JP2017070081A - Non-contact sensor identification device - Google Patents

Non-contact sensor identification device Download PDF

Info

Publication number
JP2017070081A
JP2017070081A JP2015192359A JP2015192359A JP2017070081A JP 2017070081 A JP2017070081 A JP 2017070081A JP 2015192359 A JP2015192359 A JP 2015192359A JP 2015192359 A JP2015192359 A JP 2015192359A JP 2017070081 A JP2017070081 A JP 2017070081A
Authority
JP
Japan
Prior art keywords
circuit
power
sensor
power supply
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015192359A
Other languages
Japanese (ja)
Other versions
JP5921750B1 (en
Inventor
啓 八木橋
Hiroshi Yagihashi
啓 八木橋
圭 及部
Kei Oibe
圭 及部
重保 中川
Shigeyasu Nakagawa
重保 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeuchi Industry Co Ltd.
Original Assignee
Takeuchi Industry Co Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeuchi Industry Co Ltd. filed Critical Takeuchi Industry Co Ltd.
Priority to JP2015192359A priority Critical patent/JP5921750B1/en
Application granted granted Critical
Publication of JP5921750B1 publication Critical patent/JP5921750B1/en
Publication of JP2017070081A publication Critical patent/JP2017070081A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To eliminate complexity in wiring processing to switch contacts.SOLUTION: A plurality of power reception coils 4A-4C electromagnetically coupled with a power supply coil 3 are positioned opposite to and apart from the power supply coil 3. The power supply coil 3 is connected to a feeder circuit 52, and each power reception coil 4A-4C is connected to power reception output circuits 7A-7C respectively having switch contacts 6A-6C. A calculation circuit 53 is provided for detecting the power supply state of the feeder circuit 52 which changes according to the operation of the switch contacts 6A-6C, to identify each switch contact 6A-6C in operation.SELECTED DRAWING: Figure 1

Description

本発明は非接触式センサ特定装置に関し、特に複数のセンサのうちいずれのセンサが作動しているかを非接触で特定できるセンサ特定装置に関するものである。   The present invention relates to a non-contact type sensor specifying device, and more particularly to a sensor specifying device that can specify which one of a plurality of sensors is operating in a non-contact manner.

センサの一種としてのスイッチ接点を特定する装置としては例えば特許文献1に記載されたものが知られている。上記特定装置は、複数のスイッチ接点のそれぞれに並列に、等比数列的に抵抗値の異なる抵抗を接続し、スイッチ接点と抵抗の各対を直列にして電圧計測手段に接続した構成となっている。これにより、いずれかのスイッチ接点が作動(開成)すると、これに並列に接続された抵抗の抵抗値に応じて電圧計測手段で検出される電圧が低下し、この電圧低下量によっていずれのスイッチ接点が作動したのかを特定することができる。   As an apparatus for specifying a switch contact as a kind of sensor, for example, a device described in Patent Document 1 is known. The specific device has a configuration in which resistors having different resistance values in a geometric sequence are connected in parallel to each of a plurality of switch contacts, and each pair of switch contacts and resistors is connected in series to a voltage measuring means. Yes. As a result, when one of the switch contacts is activated (opened), the voltage detected by the voltage measuring means decreases in accordance with the resistance value of the resistor connected in parallel with the switch contact. Can be identified.

特開2003−217376JP2003-217376

しかし、上記従来のスイッチ接点特定装置は、各スイッチ接点への配線が必要であり、これらスイッチ接点が移動体上に設けられている場合等にはスイッチ接点までの配線処理が煩雑になるという問題があった。   However, the conventional switch contact identification device requires wiring to each switch contact, and when these switch contacts are provided on a moving body, the wiring process to the switch contact becomes complicated. was there.

そこで本発明はこのような課題を解決するもので、センサとしてのスイッチ接点等への配線処理の煩雑さを解消した非接触式センサ特定装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves such a problem, and an object of the present invention is to provide a non-contact type sensor specifying device that eliminates the complexity of wiring processing to switch contacts as sensors.

