JP2017072464A - Optical system of surveying device - Google Patents

Optical system of surveying device Download PDF

Info

Publication number
JP2017072464A
JP2017072464A JP2015199196A JP2015199196A JP2017072464A JP 2017072464 A JP2017072464 A JP 2017072464A JP 2015199196 A JP2015199196 A JP 2015199196A JP 2015199196 A JP2015199196 A JP 2015199196A JP 2017072464 A JP2017072464 A JP 2017072464A
Authority
JP
Japan
Prior art keywords
light
optical axis
optical system
optical
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015199196A
Other languages
Japanese (ja)
Inventor
太一 湯浅
Taichi Yuasa
太一 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015199196A priority Critical patent/JP2017072464A/en
Publication of JP2017072464A publication Critical patent/JP2017072464A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a light-receiving optical system and further to reduce the size of an optical system in a surveying device.SOLUTION: An optical system 1 of a surveying device, comprises: a light projection optical system 2 for emitting range finder light; and a light-receiving optical system 3 for receiving reflected range finder light 29 from a measuring object. The light projection optical system includes a light projection optical axis 5, a range finder light source 15 for emitting range finder light, and an optical path deflection member 11 provided on the light projection optical axis. The light projection optical axis is deflected by the optical path deflection member. The range finder light is emitted via the light projection optical axis to the measuring object. The light-receiving optical system has a light reception optical axis 21 passing through the optical path deflection member, and an image formation reflector 26 provided on the light reception optical axis. A range finder light receiving part 28 is provided on a reflection optical axis 21' of the image formation reflector. The reflected range finder light from the measuring object enters the image formation reflector via the light reception optical axis, is reflected by the image formation reflector, and imaged on the range finder light receiving part.SELECTED DRAWING: Figure 1

Description

本発明は測量機の光学系に関するものである。   The present invention relates to an optical system of a surveying instrument.

測量機に用いられる光学系は、遠距離での受光光量確保の為、大口径のレンズを使用している。この為、光学系は大きく、又重量も蒿むものとなっていた。   The optical system used in the surveying instrument uses a large-diameter lens to secure the amount of received light at a long distance. For this reason, the optical system is large and has a heavy weight.

図6は、従来より用いられている受光部の光学系41を示している。   FIG. 6 shows an optical system 41 of a light receiving unit conventionally used.

単一又は複数のレンズからなるレンズ群42により結像光学部材が構成され、入射光がレンズの屈折作用によって受光面43上に結像されている。   An imaging optical member is constituted by a lens group 42 composed of a single lens or a plurality of lenses, and incident light is imaged on the light receiving surface 43 by the refractive action of the lens.

前記レンズ群42は、焦点距離f1を有し、この焦点距離は、測量機の光学系が求められる性能によって決定される。   The lens group 42 has a focal length f1, which is determined by the performance required of the optical system of the surveying instrument.

従って、受光部はこのレンズ群42を収納する大きさとなり、更に光軸方向の長さは前記焦点距離f1に依存することになる。   Accordingly, the light receiving portion is sized to accommodate the lens group 42, and the length in the optical axis direction depends on the focal length f1.

又、近年では、測量機の小型化、軽量化が図られているが、光学系については、レンズ群42の大きさ、焦点距離f1の制約により、小型化が難しいものとなっていた。   In recent years, the surveying instrument has been reduced in size and weight, but it has been difficult to reduce the size of the optical system due to restrictions on the size of the lens group 42 and the focal length f1.

米国特許出願公開第2012/0262700号明細書US Patent Application Publication No. 2012/0262700

本発明は受光光学系の小型化を図り、更に測量機に於ける光学系の小型化を可能とするものである。   The present invention is intended to reduce the size of the light receiving optical system and to further reduce the size of the optical system in the surveying instrument.

本発明は、測距光を射出する投光光学系と、測定対象物からの反射測距光を受光する受光光学系とを具備する測量装置の光学系であって、前記投光光学系は、投光光軸、測距光を発する測距光光源、及び前記投光光軸上に設けられた光路偏向部材を有し、前記投光光軸は前記光路偏向部材により偏向され、前記測距光は前記投光光軸を介して前記測定対象物に向けて射出され、前記受光光学系は、前記光路偏向部材を透過する受光光軸を有し、該受光光軸上に結像用反射鏡が設けられ、該結像用反射鏡の反射光軸上に測距受光部が設けられ、前記測定対象物からの前記反射測距光が前記受光光軸を経て前記結像用反射鏡に入射し、該結像用反射鏡によって反射され、前記測距受光部に結像される様に構成された測量機の光学系に係るものである。   The present invention is an optical system of a surveying instrument comprising a light projecting optical system that emits distance measuring light and a light receiving optical system that receives reflected distance measuring light from a measurement object, and the light projecting optical system includes: A projecting optical axis, a ranging light source that emits ranging light, and an optical path deflecting member provided on the projecting optical axis, the projecting optical axis being deflected by the optical path deflecting member, The distance light is emitted toward the object to be measured through the light projecting optical axis, and the light receiving optical system has a light receiving optical axis that passes through the optical path deflecting member, and is used for imaging on the light receiving optical axis. A reflecting mirror is provided, and a distance measuring light receiving unit is provided on a reflection optical axis of the imaging mirror, and the reflected distance measuring light from the measurement object passes through the light receiving optical axis and the imaging reflecting mirror. Is incident on the optical system of the surveying instrument configured to be reflected by the imaging reflecting mirror and imaged on the distance measuring light receiving unit. .

