JP2017072283A - Cold Crucible Melting Furnace - Google Patents
Cold Crucible Melting Furnace Download PDFInfo
- Publication number
- JP2017072283A JP2017072283A JP2015198435A JP2015198435A JP2017072283A JP 2017072283 A JP2017072283 A JP 2017072283A JP 2015198435 A JP2015198435 A JP 2015198435A JP 2015198435 A JP2015198435 A JP 2015198435A JP 2017072283 A JP2017072283 A JP 2017072283A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- conductive segment
- cooling water
- furnace
- melting furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002844 melting Methods 0.000 title claims abstract description 44
- 230000008018 melting Effects 0.000 title claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 66
- 239000002184 metal Substances 0.000 claims abstract description 66
- 239000000498 cooling water Substances 0.000 claims abstract description 39
- 230000006698 induction Effects 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 230000002093 peripheral effect Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 230000035515 penetration Effects 0.000 claims description 10
- 230000004907 flux Effects 0.000 claims description 7
- 238000004090 dissolution Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 14
- 239000002826 coolant Substances 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 238000003754 machining Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Furnace Details (AREA)
- General Induction Heating (AREA)
Abstract
Description
本発明は、誘導加熱により被溶解金属を溶解する溶解炉に関し、溶解を炉本体が冷却されつつ行うコールドクルーシブル溶解炉に関する。 The present invention relates to a melting furnace that melts a metal to be melted by induction heating, and to a cold crucible melting furnace that performs melting while a furnace body is cooled.
従来、被溶解金属を誘導加熱により溶解する装置として、例えば、銅などの金属で形成され、内部に冷却水路を有する炉本体と、炉本体の外周側に配置された誘導加熱コイルとを備えたコールドクルーシブル溶解炉がある。このコールドクルーシブル溶解炉で炉本体に収容された被溶解金属を溶解する場合、誘導加熱コイルによって被溶解金属を誘導加熱するとともに、冷却水路に冷却水を通すことによって炉本体を冷却する。これにより、炉本体に収容された被溶解金属は、外周側において炉本体に抜熱されるため、この外周側で被溶解金属が冷却されて凝固したスカルが形成され、内部のみが溶融することとなる。このため、被溶解金属が溶解した溶湯は、スカルによって炉本体と隔離されることにより炉本体からの汚染が防止される。また、炉本体は、上記のように金属で形成されていることから、急速溶解したとしても割れなどの損傷が生じる恐れがない。このため、コールドクルーシブル溶解炉では、高純度の溶湯を高速で生成することが可能である。 Conventionally, as an apparatus for melting a metal to be melted by induction heating, for example, provided with a furnace body formed of a metal such as copper and having a cooling water channel therein, and an induction heating coil disposed on the outer peripheral side of the furnace body There is a cold crucible melting furnace. When melting the metal to be melted accommodated in the furnace main body in this cold crucible melting furnace, the metal to be melted is inductively heated by an induction heating coil, and the furnace main body is cooled by passing cooling water through a cooling water channel. As a result, the metal to be melted accommodated in the furnace body is extracted by the furnace body on the outer peripheral side, so that the melted metal is cooled and solidified skull is formed on this outer peripheral side, and only the inside melts. Become. For this reason, the molten metal in which the metal to be melted is separated from the furnace body by the skull, thereby preventing contamination from the furnace body. Moreover, since the furnace body is made of metal as described above, there is no risk of damage such as cracking even if rapidly melted. For this reason, in a cold crucible melting furnace, it is possible to produce a high purity molten metal at a high speed.
例えば、特許文献1に記載のコールドクルーシブル溶解炉は、被溶解金属を収容する収容凹部を有する炉本体と、前記炉本体を冷却する冷却手段と、前記炉本体の外周側に配置され、前記炉本体の収容凹部に収容された被溶解金属を誘導加熱する誘導加熱コイルとを備える。炉本体は、収容凹部の少なくとも一部を規定する複数の導電性セグメントを備える。 For example, a cold crucible melting furnace described in Patent Document 1 is disposed on the outer peripheral side of the furnace main body, a furnace main body having an accommodating recess for accommodating a metal to be melted, cooling means for cooling the furnace main body, and the furnace An induction heating coil for induction heating the metal to be melted accommodated in the accommodating recess of the main body. The furnace body includes a plurality of conductive segments that define at least a portion of the receiving recess.
各導電性セグメントの横断面形状に関しては、例えば特許文献2の図2に示されている。各導電性セグメントにおける収容凹部を向いた面は、収容凹部を取り巻く、一定曲率の湾曲面の一部を形成している。 The cross-sectional shape of each conductive segment is shown in FIG. The surface of each conductive segment facing the housing recess forms a part of a curved surface having a constant curvature surrounding the housing recess.
前記被溶解金属、つまり、コールドクルーシブル溶解炉で生成する鋳塊の材料としては、従来、コバルト、チタン、タンタルのような高融点材料(各導電性セグメントを構成する材料よりも融点の高い材料)を用いてきた。しかし、最近では、前記高融点材料に低融点材料(例えばすずなど、各導電性セグメントを構成する材料よりも融点の低い材料)を混ぜて特殊な材料(例えば医療用の生体埋め込み部品に用いられる生体金属)の鋳塊をコールドクルーシブル溶解炉で生成したいというニーズがある。 Conventionally, as the material to be melted, that is, the material of the ingot generated in the cold crucible melting furnace, a high melting point material such as cobalt, titanium or tantalum (a material having a higher melting point than the material constituting each conductive segment). Has been used. However, recently, the high melting point material is mixed with a low melting point material (for example, a material having a lower melting point than the material constituting each conductive segment) such as tin and used for a special material (for example, a biomedical implant part for medical use). There is a need to produce an ingot of (biometal) in a cold crucible melting furnace.
ここで、例えば、各導電性セグメントを構成する金属に銅が含まれており、被溶解金属に、前記低融点材料として銅と親和性の高い特定の金属(例えばすず)が含まれている場合に問題が生じることがある。具体的には、各導電性セグメントを構成する材料である銅の融点よりも加熱された被溶解金属が低温であっても、各導電性セグメント中の銅に対して、前記特定の金属(すず)が反応して合金を形成してしまうことがある。そうなると、各導電性セグメントにクラックが生じる等して損傷することがある。 Here, for example, when the metal constituting each conductive segment contains copper, and the metal to be dissolved contains a specific metal (for example, tin) having high affinity with copper as the low melting point material May cause problems. Specifically, even if the melted metal heated below the melting point of copper, which is the material constituting each conductive segment, is at a low temperature, the specific metal (tin ) May react to form an alloy. If it does so, a crack may arise in each electroconductive segment, and it may be damaged.
そこで本発明は、各導電性セグメントを構成する金属に対して親和性の高い特定の金属が含まれた被溶解金属を溶解する場合であっても、問題なく使用できるコールドクルーシブル溶解炉を提供することを課題とする。 Therefore, the present invention provides a cold crucible melting furnace that can be used without any problem even when melting a metal to be melted containing a specific metal having a high affinity for the metal constituting each conductive segment. This is the issue.
本発明は、被溶解金属を収容する収容凹部を有する炉本体と、前記炉本体の外周側に配置され、前記収容凹部に収容された被溶解金属を誘導加熱して溶湯とする誘導加熱コイルとを備え、前記炉本体は、前記収容凹部の少なくとも一部を規定する複数の導電性セグメントを備え、前記複数の導電性セグメントの各々は、内部に冷却水路を有し、外部または内部に、前記冷却水路の内面から各導電性セグメントにおける前記収容凹部を向いた面までの距離を均一化する肉厚調整部を有するコールドクルーシブル溶解炉である。 The present invention includes a furnace body having a housing recess for housing a metal to be melted, and an induction heating coil that is disposed on the outer peripheral side of the furnace body and induction melts the metal to be melted housed in the housing recess to form a molten metal. The furnace body includes a plurality of conductive segments that define at least a part of the accommodating recess, each of the plurality of conductive segments has a cooling water channel inside, and the outside or the inside, It is a cold crucible melting furnace having a wall thickness adjusting unit that equalizes the distance from the inner surface of the cooling water channel to the surface of each conductive segment facing the housing recess.
この構成によれば、各導電性セグメントが肉厚調整部を有する。このため、各導電性セグメントにおいて冷却水路から収容凹部を向いた面までの肉厚を均一化できることから、冷却水路に冷却水等の冷却媒体を通すことによる各導電性セグメントの冷却に、部分によるばらつきが生じにくくなる。よって、各導電性セグメントにおける収容凹部を向いた面の表面温度を、被溶解金属に含まれる特定の金属の融点よりも低下させることが可能である。 According to this configuration, each conductive segment has the thickness adjusting portion. For this reason, since the thickness from the cooling water channel to the surface facing the housing recess in each conductive segment can be made uniform, the cooling of each conductive segment by passing a cooling medium such as cooling water through the cooling water channel depends on the part. Variations are less likely to occur. Therefore, it is possible to lower the surface temperature of the surface facing the housing recess in each conductive segment below the melting point of the specific metal contained in the metal to be melted.
そして、前記各導電性セグメントの横断面形状は、角部を有する形状であり、前記肉厚調整部は、前記角部のうちで前記収容凹部側の角部が有する、平面である面取部または湾曲面であるアール部により構成されるものとできる。 And the cross-sectional shape of each said conductive segment is a shape which has a corner | angular part, and the said thickness adjustment part is a chamfer which is a plane which the corner | angular part by the side of the said accommodation recessed part has among the said corner | angular parts Or it can be comprised by the rounded part which is a curved surface.
この構成によれば、各導電性セグメントの角部に平面または湾曲面を機械加工することで容易に肉厚調整部を形成できる。 According to this configuration, the thickness adjusting portion can be easily formed by machining a flat surface or a curved surface at the corner portion of each conductive segment.
そして、前記面取部または前記アール部は、前記各導電性セグメントに誘導加熱時の磁束が浸透する浸透深さを基準とした寸法を有するものとできる。 The chamfered portion or the rounded portion may have a dimension based on a penetration depth at which the magnetic flux penetrates each conductive segment during induction heating.
この構成によれば、面取部またはアール部を、浸透深さを基準とした寸法で形成することにより、各導電性セグメントにおいて、磁束が通過することにより発熱する領域(横断面における面積)を縮小させることができる。このため、発熱を抑制できることから、各導電性セグメントの冷却効率が良好である。よって、各導電性セグメントにおける収容凹部側の表面の温度をより有効に低下させられる。 According to this configuration, by forming the chamfered portion or the rounded portion with a dimension based on the penetration depth, a region (area in the cross section) that generates heat when the magnetic flux passes through each conductive segment is formed. Can be reduced. For this reason, since heat_generation | fever can be suppressed, the cooling efficiency of each electroconductive segment is favorable. Therefore, the temperature of the surface on the side of the accommodating recess in each conductive segment can be more effectively lowered.
そして、前記各導電性セグメントを構成する材料は銅を含む金属とできる。 And the material which comprises each said electroconductive segment can be made into the metal containing copper.
この構成によれば、被溶解金属に銅と親和性の高い特定の金属(例えばすず)が含まれていても、銅を含む金属からなる導電性セグメントを損傷させることを抑制できる。 According to this configuration, even if a specific metal (for example, tin) having a high affinity for copper is included in the metal to be dissolved, it is possible to suppress damage to the conductive segment made of the metal containing copper.
本発明によると、各導電性セグメントにおける収容凹部を向いた面の表面温度を、被溶解金属に含まれる特定の金属の融点よりも低下させることが可能である。このため、各導電性セグメントを構成する金属に対して親和性の高い特定の金属が含まれた被溶解金属を溶解する場合であっても、各導電性セグメントを損傷させることなく、問題なく使用できる。 According to the present invention, it is possible to lower the surface temperature of the surface facing the housing recess in each conductive segment below the melting point of the specific metal contained in the metal to be dissolved. For this reason, even when dissolving a metal to be dissolved that contains a specific metal with a high affinity for the metal constituting each conductive segment, it can be used without causing any damage to each conductive segment. it can.
図1は、本発明の一実施形態のコールドクルーシブル溶解炉を示している。このコールドクルーシブル溶解炉の基本的な構成は特許文献1記載のものと同じである。つまり、このコールドクルーシブル溶解炉1は、被溶解金属Wを収容する収容凹部10aを有する炉本体10と、炉本体10を冷却する冷却手段20と、炉本体10の外周側に配置された誘導加熱コイル30とを備える。被溶解金属Wとしては、例えば鋳鉄や酸化鉄が挙げられるが、その他様々な金属を適用可能である。後述のように、本実施形態の導電性セグメント12は、肉厚調整部Xを構成する面取部12e(図2参照)を備えたことにより、導電性セグメント12の冷却に、部分によるばらつきが生じにくくなる。このため、被溶解金属Wに銅と親和性の高い特定の金属(例えばすず)が含まれていても、当該金属の融点よりも導電性セグメント12における、収容凹部10a側の表面の温度を低下させることができるので、導電性セグメント12を損傷させることなくコールドクルーシブル溶解炉1を使用できる。なお、本実施形態のコールドクルーシブル溶解炉1は、大気中に設置されて被溶解金属Wの溶解を行うものとしてもよいし、真空槽等、気密状態で密閉可能な槽(図示しない)の内部に設置されて、例えば真空雰囲気中で被溶解金属Wの溶解を行うものとしてもよい。
FIG. 1 shows a cold crucible melting furnace according to an embodiment of the present invention. The basic configuration of this cold crucible melting furnace is the same as that described in Patent Document 1. That is, the cold crucible melting furnace 1 includes a
炉本体10は、収容凹部10aの底面壁を構成するように形成されたベース体11と、収容凹部10aの側面壁を構成するようにベース体11上に平面視略円形状に配設された複数の導電性セグメント12…12とを有する。そして、互いに固定されたベース体11と複数の導電性セグメント12…12とによって、上部が開口して被溶解金属Wを収容する収容凹部10aが形成されている。つまり、複数の導電性セグメント12…12は、平面視において収容凹部10aの、被溶解金属Wを収容可能な空間の外縁を周回するよう設けられることで、収容凹部10aの少なくとも一部を規定している。なお、本実施形態のコールドクルーシブル溶解炉1はバッチ処理を行うよう構成されているが、本発明はこれに限定されず、例えばベース体11を下方に移動可能とし、冷却により固形化した鋳塊(インゴット)を収容凹部10aの下方に引き抜きできるよう構成することもできる。この構成を採用したコールドクルーシブル溶解炉1では、被溶解金属Wを収容凹部10aに上方から連続的に投入しつつ、下方から連続引き抜きを行うことで連続鋳造を行うことができるため、長尺の鋳塊を得ることができる。
The
前記ベース体11は、略円柱状に形成された柱状部13と、柱状部13の下端部から外周側へ張り出したフランジ部14とを有する。柱状部13の上面は、収容凹部10aを構成する内面15のうち底面15aを形成していて、この底面15aは熱緩衝部材40によって覆われている。また、フランジ部14には、各導電性セグメント12に対応する位置で、それぞれ上下方向に連通する複数の締結孔11aと、冷却水路11bとが形成されている。
The
導電性セグメント12は、上下方向に立設された側壁部16と、側壁部16の下端から曲折された取付部17とによって、縦断面略L字形に形成されている。導電性セグメント12の材質としては、熱衝撃に強く、必要な機械的強度を有するとともに、冷却手段20による冷却を有効に行えるもの、例えば、銅(純銅)、または、クロム銅、ベリリウム銅などの銅合金が選択される。
The
側壁部16は、内側面が下部においてベース体11の柱状部13に当接するとともに、上部が柱状部13から上方へ突出し、収容凹部10aを構成する内面15のうち壁面15bを形成している。また、取付部17には、ベース体11のフランジ部14の締結孔11a及び冷却水路11bとそれぞれ連通するようにして複数の締結孔12a及び冷却水路12bが形成されている。そして、互いに連通するベース体11のフランジ部14及び導電性セグメント12の取付部17の締結孔11a,12aには、固定ボルト18が挿通され、ナット18aによって締め付けられていて、これにより導電性セグメント12とベース体11とは一体となっている。
The
ここで、ベース体11に固定された各導電性セグメント12は、平面視において周方向に隣接するもの同士が隙間Gを有して配置されている。この隙間Gにより、隣接する導電性セグメント12,12同士は電気的に絶縁されている。また、各導電性セグメント12において、幅方向略中央部には厚さ方向に連通するスリット12cが形成されている。スリット12cは、図示しないが、取付部17にも形成されているとともに、側壁部16において、下端部から上方まで(ただし、上端部には至らない)形成されている。前記隙間G及びスリット12cは、溶解した被溶解金属Wが外方に漏れ出ること(湯差し)を防止するために、有する空間が耐火材料で埋められることもできる。スリット12cを横断する位置における、各導電性セグメント12の有する横断面形状(スリット12cを挟む2領域の各形状)は扇形または台形とされている。各導電性セグメント12は、前記横断面形状の四隅に対応して角部を有する。これら角部のうち収容凹部10a側(炉本体10の径内側)である2箇所の角部には、図2に示すように、後述する肉厚調整部Xを構成する面取部12eが形成されている。そして、側壁部16においてスリット12cを挟む幅方向の両側には、それぞれ冷却水路12bが形成されている。本実施形態の冷却水路12bは、内面の横断面形状が円形とされた水路である。この側壁部16における一方と他方の冷却水路12b,12bは、側壁部16の上端部に形成された連通水路12dによって互いに接続されている。そして、各冷却水路12bは、それぞれベース体11の冷却水路11bと連通している。
Here, the
これにより、冷却媒体供給源(図示しない)から冷却水等の冷却媒体をベース体11の冷却水路11bに供給すれば、供給された冷却媒体は、ベース体11の冷却水路11b、導電性セグメント12の一方の冷却水路12b、連通水路12d、導電性セグメント12の他方の冷却水路12b、ベース体11の冷却水路11bを順次通って外部に排出される。このため、導電性セグメント12及びベース体11は、この冷却媒体によって冷却される。すなわち、冷却媒体供給源、冷却水路11b,12b、連通水路12dによって冷却手段20が構成されている。この冷却手段20は、各導電性セグメント12の収容凹部10a側の表面温度を被溶解金属Wの溶解温度以下とできる冷却能力を有している。
Thus, if a cooling medium such as cooling water is supplied from a cooling medium supply source (not shown) to the cooling
導電性セグメント12の外部または内部には、冷却水路12bの内面から導電性セグメント12における収容凹部10aを向いた面までの距離を均一化する肉厚調整部Xを有する。本実施形態では、この肉厚調整部Xを構成するものとして、図2に示すように、導電性セグメント12の外部に面取部12eが形成されている。前述のように、スリット12cを横断する位置における、各導電性セグメント12の有する横断面形状(スリット12cを挟んだ2領域の各形状)は扇形または台形とされている。面取部12eは、この扇形または台形における四隅の角部のうちで収容凹部10a側の2箇所の角部に形成されている。
On the outside or inside of the
このように面取部12eを形成することにより、冷却水路12bの内面から導電性セグメント12における収容凹部10aを向いた面までの厚み寸法を均一化できる。前記「均一化」とは、導電性セグメント12におけるどの位置でも厚み寸法を等しくすることを意味するのではなく、位置による厚み寸法の差を小さくすることを意味している。つまり、導電性セグメント12における収容凹部10aを向いた面のうち、図3に示す周方向の中央での厚み寸法D1と、角部での厚み寸法D2との差を、図3に破線で示したように面取部12eを形成しない場合(厚み寸法D3)との差よりも、面取部12eを形成した分小さくできる。このように厚み寸法の差を小さくできたことにより、冷却水路12bを通る冷却媒体による導電性セグメント12の冷却にばらつきが生じにくい。具体的には、導電性セグメント12における収容凹部10a側の角部の温度を、面取部12eを形成しない場合よりも低下させることができる。よって、被溶解金属Wとして、銅と親和性の高い特定の金属(例えばすず)が含まれていても、当該特定の金属の融点(すずの場合約232℃)よりも導電性セグメント12における表面(収容凹部10a側の表面)の温度を低下させることができるため、導電性セグメント12を損傷させることなくコールドクルーシブル溶解炉1を使用できる。
By forming the chamfered
また、面取部12eは、導電性セグメント12の角部に平面ができるように形成すればいいので、導電性セグメント12に対する機械加工により容易に肉厚調整部Xを形成できるというメリットがある。
Further, since the chamfered
本実施形態の面取部12eは、各導電性セグメント12に誘導加熱時の磁束が浸透する浸透深さδを基準とした寸法を有する。誘導加熱時の磁束は、隣接する導電性セグメント12,12同士の間の隙間Gにおける空間、スリット12cにおける空間、そして、前記各空間に面した導電性セグメント12の一部を通過する。浸透深さδとは、各導電性セグメント12において磁束が通過する領域の、前記各空間に面した表面からの深さを示す(図3の二点鎖線で示した部分を参照)。浸透深さδ(cm)は以下の計算式で規定される。ただし、この計算式は一例に過ぎず、他の計算式等により浸透深さδを導出することも可能である。
δ=5.04√{ρ/(μ・f)}
(ρ…各導電性セグメントを構成する材料の比抵抗(μΩcm)、μ…透磁率、f…誘導加熱に係る通電周波数(Hz))
The chamfered
δ = 5.04√ {ρ / (μ · f)}
(Ρ: specific resistance (μΩcm) of material constituting each conductive segment, μ: magnetic permeability, f: energization frequency (Hz) related to induction heating)
本実施形態では、炉本体10の平面視における周方向に沿う面取部12eの寸法が、浸透深さδを基準としてあまりに大きい寸法であると、溶湯に対する接触面積が大きくなってしまうため好ましくない。このため、前記面取部12eの寸法は、浸透深さδの5倍以下となるよう設定されている。
In the present embodiment, if the dimension of the chamfered
導電性セグメント12は、磁束が通過することにより発熱する。このため、面取部12eを、浸透深さδを基準とした寸法で形成することにより、導電性セグメント12において自ら発熱する領域(横断面における面積)を縮小させることができる。このため、導電性セグメント12の発熱を抑制できることから、冷却水路12bを通る冷却媒体による、導電性セグメント12の冷却効率が良好となり、導電性セグメント12における収容凹部10a側の表面の温度を有効に低下させられる。
The
誘導加熱コイル30は、炉本体10の外周側に巻回されることで炉本体10を囲んでおり、図示しない電源装置によって高周波交流電力が供給される。この高周波交流電力により交番磁場を発生させ、収容凹部10aに収容された被溶解金属Wを誘導加熱することが可能である。
The
熱緩衝部材40は、ベース体11の柱状部13の形状と対応した略円板状の部材で、底面15aの全体を覆っている。熱緩衝部材40は、被溶解金属Wより融点の高い耐火物によって形成されており、炉本体10を形成する材質よりも熱伝導率が低く、炉本体10と同等の機械的強度を有するとともに、被溶解金属Wを加熱溶解する際に要求される耐熱衝撃性を有するものが選択される。より具体的には、熱緩衝部材40を形成する耐火物は、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化ジルコニウムなどの酸化物からなるものが好ましい。また、炭化ケイ素などを含むものとしてもよい。また、この熱緩衝部材40は、底面15aに加え、壁面15bの一部を覆ってもよい。
The
以上、本発明の一実施形態につき説明してきたが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態に変更可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
例えば、前記実施形態のスリット12cは、導電性セグメント12の厚さ方向に連通(貫通)するものであった。しかしこれに限定されず、図4(A)に示すように、スリット12cを導電性セグメント12の外周側に連通(貫通)しないように形成することもできる。
For example, the
また、肉厚調整部Xを構成するものとして、前記実施形態における導電性セグメント12では、横断面形状における角部に、平面である面取部12eが形成されていたが、図4(B)に示すように、湾曲面であるアール部12fが形成されることもできる。面取部12eと同様、アール部12fであっても導電性セグメント12への機械加工により容易に肉厚調整部Xを形成できる。
Moreover, as what comprises the thickness adjustment part X, in the
また、前記実施形態は、各導電性セグメント12の外部(冷却水路12bから離れた部分)に肉厚調整部Xを有するものであったが、各導電性セグメント12の内部(冷却水路12bに近い部分)に肉厚調整部Xを有するものであってもよい。例えば、図4(C)に示すように、例えば導電性セグメント12の横断面形状における角部には加工を施さず、冷却水路12bの内面の横断面形状を、導電性セグメント12の横断面形状と対称である扇形または台形としたり、正方形等の多角形としたりすることで、冷却水路12bの内面から収容凹部10aを向いた面までの距離を均一化することができる。この場合の肉厚調整部Xは、冷却水路12bの角部12gにより構成される。
Moreover, although the said embodiment has the thickness adjustment part X in the exterior (part distant from the cooling
1 コールドクルーシブル溶解炉
10 炉本体
10a 収容凹部
12b 冷却水路
12e 肉厚調整部、面取部
12f 肉厚調整部、アール部
12g 肉厚調整部、冷却水路の角部
15 炉本体の内面
30 誘導加熱コイル
40 熱緩衝部材
W 被溶解金属
X 肉厚調整部
DESCRIPTION OF SYMBOLS 1 Cold
Claims (4)
前記炉本体は、前記収容凹部の少なくとも一部を規定する複数の導電性セグメントを備え、
前記複数の導電性セグメントの各々は、内部に冷却水路を有し、外部または内部に、前記冷却水路の内面から各導電性セグメントにおける前記収容凹部を向いた面までの距離を均一化する肉厚調整部を有するコールドクルーシブル溶解炉。 A furnace body having a housing recess for housing the metal to be melted, and an induction heating coil disposed on the outer peripheral side of the furnace body and inductively heating the metal to be melted housed in the housing recess to form a molten metal,
The furnace body includes a plurality of conductive segments that define at least a part of the receiving recess,
Each of the plurality of conductive segments has a cooling water passage inside, and a wall thickness that equalizes the distance from the inner surface of the cooling water passage to the surface facing the housing recess in each conductive segment on the outside or the inside. Cold crucible melting furnace with adjustment section.
前記肉厚調整部は、前記角部のうちで前記収容凹部側の角部が有する、平面である面取部または湾曲面であるアール部により構成される、請求項1に記載のコールドクルーシブル溶解炉。 The cross-sectional shape of each conductive segment is a shape having a corner,
2. The cold-crucible dissolution according to claim 1, wherein the thickness adjusting unit is configured by a chamfered portion that is a flat surface or a rounded portion that is a curved surface, which is included in a corner portion on the side of the housing recess among the corner portions. Furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015198435A JP6611000B2 (en) | 2015-10-06 | 2015-10-06 | Cold crucible melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015198435A JP6611000B2 (en) | 2015-10-06 | 2015-10-06 | Cold crucible melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017072283A true JP2017072283A (en) | 2017-04-13 |
JP6611000B2 JP6611000B2 (en) | 2019-11-27 |
Family
ID=58538226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015198435A Active JP6611000B2 (en) | 2015-10-06 | 2015-10-06 | Cold crucible melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6611000B2 (en) |
-
2015
- 2015-10-06 JP JP2015198435A patent/JP6611000B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6611000B2 (en) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101956914B1 (en) | Open bottom electric induction cold crucible for use in electromagnetic casting of ingots | |
KR100564770B1 (en) | apparatus for continuously casting an low electroconductive material by induction | |
EP3482848A1 (en) | Multi-layer susceptor design for magnetic flux shielding in directional solidification furnaces | |
JP6611000B2 (en) | Cold crucible melting furnace | |
JP5082234B2 (en) | Cold crucible induction heating melting furnace | |
JP5000149B2 (en) | Cold Crucible Induction Dissolver | |
JP6365700B2 (en) | Single crystal pulling device | |
JP6842030B2 (en) | Bottom hot water nozzle, bottom hot water nozzle type melting furnace | |
JP2009085525A (en) | Cold-crucible melting furnace | |
JP2014194289A (en) | Cold crucible melting furnace | |
JP2021526300A (en) | Levitation melting device and method using tilt induction unit | |
JP2541341B2 (en) | Precision casting method and precision casting apparatus for Ti and Ti alloy | |
JP5654339B2 (en) | Induction heating type aluminum melting and holding furnace | |
JP2007024396A (en) | Induction heating melting furnace | |
KR20200047107A (en) | Apparatus of solution growth for single crystal and method of solution growth for single crystal | |
JP2002327989A (en) | Induction heating water-cooled crucible furnace | |
JP6086276B2 (en) | Cold crucible melting furnace | |
JP2008049358A (en) | Induction smelting apparatus | |
JP2008051376A (en) | Induction fusing apparatus | |
JP2015021691A (en) | Cold crucible fusion furnace and manufacturing method thereof | |
US20170048933A1 (en) | Air-cooled induction heating device | |
JP6767652B2 (en) | Cold Crucible Melting Pot | |
JP2983327B2 (en) | Vacuum refining equipment | |
JP4892785B2 (en) | Induction heating melting furnace | |
JP2009066651A (en) | Electromagnetic stirring device, and method for solidifying electroconductive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6611000 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191017 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |