JP2017067230A - Bearing mechanism - Google Patents

Bearing mechanism Download PDF

Info

Publication number
JP2017067230A
JP2017067230A JP2015195736A JP2015195736A JP2017067230A JP 2017067230 A JP2017067230 A JP 2017067230A JP 2015195736 A JP2015195736 A JP 2015195736A JP 2015195736 A JP2015195736 A JP 2015195736A JP 2017067230 A JP2017067230 A JP 2017067230A
Authority
JP
Japan
Prior art keywords
ring
rotating shaft
bearing mechanism
peripheral surface
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015195736A
Other languages
Japanese (ja)
Inventor
保幸 小林
Yasuyuki Kobayashi
保幸 小林
美沙子 津川
Misako Tsugawa
美沙子 津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2015195736A priority Critical patent/JP2017067230A/en
Publication of JP2017067230A publication Critical patent/JP2017067230A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce damage at a bearing mechanism by creep or fretting and the like.SOLUTION: This invention relates to a bearing mechanism comprising outer rings 21 and inner rings 24; a plurality of rollers 22 fitted between these rings; a housing 10 for supporting outer peripheral surfaces of the outer rings 21; and a rotating shaft 30 supported at inner peripheral surfaces of the inner ring 24. Then, one of the outer ring 21 and the inner ring 24 is arranged to be moved toward a rotating axis direction in respect to the other ring, the one ring is pressed toward the rotating axis direction to generate a pre-pressure between the outer ring 21 and the inner ring 24. Then, there is provided a recess 32 at an outer peripheral surface of either an inner peripheral surface of the housing 10 supporting one ring or an outer peripheral surface of the rotating shaft 30. A resilient body 33 is arranged in the recess 32 so as to move toward a direction of the rotating shaft and further the resilient body 33 is press contacted with the bottom surface of the recess 32 and also press contacted with one ring opposing against the bottom surface.SELECTED DRAWING: Figure 2

Description

本発明は、例えば工作機械等のように、低速回転で高負荷になり高速回転では低負荷になる軸受の構造として好適な軸受機構に関するものである。   The present invention relates to a bearing mechanism suitable as a structure of a bearing, such as a machine tool, which has a high load at low speed rotation and a low load at high speed rotation.

一般的に、スピンドルモータなどにおける高速回転軸の軸受としてボールベアリングを適用する場合には、その回転軸のラジアル方向及び軸方向の剛性を高めて、回転精度を向上するために、ボールベアリングに予圧が付与される。この予圧の付与は、ボールベアリングを構成する外輪と内輪のうち、その一方に相対し他方向を軸方向へ加圧して微動することで、内外輪間に予め圧力を保持しようとするものである。   In general, when a ball bearing is used as a bearing for a high-speed rotating shaft in a spindle motor or the like, preload is applied to the ball bearing in order to improve the rotational accuracy by increasing the radial and axial rigidity of the rotating shaft. Is granted. This preloading is intended to maintain pressure in advance between the inner and outer rings by finely moving the other direction in the axial direction against one of the outer and inner rings constituting the ball bearing. .

ところで、フライス加工等の一般的な機械加工においては、低回転で切込みを深くした重負荷加工を行い、高回転では切込みを浅くした軽負荷加工を行う傾向がある。重負荷加工の場合は、回転軸が負荷に負けて、加工精度に悪影響が生じないように、予圧を付加して、ベアリングの内外輪間の剛性を高める必要がある。また、軽負荷加工では、高い剛性を必要とせず、ベアリング寿命の短縮を避ける等の観点から、予圧を適宜に低減することが好ましい。
そこで、例えば、特許文献1に記載された発明では、遠心力によって弾性的に拡径しながら軸方向へ弾性的に収縮する遠心ばねを用いて、回転速度に応じて内輪に付与する予圧を自動的に調整するようにしている。
By the way, in general machining such as milling, there is a tendency to perform heavy load machining with a deep cut at low rotation and light load machining with a shallow cut at high rotation. In the case of heavy load machining, it is necessary to increase the rigidity between the inner and outer rings of the bearing by adding a preload so that the rotating shaft loses the load and does not adversely affect machining accuracy. In light load machining, it is preferable to reduce the preload appropriately from the viewpoint of not requiring high rigidity and avoiding shortening of the bearing life.
Thus, for example, in the invention described in Patent Document 1, a centrifugal spring that elastically contracts in the axial direction while elastically expanding by centrifugal force is used to automatically apply a preload to the inner ring according to the rotational speed. To make adjustments.