又本発明は、前記光路偏向部材と前記結像用反射鏡との間の前記受光光軸上に撮像部が設けられ、前記投光光軸は、光路分割部材によって測距光射出光学系、照明光射出光学系に分割され、前記測距光は前記測距光射出光学系から発せられ、前記投光光軸、前記光路偏向部材を経て前記測定対象物へ射出され、前記照明光射出光学系から発せられる照明光は、前記投光光軸、前記光路偏向部材を経て前記測定対象物へ射出され、該測定対象物からの反射光は前記撮像部によって受光される測量機の光学系に係るものである。   According to the present invention, an imaging unit is provided on the light receiving optical axis between the optical path deflecting member and the imaging mirror, and the light projecting optical axis is a distance measuring light emitting optical system by an optical path dividing member, Divided into an illumination light emitting optical system, the distance measuring light is emitted from the distance measuring light emitting optical system, is emitted to the measurement object through the light projecting optical axis and the optical path deflecting member, and the illumination light emitting optical Illumination light emitted from the system is emitted to the measurement object via the light projecting optical axis and the optical path deflecting member, and reflected light from the measurement object is received by the optical system of the surveying instrument received by the imaging unit. It is concerned.

又本発明は、前記投光光軸の前記光路偏向部材の入射側に光路分割部材が設けられ、該光路分割部材により分割された一方の光軸上に撮像部が設けられ、他方の光軸上に前記投光光学系が設けられた測量機の光学系に係るものである。   According to the present invention, an optical path splitting member is provided on the incident side of the optical path deflecting member of the light projecting optical axis, an imaging unit is provided on one optical axis split by the optical path splitting member, and the other optical axis The present invention relates to an optical system of a surveying instrument on which the light projecting optical system is provided.

又本発明は、前記光路偏向部材の射出側に、光路分割部材が設けられ、該光路分割部材により分割された光軸上に撮像部が設けられ、前記光路分割部材を透過した投光光軸上に前記投光光学系が設けられた測量機の光学系に係るものである。   According to the present invention, an optical path dividing member is provided on the exit side of the optical path deflecting member, an imaging unit is provided on the optical axis divided by the optical path dividing member, and the light projecting optical axis transmitted through the optical path dividing member The present invention relates to an optical system of a surveying instrument on which the light projecting optical system is provided.

更に又本発明は、前記反射測距光が入射する入射面、前記反射測距光が射出する射出面、前記入射面、前記射出面に対向する曲面を有し、該曲面に前記結像用反射鏡が形成されたレンズを有する測量機の光学系に係るものである。   Furthermore, the present invention has an incident surface on which the reflected distance measuring light is incident, an exit surface on which the reflected distance measuring light exits, the incident surface, and a curved surface facing the exit surface, and the curved surface for imaging. The present invention relates to an optical system of a surveying instrument having a lens on which a reflecting mirror is formed.

本発明によれば、測距光を射出する投光光学系と、測定対象物からの反射測距光を受光する受光光学系とを具備する測量装置の光学系であって、前記投光光学系は、投光光軸、測距光を発する測距光光源、及び前記投光光軸上に設けられた光路偏向部材を有し、前記投光光軸は前記光路偏向部材により偏向され、前記測距光は前記投光光軸を介して前記測定対象物に向けて射出され、前記受光光学系は、前記光路偏向部材を透過する受光光軸を有し、該受光光軸上に結像用反射鏡が設けられ、該結像用反射鏡の反射光軸上に測距受光部が設けられ、前記測定対象物からの前記反射測距光が前記受光光軸を経て前記結像用反射鏡に入射し、該結像用反射鏡によって反射され、前記測距受光部に結像される様に構成されたので、前記受光光軸が前記結像用反射鏡によって折返され、前記受光光軸の直線長さが短縮し、前記受光光学系の小型化が図れるという優れた効果を発揮する。   According to the present invention, there is provided an optical system for a surveying instrument comprising a light projecting optical system for emitting distance measuring light and a light receiving optical system for receiving reflected distance measuring light from an object to be measured. The system includes a light projecting optical axis, a distance measuring light source that emits distance measuring light, and an optical path deflecting member provided on the projecting optical axis, and the projecting optical axis is deflected by the optical path deflecting member, The distance measuring light is emitted toward the measurement object via the light projecting optical axis, and the light receiving optical system has a light receiving optical axis that passes through the optical path deflecting member, and is connected to the light receiving optical axis. An image reflecting mirror is provided, and a distance measuring light receiving unit is provided on a reflection optical axis of the imaging reflecting mirror, and the reflected distance measuring light from the measurement object passes through the light receiving optical axis and is used for the imaging Since it is configured such that it enters the reflecting mirror, is reflected by the imaging reflecting mirror, and forms an image on the distance measuring light receiving unit, the light receiving optical axis is in front. Folded by the image-forming reflector, the shorter the linear length of the light receiving optical axis, there is exhibited an excellent effect that the miniaturization of the light receiving optical system can be reduced.

