JP2017067479A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2017067479A
JP2017067479A JP2015189645A JP2015189645A JP2017067479A JP 2017067479 A JP2017067479 A JP 2017067479A JP 2015189645 A JP2015189645 A JP 2015189645A JP 2015189645 A JP2015189645 A JP 2015189645A JP 2017067479 A JP2017067479 A JP 2017067479A
Authority
JP
Japan
Prior art keywords
imaging
condition
pattern light
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015189645A
Other languages
Japanese (ja)
Other versions
JP6415412B2 (en
Inventor
敬司 関
Takashi Seki
敬司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015189645A priority Critical patent/JP6415412B2/en
Priority to US15/268,943 priority patent/US10533845B2/en
Publication of JP2017067479A publication Critical patent/JP2017067479A/en
Application granted granted Critical
Publication of JP6415412B2 publication Critical patent/JP6415412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device and a measurement method that are advantageous in terms of measurement accuracy and measurement time.SOLUTION: Provided is a measurement device for measuring the shape of an object to be measured, the measurement device having: projection means for projecting a first pattern light or a second pattern light to the object to be measured; image-capturing means for acquiring the image data of the object to be measured; a control unit for controlling the projection means and the image-capturing means; and acquisition means for acquiring information relating to the cycle of intensity of a light other than the pattern lights radiated to the object to be measured, a first condition including a combination of pattern lights, the number of times images are captured by the image-capturing means, and an interval between image captures, a second condition including the same image-capture count and image-capture interval as in the first condition and a reversed combination of the first pattern light and second pattern light, the control unit exercising control based on the first condition and second condition inserting a time interval that is an integral multiple of the cycle, finding the intersection position of gradation values of corresponding image data in correlation to image data acquired by each condition in order of image captures, and calculating the shape of the object to be measured on the basis of the intersection position.SELECTED DRAWING: Figure 1

Description

本発明は、計測装置および計測方法に関する。   The present invention relates to a measuring device and a measuring method.

被計測物の形状を計測する装置として、パターン投影法を用いた光学式の計測装置が知られている。パターン投影法では、所定のパターン光を被計測物に投影して撮像し、撮像データからパターンを検出して、三角測量の原理から各画素位置における距離情報を算出することで、被計測物の形状を求めている。パターン投影法としては、明線と暗線とを交互に有するパターン光を投影して空間を2進符号化する空間符号化法がよく用いられる。空間符号化法による計測精度を向上させるためには、得られた撮像データから明部と暗部との境界を正確に決定する必要がある。   As an apparatus for measuring the shape of an object to be measured, an optical measurement apparatus using a pattern projection method is known. In the pattern projection method, a predetermined pattern light is projected onto an object to be imaged, a pattern is detected from the imaged data, and distance information at each pixel position is calculated from the principle of triangulation, so that the object to be measured is detected. Seeking shape. As the pattern projection method, a spatial encoding method is often used in which a pattern light having alternating bright and dark lines is projected to binary-encode the space. In order to improve the measurement accuracy by the spatial encoding method, it is necessary to accurately determine the boundary between the bright part and the dark part from the obtained imaging data.

明部と暗部との境界を正確に決定する手法として、明部と暗部とを交互に有する第1のパターン光と、該パターン光の明部と暗部との関係が反転し、第1のパターン光と相補関係にある第2のパターン光とを投影し、その交点を境界として判定する手法がある。各パターン光が相補関係にあり、かつ、同じ平面を計測している限り、交点間の距離と明部の幅(または暗部の幅)とは一致する。しかしながら、実際の計測においては、環境光(蛍光灯などの室内光)の影響により相補関係が崩れてしまい、交点位置がずれてしまうことがある。この交点位置のずれは、環境光によるものなのか、被計測物の形状によるものなのかは区別ができない。その結果、計測精度が低下してしまう。環境光の影響を低減する方法として、蛍光灯の主周波数である商業用電源周波数(50Hz、60Hz)の整数倍の周期で撮像タイミングを同期させることで環境光の影響を低減する方法が知られている(特許文献1)。   As a method for accurately determining the boundary between the bright part and the dark part, the first pattern light having the bright part and the dark part alternately and the relationship between the bright part and the dark part of the pattern light are inverted, and the first pattern There is a method of projecting a second pattern light having a complementary relationship with light and determining the intersection as a boundary. As long as each pattern light has a complementary relationship and the same plane is measured, the distance between the intersections and the width of the bright portion (or the width of the dark portion) coincide. However, in actual measurement, the complementary relationship may be lost due to the influence of ambient light (indoor light such as a fluorescent lamp), and the position of the intersection may be shifted. It cannot be distinguished whether the deviation of the intersection position is caused by ambient light or the shape of the object to be measured. As a result, the measurement accuracy is degraded. As a method of reducing the influence of ambient light, a method of reducing the influence of ambient light by synchronizing the imaging timing with a period that is an integral multiple of the commercial power supply frequency (50 Hz, 60 Hz), which is the main frequency of a fluorescent lamp, is known. (Patent Document 1).

特開2009−19884号公報JP 2009-19884 A

しかしながら、特許文献1に記載の発明は、撮像タイミングの同期のための待ち時間が生じ、計測時間の点で不利となりうる。   However, the invention described in Patent Document 1 has a waiting time for synchronization of imaging timing, which may be disadvantageous in terms of measurement time.

本発明は、例えば、計測精度および計測時間の点で有利な計測装置および計測方法を提供することを目的とする。   An object of the present invention is to provide a measurement device and a measurement method that are advantageous in terms of measurement accuracy and measurement time, for example.

上記課題を解決するために、本発明は、被計測物の形状を計測する計測装置であって、
明部と暗部とを有する第1のパターン光又は当該第1のパターン光の明部と暗部とが反転した第2のパターン光を被計測物に投影する投影手段と、パターン光が投影された被計測物を撮像して、画像データを取得する撮像手段と、投影手段および撮像手段を制御する制御部と、被計測物に照射されるパターン光以外の光の強度の周期に関する情報を取得する取得手段と、を有し、第1条件は、投影手段が被計測物に投影する第1のパターン光および第2のパターン光の組み合わせ、撮像手段による撮像回数および撮像間隔、を含み、第2条件は、第1条件と同じ撮像回数および撮像間隔、組み合わせの第1のパターン光と第2のパターン光とが入れ替わった組み合わせ、を含み、制御部は、第1条件での投影手段による投影および撮像手段による撮像を開始し、パターン光以外の光の強度の周期の整数倍の時間間隔をあけて、第2条件での投影手段による投影および撮像手段による撮像を開始するように、投影手段および撮像手段を制御し、第1条件で取得した画像データと第2条件で取得した画像データとを各条件の撮像順に対応付けて対応する画像データの階調値の交点位置を求め、求めた交点位置に基づいて被計測物の形状を算出することを特徴とする。
In order to solve the above problems, the present invention is a measuring device for measuring the shape of an object to be measured,
Projection means for projecting the first pattern light having the bright part and the dark part or the second pattern light in which the bright part and the dark part of the first pattern light are inverted onto the measurement object, and the pattern light is projected An imaging unit that captures an image of the measurement object, acquires image data, a control unit that controls the projection unit and the imaging unit, and information on a period of intensity of light other than the pattern light emitted to the measurement object. The first condition includes a combination of the first pattern light and the second pattern light projected by the projection unit onto the object to be measured, the number of times of imaging by the imaging unit, and the imaging interval, The conditions include the same number of imaging and imaging interval as in the first condition, a combination in which the combination of the first pattern light and the second pattern light is switched, and the control unit performs projection by the projection unit in the first condition and For imaging means The projection unit and the imaging unit are configured to start imaging by the projection unit and start imaging by the imaging unit under the second condition with a time interval that is an integral multiple of the period of the intensity of light other than the pattern light. The image data acquired under the first condition and the image data acquired under the second condition are associated with each other in the imaging order of the respective conditions to determine the intersection position of the corresponding gradation values of the image data, and the calculated intersection position Based on this, the shape of the object to be measured is calculated.

本発明によれば、例えば、計測精度および計測時間の点で有利な計測装置および計測方法を提供することができる。   According to the present invention, for example, it is possible to provide a measuring apparatus and a measuring method that are advantageous in terms of measurement accuracy and measurement time.

第1実施形態に係る計測装置、パターン光および光強度分布を示す図である。It is a figure which shows the measuring device which concerns on 1st Embodiment, pattern light, and light intensity distribution. 環境光による影響を説明する図である。It is a figure explaining the influence by environmental light. 第1実施形態に係る撮像タイミングチャートを示す図である。It is a figure which shows the imaging timing chart which concerns on 1st Embodiment. タクト時間が短縮されることを示すグラフである。It is a graph which shows that tact time is shortened.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1(A)は、本実施形態としての計測装置の構成を示す概略図である。図1(B)および図1(C)は、明部と暗部とを交互に有する第1のパターン光および第1のパターン光の明部と暗部との関係を反転させた第2のパターン光を示す図である。図1(D)は、第1のパターン光と第2のパターン光とを基準平面に投影したときの階調値分布である。本実施形態の計測装置は、ヘッド10、制御部3および演算部4を含む。ヘッド10は、投影手段1および撮像手段2を含み、投影手段1は、発光部5、パターン設定素子6および投影光学系7を含み、撮像手段2は、撮像レンズ8およびセンサ素子9を含む。被計測物20にパターン光を投影する方向をz軸、それに直交する軸をそれぞれx軸およびy軸とする。
(First embodiment)
FIG. 1A is a schematic diagram illustrating a configuration of a measurement apparatus according to the present embodiment. FIG. 1B and FIG. 1C show the first pattern light having bright portions and dark portions alternately and the second pattern light in which the relationship between the bright portions and the dark portions of the first pattern light is reversed. FIG. FIG. 1D shows a gradation value distribution when the first pattern light and the second pattern light are projected onto the reference plane. The measurement apparatus according to the present embodiment includes a head 10, a control unit 3, and a calculation unit 4. The head 10 includes a projection unit 1 and an imaging unit 2. The projection unit 1 includes a light emitting unit 5, a pattern setting element 6 and a projection optical system 7, and the imaging unit 2 includes an imaging lens 8 and a sensor element 9. The direction in which the pattern light is projected onto the measurement object 20 is defined as the z axis, and the axes orthogonal thereto are defined as the x axis and the y axis, respectively.

投影手段1は、発光部5から出射した光をパターン設定素子6でパターン光15に設定(形成)し、投影光学系7を介して被計測物20に投影する。パターン設定素子6には、液晶素子やDMD(デジタルミラーデバイス)などが用いられ、任意のパターン光を設定(選択)することを可能にしている。発光部5はLEDなどの発光素子、あるいは発光素子と輝度ムラを低減するための均一照明系を組み合わせた形態が好適である。撮像手段2は、被計測物20からの光を撮像レンズ8によりセンサ素子9の受光面に導くことでパターン光15が投影された被計測物20を撮像して、画像データを取得する。センサ素子9は、CMOSやCCDなどの光電変換素子が好適である。発光部5、パターン設定素子6およびセンサ素子9は制御部3によって制御され、それぞれ、任意のタイミングで発光、パターン設定および撮像が行われる。   The projection unit 1 sets (forms) the light emitted from the light emitting unit 5 to the pattern light 15 by the pattern setting element 6 and projects the light onto the measurement object 20 via the projection optical system 7. As the pattern setting element 6, a liquid crystal element, DMD (digital mirror device), or the like is used, and it is possible to set (select) an arbitrary pattern light. The light emitting unit 5 preferably has a light emitting element such as an LED or a combination of the light emitting element and a uniform illumination system for reducing luminance unevenness. The imaging means 2 captures the measurement object 20 onto which the pattern light 15 is projected by guiding light from the measurement object 20 to the light receiving surface of the sensor element 9 by the imaging lens 8 and acquires image data. The sensor element 9 is preferably a photoelectric conversion element such as a CMOS or CCD. The light emitting unit 5, the pattern setting element 6, and the sensor element 9 are controlled by the control unit 3, and light emission, pattern setting, and imaging are performed at arbitrary timings, respectively.

演算部4には、撮像手段2が撮像した画像データの階調値(輝度)データが画素に対応して保存される。投影手段1と撮像手段2との相対的な位置と姿勢の関係は予め既知であることから、三角測量に基づき被計測物20の表面上の点の座標を演算部4で計算し、被計測物20の形状が求められる。被計測物20の表面上の点の座標を算出する際に、少なくとも1組のパターン光15を投射し、それぞれの階調分布(輝度分布)を撮像手段2で撮像する。パターン光15のうち一つは、図1(B)に示す明部と暗部を有する第1のパターン光である。もう一つは、図1(C)に示す、明部と暗部との関係が第1のパターン光に対して反転した、つまり第1のパターンと相補的な関係にある第2のパターン光である。第1のパターン光および第2のパターン光を計測の基準となる平面に照射したとすると、その階調分布は図1(D)のようになる。   The arithmetic unit 4 stores the gradation value (luminance) data of the image data captured by the imaging unit 2 corresponding to the pixels. Since the relationship between the relative position and orientation of the projection unit 1 and the imaging unit 2 is known in advance, the coordinates of the points on the surface of the measurement object 20 are calculated by the calculation unit 4 based on triangulation, and the measurement target is measured. The shape of the object 20 is required. When calculating the coordinates of a point on the surface of the measurement object 20, at least one set of pattern light 15 is projected, and each gradation distribution (luminance distribution) is imaged by the imaging means 2. One of the pattern lights 15 is first pattern light having a bright part and a dark part shown in FIG. The other is the second pattern light shown in FIG. 1C, in which the relationship between the bright part and the dark part is inverted with respect to the first pattern light, that is, in a complementary relation with the first pattern. is there. Assuming that the first pattern light and the second pattern light are irradiated onto a plane serving as a measurement reference, the gradation distribution is as shown in FIG.

演算部4は、図1(D)に示す第1のパターン光が投影された第1の階調分布Pと、第2のパターン光が投影された第2の階調分布Nとの交点Cを算出する。第1のパターン光と第2のパターン光との明部と暗部の比が1:1である本実施形態の場合、基準となる平面に対して交点Cの検出を行うと、交点Cは等ピッチとなる。被計測物20を計測すると、基準平面に対する被計測物20の形状の分だけ、交点Cは等ピッチ位置から変位する。この変位を利用して、被計測物20のz座標を算出している。   The calculation unit 4 has an intersection C between the first gradation distribution P on which the first pattern light shown in FIG. 1D is projected and the second gradation distribution N on which the second pattern light is projected. Is calculated. In the case of the present embodiment in which the ratio of the bright part to the dark part of the first pattern light and the second pattern light is 1: 1, if the intersection C is detected with respect to the reference plane, the intersection C is equal. It becomes pitch. When the measurement object 20 is measured, the intersection C is displaced from the equal pitch position by the shape of the measurement object 20 with respect to the reference plane. Using this displacement, the z-coordinate of the measurement object 20 is calculated.

次に、パターン光以外に被計測物20に照射される光(環境光)の影響について説明する。被計測物20が配置された測定環境(空間)における蛍光灯(照明灯)などの環境光は、電源の周波数(50Hz、60Hz等)に応じて、フリッカが生じ、強度が変動する。図2(A)は、比較例における、環境光強度の時間変化および撮像タイミングチャートを示している。環境光強度の周期と各撮像タイミングとは同期していない。図2(B)は、図2(A)で示す撮像タイミング(撮像間隔)で得られた階調分布と交点を示している。図2(C)は、環境光の周期に同期して撮像した場合の環境光強度の時間変化および撮像タイミングチャートを示している。   Next, the influence of light (environment light) irradiated on the measurement object 20 in addition to the pattern light will be described. Ambient light such as a fluorescent lamp (illumination lamp) in the measurement environment (space) in which the measurement object 20 is arranged flickers according to the frequency (50 Hz, 60 Hz, etc.) of the power source, and the intensity varies. FIG. 2A shows a temporal change in ambient light intensity and an imaging timing chart in the comparative example. The period of ambient light intensity and each imaging timing are not synchronized. FIG. 2B shows the gradation distribution and the intersection obtained at the imaging timing (imaging interval) shown in FIG. FIG. 2C shows a temporal change in ambient light intensity and an imaging timing chart when imaging is performed in synchronization with the cycle of ambient light.

図2(A)において、第1のパターンおよび第2のパターンをそれぞれ、P、Nと表現し、撮像順序をn1、n2、・・・、n12と表す。例えば、n1で撮像されるパターンは第1のパターンである。環境光強度は、時刻によって変動している。図2(B)は、撮像順序の奇数番目2i−1(iは自然数)を第1のパターン、偶数番目2iを第2のパターンとし、2i−1番目で撮像したパターンと2i番目で撮像したパターンで、基準となる平面に対して交点検出した例である。環境光強度がパターン光15の強度に対し十分に小さい場合、交点は前述の通り等ピッチとなる。しかし、環境光が大きく、かつ、各撮像タイミングが環境光の強度の周期に同期していない場合は、出力値に環境光のオフセットが生じてしまう。そのため、図2(B)のように交点の位置が等ピッチからずれる。この環境光による等ピッチからのずれ(誤差)は、被計測物20の形状に伴う基準平面からのずれと区別がつかない。ゆえに、環境光によって計測誤差が生じてしまう可能性がある。これを回避する方法として、図2(C)のように、環境光強度の周期に同期して撮像する方法が知られている(特許文献1)が、環境光と同期するために待機時間が発生し、計測時間が増大してしまう。   2A, the first pattern and the second pattern are expressed as P and N, respectively, and the imaging order is expressed as n1, n2,..., N12. For example, the pattern imaged at n1 is the first pattern. The ambient light intensity varies with time. In FIG. 2B, the odd number 2i-1 (i is a natural number) in the imaging order is the first pattern, the even number 2i is the second pattern, and the 2i-1th image and the 2ith image are captured. This is an example in which an intersection point is detected with respect to a reference plane in a pattern. When the ambient light intensity is sufficiently smaller than the intensity of the pattern light 15, the intersections are at an equal pitch as described above. However, when the ambient light is large and each imaging timing is not synchronized with the period of the ambient light intensity, an offset of the ambient light occurs in the output value. Therefore, as shown in FIG. 2B, the position of the intersection is shifted from the equal pitch. The deviation (error) from the equal pitch due to the ambient light is indistinguishable from the deviation from the reference plane due to the shape of the measurement object 20. Therefore, there is a possibility that a measurement error occurs due to the ambient light. As a method for avoiding this, as shown in FIG. 2C, a method of imaging in synchronization with the period of ambient light intensity is known (Patent Document 1). Occurs and the measurement time increases.

図3は、本実施形態に係る撮像タイミングチャートを示している。図2(A)と同様に、第1のパターンおよび第2のパターンをそれぞれ、P、Nと表現する。本実施形態では、第1条件および第2条件に従って、制御部3が投影手段1および撮像手段2を制御する。各条件は、第1のパターンPおよび第2のパターンNの組み合わせ、撮像回数および撮像間隔を含む。第1条件により撮像するパターン群を第1グループG1、第2条件により撮像するパターン群を第2グループG2とする。第1グループG1における撮像順序をn1、n2・・・、n6とし、各タイミングで撮像するパターンを、{P、P、N、N、P、P}とする(第1取得工程)。第2グループG2における撮像順序はp1、p2・・・、p6とし、各タイミングで撮像するパターンは、{N、N、P、P、N、N}とする(第2取得工程)。制御部3は、タイミングniで撮像するパターンとタイミングpiで撮像するパターンが、相補関係になるようにパターン設定素子6およびセンサ素子9を制御する。   FIG. 3 shows an imaging timing chart according to the present embodiment. As in FIG. 2A, the first pattern and the second pattern are expressed as P and N, respectively. In the present embodiment, the control unit 3 controls the projection unit 1 and the imaging unit 2 according to the first condition and the second condition. Each condition includes a combination of the first pattern P and the second pattern N, the number of times of imaging, and an imaging interval. A pattern group to be imaged under the first condition is a first group G1, and a pattern group to be imaged under the second condition is a second group G2. The imaging order in the first group G1 is n1, n2,..., N6, and the pattern to be imaged at each timing is {P, P, N, N, P, P} (first acquisition step). The imaging order in the second group G2 is p1, p2,..., P6, and the pattern to be imaged at each timing is {N, N, P, P, N, N} (second acquisition step). The control unit 3 controls the pattern setting element 6 and the sensor element 9 so that the pattern imaged at the timing ni and the pattern imaged at the timing pi have a complementary relationship.

第1条件に従って画像データを取得する第1取得工程の開始時刻tn1と第2条件に従って画像データを取得する第2取得工程の開始時刻tp1との間の時間間隔は、環境光の強度の周期T0の整数倍(γ倍)とする。ただし、制御部3に搭載されているクロックおよび演算部4での計算精度などで決まる精度によっては環境光の強度の周期T0のγ倍と厳密に一致しない。tp1とタイミングn6の撮像開始時刻tp6との差が、センサ素子9の最小周期以上(最大サンプリング数以下)で、かつ、γが最小となるように、センサの最小周期とγを決定するのが好ましい。また、環境光の強度の周期T0は、予め環境光を測定することで求めてもよい。また、蛍光灯や水銀灯など商業用周波数(50Hz、60Hz)に依存する光源であれば、商業用電源周波数(50Hz、60Hz)の整数倍の逆数から求めてもよい。また、電源ごとに生じる商業用電源周波数による誤差を低減するために、電源ごとの周波数を測定してもよい。環境光の強度の周波数は、取得手段(不図示)が取得する。 The time interval between the starting time t p1 in the second acquisition step of acquiring image data according to starting time t n1 and the second condition of the first acquisition step of acquiring image data in accordance with the first condition, the intensity of the ambient light It is set to an integer multiple (γ times) of the period T0. However, depending on the accuracy determined by the clock mounted on the control unit 3 and the calculation accuracy in the calculation unit 4, it does not exactly coincide with γ times the period T0 of the ambient light intensity. the difference between the imaging start time t p6 of t p1 and timing n6 is at least the minimum period of the sensor element 9 (maximum sampling number less), and as γ is minimized, determines the γ and the minimum period of the sensor Is preferred. Further, the period T0 of the intensity of the ambient light may be obtained by measuring the ambient light in advance. Moreover, if it is a light source which depends on commercial frequencies (50 Hz, 60 Hz), such as a fluorescent lamp and a mercury lamp, you may obtain | require from the reciprocal number of the integral multiple of a commercial power supply frequency (50 Hz, 60 Hz). Further, the frequency for each power source may be measured in order to reduce the error due to the commercial power frequency generated for each power source. An acquisition means (not shown) acquires the frequency of the intensity of ambient light.

制御部3は、第1グループG1内の各タイミングの測定間隔(撮像間隔)と第2グループ内の各タイミングの測定間隔とが、前述の精度で等しくなるように、センサ素子9を制御する。つまり、グループ間において対応する各タイミングが前述の精度で等しくなるように、センサ素子9を制御する。ここで、1つのグループ内の各タイミングの測定間隔は、不等間隔でもよく、環境光の強度の周期T0の整数倍で制限されない所望の測定間隔でよいが、センサ素子9で実現できる最小周期で決定されるのが最も好適な形態である。   The control unit 3 controls the sensor element 9 so that the measurement interval (imaging interval) of each timing in the first group G1 is equal to the measurement interval of each timing in the second group with the above-described accuracy. That is, the sensor element 9 is controlled so that the corresponding timings between the groups are equal to each other with the above-described accuracy. Here, the measurement interval of each timing within one group may be an unequal interval, and may be a desired measurement interval that is not limited by an integer multiple of the period T0 of the ambient light intensity, but the minimum period that can be realized by the sensor element 9 The most preferable form is determined by

演算部4は、第1グループG1の撮像順序と、第2グループG2の撮像順序とを対応付けて交点検出の演算処理を行う。例えば、n1とp1とを対応づけて交点検出の演算処理を行う。ここで、先に複数回の交点検出をしてから、平均化処理をしてもよいし、先に第一のパターンの画像と第二のパターンの画像をそれぞれ平均化処理した後、交点検出してもよい。交点位置に基づいて被計測物20の形状が算出される(形状算出工程)。   The calculation unit 4 performs an intersection detection calculation process in association with the imaging order of the first group G1 and the imaging order of the second group G2. For example, the intersection detection processing is performed by associating n1 with p1. Here, it is possible to perform the averaging process after detecting the intersections a plurality of times first, or after first averaging the first pattern image and the second pattern image, respectively. May be issued. The shape of the measurement object 20 is calculated based on the intersection position (shape calculation step).

このような制御部3による制御によれば、交点検出を行う1組の画像(たとえば、タイミングn1で撮像した画像およびタイミングp1で撮像した画像の組)において、環境光の光量が等しくなる。つまり、環境光の影響を低減し、計測誤差を低減することができる。さらに、グループ間隔(時間間隔)T2や各グループ内の測定間隔(ni+1とniの測定間隔、pi+1とpiの測定間隔)を好適に制御すれば、計測時間の短縮も可能になる。   According to the control by the control unit 3 described above, the amount of ambient light is equal in one set of images (for example, a set of images captured at timing n1 and p1) that perform intersection detection. That is, the influence of ambient light can be reduced and measurement errors can be reduced. Furthermore, if the group interval (time interval) T2 and the measurement intervals within each group (ni + 1 and ni measurement intervals, pi + 1 and pi measurement intervals) are suitably controlled, the measurement time can be shortened.

以上のように、本実施形態によれば、計測精度および計測時間の点で有利な計測装置および計測方法を提供することができる。   As described above, according to this embodiment, it is possible to provide a measuring apparatus and a measuring method that are advantageous in terms of measurement accuracy and measurement time.

(第2実施形態)
次に、本発明の第2実施形態に係る計測装置について説明する。本実施形態では、グループ内の測定間隔T1を一定値(周期)とする点に特徴がある。第1グループG1内および第2グループG2内の各タイミングの間隔(撮像間隔)をT1、環境光の強度の周期をT0、第1グループG1および第2グループG2における計測回数をMとする。環境光の影響を低減したグループ間隔T2の条件は、M×T1(第1グループG1の総撮像時間)を環境光強度の周期T0で除算し、小数点以下を切り上げた整数αに対し、下記式(1)を満足する条件である。
T2=γ×T0≧α×T0・・・(1)
ここで、γは任意の整数である。式(1)は、第2グループG2の撮像開始タイミングを規定する式である。さらに、計測時間の短縮を考えると、T1/T0の小数点以下を切り上げた整数βに対し、下記式(2)を満足するグループ間隔T2が、環境光の影響の低減および計測時間の短縮を実現する条件である。
T2=γ×T0<M×β×T0・・・(2)
また、式(1)および式(2)から下記式(3)の関係が導出される。
α≦γ<M×β・・・(3)
式(3)を満たす整数γを設定すれば、環境光の影響の低減および計測時間の短縮を両立できる。本実施形態において、撮像周期T1の制御は制御部3で行ってもよいし、センサ素子9の内部クロックで制御してもよい。グループ間隔T2の制御は、制御部3からセンサ素子9にトリガー信号として与えるのが好ましい形態である。
(Second Embodiment)
Next, a measuring apparatus according to the second embodiment of the present invention will be described. The present embodiment is characterized in that the measurement interval T1 in the group is a constant value (period). The timing interval (imaging interval) in the first group G1 and the second group G2 is T1, the period of the ambient light intensity is T0, and the number of measurements in the first group G1 and the second group G2 is M. The condition of the group interval T2 in which the influence of the ambient light is reduced is as follows: M × T1 (total imaging time of the first group G1) is divided by the period T0 of the ambient light intensity, and an integer α rounded up to the nearest decimal point is This is a condition that satisfies (1).
T2 = γ × T0 ≧ α × T0 (1)
Here, γ is an arbitrary integer. Expression (1) is an expression that defines the imaging start timing of the second group G2. Furthermore, considering the reduction in measurement time, the group interval T2 that satisfies the following equation (2) for the integer β rounded up after the decimal point of T1 / T0 reduces the influence of ambient light and shortens the measurement time. It is a condition to do.
T2 = γ × T0 <M × β × T0 (2)
Moreover, the relationship of following formula (3) is derived | led-out from Formula (1) and Formula (2).
α ≦ γ <M × β (3)
By setting an integer γ that satisfies Equation (3), it is possible to reduce both the influence of ambient light and the measurement time. In the present embodiment, the imaging cycle T1 may be controlled by the control unit 3 or may be controlled by the internal clock of the sensor element 9. The control of the group interval T2 is preferably given as a trigger signal from the control unit 3 to the sensor element 9.

図4(A)は、撮像周期T1が環境光強度の周期T0より小さい場合の、環境光周期と同期するために撮像を行わない待ち時間(タクト時間)を示すグラフである。横軸を撮像回数(M≧2)、縦軸をタクト時間(msec)とする。この例では、環境光強度の周期T0を10msec、撮像周期T1を3msecに設定した。図中の実線は本実施形態によるタクト時間を表していて、図中の波線は従来例を表している。図4(A)を見ればわかるとおり、いずれの測定回数においても、本実施形態の方が、タクト時間が短いことがわかる。また、測定回数が大きいほどタクト時間が短縮される効果が大きいことがわかる。   FIG. 4A is a graph showing a waiting time (tact time) in which imaging is not performed in order to synchronize with the environmental light period when the imaging period T1 is smaller than the environmental light intensity period T0. The horizontal axis represents the number of times of imaging (M ≧ 2), and the vertical axis represents the tact time (msec). In this example, the period T0 of the ambient light intensity is set to 10 msec, and the imaging period T1 is set to 3 msec. The solid line in the figure represents the tact time according to the present embodiment, and the wavy line in the figure represents a conventional example. As can be seen from FIG. 4A, the tact time is shorter in this embodiment at any number of measurements. It can also be seen that the effect of shortening the tact time is greater as the number of measurements is larger.

図4(B)は、撮像周期T1が環境光強度の周期T0より大きい場合の、タクト時間を示すグラフである。この例では、環境光周期T0を10.1msec、撮像周期T1を15msecとした。図4(A)と同様に、いずれの測定回数においても、本実施形態の方が、タクト時間が短いことがわかる。また、測定回数が大きいほどタクト時間が短縮される効果が大きいことがわかる。以上のように、本実施形態によっても、計測精度および計測時間の点で有利な計測装置および計測方法を提供することができる。   FIG. 4B is a graph showing the tact time when the imaging period T1 is larger than the period T0 of ambient light intensity. In this example, the ambient light period T0 is 10.1 msec, and the imaging period T1 is 15 msec. As in FIG. 4A, it can be seen that the tact time is shorter in this embodiment at any number of measurements. It can also be seen that the effect of shortening the tact time is greater as the number of measurements is larger. As described above, according to this embodiment, it is possible to provide a measuring apparatus and a measuring method that are advantageous in terms of measurement accuracy and measurement time.

(第3実施形態)
次に、本発明の第3実施形態に係る計測装置について説明する。第2実施形態では、グループ間隔T2および撮像周期T1はそれぞれ別々の信号で制御されていた。本実施形態では、これらを同一の制御部3によるトリガー信号、あるいは、同一のセンサ素子9内部クロックで制御できる点に特徴がある。まず、センサ素子9の最小サンプリング周期(最短撮像間隔)をT1´として、M×T1´/T0の小数点以下を切り上げた整数ηに対し、下記式(4)を満たす撮像周期T1を設定する。
T1=η×T0/M・・・(4)
ここで、本実施形態でいうところの最小サンプリング周期T1´とは、投影手段1の投影輝度、被計測物20の反射率に由来する必要な露光時間、センサ素子9の電気回路の制約によるサンプリング周期などを加味した時間のことをいう。次に、下記式(5)を満たすグループ間隔T2を設定する。
T2=M×T1=η×T0・・・(5)
この式で示すように、グループ間隔T2が撮像周期T1の倍数となるので、これらを同一の制御部3によるトリガー信号、あるいは、同一のセンサ素子9内部クロックで制御することが可能となる。
(Third embodiment)
Next, a measurement apparatus according to the third embodiment of the present invention will be described. In the second embodiment, the group interval T2 and the imaging cycle T1 are controlled by separate signals. The present embodiment is characterized in that these can be controlled by a trigger signal from the same control unit 3 or an internal clock of the same sensor element 9. First, assuming that the minimum sampling period (shortest imaging interval) of the sensor element 9 is T1 ′, an imaging period T1 that satisfies the following formula (4) is set with respect to an integer η rounded up from the decimal point of M × T1 ′ / T0.
T1 = η × T0 / M (4)
Here, the minimum sampling period T1 ′ in the present embodiment refers to the sampling due to the projection brightness of the projection means 1, the necessary exposure time derived from the reflectance of the measurement object 20, and the electric circuit of the sensor element 9. This is the time that takes into account the period. Next, a group interval T2 that satisfies the following formula (5) is set.
T2 = M × T1 = η × T0 (5)
As indicated by this equation, the group interval T2 is a multiple of the imaging cycle T1, and therefore, these can be controlled by the trigger signal from the same control unit 3 or the same internal clock of the sensor element 9.

例えば、環境光強度の周期T0を10msec、計測回数M=7、センサ素子9の最小サンプリング周期T1’=3msecとした場合、式(4)、式(5)に基づけば、T1=4.29msec、T2=30msecと決定される。本例によれば、従来の測定時間140msecに対し、60msecとなり、約60%タクト時間が短縮される。また、逆の見方をすれば、従来と同じ測定時間で測定回数を増加でき(本例ではM=16)、平均化効果によりS/N比を向上させることができる。   For example, when the period T0 of the ambient light intensity is 10 msec, the number of times of measurement M = 7, and the minimum sampling period T1 ′ of the sensor element 9 is 3 msec, T1 = 4.29 msec based on the equations (4) and (5). , T2 = 30 msec. According to this example, the conventional measurement time of 140 msec is 60 msec, and the tact time is shortened by about 60%. In other words, the number of measurements can be increased in the same measurement time as in the past (M = 16 in this example), and the S / N ratio can be improved by the averaging effect.

このように本実施形態によれば、容易な制御によって、環境光の影響を低減し、かつ、タクト時間が従来よりも短くなるという効果が得られる。なお、T1´は最小サンプリング周期としたが、これまでの実施形態で述べた条件を満たす範囲において、それに限るものではない。   As described above, according to the present embodiment, it is possible to obtain the effects of reducing the influence of ambient light and shortening the tact time as compared with the prior art by easy control. Although T1 ′ is the minimum sampling period, the present invention is not limited to this as long as the conditions described in the above embodiments are satisfied.

上記実施形態では、総撮像時間を、2つのグループに分けていたが、4個以上の偶数個のグループに分けた場合でも本質的に本発明との差はなく、本発明の効果は変わらない。また、第一グループと第二グループとを連続して撮像しなくてもよく、例えば、第一グループと第二グループの間に第三のパターンを撮像しても、本発明の効果は変わらない。   In the above embodiment, the total imaging time is divided into two groups, but even when divided into four or more even groups, there is essentially no difference from the present invention, and the effect of the present invention does not change. . Further, the first group and the second group need not be continuously imaged. For example, even if the third pattern is imaged between the first group and the second group, the effect of the present invention does not change. .

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

10 ヘッド
1 投影手段
2 撮像手段
3 制御部
4 演算部
DESCRIPTION OF SYMBOLS 10 Head 1 Projection means 2 Imaging means 3 Control part 4 Calculation part

Claims (5)

被計測物の形状を計測する計測装置であって、
明部と暗部とを有する第1のパターン光又は当該第1のパターン光の明部と暗部とが反転した第2のパターン光を前記被計測物に投影する投影手段と、
前記パターン光が投影された前記被計測物を撮像して、画像データを取得する撮像手段と、
前記投影手段および前記撮像手段を制御する制御部と、
前記被計測物に照射される前記パターン光以外の光の強度の周期に関する情報を取得する取得手段と、を有し、
第1条件は、前記投影手段が前記被計測物に投影する前記第1のパターン光および前記第2のパターン光の組み合わせ、前記撮像手段による撮像回数および撮像間隔、を含み、
第2条件は、前記第1条件と同じ撮像回数および撮像間隔、前記組み合わせの前記第1のパターン光と前記第2のパターン光とが入れ替わった組み合わせ、を含み、
前記制御部は、前記第1条件での前記投影手段による投影および前記撮像手段による撮像を開始し、前記パターン光以外の光の強度の周期の整数倍の時間間隔をあけて、前記第2条件での前記投影手段による投影および前記撮像手段による撮像を開始するように、前記投影手段および前記撮像手段を制御し、
前記第1条件で取得した画像データと前記第2条件で取得した画像データとを各条件の撮像順に対応付けて対応する画像データの階調値の交点位置を求め、求めた交点位置に基づいて前記被計測物の形状を算出することを特徴とする計測装置。
A measuring device for measuring the shape of an object to be measured,
Projecting means for projecting the first pattern light having a bright part and a dark part or the second pattern light in which the bright part and the dark part of the first pattern light are inverted onto the object to be measured,
Imaging means for imaging the object to be measured on which the pattern light is projected and acquiring image data;
A control unit for controlling the projection unit and the imaging unit;
Obtaining means for obtaining information on a period of intensity of light other than the pattern light irradiated on the object to be measured;
The first condition includes a combination of the first pattern light and the second pattern light projected onto the measurement object by the projection unit, the number of times of imaging by the imaging unit, and an imaging interval.
The second condition includes the same number of imaging and imaging interval as the first condition, a combination in which the first pattern light and the second pattern light of the combination are switched,
The control unit starts projection by the projection unit and imaging by the imaging unit under the first condition, and sets the second condition with a time interval that is an integral multiple of a period of the intensity of light other than the pattern light. Controlling the projection means and the imaging means so as to start projection by the projection means and imaging by the imaging means,
The image data acquired under the first condition and the image data acquired under the second condition are associated with each other in the imaging order of the conditions to determine the intersection position of the corresponding gradation values of the image data, and based on the calculated intersection position A measuring apparatus for calculating a shape of the object to be measured.
前記制御部は、前記撮像間隔を一定値のT1、前記撮像回数をM、前記光の周期をT0、前記時間間隔をT2とした場合に、M×T1/T0の小数点以下を切り上げた整数αおよびT1/T0の小数点以下を切り上げた整数β、に対し、
M×β×T0>T2≧α×T0
を満たすT2をあけて前記第1条件および前記第2条件に基づく制御を行うことを特徴とする請求項1に記載の計測装置。
When the imaging interval is a constant value T1, the imaging count is M, the light period is T0, and the time interval is T2, an integer α obtained by rounding up the decimal point of M × T1 / T0. And an integer β rounded up to the nearest decimal place of T1 / T0,
M × β × T0> T2 ≧ α × T0
2. The measurement apparatus according to claim 1, wherein control based on the first condition and the second condition is performed with a T2 that satisfies the condition.
前記撮像間隔を一定値のT1、前記撮像手段の最短撮像間隔をT1´、前記撮像回数をM、前記光の周期をT0、した場合に、M×T1´/T0の小数点以下を切り上げた整数ηに対し、T1が、
T1=η×T0/M
を満足することを特徴とする請求項1に記載の計測装置。
An integer obtained by rounding up the decimal point of M × T1 ′ / T0 when the imaging interval is a constant value T1, the shortest imaging interval of the imaging means is T1 ′, the imaging count is M, and the light period is T0. For η, T1 is
T1 = η × T0 / M
The measurement apparatus according to claim 1, wherein:
前記パターン光以外の光の強度の周期が、商業用電源周波数の整数倍の逆数であることを特徴とする請求項1乃至3のうちいずれか1項に記載の計測装置。   4. The measuring apparatus according to claim 1, wherein a period of intensity of light other than the pattern light is a reciprocal of an integral multiple of a commercial power supply frequency. 5. 被計測物の形状を計測する計測方法であって、
前記被計測物に投影する、明部と暗部とを有する第1のパターン光および当該第1のパターン光の明部と暗部とが反転した第2のパターン光の組み合わせ、撮像回数および撮像間隔、を含む第1条件に従って前記被計測物の画像データを取得する第1取得工程と、
前記第1取得工程から、前記被計測物に照射される前記パターン光以外の光の強度の周期の整数倍の時間間隔をあけて、前記第1条件と同じ撮像回数および撮像間隔、前記組み合わせの前記第1のパターン光と前記第2のパターン光とが入れ替わった組み合わせ、を含む第2条件に従って前記被計測物の画像データを取得する第2取得工程と、
前記第1取得工程で取得した画像データと前記第2取得工程で取得した画像データとを各条件の撮像順に対応付けて対応する各画像データの階調値の交点位置を求め、求めた交点位置に基づいて前記被計測物の形状を算出する形状算出工程と、を有することを特徴とする計測方法。
A measurement method for measuring the shape of an object to be measured,
A combination of a first pattern light having a bright part and a dark part and a second pattern light in which the bright part and the dark part of the first pattern light are inverted, the number of times of imaging, and an imaging interval; A first acquisition step of acquiring image data of the measurement object according to a first condition including:
From the first acquisition step, a time interval that is an integral multiple of the period of the intensity of light other than the pattern light irradiated to the object to be measured is set to the same number of imaging and imaging intervals as in the first condition, and the combination A second acquisition step of acquiring image data of the object to be measured according to a second condition including a combination in which the first pattern light and the second pattern light are interchanged;
The intersection position of the gradation value of each image data obtained by associating the image data acquired in the first acquisition step and the image data acquired in the second acquisition step in association with the imaging order of each condition and corresponding. And a shape calculating step for calculating the shape of the object to be measured based on the measurement method.
JP2015189645A 2015-09-28 2015-09-28 Measuring device and measuring method Active JP6415412B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015189645A JP6415412B2 (en) 2015-09-28 2015-09-28 Measuring device and measuring method
US15/268,943 US10533845B2 (en) 2015-09-28 2016-09-19 Measuring device, measuring method, system and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189645A JP6415412B2 (en) 2015-09-28 2015-09-28 Measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2017067479A true JP2017067479A (en) 2017-04-06
JP6415412B2 JP6415412B2 (en) 2018-10-31

Family

ID=58407019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189645A Active JP6415412B2 (en) 2015-09-28 2015-09-28 Measuring device and measuring method

Country Status (2)

Country Link
US (1) US10533845B2 (en)
JP (1) JP6415412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095376A (en) * 2017-11-27 2019-06-20 倉敷紡績株式会社 Image processing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916632A1 (en) * 2014-05-21 2021-12-01 Tangible Play, Inc. Virtualization of tangible interface objects
US11040452B2 (en) * 2018-05-29 2021-06-22 Abb Schweiz Ag Depth sensing robotic hand-eye camera using structured light

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019884A (en) * 2007-07-10 2009-01-29 Nikon Corp Device and method for measuring three-dimensional shape
JP2013210262A (en) * 2012-03-30 2013-10-10 Canon Inc Three-dimensional shape measuring apparatus and three-dimensional shape measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585206B2 (en) * 2010-06-29 2013-11-19 Corning Incorporated Methods for operating scanning laser projectors to reduce speckle and image flicker
FI20106090A0 (en) * 2010-10-21 2010-10-21 Zenrobotics Oy Procedure for filtering target image images in a robotic system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019884A (en) * 2007-07-10 2009-01-29 Nikon Corp Device and method for measuring three-dimensional shape
JP2013210262A (en) * 2012-03-30 2013-10-10 Canon Inc Three-dimensional shape measuring apparatus and three-dimensional shape measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095376A (en) * 2017-11-27 2019-06-20 倉敷紡績株式会社 Image processing system

Also Published As

Publication number Publication date
US10533845B2 (en) 2020-01-14
US20170089691A1 (en) 2017-03-30
JP6415412B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6566737B2 (en) Information processing apparatus, information processing method, and program
US9857166B2 (en) Information processing apparatus and method for measuring a target object
US10627216B2 (en) Image processing apparatus
JP5576726B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, and program
WO2017006544A1 (en) Measurement apparatus for measuring shape of target object, system and manufacturing method
US20080266391A1 (en) Apparatus for and Method of Measuring Image
JP6415412B2 (en) Measuring device and measuring method
JP2021067644A (en) Three dimensional measuring device
JP2005061925A (en) Device and method for angle of inclination detection
JP2017075887A (en) Vibration detection device, inspection device, vibration detection method, and vibration detection program
JP2008145209A (en) Device for measuring three-dimensional shape, and method for measuring three-dimensional shape
JP2003050112A (en) Three-dimensional shape input device and projector
JP4797109B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2015119344A (en) Device for measuring sensitivity distribution of imaging element and its control method, and calibration device of image display device and its control method
US11438563B2 (en) Projection adjustment program and projection adjustment method
US11399165B2 (en) Projection system, projection device, and projection method
JP2010175554A (en) Device and method for measuring three-dimensional shape
JP6567199B2 (en) Distance measuring device, distance measuring method, and distance measuring program
JP5743433B2 (en) 3D shape measuring device
KR20120000234A (en) The method of auto-exposure control for white light 3d scanner using an illuminometer
JP5968370B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, and program
JPWO2018207300A1 (en) Measuring device, measuring method and measuring program
JP4515991B2 (en) Flicker noise reduction device
JP2013174446A (en) Three-dimensional information detection device and three-dimensional information detection method
WO2023084790A1 (en) Three-dimensional measurement system, control method for same, and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180731

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R151 Written notification of patent or utility model registration

Ref document number: 6415412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151