しかしながら、前記従来技術によれば、予圧を付与する構造上、回転軸に対し内輪を軸方向へ微動するように、これら回転軸と内輪とを「すきまばめ」になるように嵌め合せているため、内輪が回転軸に相対し周方向へも回転してしまい、この周方向の回転によって、クリープやフレッチング等を生じて、内輪又は回転軸の摺動面が損傷してしまうおそれがある。   However, according to the prior art, because of the structure for applying the preload, the rotating shaft and the inner ring are fitted so as to be “clearance fit” so that the inner ring is finely moved in the axial direction with respect to the rotating shaft. Therefore, the inner ring rotates in the circumferential direction relative to the rotation shaft, and the rotation in the circumferential direction may cause creep, fretting, etc., and may damage the sliding surface of the inner ring or the rotation shaft.

特開2015−10648公報JP, 2015-10648, A

本発明は上記従来事情に鑑みてなされたものであり、その課題とする処は、クリープやフレッチング等による損傷を低減することができる軸受機構を提供することにある。   The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the present invention is to provide a bearing mechanism that can reduce damage due to creep, fretting, and the like.

上記課題を解決するための一手段は、軸受機構において、内輪及び外輪と、これらの間に嵌め合せられた複数の転動体と、外輪の外周面を支持するハウジングと、内輪の内周面に支持された回転軸とを備える。そして、外輪と内輪とのうちの一方の輪を、他方の輪に相対し回転軸方向へ移動するように設けるとともに、この一方の輪を回転軸方向へ加圧することで、これら外輪と内輪の間に予圧を発生させる。そして、一方の輪を支持しているハウジングの内周面又は回転軸の外周面に凹部を設け、該凹部内に弾性体を回転軸方向へ移動するように設け、この弾性体を、凹部の底面に圧接するとともに該底面に対向する一方の輪にも圧接したことを特徴とする。   One means for solving the above problems is in the bearing mechanism, the inner ring and the outer ring, a plurality of rolling elements fitted between them, a housing that supports the outer peripheral surface of the outer ring, and the inner peripheral surface of the inner ring. And a supported rotating shaft. Then, one of the outer ring and the inner ring is provided so as to move in the direction of the rotation axis relative to the other ring, and by pressing the one ring in the direction of the rotation axis, Generate preload in between. Then, a recess is provided on the inner peripheral surface of the housing supporting one of the rings or the outer peripheral surface of the rotation shaft, and an elastic body is provided in the recess so as to move in the direction of the rotation axis. It is characterized by being in pressure contact with the bottom surface and also in pressure contact with one of the wheels facing the bottom surface.

本発明は、以上説明したように構成されているので、クリープやフレッチング等による損傷を低減することができる。   Since the present invention is configured as described above, damage due to creep, fretting, or the like can be reduced.

本発明に係る軸受機構の一例を示す断面図である。It is sectional drawing which shows an example of the bearing mechanism which concerns on this invention. 同軸受機構の拡大断面図である。It is an expanded sectional view of the bearing mechanism. 同軸受機構の要部拡大斜視図である。It is a principal part expansion perspective view of the bearing mechanism. 同軸受機構における遠心ばねの一例を示す斜視図である。It is a perspective view which shows an example of the centrifugal spring in the bearing mechanism.

本実施の形態の特徴の一つは、軸受機構において、内輪及び外輪と、これらの間に嵌め合せられた複数の転動体と、外輪の外周面を支持するハウジングと、内輪の内周面に支持された回転軸とを備える。そして、外輪と内輪とのうちの一方の輪を、他方の輪に相対し回転軸方向へ移動するように設けるとともに、この一方の輪を回転軸方向へ加圧することで、これら外輪と内輪の間に予圧を発生させる。そして、一方の輪を支持しているハウジングの内周面又は回転軸の外周面に凹部を設け、該凹部内に弾性体を回転軸方向へ移動するように設け、この弾性体を、凹部の底面に圧接するとともに、該底面に対向する一方の輪にも圧接した。   One of the features of the present embodiment is that in the bearing mechanism, an inner ring and an outer ring, a plurality of rolling elements fitted between them, a housing that supports the outer peripheral surface of the outer ring, and an inner peripheral surface of the inner ring And a supported rotating shaft. Then, one of the outer ring and the inner ring is provided so as to move in the direction of the rotation axis relative to the other ring, and by pressing the one ring in the direction of the rotation axis, Generate preload in between. Then, a recess is provided on the inner peripheral surface of the housing supporting one of the rings or the outer peripheral surface of the rotation shaft, and an elastic body is provided in the recess so as to move in the direction of the rotation axis. While pressing against the bottom surface, it was also pressed against one of the wheels facing the bottom surface.