第1の実施例に係る光学系の概略構成図である。It is a schematic block diagram of the optical system which concerns on a 1st Example. (A)は、第2の実施例に係る光学系の概略構成図、(B)は、図2(A)のA矢視図である。(A) is a schematic block diagram of the optical system which concerns on a 2nd Example, (B) is A arrow line view of FIG. 2 (A). 第3の実施例に係る光学系の概略構成図である。It is a schematic block diagram of the optical system which concerns on a 3rd Example. 第4の実施例に係る光学系の概略構成図である。It is a schematic block diagram of the optical system which concerns on a 4th Example. 第5の実施例に係る光学系に用いられる光学部材の説明図である。It is explanatory drawing of the optical member used for the optical system which concerns on a 5th Example. 従来例の受光光学系の概略図である。It is the schematic of the light reception optical system of a prior art example. トラッキング受光用兼撮像用受光光学系に設けられる光学フィルタの透過特性図である。FIG. 6 is a transmission characteristic diagram of an optical filter provided in a tracking light-receiving and imaging light-receiving optical system.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施例の第1の実施例の光学系1の概略構成図を示しており、該光学系1が、測量機、例えばレーザスキャナに適用された場合を示している。   FIG. 1 shows a schematic configuration diagram of an optical system 1 of a first example of the present example, and shows a case where the optical system 1 is applied to a surveying instrument, for example, a laser scanner.

該光学系1は、投光光学系2、受光光学系3を具備している。   The optical system 1 includes a light projecting optical system 2 and a light receiving optical system 3.

前記投光光学系2は、投光光軸5を有し、該投光光軸5上に照明光源6、集光レンズ7、第1ダイクロイックミラー8、第2ダイクロイックミラー9、第3ダイクロイックミラー11が設けられている。前記投光光軸5は、前記第1ダイクロイックミラー8を透過し、前記第2ダイクロイックミラー9、前記第3ダイクロイックミラー11で偏向されている。   The light projecting optical system 2 has a light projecting optical axis 5, and an illumination light source 6, a condenser lens 7, a first dichroic mirror 8, a second dichroic mirror 9, and a third dichroic mirror on the light projecting optical axis 5. 11 is provided. The light projecting optical axis 5 passes through the first dichroic mirror 8 and is deflected by the second dichroic mirror 9 and the third dichroic mirror 11.

前記第1ダイクロイックミラー8、前記第2ダイクロイックミラー9、前記第3ダイクロイックミラー11はそれぞれ、光路を分割する光路分割部材として機能すると共に光路を偏向する光路偏向部材としても機能する。   Each of the first dichroic mirror 8, the second dichroic mirror 9, and the third dichroic mirror 11 functions as an optical path dividing member that divides an optical path and also functions as an optical path deflecting member that deflects the optical path.

前記第1ダイクロイックミラー8の反射光軸上にはレーザポインタ用光源13、集光レンズ14が設けられ、前記第2ダイクロイックミラー9の透過光軸上には測距光光源15、集光レンズ16が設けられている。   A laser pointer light source 13 and a condenser lens 14 are provided on the reflected optical axis of the first dichroic mirror 8, and a distance measuring light source 15 and a condenser lens 16 are provided on the transmitted optical axis of the second dichroic mirror 9. Is provided.

前記第1ダイクロイックミラー8は、前記照明光源6が発する照明光を透過し、前記レーザポインタ用光源13が発するレーザポインタ光を反射する光学特性を有する。   The first dichroic mirror 8 has an optical characteristic of transmitting the illumination light emitted from the illumination light source 6 and reflecting the laser pointer light emitted from the laser pointer light source 13.

又、前記第2ダイクロイックミラー9は、前記照明光、前記レーザポインタ光を反射し、前記測距光光源15が発する測距光を透過する光学特性を有する。   The second dichroic mirror 9 has an optical characteristic of reflecting the illumination light and the laser pointer light and transmitting the distance measuring light emitted from the distance measuring light source 15.

前記第3ダイクロイックミラー11は、前記レーザポインタ光、前記測距光を反射し、前記照明光に対してはハーフミラーである光学特性を有する。   The third dichroic mirror 11 has an optical characteristic that reflects the laser pointer light and the distance measuring light and is a half mirror for the illumination light.

前記第3ダイクロイックミラー11で偏向された前記投光光軸5は、更に回転ミラー18によって偏向され、偏向された光軸は測定対象物に向って測距光軸19として延出する。   The light projecting optical axis 5 deflected by the third dichroic mirror 11 is further deflected by a rotating mirror 18, and the deflected optical axis extends as a distance measuring optical axis 19 toward the measurement object.

又、前記回転ミラー18は、前記投光光軸5を回転中心として回転し、更に受光光軸21を中心に回転する。   The rotating mirror 18 rotates about the light projecting optical axis 5 and further rotates about the light receiving optical axis 21.

前記受光光学系3は、前記受光光軸21を有する。該受光光軸21は前記測距光軸19と共通となっていると共に、前記回転ミラー18から前記第3ダイクロイックミラー11迄が前記投光光軸5と共通である。   The light receiving optical system 3 has the light receiving optical axis 21. The light receiving optical axis 21 is common to the distance measuring optical axis 19, and from the rotating mirror 18 to the third dichroic mirror 11 is common to the light projecting optical axis 5.

前記受光光軸21上に結像レンズ22、撮像素子23が設けられ、前記結像レンズ22、前記撮像素子23は撮像部25を構成する。   An imaging lens 22 and an imaging device 23 are provided on the light receiving optical axis 21, and the imaging lens 22 and the imaging device 23 constitute an imaging unit 25.

