特定物質が水に溶解した分析対象液に対し、水中で前記特定物質を吸着可能な無機系の吸着剤を分散させ、分析対象分散液を得る分散手段と、
    前記分析対象分散液を核磁気共鳴(NMR)によって評価し、前記分析対象分散液中における前記吸着剤の粒子界面特性を把握可能な評価装置と、
    前記吸着剤に基づく基準データと、前記評価装置から出力される出力信号とから前記分析対象液を分析する制御装置とを備えていることを特徴とする分析対象液中の特定物質の分析システム。
JP2015201625A 2015-10-10 2015-10-10 分析対象液中の特定物質の分析方法及びその分析システム Pending JP2017072571A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201625A JP2017072571A (ja) 2015-10-10 2015-10-10 分析対象液中の特定物質の分析方法及びその分析システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201625A JP2017072571A (ja) 2015-10-10 2015-10-10 分析対象液中の特定物質の分析方法及びその分析システム

Publications (1)

Publication Number Publication Date
JP2017072571A true JP2017072571A (ja) 2017-04-13

Family

ID=58537403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201625A Pending JP2017072571A (ja) 2015-10-10 2015-10-10 分析対象液中の特定物質の分析方法及びその分析システム

Country Status (1)

Country Link
JP (1) JP2017072571A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514687A (zh) * 2019-09-19 2019-11-29 上海景瑞阳实业有限公司 一种银粉分散体系保质期的检验方法及系统
CN116106355A (zh) * 2023-04-13 2023-05-12 中国科学院地质与地球物理研究所 用低场nmr弛豫法检测微塑料对重金属吸附性能的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514687A (zh) * 2019-09-19 2019-11-29 上海景瑞阳实业有限公司 一种银粉分散体系保质期的检验方法及系统
CN116106355A (zh) * 2023-04-13 2023-05-12 中国科学院地质与地球物理研究所 用低场nmr弛豫法检测微塑料对重金属吸附性能的方法

Similar Documents

Publication Publication Date Title
Li et al. Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles
Delay et al. Nanoparticles in aquatic systems
Shahat et al. A ligand-anchored optical composite material for efficient vanadium (II) adsorption and detection in wastewater
Giraldo et al. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization
Li et al. Extraction method development for quantitative detection of silver nanoparticles in environmental soils and sediments by single particle inductively coupled plasma mass spectrometry
Christl et al. Interaction of copper and fulvic acid at the hematite-water interface
Bouby et al. Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study
Chowdhury et al. Chemical states in XPS and Raman analysis during removal of Cr (VI) from contaminated water by mixed maghemite–magnetite nanoparticles
Erdoğan et al. Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction
Zhang et al. Iron phosphate as a novel sorbent for selective adsorption of chromium (III) and chromium speciation with detection by ETAAS
Shaw et al. A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by isotope dilution ICPMS
Nair et al. Sorption of uranyl and arsenate on SiO 2, Al 2 O 3, TiO 2 and FeOOH
Pu et al. Speciation of dissolved iron (II) and iron (III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination
Jiang et al. Current methods and prospects for analysis and characterization of nanomaterials in the environment
Notini et al. Coexisting goethite promotes Fe (II)-catalyzed transformation of ferrihydrite to goethite
Gu et al. The development of a multi-surface soil speciation model for Cd (II) and Pb (II): Comparison of two approaches for metal adsorption to clay fractions
Sun et al. Investigation of potential interferences on the measurement of dissolved reactive phosphate using zirconium oxide-based DGT technique
Wu et al. Determination of mercury in aquatic systems by DGT device using thiol-modified carbon nanoparticle suspension as the liquid binding phase
Karadaş et al. Determination of rare earth elements by solid phase extraction using chemically modified amberlite XAD-4 resin and inductively coupled plasma-optical emission spectrometry
JP2017072571A (ja) 分析対象液中の特定物質の分析方法及びその分析システム
Ahmad et al. Enrichment of trace Hg (II) ions from food and water samples after solid phase extraction combined with ICP-OES determination
Saxena et al. Flow-injection solid phase extraction using Dowex Optipore L493 loaded with dithizone for preconcentration of chromium species from industrial waters and determination by FAAS
Ghanei-Motlagh et al. Novel modified magnetic nanocomposite for determination of trace amounts of lead ions
Missana et al. Analysis of anion adsorption effects on alumina nanoparticles stability
Chen et al. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210