この構成によれば、回転軸を回転させた場合に、該回転軸と内輪との間、又はハウジングと外輪との間が、周方向へ滑るのを、前記弾性体により軽減することができ、この結果、クリープやフレッチング等による損傷を低減することができる。
また、予圧を発生させるために、一方の輪を回転軸方向へ加圧して微動させる際には、弾性体が弾性変形するとともに回転軸方向へ移動するため、微動を妨げるようなことがない。
なお、「弾性体」及び「凹部」は、周方向の形状が限定されるものではなく、これら「弾性体」及び「凹部」には、周方向へ連続する環状に形成された態様や、周方向において断続的に設けられた態様等を含む。
According to this configuration, when the rotating shaft is rotated, sliding between the rotating shaft and the inner ring or between the housing and the outer ring in the circumferential direction can be reduced by the elastic body. As a result, damage due to creep or fretting can be reduced.
In order to generate preload, when one wheel is pressurized in the direction of the rotation axis and finely moved, the elastic body is elastically deformed and moves in the direction of the rotation axis, so that fine movement is not hindered.
The “elastic body” and the “concave portion” are not limited in the shape in the circumferential direction. The “elastic body” and the “concave portion” may be formed in an annular shape continuous in the circumferential direction, The aspect etc. which were provided intermittently in the direction are included.

他の特徴としては、一方の輪に加える回転軸方向の加圧により、弾性体を回転軸方向へスムーズに微動させるために、凹部の回転軸方向の幅を弾性体の回転軸方向の幅よりも大きくして、凹部内に弾性体が回転軸方向へ移動する隙間を確保した。   Another feature is that the width of the recess in the rotation axis direction is smaller than the width of the elastic body in the rotation axis direction in order to smoothly finely move the elastic body in the rotation axis direction by pressurization in the rotation axis direction applied to one ring. Also, a clearance for moving the elastic body in the direction of the rotation axis was secured in the recess.

他の特徴は、特に生産性の良好な具体的態様として、凹部を周方向へ連続する凹溝状に形成するとともに、弾性体を周方向へ連続する環状に形成した。   The other feature is that, as a specific embodiment with particularly good productivity, the concave portion is formed in a concave groove shape continuous in the circumferential direction, and the elastic body is formed in an annular shape continuous in the circumferential direction.

他の特徴は、より生産性の良好な具体的態様として、内輪を回転軸に対し軸方向へ移動するように設けるとともに、この内輪を軸方向へ加圧し、凹部を回転軸の外周面に設け、この凹部内に弾性体を設けた。   The other feature is that, as a specific aspect with better productivity, the inner ring is provided so as to move in the axial direction with respect to the rotating shaft, the inner ring is pressurized in the axial direction, and a recess is provided on the outer peripheral surface of the rotating shaft. An elastic body is provided in the recess.

他の特徴は、上記作用を効果的に得る態様として、回転軸の外周面には、内輪に対し軸方向に圧接されるように遠心ばねが設けられ、この遠心ばねは、回転軸と一体に回転した際の遠心力によって弾性的に拡径しながら軸方向へ弾性的に収縮するように構成されている。   Another feature is that, as an aspect for effectively obtaining the above action, a centrifugal spring is provided on the outer peripheral surface of the rotating shaft so as to be pressed against the inner ring in the axial direction. The centrifugal spring is integrated with the rotating shaft. It is configured to elastically contract in the axial direction while elastically expanding its diameter by centrifugal force when rotated.

次に、上記特徴を有する好ましい実施例を、図面に基づいて詳細に説明する。   Next, a preferred embodiment having the above features will be described in detail with reference to the drawings.

図1は、本実施例の軸受機構を備えるスピンドルモータAの側断面図である。軸受機構1は、回転軸30を出力側で回転可能に支持している。
図2は、軸受機構1の部分を拡大した断面図である。図2に示すように、軸受機構1は、略円筒状のハウジング10と、該ハウジング10の内部に支持された複数の軸受20a,20b,20cと、これら軸受20a,20b,20cの中心側に挿入されて回転自在な回転軸30と、軸受20aに対し軸方向に圧接された遠心ばね40と、該遠心ばね40を軸方向において軸受20aの逆側から受けるスラスト受部材50とを具備し、回転軸30が回転した際の遠心力により遠心ばね40を弾性的に変形させて、該遠心ばね40に圧接される軸受20a,20b,20cの予圧を自動調整する。
FIG. 1 is a side sectional view of a spindle motor A provided with a bearing mechanism of the present embodiment. The bearing mechanism 1 supports the rotating shaft 30 so as to be rotatable on the output side.
FIG. 2 is an enlarged cross-sectional view of a portion of the bearing mechanism 1. As shown in FIG. 2, the bearing mechanism 1 includes a substantially cylindrical housing 10, a plurality of bearings 20 a, 20 b, 20 c supported inside the housing 10, and a center side of these bearings 20 a, 20 b, 20 c. A rotating shaft 30 that is inserted and rotatable, a centrifugal spring 40 that is pressed against the bearing 20a in the axial direction, and a thrust receiving member 50 that receives the centrifugal spring 40 from the opposite side of the bearing 20a in the axial direction; The centrifugal spring 40 is elastically deformed by the centrifugal force generated when the rotary shaft 30 rotates, and the preloads of the bearings 20a, 20b, and 20c that are in pressure contact with the centrifugal spring 40 are automatically adjusted.