上記目的を達成するために本第1発明では、給電コイル(3)に対向離間させてこれと電磁的に結合した複数の受電コイル(4A〜4C)を位置させ、給電コイル(3)を給電回路(52)に接続するとともに各受電コイル(4A〜4C)を、それぞれセンサ(6A〜6C)を備えた受電出力回路(7A〜7C)に接続し、前記センサ(6A〜6C)の作動に応じて変化する前記給電回路(52)の給電状態を検出して、作動している前記センサ(6A〜6C)を特定する特定手段(53)を備える。   In order to achieve the above object, in the first invention, a plurality of power receiving coils (4A to 4C) electromagnetically coupled to and separated from the power feeding coil (3) are positioned, and the power feeding coil (3) is fed. The power receiving coils (4A to 4C) are connected to the circuit (52) and are connected to power receiving output circuits (7A to 7C) having sensors (6A to 6C), respectively, to operate the sensors (6A to 6C). There is provided a specifying means (53) for detecting the power supply state of the power supply circuit (52) that changes in response and specifying the sensors (6A to 6C) that are operating.

本第2発明では、前記センサ(6A〜6C)は作動時に予め定めた異なるインピーダンスを示すものであり、前記特定手段(53)は、前記給電回路(52)への供給電流の変化より、作動している前記センサ(6A〜6C)を特定する。   In the second aspect of the invention, the sensors (6A to 6C) exhibit different impedances determined in advance during operation, and the specifying means (53) is activated by a change in current supplied to the power feeding circuit (52). The sensor (6A-6C) which is carrying out is specified.

本第3発明では、前記各受電出力回路(7A〜7C)に対し、前記各センサ(6A〜6C)の作動時にそれぞれ予め定めた異なる周波数の出力信号を発する周波数信号発生回路(8A〜8C)を設け、前記特定手段(53)は、前記センサ(6A〜6C)の作動に応じて変化する前記給電回路(52)の供給電流に現れる周波数の変化より、作動した前記センサ(6A〜6C)を特定する。   In the third aspect of the invention, frequency signal generation circuits (8A to 8C) for generating output signals having different predetermined frequencies when the sensors (6A to 6C) are operated, respectively, to the power reception output circuits (7A to 7C). The specifying means (53) is configured to operate the sensors (6A to 6C) in response to a change in frequency appearing in a supply current of the power feeding circuit (52) that changes according to the operation of the sensors (6A to 6C). Is identified.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。   The reference numerals in the parentheses refer to the correspondence with specific means described in the embodiments described later.

以上のように、本発明によれば、電磁的に結合する給電コイルと受電コイルを離間対向させ、受電コイル側に設けられたセンサの作動に伴う給電回路の給電状態を検出することによって、作動しているセンサを特定できるから、従来のようなセンサへの配線処理の煩雑さが解消される。   As described above, according to the present invention, the power supply coil and the power receiving coil that are electromagnetically coupled are separated from each other, and the power supply state of the power supply circuit associated with the operation of the sensor provided on the power receiving coil side is detected. Since it is possible to identify the sensor that is operating, the complexity of wiring processing to the conventional sensor is eliminated.

本発明の第1実施形態における非接触式センサ特定装置のブロック回路図である。It is a block circuit diagram of the non-contact type sensor specific device in a 1st embodiment of the present invention. 給電ユニットに設けた抵抗の両端電位差の変化を示す図である。It is a figure which shows the change of the both-ends potential difference of the resistance provided in the electric power feeding unit. 本発明の第2実施形態における非接触式センサ特定装置のブロック回路図である。It is a block circuit diagram of the non-contact type sensor specific device in a 2nd embodiment of the present invention. 給電ユニットに設けた抵抗の両端電位差の変化を示す図である。It is a figure which shows the change of the both-ends potential difference of the resistance provided in the electric power feeding unit.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

(第1実施形態)
図1において、非接触式センサ特定装置は給電ユニット1と複数の受電ユニット2A〜2Cより構成されている。給電ユニット1は給電コイル3を備えており、各受電ユニット2A〜2Cは受電コイル4を備えている。そして、給電コイル3と各受電コイル4A〜4Cは電磁誘導による相互作用が可能な所定距離で対向させられている。なお、給電コイル3と受電コイル4A〜4Cは同形状とした方が電磁結合上の効率は良いが、異形状としても良い。
(First embodiment)
In FIG. 1, the non-contact type sensor identification device includes a power feeding unit 1 and a plurality of power receiving units 2A to 2C. The power supply unit 1 includes a power supply coil 3, and each of the power reception units 2 </ b> A to 2 </ b> C includes a power reception coil 4. And the feeding coil 3 and each receiving coil 4A-4C are made to oppose at the predetermined distance in which the interaction by electromagnetic induction is possible. The power feeding coil 3 and the power receiving coils 4 </ b> A to 4 </ b> C have better electromagnetic coupling efficiency but may have different shapes.