前記受光光軸21上には、結像用反射鏡26が設けられ、該結像用反射鏡26の反射光軸21′上に結像レンズ27、測距受光部28が設けられている。又、前記受光光軸21に対する前記反射光軸21′の反射角はθとなっている。該θは、前記結像用反射鏡26で反射された光束が前記撮像部25、前記回転ミラー18等、他の構成要素と干渉しない角度に設定される。好ましくは、前記θは、干渉しない最小の角度に設定される。   An imaging reflecting mirror 26 is provided on the light receiving optical axis 21, and an imaging lens 27 and a distance measuring light receiving unit 28 are provided on the reflecting optical axis 21 ′ of the imaging reflecting mirror 26. Further, the reflection angle of the reflected optical axis 21 'with respect to the received optical axis 21 is θ. The angle θ is set to an angle at which the light beam reflected by the imaging mirror 26 does not interfere with other components such as the imaging unit 25 and the rotary mirror 18. Preferably, θ is set to a minimum angle that does not interfere.

前記結像用反射鏡26は、前記結像レンズ27との協働で前記測距受光部28に結像する様に反射面が形成され、該反射面は放物面或は自由曲面となっている。尚、前記結像用反射鏡26のみで前記測距受光部28に集光できる様に前記結像用反射鏡26の曲面を設定すれば、前記結像レンズ27は省略してもよい。   The imaging mirror 26 is formed with a reflecting surface so as to form an image on the distance measuring light receiving unit 28 in cooperation with the imaging lens 27, and the reflecting surface is a paraboloid or a free-form surface. ing. Note that the imaging lens 27 may be omitted if the curved surface of the imaging mirror 26 is set so that the focusing light receiving unit 28 can be focused only by the imaging mirror 26.

上記、第1の実施例の作動について説明する。   The operation of the first embodiment will be described.

前記測距光光源15は、測距光として可視光、或は不可視光のレーザ光を発し、前記測距光は前記第2ダイクロイックミラー9を透過し、前記第3ダイクロイックミラー11で反射され、更に前記回転ミラー18で反射されて、測定対象物に射出される。   The ranging light source 15 emits visible or invisible laser light as ranging light, the ranging light is transmitted through the second dichroic mirror 9 and reflected by the third dichroic mirror 11; Further, the light is reflected by the rotating mirror 18 and emitted to the measurement object.

該回転ミラー18が、鉛直方向に回転し、前記光学系1全体が水平方向に回転することで、測距光が所要範囲で走査される。   The rotating mirror 18 rotates in the vertical direction, and the entire optical system 1 rotates in the horizontal direction, so that the distance measuring light is scanned in a required range.

測定対象物で反射された測距光(以下、反射測距光29)は、前記回転ミラー18を介して入射し、該回転ミラー18で反射されて前記結像用反射鏡26に入射する。該結像用反射鏡26で反射された前記反射測距光29は、前記結像レンズ27を経て前記測距受光部28に結像される。この時、前記反射測距光29は前記第3ダイクロイックミラー11、前記結像レンズ22等で遮蔽されるが、遮蔽は中心部に限定されるので、測定には影響ない。   Distance measuring light reflected by the measurement object (hereinafter, reflected distance measuring light 29) is incident through the rotating mirror 18, reflected by the rotating mirror 18, and incident on the imaging reflecting mirror 26. The reflected distance measuring light 29 reflected by the imaging mirror 26 is imaged on the distance measuring light receiving unit 28 through the imaging lens 27. At this time, the reflected distance measuring light 29 is shielded by the third dichroic mirror 11, the imaging lens 22, and the like. However, the shielding is limited to the central portion, so that the measurement is not affected.

前記測距受光部28からの受光信号に基づき、測定対象物迄の距離が測定される。   Based on the light reception signal from the distance measuring light receiving unit 28, the distance to the measurement object is measured.

前記レーザポインタ用光源13からは、レーザポインタ光が発せられる。該レーザポインタ光には、視認可能な様に、赤色、緑色等、視認が容易な波長の光が用いられる。   Laser pointer light is emitted from the laser pointer light source 13. As the laser pointer light, light having a wavelength that is easy to visually recognize, such as red and green, is used so that the laser pointer light can be visually recognized.

該レーザポインタ光は、前記第1ダイクロイックミラー8、前記第2ダイクロイックミラー9、前記第3ダイクロイックミラー11で反射され、更に前記回転ミラー18により前記測距光軸19上に反射され、該測距光軸19と同一光軸で、測定点に照射される。   The laser pointer light is reflected by the first dichroic mirror 8, the second dichroic mirror 9, and the third dichroic mirror 11, and further reflected by the rotating mirror 18 on the distance measuring optical axis 19. The measurement point is irradiated with the same optical axis as the optical axis 19.

前記レーザポインタ光が、前記測距光軸19と同一光軸で照射されることで、測定点と前記レーザポインタ光の照射点が一致し、測定点、測定個所の認識が容易となる。   By irradiating the laser pointer light with the same optical axis as the distance measuring optical axis 19, the measurement point and the irradiation point of the laser pointer light coincide with each other, and the measurement point and the measurement location can be easily recognized.

又、測定対象物としてコーナキューブが用いられ、トラッキングが行われる場合は、前記照明光源6から照明光が発せられる。該照明光は、前記第1ダイクロイックミラー8を透過し、前記第2ダイクロイックミラー9、前記第3ダイクロイックミラー11で反射され、前記回転ミラー18を経て前記測距光軸19上に射出される。   Further, when a corner cube is used as a measurement object and tracking is performed, illumination light is emitted from the illumination light source 6. The illumination light passes through the first dichroic mirror 8, is reflected by the second dichroic mirror 9 and the third dichroic mirror 11, and is emitted onto the distance measuring optical axis 19 through the rotating mirror 18.

コーナキューブにより反射された照明光は、前記測距光軸19及び前記投光光軸5を経て、前記第3ダイクロイックミラー11を透過し、前記結像レンズ22により前記撮像素子23に結像される。   The illumination light reflected by the corner cube passes through the distance measuring optical axis 19 and the light projecting optical axis 5, passes through the third dichroic mirror 11, and is imaged on the image sensor 23 by the imaging lens 22. The

該撮像素子23は、反射光の受光位置を検出できる様になっている。該撮像素子23は、例えば、画素の集合体であり、CCD、CMOSセンサであり、各画素は受光位置を特定できる様になっている。更に、該撮像素子23の中心を前記受光光軸21が通過する様に設定し、該受光光軸21と受光位置との偏差を検出し、該偏差を0にする様に、前記測距光軸19をコーナキューブに追従させる様にすれば、トラッキングが実行できる。   The image sensor 23 can detect the light receiving position of the reflected light. The image sensor 23 is, for example, an aggregate of pixels, and is a CCD or CMOS sensor, and each pixel can specify a light receiving position. Further, the distance measuring light is set so that the light receiving optical axis 21 passes through the center of the image pickup device 23, the deviation between the light receiving optical axis 21 and the light receiving position is detected, and the deviation is set to zero. Tracking can be performed by making the shaft 19 follow the corner cube.

上述した様に、第1の実施例の光学系1では、測距光の受光光学系の光学要素として、前記結像用反射鏡26が用いられており、前記受光光軸21が前記結像用反射鏡26で折返された構成となっている。前記受光光軸21が前記結像用反射鏡26で折返されることで、前記受光光軸21の直線長さが短くなる。   As described above, in the optical system 1 of the first embodiment, the imaging reflecting mirror 26 is used as an optical element of the ranging light receiving optical system, and the light receiving optical axis 21 is the image forming optical axis 21. The reflector 26 is folded back. Since the light receiving optical axis 21 is folded back by the imaging mirror 26, the linear length of the light receiving optical axis 21 is shortened.

従って、図6で示される従来の受光光学系と比較すると明らかな様に、受光光学系の奥行が、大幅に短くなり、光学系の小型化が図れる。   Accordingly, as is clear from the conventional light receiving optical system shown in FIG. 6, the depth of the light receiving optical system is significantly shortened, and the optical system can be miniaturized.

尚、ノンプリズムの近距離測定では、前記反射測距光29がアウトフォーカスした光となり、前記測距受光部28に集光する光量が減少するが、前記結像用反射鏡26又は前記結像レンズ27の周辺部の曲率を変更し、アウトフォーカスした光が前記測距受光部28に集光する様にすることで、近距離に於いても測定に必要な前記反射測距光29の光量を確保することができる。   In the short distance measurement of the non-prism, the reflected distance measuring light 29 becomes out-focused light, and the amount of light condensed on the distance measuring light receiving unit 28 is reduced. By changing the curvature of the peripheral portion of the lens 27 so that the out-focused light is condensed on the distance measuring light receiving unit 28, the light amount of the reflected distance measuring light 29 necessary for measurement even at a short distance. Can be secured.

尚、第1の実施例の光学系1が、レーザスキャナ以外の測量機、例えば、トータルステーションに設けられる場合は、前記回転ミラー18が省略される。   If the optical system 1 of the first embodiment is provided in a surveying instrument other than a laser scanner, for example, a total station, the rotating mirror 18 is omitted.

図2(A)、図2(B)は、第2の実施例を示している。尚、図2(A)、図2(B)中、図1中で示したものと同等のものには同符号を付し、その説明を省略する。   FIGS. 2A and 2B show a second embodiment. 2A and 2B, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

第2の実施例では、投光光学系2及び撮像部25の配置を変更している。測距光の受光光学系の光学要素として、結像用反射鏡26が用いられ、受光光軸21が前記結像用反射鏡26で折返された構成は、第1の実施例と同様である。   In the second embodiment, the arrangement of the light projecting optical system 2 and the imaging unit 25 is changed. The imaging mirror 26 is used as an optical element of the ranging light receiving optical system, and the configuration in which the light receiving optical axis 21 is folded back by the imaging mirror 26 is the same as in the first embodiment. .

光路偏向部材としてのミラー31が前記受光光軸21上に配設され、該受光光軸21が前記ミラー31によって直角方向に偏向される。偏向された光軸32上に(即ち、前記ミラー31の入射側に)第3ダイクロイックミラー11が配設され、前記受光光軸21は更に直角方向に偏向される。   A mirror 31 as an optical path deflecting member is disposed on the light receiving optical axis 21, and the light receiving optical axis 21 is deflected by the mirror 31 in a right angle direction. A third dichroic mirror 11 is disposed on the deflected optical axis 32 (that is, on the incident side of the mirror 31), and the light receiving optical axis 21 is further deflected in a perpendicular direction.

前記第3ダイクロイックミラー11を透過した前記光軸32上に前記撮像部25が設けられる。該撮像部25は、主に結像レンズ22、撮像素子23で構成される。   The imaging unit 25 is provided on the optical axis 32 that has passed through the third dichroic mirror 11. The imaging unit 25 mainly includes an imaging lens 22 and an imaging element 23.

前記第3ダイクロイックミラー11で偏向された投光光軸5上に前記投光光学系2が設けられる。該投光光学系2については、第1の実施例で説明したと同様であるので、以下説明を省略する。   The light projecting optical system 2 is provided on the light projecting optical axis 5 deflected by the third dichroic mirror 11. Since the projection optical system 2 is the same as that described in the first embodiment, the description thereof will be omitted below.

第2の実施例では、前記光軸32が前記受光光軸21に対して直角方向に偏向されるので、前記撮像部25の前記光軸32分だけ、前記受光光軸21の長さを短くできる。即ち、前記回転ミラー18と前記結像用反射鏡26間の距離を短くできる。   In the second embodiment, since the optical axis 32 is deflected in a direction perpendicular to the light receiving optical axis 21, the length of the light receiving optical axis 21 is shortened by the optical axis 32 of the imaging unit 25. it can. That is, the distance between the rotating mirror 18 and the imaging reflecting mirror 26 can be shortened.

図3は、第3の実施例を示している。尚、図3中、図1中で示したものと同等のものには同符号を付し、その説明を省略する。   FIG. 3 shows a third embodiment. In FIG. 3, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

第3の実施例は、第2の実施例の応用形であり、受光光軸21上に配設した第3ダイクロイックミラー11により、前記受光光軸21を直角方向に分割、偏向し、偏向した光軸を光軸32として、該光軸32上に撮像部25を配設している。   The third embodiment is an application of the second embodiment, and the third dichroic mirror 11 disposed on the light receiving optical axis 21 divides, deflects, and deflects the light receiving optical axis 21 in a right angle direction. The imaging unit 25 is disposed on the optical axis 32 with the optical axis as the optical axis 32.

又、投光光軸5にミラー31を配設し、前記投光光軸5を前記ミラー31により偏向している。偏向された前記投光光軸5は前記第3ダイクロイックミラー11を透過し、前記受光光軸21に合致する。   Further, a mirror 31 is disposed on the light projecting optical axis 5, and the light projecting optical axis 5 is deflected by the mirror 31. The deflected light projecting optical axis 5 passes through the third dichroic mirror 11 and coincides with the light receiving optical axis 21.

前記第3ダイクロイックミラー11は光路分割部材として機能し、前記受光光軸21を透過し(透過した光軸は前記投光光軸5と合致する)、又前記受光光軸21を偏向して前記光軸32とする。該光軸32は前記投光光軸5と平行である。   The third dichroic mirror 11 functions as an optical path dividing member, transmits the light receiving optical axis 21 (the transmitted optical axis matches the light projecting optical axis 5), and deflects the light receiving optical axis 21 to The optical axis 32 is assumed. The optical axis 32 is parallel to the light projecting optical axis 5.

第3の実施例では、反射測距光29の光路内に前記撮像部25が存在し、該撮像部25によって前記反射測距光29が遮られる。前記撮像部25によって遮られる前記反射測距光29は、僅かであり、測定には支障ない。   In the third embodiment, the imaging unit 25 exists in the optical path of the reflected distance measuring light 29, and the reflected distance measuring light 29 is blocked by the imaging unit 25. The reflected distance measuring light 29 that is blocked by the imaging unit 25 is very small and does not hinder measurement.

図4は、第4の実施例を示している。尚、図4中、図1中で示したものと同等のものには同符号を付し、その説明を省略する。   FIG. 4 shows a fourth embodiment. 4 that are the same as those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

第4の実施例では、第3ダイクロイックミラー11で偏向した光軸32を延長し、撮像部25を反射測距光29の光路外に設けたものである。   In the fourth embodiment, the optical axis 32 deflected by the third dichroic mirror 11 is extended, and the imaging unit 25 is provided outside the optical path of the reflected distance measuring light 29.

第4の実施例によれば、前記反射測距光29を遮るものが前記第3ダイクロイックミラー11、ミラー31のみとなるので、測距受光部28に到達する前記反射測距光29の光量が増大する。   According to the fourth embodiment, since only the third dichroic mirror 11 and the mirror 31 block the reflected distance measuring light 29, the amount of the reflected distance measuring light 29 reaching the distance light receiving unit 28 is reduced. Increase.

尚、第4の実施例では、レーザポインタ用光源13及び該レーザポインタ用光源13の光学系を省略しているが、第3の実施例と同様追加してもよい。   In the fourth embodiment, the laser pointer light source 13 and the optical system of the laser pointer light source 13 are omitted, but they may be added as in the third embodiment.

図5は第5の実施例を示している。尚、図5では、受光光学系3に用いられる結像用の光学部材34のみを示している。   FIG. 5 shows a fifth embodiment. In FIG. 5, only the imaging optical member 34 used in the light receiving optical system 3 is shown.

該光学部材34は、結像用反射鏡26の反射面に相当する反射面R2を有し、又受光光軸21と交差する入射面R1、反射光軸21′と交差する射出面R3を有している。   The optical member 34 has a reflecting surface R2 corresponding to the reflecting surface of the imaging mirror 26, an incident surface R1 that intersects with the light receiving optical axis 21, and an exit surface R3 that intersects with the reflected optical axis 21 '. doing.

前記光学部材34では前記入射面R1、前記射出面R3での屈折作用、前記反射面R2での反射作用によって反射測距光29を測距受光部28に結像させる。   In the optical member 34, the reflected distance measuring light 29 is imaged on the distance measuring light receiving unit 28 by the refracting action at the incident surface R 1 and the exit surface R 3 and the reflecting action at the reflecting surface R 2.

尚、前記入射面R1の周辺部、前記射出面R3の周辺部を所要の曲率とすることで、近距離測定で反射測距光29がアウトフォーカスしている状態でも該反射測距光29を前記測距受光部28に集光することができ、近距離に於いても測定に必要な前記反射測距光29の光量を確保することができる。   In addition, by setting the peripheral portion of the incident surface R1 and the peripheral portion of the exit surface R3 to have a required curvature, the reflected distance measuring light 29 can be used even when the reflected distance measuring light 29 is out-of-focus in short distance measurement. The light can be condensed on the distance measuring light receiving unit 28, and the amount of the reflected distance measuring light 29 necessary for measurement can be secured even at a short distance.

撮像部25には、以下の光学フィルタが設けられてもよい。   The imaging unit 25 may be provided with the following optical filters.

一般に使用されるカメラに設けられる受光センサのRGB感度は図7に示される通りである。   The RGB sensitivity of a light receiving sensor provided in a commonly used camera is as shown in FIG.

可視光の波長は400nm〜700nmであるが、受光センサは赤外の領域にも感度を持っており、特に波長が810nm〜840nmでは、感度は低くなるもののRGB共に同等の感度となっている。   Although the wavelength of visible light is 400 nm to 700 nm, the light receiving sensor has sensitivity also in the infrared region, and particularly in the wavelength range of 810 nm to 840 nm, although the sensitivity is low, RGB has the same sensitivity.

この特性を利用し、トラッキング用の照明光として例えば、810nm〜840nmの波長の赤外光を用いた場合、図7中、曲線49で示す透過特性、即ち可視領域の波長を透過すると共に810nm〜840nmの範囲の波長を透過するフィルタを作成し、該フィルタを前記撮像部25の所要の位置に設ける。   When infrared light having a wavelength of, for example, 810 nm to 840 nm is used as illumination light for tracking using this characteristic, the transmission characteristic indicated by a curve 49 in FIG. 7, that is, a wavelength in the visible region is transmitted and 810 nm to A filter that transmits a wavelength in the range of 840 nm is created, and the filter is provided at a required position of the imaging unit 25.

このフィルタを設けることで、撮像素子23より自然な色味の画像が取得できると共に、トラッキングの反射光(赤外光)も受光できる様になる。従って、前記撮像素子23からの信号に基づきトラッキングが行える。   By providing this filter, it is possible to acquire a natural color image from the image sensor 23 and to receive reflected reflected light (infrared light). Accordingly, tracking can be performed based on the signal from the image sensor 23.

ダイクロイックミラーは、ビームスプリッタでもよく、或は波長域の一部をダイクロイックミラーとし、一部はビームスプリッタの特性を持った光学素子でもよい。   The dichroic mirror may be a beam splitter, or a part of the wavelength region may be a dichroic mirror and a part may be an optical element having the characteristics of a beam splitter.

受光光学系は、単一の非球面レンズを使用したものでもよい。   The light receiving optical system may use a single aspheric lens.

1 光学系
2 投光光学系
3 受光光学系
5 投光光軸
6 照明光源
7 集光レンズ
11 第3ダイクロイックミラー
13 レーザポインタ用光源
14 集光レンズ
15 測距光光源
16 集光レンズ
18 回転ミラー
19 測距光軸
21 受光光軸
21′ 反射光軸
22 結像レンズ
23 撮像素子
25 撮像部
26 結像用反射鏡
28 測距受光部
29 反射測距光
31 ミラー
32 光軸
34 光学部材
DESCRIPTION OF SYMBOLS 1 Optical system 2 Light projection optical system 3 Light reception optical system 5 Light projection optical axis 6 Illumination light source 7 Condensing lens 11 3rd dichroic mirror 13 Light source for laser pointers 14 Condensing lens 15 Ranging light source 16 Condensing lens 18 Rotating mirror DESCRIPTION OF SYMBOLS 19 Ranging optical axis 21 Receiving optical axis 21 'Reflecting optical axis 22 Imaging lens 23 Imaging element 25 Imaging part 26 Imaging reflecting mirror 28 Ranging light receiving part 29 Reflecting ranging light 31 Mirror 32 Optical axis 34 Optical member

Claims (5)

測距光を射出する投光光学系と、測定対象物からの反射測距光を受光する受光光学系とを具備する測量装置の光学系であって、前記投光光学系は、投光光軸、測距光を発する測距光光源、及び前記投光光軸上に設けられた光路偏向部材を有し、前記投光光軸は前記光路偏向部材により偏向され、前記測距光は前記投光光軸を介して前記測定対象物に向けて射出され、前記受光光学系は、前記光路偏向部材を透過する受光光軸を有し、該受光光軸上に結像用反射鏡が設けられ、該結像用反射鏡の反射光軸上に測距受光部が設けられ、前記測定対象物からの前記反射測距光が前記受光光軸を経て前記結像用反射鏡に入射し、該結像用反射鏡によって反射され、前記測距受光部に結像される様に構成された測量機の光学系。   An optical system of a surveying instrument comprising: a light projecting optical system that emits distance measuring light; and a light receiving optical system that receives reflected distance measuring light from a measurement object, the light projecting optical system comprising: An optical path deflecting member provided on the projecting optical axis, the projecting optical axis is deflected by the optical path deflecting member, and the ranging light is The light-receiving optical system has a light-receiving optical axis that passes through the optical path deflecting member, and an imaging mirror is provided on the light-receiving optical axis. A distance measuring light receiving unit is provided on the reflection optical axis of the imaging reflecting mirror, and the reflected distance measuring light from the measurement object is incident on the imaging reflecting mirror through the light receiving optical axis, An optical system of a surveying instrument configured to be reflected by the imaging mirror and imaged on the distance measuring light receiving unit. 前記光路偏向部材と前記結像用反射鏡との間の前記受光光軸上に撮像部が設けられ、前記投光光軸は、光路分割部材によって測距光射出光学系、照明光射出光学系に分割され、前記測距光は前記測距光射出光学系から発せられ、前記投光光軸、前記光路偏向部材を経て前記測定対象物へ射出され、前記照明光射出光学系から発せられる照明光は、前記投光光軸、前記光路偏向部材を経て前記測定対象物へ射出され、該測定対象物からの反射光は前記撮像部によって受光される請求項1に記載の測量機の光学系。   An imaging unit is provided on the light receiving optical axis between the optical path deflecting member and the imaging mirror, and the light projecting optical axis is a distance measuring light emitting optical system and an illumination light emitting optical system by an optical path dividing member. The distance measuring light is emitted from the distance measuring light emission optical system, emitted to the measurement object via the light projection optical axis and the optical path deflecting member, and emitted from the illumination light emission optical system The optical system of the surveying instrument according to claim 1, wherein light is emitted to the measurement object through the light projecting optical axis and the optical path deflecting member, and reflected light from the measurement object is received by the imaging unit. . 前記投光光軸の前記光路偏向部材の入射側に光路分割部材が設けられ、該光路分割部材により分割された一方の光軸上に撮像部が設けられ、他方の光軸上に前記投光光学系が設けられた請求項1に記載の測量機の光学系。   An optical path dividing member is provided on the incident side of the optical path deflecting member of the light projecting optical axis, an imaging unit is provided on one optical axis divided by the optical path dividing member, and the light projecting is provided on the other optical axis. The optical system of a surveying instrument according to claim 1, further comprising an optical system. 前記光路偏向部材の射出側に、光路分割部材が設けられ、該光路分割部材により分割された光軸上に撮像部が設けられ、前記光路分割部材を透過した投光光軸上に前記投光光学系が設けられた請求項1に記載の測量機の光学系。   An optical path dividing member is provided on the exit side of the optical path deflecting member, an imaging unit is provided on the optical axis divided by the optical path dividing member, and the light projecting light is transmitted on the light projecting optical axis that has passed through the optical path dividing member The optical system of a surveying instrument according to claim 1, further comprising an optical system. 前記反射測距光が入射する入射面、前記反射測距光が射出する射出面、前記入射面、前記射出面に対向する曲面を有し、該曲面に前記結像用反射鏡が形成されたレンズを有する請求項1に記載の測量機の光学系。   An incident surface on which the reflected distance measuring light is incident, an exit surface on which the reflected distance measuring light exits, the incident surface, and a curved surface facing the exit surface, and the imaging reflecting mirror is formed on the curved surface. The optical system of a surveying instrument according to claim 1, further comprising a lens.
JP2015199196A 2015-10-07 2015-10-07 Optical system of surveying device Pending JP2017072464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199196A JP2017072464A (en) 2015-10-07 2015-10-07 Optical system of surveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199196A JP2017072464A (en) 2015-10-07 2015-10-07 Optical system of surveying device

Publications (1)

Publication Number Publication Date
JP2017072464A true JP2017072464A (en) 2017-04-13

Family

ID=58537404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199196A Pending JP2017072464A (en) 2015-10-07 2015-10-07 Optical system of surveying device

Country Status (1)

Country Link
JP (1) JP2017072464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666540A (en) * 2019-10-15 2021-04-16 株式会社爱德万测试 Optical test device and test method for optical measurement instrument
JP7360298B2 (en) 2019-10-23 2023-10-12 株式会社トプコン surveying equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666540A (en) * 2019-10-15 2021-04-16 株式会社爱德万测试 Optical test device and test method for optical measurement instrument
CN112666540B (en) * 2019-10-15 2024-02-27 株式会社爱德万测试 Optical test device and test method for optical measuring instrument
JP7360298B2 (en) 2019-10-23 2023-10-12 株式会社トプコン surveying equipment
US11913786B2 (en) 2019-10-23 2024-02-27 Topcon Corporation Surveying instrument

Similar Documents

Publication Publication Date Title
JP4927182B2 (en) Laser distance meter
JP6892734B2 (en) Light wave distance measuring device
TWI756381B (en) Imaging device with an improved autofocusing performance
KR101691156B1 (en) Optical system having integrated illumination and imaging systems and 3D image acquisition apparatus including the optical system
KR20160091909A (en) Telecentric lens
WO2010038645A1 (en) Optical distance measuring device
JP2017072466A (en) Light wave distance measuring device
KR20200102900A (en) Lidar device
KR101899711B1 (en) Confocal Image Display Apparatus using Chromatic Aberration Lens
JP6833924B2 (en) Photoelectric sensor and object detection method
US7826039B2 (en) Target acquisition device
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
JP2021067540A (en) Surveying device
JP2017072464A (en) Optical system of surveying device
CN104864892B (en) Photoelectric sensor
WO2012042945A1 (en) Method for arranging photoreceiving lens, and optical displacement sensor
JP2008070629A (en) Light detection device, camera, focus detection device, and optical characteristic measuring device
JP6867736B2 (en) Light wave distance measuring device
JP2017072709A (en) Imaging optical member and optical system of surveying instrument
JP2017072465A (en) Optical system of surveying device
JP6211261B2 (en) Ranging device
JP6732442B2 (en) Lightwave distance measuring device
US20230251090A1 (en) Method for operating a geodetic instrument, and related geodetic instrument
JP2019500639A (en) Optical beam shaping unit, distance measuring device and laser illuminator
TW202235902A (en) Optical sensing system