ハウジング10は、金属製の略円筒状の部材である。
このハウジング10の内周面には、軸受20a,20b,20cが嵌め合せられ、さらに、これら軸受20a,20b,20cを前後から挟むようにして、筒状スペーサ61と固定スリーブ62が嵌め合せられている。
The housing 10 is a substantially cylindrical member made of metal.
Bearings 20a, 20b, and 20c are fitted to the inner peripheral surface of the housing 10, and a cylindrical spacer 61 and a fixing sleeve 62 are fitted so as to sandwich the bearings 20a, 20b, and 20c from the front and rear. .

軸受20a,20b,20cの各々は、無端環状の外輪21と、該外輪21内で転動可能に保持された複数の転動体22と、これら転動体22の周方向の間隔を略一定に保持するリテーナ23と、これら転動体22を介して回転するように外輪21の中心部側に保持された無端環状の内輪24とを具備し、外輪21と転動体22との接触角αをラジアル方向に対し傾斜させたアンギュラ玉軸受を構成している。
軸受20a,20b,20cの各々は、それぞれの外輪21を、ハウジング10の内周面に対し「すきまばめ」状に嵌め合せている。
Each of the bearings 20 a, 20 b, and 20 c has an endless annular outer ring 21, a plurality of rolling elements 22 that are rotatably held in the outer ring 21, and a circumferential interval between the rolling elements 22 is maintained substantially constant. And the endless annular inner ring 24 held on the center side of the outer ring 21 so as to rotate via the rolling elements 22, and the contact angle α between the outer ring 21 and the rolling elements 22 is set in the radial direction. An angular ball bearing tilted with respect to the angle is configured.
Each of the bearings 20 a, 20 b, and 20 c has the outer ring 21 fitted into the inner peripheral surface of the housing 10 in a “clearance fit” shape.

各外輪21の内周部には、転動体22の外周側に嵌り合うように、環状凹部21aが形成される。各環状凹部21aは、図3に示すように、転動体22の中心を基準にして回転軸方向の一方へ偏った傾斜曲面状(非対称形状)に形成される。
また、各内輪24の外周部には、転動体22の外周側に嵌り合うように、環状凹部24aが形成される。各環状凹部24aは、図3に示すように、転動体22の中心を基準にして回転軸方向に左右対称な凹曲面状に形成される。
An annular recess 21 a is formed on the inner peripheral portion of each outer ring 21 so as to fit on the outer peripheral side of the rolling element 22. As shown in FIG. 3, each annular recess 21 a is formed in an inclined curved surface shape (asymmetric shape) that is biased toward one side in the rotational axis direction with respect to the center of the rolling element 22.
An annular recess 24 a is formed on the outer peripheral portion of each inner ring 24 so as to fit on the outer peripheral side of the rolling element 22. As shown in FIG. 3, each annular recess 24 a is formed in a concave curved surface that is symmetrical in the direction of the rotation axis with respect to the center of the rolling element 22.

複数の軸受20a,20b,20cのうち、遠心ばね40側から数えて一番目の軸受20aは、外輪21の環状凹部21aと転動体22との接触角αを反遠心ばね40側(図2中の左側)に有するように構成され、二番目の軸受20bは、接触角αを遠心ばね40側に有するように構成される。このような関係は、背面組合せと呼称される場合がある。
また、遠心ばね40側から数えて三番目の軸受20cは、接触角αを遠心ばね40側に有するように構成される。軸受20bと軸受20cの関係は、並列組合せと呼称される場合がある。
そして、軸受20aの内輪24と、軸受20bの内輪24との間には、軸受20aに予圧を発生させるための微小な隙間が設けられる。
Of the plurality of bearings 20a, 20b, and 20c, the first bearing 20a, counted from the centrifugal spring 40 side, has a contact angle α between the annular recess 21a of the outer ring 21 and the rolling element 22 on the anti-centrifugal spring 40 side (in FIG. 2). The second bearing 20b is configured to have a contact angle α on the centrifugal spring 40 side. Such a relationship may be referred to as a back combination.
The third bearing 20c counted from the centrifugal spring 40 side is configured to have a contact angle α on the centrifugal spring 40 side. The relationship between the bearing 20b and the bearing 20c may be referred to as a parallel combination.
A minute gap is provided between the inner ring 24 of the bearing 20a and the inner ring 24 of the bearing 20b for generating a preload in the bearing 20a.

また、回転軸30は、円柱状又は円筒状の長尺体であり、軸受20a,20b,20cの内輪24に挿通されている。
詳細に説明すれば、最も遠心ばね40側の軸受20aの内輪24は、回転軸30の外周面に対し、「すきまばめ」状に嵌り合っている。そして、他の二つの軸受20b,20cの内輪24,24は、それぞれ、回転軸30の外周面に対し、「しまりばめ」状に嵌り合っている。
Moreover, the rotating shaft 30 is a columnar or cylindrical elongate body, and is penetrated by the inner ring | wheel 24 of bearing 20a, 20b, 20c.
More specifically, the inner ring 24 of the bearing 20a closest to the centrifugal spring 40 is fitted to the outer peripheral surface of the rotary shaft 30 in a “clearance fit” shape. The inner rings 24 and 24 of the other two bearings 20b and 20c are fitted in a “fitting fit” shape on the outer peripheral surface of the rotating shaft 30, respectively.

この回転軸30の外周部の反遠心ばね40側(図2によれば左端側)には、軸受20a,20b,20c側の部分を縮径してなる環状の段部31が形成される。この段部31には、軸受20cの内輪24の端面が接触している。   An annular step portion 31 formed by reducing the diameter of the bearing 20a, 20b, 20c side portion is formed on the anti-centrifugal spring 40 side (the left end side according to FIG. 2) of the outer peripheral portion of the rotating shaft 30. The end surface of the inner ring 24 of the bearing 20c is in contact with the step portion 31.

また、回転軸30の外周部において、最も遠心ばね40側の軸受20aに対応する位置には、凹部32が設けられ、この凹部32内には、回転軸方向へ移動するように弾性体33が設けられる。   In addition, a recess 32 is provided at a position corresponding to the bearing 20a closest to the centrifugal spring 40 in the outer peripheral portion of the rotating shaft 30, and an elastic body 33 is disposed in the recess 32 so as to move in the direction of the rotating shaft. Provided.

凹部32は、回転軸30の全周に連続する凹溝状に形成される。
また、弾性体33は、凹部32内にて回転軸30の全周にわたるOリングであり、ゴムや弾性を有する樹脂材料等から形成される。
凹部32の回転軸方向の幅Wは、弾性体33の回転軸方向の幅(外径D)よりも大きく設定されることで、凹部32内には、弾性体33の回転軸方向への移動を可能にする隙間sが確保される(図3参照)。なお、弾性体33の回転軸方向への移動量を、弾性体33の弾性による変位量のみで確保できる場合には、隙間sを設けないようにしてもよい。
また、弾性体33は、凹部32の底面に圧接されるとともに該底面に対向する内輪24の外周面にも圧接されている。
すなわち、弾性体33の線状部分の外径Dは、凹部32の深さHよりも大きく設定される。
The concave portion 32 is formed in a concave groove shape that continues to the entire circumference of the rotating shaft 30.
The elastic body 33 is an O-ring that extends around the entire circumference of the rotating shaft 30 in the recess 32, and is formed of rubber, an elastic resin material, or the like.
The width W of the concave portion 32 in the rotational axis direction is set to be larger than the width (outer diameter D) of the elastic body 33 in the rotational axis direction, so that the elastic body 33 moves in the rotational axis direction in the concave portion 32. A gap s that enables this is secured (see FIG. 3). Note that the gap s may not be provided when the amount of movement of the elastic body 33 in the rotation axis direction can be ensured only by the amount of displacement due to the elasticity of the elastic body 33.
The elastic body 33 is in pressure contact with the bottom surface of the recess 32 and is also in pressure contact with the outer peripheral surface of the inner ring 24 facing the bottom surface.
That is, the outer diameter D of the linear portion of the elastic body 33 is set larger than the depth H of the recess 32.

なお、図2中の符号63は、固定スリーブ62と回転軸30の隙間から軸受側へ異物等が侵入するのを防止する環状の蓋部材であり、固定スリーブ62と回転軸30の隙間を覆うようにして、回転軸30の外周面に固定されている。   2 is an annular lid member that prevents foreign matter and the like from entering the bearing side from the gap between the fixed sleeve 62 and the rotary shaft 30, and covers the gap between the fixed sleeve 62 and the rotary shaft 30. Thus, it is being fixed to the outer peripheral surface of the rotating shaft 30. FIG.

また、遠心ばね40は、弾性変形可能な硬質合成樹脂材料から成形され、図4に示すように、回転軸30に対し環状に装着される筒部41と、該筒部41の軸方向の中央寄りから径外方向へ突出した突出部42とを一体に有する。そして、この遠心ばね40は、回転軸30に対し「すきまばめ」状に嵌り合っており、回転軸30と一体に回転した際の遠心力によって筒部41の軸方向の中央寄りを弾性的に拡径させながら、同筒部41を軸方向へ弾性的に収縮させる。
この遠心ばね40は、同様の機能を有するものであれば、他の材質や、図示例以外の形状のものを用いることが可能である。例えば材質は、金属製のバネ材などを用いてもよい。
Further, the centrifugal spring 40 is formed from a hard synthetic resin material that can be elastically deformed, and as shown in FIG. 4, a cylindrical portion 41 that is annularly attached to the rotary shaft 30, and an axial center of the cylindrical portion 41 It has integrally the protrusion part 42 protruded in the radial outward direction from the near side. The centrifugal spring 40 is fitted in a “clearance fit” shape with respect to the rotary shaft 30, and elastically moves near the center of the cylindrical portion 41 in the axial direction by centrifugal force when rotating integrally with the rotary shaft 30. The cylindrical portion 41 is elastically contracted in the axial direction while the diameter is increased.
As long as this centrifugal spring 40 has the same function, it is possible to use other materials or shapes other than the illustrated example. For example, a metal spring material or the like may be used as the material.

また、スラスト受部材50は、金属材料等から筒状に形成され、軸受20aの内輪24との間に、遠心ばね40の筒部41を挟むようにして配置される。
このスラスト受部材50は、遠心ばね40の筒部41を介して軸受20aに予圧を発生させるように、筒部41を軸方向に加圧した状態で、回転軸30の外周面に固定される。このスラスト受部材50を回転軸30に固定する手段は、圧入や螺合、凹凸嵌合等とすることができる。
The thrust receiving member 50 is formed in a cylindrical shape from a metal material or the like, and is disposed so as to sandwich the cylindrical portion 41 of the centrifugal spring 40 between the inner ring 24 of the bearing 20a.
The thrust receiving member 50 is fixed to the outer peripheral surface of the rotary shaft 30 in a state where the cylinder portion 41 is pressurized in the axial direction so as to generate a preload on the bearing 20a via the cylinder portion 41 of the centrifugal spring 40. . The means for fixing the thrust receiving member 50 to the rotary shaft 30 can be press-fitting, screwing, uneven fitting, or the like.

次に、上記構成の軸受機構1について、特徴的な作用効果を詳細に説明する。
回転軸30を回転させた際、軸受20aの内輪24は、回転軸30に対し「すきまばめ」状に嵌り合っているが、弾性体33を介して回転軸30の外周面に圧接されているため、回転軸30と一体的に回転する。したがって、軸受20aの内輪24が回転軸30の外周面に擦れるようなことを抑制することができる。
また、回転軸30の回転速度が変化した場合には、遠心ばね40の軸方向寸法の変化により、軸受20aの内輪24が遠心ばね40から受ける押圧力も変化し、内輪24が回転軸方向へ微動しようとするが、この微動は、弾性体33の弾性変形や凹部32内での移動によって確保される。このため、軸受20a,20b,20cの予圧を、正常に変化させることができる。
よって、本実施例の軸受機構1によれば、遠心ばね40による予圧の自動調整機能を妨げることなく、軸受20aの内輪24が回転軸30に相対し周方向へ滑るのを抑制することができ、この結果、クリープやフレッチング等による損傷を防ぐことができる。
Next, characteristic effects of the bearing mechanism 1 having the above-described configuration will be described in detail.
When the rotary shaft 30 is rotated, the inner ring 24 of the bearing 20 a is fitted in a “clearance fit” shape with respect to the rotary shaft 30, but is pressed against the outer peripheral surface of the rotary shaft 30 via the elastic body 33. Therefore, it rotates integrally with the rotating shaft 30. Therefore, the inner ring 24 of the bearing 20a can be prevented from rubbing against the outer peripheral surface of the rotary shaft 30.
Further, when the rotational speed of the rotary shaft 30 changes, the pressing force received by the inner ring 24 of the bearing 20a from the centrifugal spring 40 also changes due to the change in the axial dimension of the centrifugal spring 40, and the inner ring 24 moves in the rotational axis direction. The fine movement is ensured by elastic deformation of the elastic body 33 and movement in the recess 32. For this reason, the preload of bearing 20a, 20b, 20c can be changed normally.
Therefore, according to the bearing mechanism 1 of the present embodiment, the inner ring 24 of the bearing 20a can be prevented from sliding in the circumferential direction relative to the rotary shaft 30 without hindering the automatic preload adjustment function by the centrifugal spring 40. As a result, damage due to creep or fretting can be prevented.

なお、上記実施例によれば、凹部32及び弾性体33を回転軸30の外周面に設けたが、他例としては、凹部32及び弾性体33を、軸受20aの位置に対応するようにハウジング10の内周面に設けて、軸受20aの外輪21がハウジング10に相対し周方向へ滑るのを抑制し、クリープやフレッチング等による損傷を防ぐことも可能である。   In addition, according to the said Example, although the recessed part 32 and the elastic body 33 were provided in the outer peripheral surface of the rotating shaft 30, as another example, the recessed part 32 and the elastic body 33 are housings so that it may respond | correspond to the position of the bearing 20a. It is also possible to prevent the outer ring 21 of the bearing 20a from slipping in the circumferential direction against the housing 10 and to prevent damage due to creep, fretting, or the like.

また、上記実施例によれば、特に好ましい態様として、遠心ばね40を用いて軸受20a,20b,20cに予圧を付与するようにしたが、他例としては、コイルバネや、他の遠心ばね40以外の機構により軸受20a,20b,20cに予圧を付与することも可能であり、このようにした場合も、内輪24と回転軸30の間や、外輪21とハウジング10の間におけるクリープやフレッチング等を、上述した凹部32及び弾性体33によって抑制することができる。   According to the above embodiment, as a particularly preferable aspect, the preload is applied to the bearings 20a, 20b, and 20c using the centrifugal spring 40. However, as other examples, other than the coil spring and the other centrifugal springs 40 are used. It is also possible to apply a preload to the bearings 20a, 20b, and 20c by this mechanism, and even in this case, creep or fretting between the inner ring 24 and the rotating shaft 30, or between the outer ring 21 and the housing 10 is performed. It can be suppressed by the recess 32 and the elastic body 33 described above.

また、上記実施例では、内輪24を遠心ばね40によって軸方向へ加圧するようにしたが、他例としては、外輪21を遠心ばね40によって軸方向へ加圧して予圧が付与される構成とすることも可能である。   Moreover, in the said Example, although the inner ring | wheel 24 was pressurized to the axial direction by the centrifugal spring 40, it is set as the structure by which the outer ring | wheel 21 is pressurized to the axial direction by the centrifugal spring 40, and a preload is provided. It is also possible.

また、上記実施例の軸受20a,20b,20cでは、アンギュラ玉軸受を構成したが、他例としては、円すいころ軸受や深溝軸受等を構成することも可能である。   Moreover, although the angular contact ball bearing was comprised in the bearings 20a, 20b, and 20c of the said Example, a tapered roller bearing, a deep groove bearing, etc. can also be comprised as another example.

1:軸受機構
10:ハウジング
21:外輪
21a:環状凹部
22:転動体
24a:環状凹部
24:内輪
30:回転軸
32:凹部
33:弾性体
40:遠心ばね
s:隙間
1: bearing mechanism 10: housing 21: outer ring 21a: annular recess 22: rolling element 24a: annular recess 24: inner ring 30: rotating shaft 32: recess 33: elastic body 40: centrifugal spring s: gap

Claims (5)

内輪及び外輪と、これらの間に嵌め合せられた複数の転動体と、前記外輪の外周面を支持するハウジングと、前記内輪の内周面に支持された回転軸とを備え、前記外輪と前記内輪とのうちの一方の輪を、他方の輪に相対し回転軸方向へ移動するように設けるとともにこの一方の輪を回転軸方向へ加圧することで、これら外輪と内輪の間に予圧を発生させるようにした軸受機構において、
前記一方の輪を支持している前記ハウジングの内周面又は前記回転軸の外周面に凹部を設け、該凹部内に弾性体を回転軸方向へ移動するように設け、この弾性体を、前記凹部の底面に圧接するとともに、該底面に対向する前記一方の輪にも圧接したことを特徴とする軸受機構。
An inner ring and an outer ring; a plurality of rolling elements fitted between them; a housing that supports an outer peripheral surface of the outer ring; and a rotating shaft supported by the inner peripheral surface of the inner ring, the outer ring and the One of the inner rings is provided so as to move in the direction of the rotation axis relative to the other ring, and this one wheel is pressurized in the direction of the rotation axis, thereby generating a preload between the outer ring and the inner ring. In the bearing mechanism designed to be
A concave portion is provided on the inner peripheral surface of the housing supporting the one wheel or the outer peripheral surface of the rotary shaft, and an elastic body is provided in the concave portion so as to move in the direction of the rotary shaft. A bearing mechanism, wherein the bearing mechanism is in pressure contact with the bottom surface of the recess, and is also in pressure contact with the one wheel facing the bottom surface.
前記凹部の回転軸方向の幅を前記弾性体の回転軸方向の幅よりも大きくして、前記凹部内に前記弾性体が回転軸方向へ移動する隙間を確保したことを特徴とする請求項1記載の軸受機構。   The width of the concave portion in the rotation axis direction is made larger than the width of the elastic body in the rotation axis direction, and a clearance for moving the elastic body in the rotation axis direction is secured in the concave portion. The bearing mechanism described. 前記凹部を周方向へ連続する凹溝状に形成するとともに、前記弾性体を周方向へ連続する環状に形成したことを特徴とする請求項1又は2記載の軸受機構。   The bearing mechanism according to claim 1 or 2, wherein the concave portion is formed in a concave groove shape continuous in the circumferential direction, and the elastic body is formed in an annular shape continuous in the circumferential direction. 前記内輪を前記回転軸に対し軸方向へ移動するように設けるとともにこの内輪を軸方向へ加圧し、前記凹部を前記回転軸の外周面に設け、この凹部内に前記弾性体を設けたことを特徴とする請求項1〜3何れか1項記載の軸受機構。   The inner ring is provided so as to move in the axial direction with respect to the rotating shaft, the inner ring is pressurized in the axial direction, the concave portion is provided on the outer peripheral surface of the rotating shaft, and the elastic body is provided in the concave portion. The bearing mechanism according to any one of claims 1 to 3, wherein 前記回転軸の外周面には、前記内輪に対し軸方向に圧接されるように遠心ばねが設けられ、この遠心ばねは、前記回転軸と一体に回転した際の遠心力によって弾性的に拡径しながら軸方向へ弾性的に収縮するように構成されていることを特徴とする請求項4記載の軸受機構。   A centrifugal spring is provided on the outer peripheral surface of the rotating shaft so as to be pressed against the inner ring in the axial direction. The centrifugal spring is elastically expanded by a centrifugal force when rotating integrally with the rotating shaft. 5. The bearing mechanism according to claim 4, wherein the bearing mechanism is configured to elastically contract in the axial direction.
JP2015195736A 2015-10-01 2015-10-01 Bearing mechanism Pending JP2017067230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015195736A JP2017067230A (en) 2015-10-01 2015-10-01 Bearing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195736A JP2017067230A (en) 2015-10-01 2015-10-01 Bearing mechanism

Publications (1)

Publication Number Publication Date
JP2017067230A true JP2017067230A (en) 2017-04-06

Family

ID=58492162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195736A Pending JP2017067230A (en) 2015-10-01 2015-10-01 Bearing mechanism

Country Status (1)

Country Link
JP (1) JP2017067230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408742A (en) * 2020-03-16 2020-07-14 珠海格力电器股份有限公司 Bearing sleeve, electric spindle, machine tool and mounting method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154622U (en) * 1984-03-26 1985-10-15 帝人製機株式会社 Bearing device for high-speed rotating bodies
JPH11505589A (en) * 1995-12-05 1999-05-21 ヴィテス,ボリス A spindle unit having a spindle supported by a preloaded rolling bearing
JP2006234097A (en) * 2005-02-25 2006-09-07 Nsk Ltd Creep prevention device and rolling bearing
JP2015010648A (en) * 2013-06-28 2015-01-19 並木精密宝石株式会社 Bearing mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154622U (en) * 1984-03-26 1985-10-15 帝人製機株式会社 Bearing device for high-speed rotating bodies
JPH11505589A (en) * 1995-12-05 1999-05-21 ヴィテス,ボリス A spindle unit having a spindle supported by a preloaded rolling bearing
JP2006234097A (en) * 2005-02-25 2006-09-07 Nsk Ltd Creep prevention device and rolling bearing
JP2015010648A (en) * 2013-06-28 2015-01-19 並木精密宝石株式会社 Bearing mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408742A (en) * 2020-03-16 2020-07-14 珠海格力电器股份有限公司 Bearing sleeve, electric spindle, machine tool and mounting method thereof
CN111408742B (en) * 2020-03-16 2021-08-17 珠海格力电器股份有限公司 Bearing sleeve, electric spindle, machine tool and mounting method thereof

Similar Documents

Publication Publication Date Title
JP6210485B2 (en) Bearing mechanism
CN103112490A (en) Electric power steering system
JP6634785B2 (en) Rolling bearing
JP2016070498A (en) Rolling bearing
JP2017067230A (en) Bearing mechanism
JP2018021569A (en) Rolling bearing
CN203730561U (en) Aerostatic bearing
JP2006234098A (en) Bearing device
JP5592294B2 (en) Grinding method of work inner surface
JP2008240831A (en) Rolling bearing, and assembling method for rolling bearing
JP2006258115A (en) Double row tapered roller bearing unit
JP5271109B2 (en) Rolling bearing device
JP3195756U (en) Rotating mechanism
JP2014151402A (en) Bearing structure of wheel spindle
JP7449887B2 (en) friction transmission
JP2018004062A (en) Rolling bearing
JP2001107956A (en) Bearing device
JP2010190274A (en) Rolling bearing device and method of preloading rolling bearing
KR101416374B1 (en) Bearing unit
US2823963A (en) One-piece ring bearings
JP2022132855A (en) Bearing assembly for circular table and circular table device
JPH08170635A (en) Preload device for single row rolling bearing
KR101789722B1 (en) Rolling bearing having a cage having improved rotational stability
JP6435672B2 (en) Roller bearing
US20190234462A1 (en) Chabot true-axis bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200803