給電ユニット1は、電源回路51、給電回路52および演算回路53を備えており、給電回路52への給電線55の途中に電流/電圧変換用の抵抗54が挿入されている。抵抗54の両端の電圧は特定手段たる演算回路53に入力している。給電回路52には給電コイル3が接続されており、給電回路52は所定周波数の駆動電流を給電コイル3に出力する。電源回路51から給電線55を経て給電回路52へ供給される電流は、給電回路52の出力電流の増大に応じて増加する。そして、抵抗54の両端に現れる電圧は給電線55を流れる電流に比例して変化する。演算回路53はCPUを内蔵しており、抵抗54の両端に現れる電圧値から、後述するように、作動したスイッチ接点6A〜6Cを特定する信号53a〜53cを出力する。   The power supply unit 1 includes a power supply circuit 51, a power supply circuit 52, and an arithmetic circuit 53, and a current / voltage conversion resistor 54 is inserted in the middle of a power supply line 55 to the power supply circuit 52. The voltage at both ends of the resistor 54 is input to the arithmetic circuit 53 as a specifying means. The power feeding coil 52 is connected to the power feeding circuit 52, and the power feeding circuit 52 outputs a drive current having a predetermined frequency to the power feeding coil 3. The current supplied from the power supply circuit 51 to the power supply circuit 52 via the power supply line 55 increases as the output current of the power supply circuit 52 increases. The voltage appearing at both ends of the resistor 54 changes in proportion to the current flowing through the feeder line 55. The arithmetic circuit 53 has a built-in CPU, and outputs signals 53a to 53c for specifying the activated switch contacts 6A to 6C from the voltage value appearing at both ends of the resistor 54, as will be described later.

各受電ユニット2A〜2Cは受電出力回路7A〜7Cを備えており、受電出力回路7A〜7Cは受電コイル4A〜4Cが接続された受電回路71と整流回路72より構成されている。受電回路7A〜7Cには、給電コイル3から効率的に受電できるように上記各受電コイル4A〜4Cとで上記所定周波数に等しい周波数のLC共振回路を形成するコンデンサが内設されている。受電回路7A〜7Cの作動電力は受電コイル4A〜4Cから供給されている。整流回路72にはインピーダンス付与手段である抵抗61A〜61Cを介して、センサたるスイッチ接点6A〜6Cが接続されている。各受電ユニット2A〜2C毎に抵抗61A〜61Cの抵抗値は異ならせてあり、本実施形態では抵抗61Aの抵抗値を1として、抵抗61B,61Cの抵抗値はそれぞれ1/2、1/4となっている。   Each of the power receiving units 2A to 2C includes power receiving output circuits 7A to 7C. The power receiving output circuits 7A to 7C are configured by a power receiving circuit 71 and a rectifier circuit 72 to which the power receiving coils 4A to 4C are connected. The power receiving circuits 7A to 7C are internally provided with capacitors that form LC resonance circuits having a frequency equal to the predetermined frequency with the power receiving coils 4A to 4C so that power can be efficiently received from the power feeding coil 3. The operating power of the power receiving circuits 7A to 7C is supplied from the power receiving coils 4A to 4C. Switch contacts 6A to 6C as sensors are connected to the rectifier circuit 72 via resistors 61A to 61C as impedance applying means. The resistance values of the resistors 61A to 61C are different for each of the power receiving units 2A to 2C. In this embodiment, the resistance value of the resistor 61A is 1, and the resistance values of the resistors 61B and 61C are 1/2 and 1/4, respectively. It has become.

このような構成の非接触式センサ特定装置において、スイッチ接点6Aが作動(閉成)すると抵抗61Aが整流回路72に接続されて整流回路72から抵抗61Aへ電流が供給される。この時の電流増加によって、受電出力回路7Aの消費電流が増加し、この電流増加によって、互いに電磁結合した給電コイル3と受電コイル4Aを介して給電ユニット1の給電回路52の消費電流も増大する。これにより、給電線55を流れる電流も増加し、抵抗54の両端電位差が増大する。これを図2(1)のX領域に示す。   In the non-contact sensor specifying device having such a configuration, when the switch contact 6A is activated (closed), the resistor 61A is connected to the rectifier circuit 72, and current is supplied from the rectifier circuit 72 to the resistor 61A. The current consumption at this time increases the current consumption of the power receiving output circuit 7A, and this current increase also increases the current consumption of the power feeding circuit 52 of the power feeding unit 1 via the power feeding coil 3 and the power receiving coil 4A that are electromagnetically coupled to each other. . As a result, the current flowing through the feeder line 55 also increases, and the potential difference across the resistor 54 increases. This is shown in the X region of FIG.

スイッチ接点6Bが作動した場合には抵抗61Bが整流回路72に接続されて整流回路72から抵抗61Bへ電流が供給されるが、抵抗61Bの抵抗値は抵抗61Aのそれの1/2であるから、供給電流はその分増大する。したがって、受電出力回路7Bの消費電流も増加し、上述した過程で、給電ユニット1の給電回路52の消費電流や、これに伴い、給電線55を流れる電流も増加して、抵抗54の両端電位差が上昇する。この時の両端電位差は、抵抗61Bの抵抗値が半分になっているから、スイッチ接点6Aが作動した場合に比してほぼ2倍になる。これを図2(2)のY領域に示す。   When the switch contact 6B is activated, the resistor 61B is connected to the rectifier circuit 72 and current is supplied from the rectifier circuit 72 to the resistor 61B. However, the resistance value of the resistor 61B is ½ that of the resistor 61A. The supply current increases accordingly. Therefore, the current consumption of the power receiving output circuit 7B also increases, and in the above-described process, the current consumption of the power supply circuit 52 of the power supply unit 1 and the current flowing through the power supply line 55 increase accordingly. Rises. Since the resistance value of the resistor 61B is halved at this time, the potential difference between both ends is almost doubled compared to when the switch contact 6A is activated. This is shown in the Y region of FIG.

同様に、スイッチ接点6Cが作動した場合には抵抗61Cの抵抗値は抵抗61Aのそれの1/4であるから、この時の抵抗54の両端電位差は、スイッチ接点6Aが作動した場合に比してほぼ4倍になる。これを図2(3)のZ領域に示す。   Similarly, when the switch contact 6C is activated, the resistance value of the resistor 61C is 1/4 of that of the resistor 61A. Therefore, the potential difference between both ends of the resistor 54 at this time is larger than that when the switch contact 6A is activated. Almost 4 times. This is shown in the Z region of FIG.

さらに、スイッチ接点6A,6Bが同時に作動した場合には、抵抗54の両端電位差は、スイッチ接点6Aのみが作動した場合に比してほぼ3倍に、スイッチ接点6A,6Cが閉じた場合には、抵抗54の両端電位差は、スイッチ接点6Aのみが作動した場合に比してほぼ5倍に、スイッチ接点6B,6Cが作動した場合には、抵抗54の両端電位差は、スイッチ接点6Aのみが作動した場合に比してほぼ6倍に、全てのスイッチ接点6A〜6Cが作動した場合には、抵抗54の両端電位差は、スイッチ接点6Aのみが作動した場合に比してほぼ7倍になる。   Further, when the switch contacts 6A and 6B are simultaneously operated, the potential difference between both ends of the resistor 54 is almost three times as compared with the case where only the switch contact 6A is operated, and when the switch contacts 6A and 6C are closed. The potential difference between both ends of the resistor 54 is almost five times that when only the switch contact 6A is activated. When the switch contacts 6B and 6C are activated, only the switch contact 6A is activated. When all the switch contacts 6A to 6C are activated, the potential difference between both ends of the resistor 54 is almost 7 times as compared with the case where only the switch contact 6A is activated.

そこで、演算回路53では、抵抗54の両端電位差がいずれのレベルにあるかを検出して、これに応じて、作動しているスイッチ接点が6Aであれば信号53aが、作動しているスイッチ接点が6Bであれば信号53bが、作動しているスイッチ接点が6Cであれば信号53cがそれぞれ出力される。ちなみに、作動しているスイッチ接点が6A,6Bである場合には、信号53a,53bが共に出力される。   Therefore, the arithmetic circuit 53 detects which level the potential difference between both ends of the resistor 54 is, and accordingly, if the switch contact that is operating is 6A, the signal 53a is switched. If the switch contact is 6C, the signal 53b is output. Incidentally, when the switch contacts in operation are 6A and 6B, the signals 53a and 53b are output together.

(第2実施形態)
図3において、非接触式センサ特定装置の給電ユニット1には、電源回路51、給電回路52、演算回路53に加えて、バンドパスフィルタ回路56が設けられている。電源回路51と給電回路52を結ぶ給電線55に設けた抵抗54の両端電位差はバンドパスフィルタ回路56に入力している。バンドパスフィルタ回路56は抵抗54の両端電位差に現れる後述のパルス信号を、その周波数に応じて三種に区分して演算回路53に出力する。演算回路53では入力する三種の周波数信号に応じて、後述するように、作動したスイッチ接点6A〜6Cを特定する信号53a〜53cを出力する。
(Second Embodiment)
In FIG. 3, the power supply unit 1 of the non-contact sensor specifying device is provided with a band-pass filter circuit 56 in addition to the power supply circuit 51, the power supply circuit 52, and the arithmetic circuit 53. The potential difference between both ends of the resistor 54 provided on the power supply line 55 connecting the power supply circuit 51 and the power supply circuit 52 is input to the band pass filter circuit 56. The band-pass filter circuit 56 classifies a pulse signal described later appearing in the potential difference between both ends of the resistor 54 into three types according to the frequency and outputs the pulse signal to the arithmetic circuit 53. The arithmetic circuit 53 outputs signals 53a to 53c for specifying the operated switch contacts 6A to 6C, as will be described later, according to the three types of frequency signals input.

各受電ユニット2Aには、受電回路71と整流回路72より構成される受電出力回路7A〜7Cとセンサたるスイッチ接点6A〜6Cの間に、周波数信号発生回路たるスイッチング回路8A〜8Cが設けられている。受電出力回路7A〜7Cの整流回路72とスイッチング回路8A〜8Cの間には抵抗81A〜81Cが接続され、スイッチング回路8A〜8Cにそれぞれスイッチ接点6A〜6Cが接続されている。   Each power receiving unit 2A is provided with switching circuits 8A to 8C, which are frequency signal generation circuits, between power receiving output circuits 7A to 7C constituted by a power receiving circuit 71 and a rectifier circuit 72 and switch contacts 6A to 6C which are sensors. Yes. Resistors 81A to 81C are connected between the rectifier circuit 72 of the power receiving output circuits 7A to 7C and the switching circuits 8A to 8C, and switch contacts 6A to 6C are connected to the switching circuits 8A to 8C, respectively.

本実施形態では、各受電ユニット2A〜2Cの抵抗81A〜81Cの抵抗値は同一としてある。スイッチング回路8A〜8Cはこれに接続されたスイッチ接点6A〜6Cが作動(閉成)した際に、予め定められた周波数で間欠的に導通作動して抵抗81A〜81Cを当該周波数の周期でそれぞれ整流回路72に接続する。そして、各受電ユニット2A〜2C毎にスイッチング回路8A〜8Cの作動周波数は異ならせてある。他の構成は第1実施形態と同一である。   In the present embodiment, the resistance values of the resistors 81A to 81C of the power receiving units 2A to 2C are the same. When the switch contacts 6A to 6C connected to the switching circuits 8A to 8C are operated (closed), the switching circuits 8A to 8C are intermittently operated at a predetermined frequency, and the resistors 81A to 81C are respectively operated at a cycle of the frequency. Connect to rectifier circuit 72. And the operating frequency of switching circuit 8A-8C is varied for every power receiving unit 2A-2C. Other configurations are the same as those of the first embodiment.

このような構成の非接触式センサ特定装置において、スイッチ接点6Aが作動(閉成)すると、スイッチング回路8Aは予め定められた周波数で導通作動して、抵抗81Aを当該周波数の周期で整流回路72に接続する。これにより、整流回路72から抵抗81Aへ電流が周期的に供給され、この時の周期的な電流変化によって、受電出力回路2Aの消費電流が周期的に変化する。この周期的な電流変化によって、互いに電磁結合した給電コイル3と受電コイル4Aを介して給電ユニット1の給電回路52の消費電流も周期的に変化し、給電線55を流れる電流も周期的に変化して、抵抗54の両端電位差が上記所定の周波数で周期的に変化する。これを図4(1)のX領域に示す。   In the non-contact type sensor identification device having such a configuration, when the switch contact 6A is actuated (closed), the switching circuit 8A conducts at a predetermined frequency, and the resistor 81A is cycled at the frequency of the rectifier circuit 72. Connect to. Thereby, a current is periodically supplied from the rectifier circuit 72 to the resistor 81A, and the current consumption of the power receiving output circuit 2A periodically changes due to the periodic current change at this time. Due to this periodic current change, the current consumption of the power supply circuit 52 of the power supply unit 1 also changes periodically via the power supply coil 3 and the power reception coil 4A that are electromagnetically coupled to each other, and the current flowing through the power supply line 55 also changes periodically. Thus, the potential difference between both ends of the resistor 54 periodically changes at the predetermined frequency. This is shown in the X region of FIG.

スイッチ接点6Bが作動すると、スイッチング回路8Bはスイッチング回路8Aとは異なる周波数(本実施形態ではより高周波)で導通作動して、受電出力回路2Bの消費電流も異なる周波数で周期的に変化し、上述した過程で、給電ユニット1の給電回路52の消費電流や、これに伴い、給電線55を流れる電流も周期的に変化して、抵抗54の両端電位差が異なる周波数で周期的に変化する。これを図4(2)のY領域に示す。   When the switch contact 6B is activated, the switching circuit 8B is conductively operated at a different frequency (higher frequency in the present embodiment) than the switching circuit 8A, and the current consumption of the power receiving output circuit 2B is periodically changed at a different frequency. In this process, the current consumption of the power supply circuit 52 of the power supply unit 1 and the current flowing through the power supply line 55 are also periodically changed, and the potential difference between both ends of the resistor 54 is periodically changed at different frequencies. This is shown in the Y region of FIG.

同様に、スイッチ接点6Cが作動した場合には抵抗54の両端電位差はさらに異なる周波数(本実施形態ではより高周波)で周期的に変化する。これを図4(3)のZ領域に示す。   Similarly, when the switch contact 6C is activated, the potential difference between both ends of the resistor 54 periodically changes at a different frequency (higher frequency in this embodiment). This is shown in the Z region of FIG.

そこで、バンドパスフィルタ回路56では、抵抗54の両端電位差に現れるパルス信号の周波数がいずれの領域であるかによって、それぞれ三種に区分して演算回路53に出力する。演算回路53では、いずれの周波数領域の電圧信号56a〜56cが入力しているかによって、作動したスイッチ接点6A〜6Cを特定する信号53a〜53cを出力する。   Therefore, in the band pass filter circuit 56, the frequency of the pulse signal appearing in the potential difference between both ends of the resistor 54 is divided into three types depending on which region is output to the arithmetic circuit 53. The arithmetic circuit 53 outputs signals 53a to 53c for specifying the activated switch contacts 6A to 6C depending on which frequency region voltage signals 56a to 56c are input.

すなわち、変化周期の最も長い電圧信号56aが入力している場合にはスイッチ接点6Aが作動しているとして信号53aを出力し、変化周期がより短い電圧信号56b,56cが入力している場合にはそれぞれスイッチ接点6B,6Cが作動しているとして,それぞれ信号53b,53cを出力する。なお、複数のスイッチ接点6A〜6Cが作動している場合には、抵抗54の両端電位差には異なる変化周期のものが重畳して現れるから、これに応じてバンドパスフィルタ56から複数の電圧信号56a〜56cが演算回路53に入力し、演算回路からは複数の特定信号53a〜53cが出力される。   That is, when the voltage signal 56a having the longest change cycle is input, the signal 53a is output assuming that the switch contact 6A is operating, and when the voltage signals 56b and 56c having the shorter change cycle are input. Respectively output the signals 53b and 53c on the assumption that the switch contacts 6B and 6C are operating. In addition, when the plurality of switch contacts 6A to 6C are in operation, the potential difference at both ends of the resistor 54 appears with different change periods, and accordingly, a plurality of voltage signals are output from the band pass filter 56 accordingly. 56a to 56c are input to the arithmetic circuit 53, and a plurality of specific signals 53a to 53c are output from the arithmetic circuit.

なお、上記各実施形態において、センサとしてはスイッチ接点に限られず、作動した際にそのインピーダンスが変化するものであれば良い。給電コイルと各受電コイルは前述したように電磁的に結合した状態で離間対向していれば良く、例えばこれらコイルを磁束が通過する筒体の周囲に巻回した構造が採用できる。あるいは、給電コイルを、給電回路にそれぞれ並列に接続される複数のコイル部で構成して、各コイル部にそれぞれ受電コイルを対向させる構造としても良い。さらには、上記複数のコイル部を隣接させて線状に配設し、各受電コイルを上記コイル部に沿って移動する移動体上に設ける構造としても良い。   In each of the above embodiments, the sensor is not limited to a switch contact, and any sensor may be used as long as its impedance changes when activated. As described above, the power feeding coil and each power receiving coil need only be spaced apart from each other in an electromagnetically coupled state. For example, a structure in which these coils are wound around a cylinder through which magnetic flux passes can be employed. Or it is good also as a structure which comprises a power feeding coil by the some coil part respectively connected in parallel with a power feeding circuit, and makes a receiving coil each oppose to each coil part. Furthermore, it is good also as a structure which arrange | positions the said several coil part adjacently, arrange | positions in a linear form, and provides each receiving coil on the mobile body which moves along the said coil part.

1…給電ユニット、2A,2B,2C…受電ユニット、3…給電コイル、4A,4B,4C…受電コイル、52…給電回路、53…演算回路(特定手段)、6A,6B,6C…スイッチ接点(センサ)、7A,7B,7C…受電出力回路、8A,8B,8C…スイッチング回路(周波数信号発生回路)。   DESCRIPTION OF SYMBOLS 1 ... Power feeding unit, 2A, 2B, 2C ... Power receiving unit, 3 ... Power feeding coil, 4A, 4B, 4C ... Power receiving coil, 52 ... Power feeding circuit, 53 ... Arithmetic circuit (specific means), 6A, 6B, 6C ... Switch contact (Sensor), 7A, 7B, 7C... Power reception output circuit, 8A, 8B, 8C... Switching circuit (frequency signal generation circuit).

本第2発明では、前記センサ(6A〜6C)は作動時に予め定めたインピーダンスを前記受電出力回路に付与するものであり、前記特定手段(53)は、検出された前記給電回路(52)への供給電流のレベルにより、作動している前記センサ(6A〜6C)を特定する。 In the second aspect of the invention, the sensors (6A to 6C) give a predetermined impedance to the power receiving output circuit during operation, and the specifying means (53) supplies the detected power feeding circuit (52). more levels of the supply current, identifies the sensor that is operating (6A-6C).

本第3発明では、前記各受電出力回路(7A〜7C)に対し、前記各センサ(6A〜6C)の作動時にそれぞれ予め定めた異なる周波数の出力信号を発する周波数信号発生回路(8A〜8C)を設け、前記特定手段(53)は、検出された前記給電回路(52)の供給電流に現れる周波数より、作動している前記センサ(6A〜6C)を特定する。 In the third aspect of the invention, frequency signal generation circuits (8A to 8C) for generating output signals having different predetermined frequencies when the sensors (6A to 6C) are operated, respectively, to the power reception output circuits (7A to 7C). the provided, the specifying unit (53), more frequencies appearing in the current supplied to said detected power supply circuit (52), identifying the sensor is operating (6A-6C).

各受電ユニット2A〜2Cは受電出力回路7A〜7Cを備えており、受電出力回路7A〜7Cは受電コイル4A〜4Cが接続された受電回路71と整流回路72より構成されている。受電回路71には、給電コイル3から効率的に受電できるように上記各受電コイル4A〜4Cとで上記所定周波数に等しい周波数のLC共振回路を形成するコンデンサが内設されている。受電回路71の作動電力は受電コイル4A〜4Cから供給されている。整流回路72にはインピーダンス付与手段である抵抗61A〜61Cを介して、センサたるスイッチ接点6A〜6Cが接続されている。各受電ユニット2A〜2C毎に抵抗61A〜61Cの抵抗値は異ならせてあり、本実施形態では抵抗61Aの抵抗値を1として、抵抗61B,61Cの抵抗値はそれぞれ1/2、1/4となっている。 Each of the power receiving units 2A to 2C includes power receiving output circuits 7A to 7C, and the power receiving output circuits 7A to 7C include a power receiving circuit 71 and a rectifier circuit 72 to which the power receiving coils 4A to 4C are connected. The power receiving circuit 71 includes a capacitor that forms an LC resonance circuit having a frequency equal to the predetermined frequency with each of the power receiving coils 4 </ b> A to 4 </ b> C so that power can be efficiently received from the power feeding coil 3. The operating power of the power receiving circuit 71 is supplied from the power receiving coils 4A to 4C. Switch contacts 6A to 6C as sensors are connected to the rectifier circuit 72 via resistors 61A to 61C as impedance applying means. The resistance values of the resistors 61A to 61C are different for each of the power receiving units 2A to 2C. In this embodiment, the resistance value of the resistor 61A is 1, and the resistance values of the resistors 61B and 61C are 1/2 and 1/4, respectively. It has become.

Claims (3)

給電コイルに対向離間させてこれと電磁的に結合した複数の受電コイルを位置させ、給電コイルを給電回路に接続するとともに各受電コイルを、それぞれセンサを備えた受電出力回路に接続し、前記センサの作動に応じて変化する前記給電回路の給電状態を検出して、作動している前記センサを特定する特定手段を備えた非接触式センサ特定装置。 A plurality of power receiving coils that are opposed to and separated from the power feeding coil and electromagnetically coupled thereto are positioned, the power feeding coils are connected to the power feeding circuit, and each power receiving coil is connected to a power receiving output circuit including a sensor, A non-contact type sensor specifying device comprising a specifying means for detecting a power supply state of the power supply circuit that changes in accordance with the operation of the sensor and specifying the sensor that is operating. 前記センサは作動時に予め定めた異なるインピーダンスを示すものであり、前記特定手段は、前記給電回路への供給電流の変化より、作動している前記センサを特定する請求項1に記載の非接触式センサ特定装置。 2. The non-contact type according to claim 1, wherein the sensor indicates different impedances determined in advance, and the specifying unit specifies the sensor that is operating based on a change in a supply current to the power feeding circuit. Sensor identification device. 前記各受電出力回路に対し、前記各センサの作動時にそれぞれ予め定めた異なる周波数の出力信号を発する周波数信号発生回路を設け、前記特定手段は、前記センサの作動に応じて変化する前記給電回路の供給電流に現れる周波数の変化より、作動している前記センサを特定する請求項1に記載の非接触式センサ特定装置。 A frequency signal generation circuit that generates an output signal having a predetermined different frequency when each of the sensors is operated is provided for each power reception output circuit, and the specifying unit is configured to change the power supply circuit according to the operation of the sensor. The non-contact type sensor identification device according to claim 1, wherein the sensor that is operating is identified from a change in frequency that appears in a supply current.
JP2015192359A 2015-09-30 2015-09-30 Non-contact type sensor identification device Expired - Fee Related JP5921750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192359A JP5921750B1 (en) 2015-09-30 2015-09-30 Non-contact type sensor identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192359A JP5921750B1 (en) 2015-09-30 2015-09-30 Non-contact type sensor identification device

Publications (2)

Publication Number Publication Date
JP5921750B1 JP5921750B1 (en) 2016-05-24
JP2017070081A true JP2017070081A (en) 2017-04-06

Family

ID=56015203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192359A Expired - Fee Related JP5921750B1 (en) 2015-09-30 2015-09-30 Non-contact type sensor identification device

Country Status (1)

Country Link
JP (1) JP5921750B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131039A (en) * 2007-11-22 2009-06-11 Seiko Epson Corp Power transmission control device, power transmission device, electronic apparatus and non-contact power transmission system
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131039A (en) * 2007-11-22 2009-06-11 Seiko Epson Corp Power transmission control device, power transmission device, electronic apparatus and non-contact power transmission system
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method

Also Published As

Publication number Publication date
JP5921750B1 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US10734840B2 (en) Shared power converter for a wireless transmitter device
CN106663966B (en) Multi-mode wireless power transmitter
JP5911608B2 (en) Resonant transmission power supply apparatus and resonant transmission power supply system
CN113031791B (en) Position indicator
JP6166227B2 (en) Power transmission device and power reception device
JP6515107B2 (en) Inductive position sensing with single channel interface to multiple resonant sensors
CN107077224B (en) Position indicator
JP5393083B2 (en) Apparatus and method for wireless transmission of energy and / or data between a source device and at least one target device
JP2018512036A (en) Induction transmitter
JPWO2013111243A1 (en) Wireless power transmission system and power transmission device
WO2018123770A1 (en) Foreign metal detection device, wireless power-supplying device, wireless power-receiving device, and wireless power transmission system
JPWO2015140917A1 (en) Resonance type power transmission device, transmission side power transmission device, and reception side power transmission device
CN104297536A (en) probe module with feedback test function
US20170085130A1 (en) Multifilament transmitter coupler with current sharing
JP2014204237A5 (en) Non-contact power feeding device
KR20120132467A (en) Sensor electonics for a plurality of sensor elements and method for determining a position of an object at the sensor elements
JP5921750B1 (en) Non-contact type sensor identification device
WO2015059732A1 (en) Pointed-to position detection device
JP5576226B2 (en) Metal detector
WO2015129229A1 (en) Position detection device
JP6372458B2 (en) Power transmission device, power reception device, and non-contact power transmission system
CN104836566B (en) Transmit the electronic circuit and method of ASK signals
US10684385B2 (en) Sensor having rotationally offset coil pairs and differently formed receiving coils for locating metal or magnetic objects
JP2015089253A (en) Power transmitter
KR101619491B1 (en) Metal detecting apparatus generating variable frequency according to digital switching

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees