JP2017065906A - Air on-off circuit and part feeder - Google Patents

Air on-off circuit and part feeder Download PDF

Info

Publication number
JP2017065906A
JP2017065906A JP2015195836A JP2015195836A JP2017065906A JP 2017065906 A JP2017065906 A JP 2017065906A JP 2015195836 A JP2015195836 A JP 2015195836A JP 2015195836 A JP2015195836 A JP 2015195836A JP 2017065906 A JP2017065906 A JP 2017065906A
Authority
JP
Japan
Prior art keywords
port
air
valve
compressed air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015195836A
Other languages
Japanese (ja)
Other versions
JP6601111B2 (en
Inventor
喜文 田邉
Yoshifumi Tanabe
喜文 田邉
進 入江
Susumu Irie
進 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2015195836A priority Critical patent/JP6601111B2/en
Publication of JP2017065906A publication Critical patent/JP2017065906A/en
Application granted granted Critical
Publication of JP6601111B2 publication Critical patent/JP6601111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Sorting Of Articles (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air on-off circuit in which responsiveness of compressed-air injection is favorable, and in which a pressure of the compressed-air is stable during operation.SOLUTION: An air on-off circuit 1 supplies/exhausts compressed-air with respect to a part feeder 2 having an air supply/exhaust passage 21, and it includes a needle valve 5 for controlling a flow rate of the compressed-air and a four-port valve 6 arranged on the downstream of the needle valve 5. The four-port valve 6 is constituted so that it is switchable between a first switching position R for connecting an outlet of the needle valve 5 and an air supply/exhaust passage 21 of the part feeder 2, and a second switching position L for opening the outlet of the needle valve 5 and the air supply/exhaust passage 21 of the part feeder 2 to the atmosphere.SELECTED DRAWING: Figure 1

Description

本発明は、圧縮空気の噴射の応答性が良く、かつ動作時における圧縮空気の圧力を安定させることが可能なエアオンオフ回路およびパーツフィーダに関する。   The present invention relates to an air on / off circuit and a parts feeder that have good response of compressed air injection and can stabilize the pressure of compressed air during operation.

従来より、搬送路上で電子部品等のワーク(チップ)の姿勢判別を行い、不適切な姿勢のワークを搬送路上から排除または搬送路上で反転させて姿勢矯正しつつ、それ以外の適正姿勢のワークを所定の供給先に搬送可能なパーツフィーダが知られている(例えば特許文献1)。   Conventionally, workpieces (chips) such as electronic components are identified on the conveyance path, and workpieces with other appropriate postures are corrected while removing the inappropriate workpiece from the conveyance path or reversing the posture on the conveyance path. There is known a parts feeder capable of transporting to a predetermined supply destination (for example, Patent Document 1).

この種のパーツフィーダでは、例えば、図3に示すように、圧縮空気源3に接続されるレギュレータ4と、レギュレータ4の下流に配置される3ポート弁106と、3ポート弁106の下流に配置されるチェック弁付きニードル弁(スピードコントローラ)50とを備えるエアオンオフ回路10を適用して、不適切な姿勢のワークの排除または姿勢矯正を行うことが通例である。   In this type of parts feeder, for example, as shown in FIG. 3, the regulator 4 connected to the compressed air source 3, the three-port valve 106 disposed downstream of the regulator 4, and the downstream of the three-port valve 106. In general, the air on / off circuit 10 including the check valve needle valve (speed controller) 50 is applied to eliminate a workpiece having an inappropriate posture or correct the posture.

3ポート弁106は、レギュレータ4の出口に通ずる第1ポート106aと、パーツフィーダ2のエア給排路21に通ずる第2ポート106bと、大気域に通ずる第3ポート106cとを備える。3ポート弁106は、非通電時において、スプール160内の通路161を介して第2ポート106bと第3ポート106cとを連通させるとともに、第1ポート106aと第2ポート106bとを遮断し、レギュレータ4から供給される圧縮空気を第1ポート106a付近で閉止する。一方、通電時において、スプール160が変位し、スプール160内の通路162を介して第1ポート106aと第2ポート106bとを連通させて、レギュレータ4から供給される圧縮空気をチェック弁付きニードル弁50に供給する。   The three-port valve 106 includes a first port 106a that communicates with the outlet of the regulator 4, a second port 106b that communicates with the air supply / discharge passage 21 of the parts feeder 2, and a third port 106c that communicates with the atmosphere. The three-port valve 106 allows the second port 106b and the third port 106c to communicate with each other via the passage 161 in the spool 160 and shuts off the first port 106a and the second port 106b when not energized. The compressed air supplied from 4 is closed in the vicinity of the first port 106a. On the other hand, when energized, the spool 160 is displaced, and the first port 106a and the second port 106b are communicated with each other via the passage 162 in the spool 160, so that the compressed air supplied from the regulator 4 is supplied to the needle valve with a check valve. 50.

チェック弁付きニードル弁50は、圧縮空気の流量を調整し、所定流量の圧縮空気をパーツフィーダ2のエア給排路21に供給する。また、チェック弁付きニードル弁50は、3ポート弁106への通電がOFFになり、圧縮空気の逆向きの流れが生じた場合に、チェック弁51側で自由流を生じさせ、3ポート弁106に向けて圧縮空気を流すことができる。   The needle valve 50 with a check valve adjusts the flow rate of the compressed air, and supplies the compressed air of a predetermined flow rate to the air supply / discharge passage 21 of the parts feeder 2. Further, the needle valve 50 with a check valve generates a free flow on the check valve 51 side when the energization to the 3-port valve 106 is turned off and a reverse flow of compressed air occurs, and the 3-port valve 106 Compressed air can flow toward

このようなエアオンオフ回路10を用いることで、レギュレータ4により一定圧力に調整(減圧)された圧縮空気を3ポート弁106の開閉(ON・OFF)によりエア給排路21を介してワークWに伝え、その圧縮空気により、ワークWを搬送路20上から排除、あるいは搬送路20上で反転させることができる。   By using such an air on / off circuit 10, the compressed air adjusted (depressurized) to a constant pressure by the regulator 4 is transferred to the workpiece W via the air supply / discharge passage 21 by opening / closing (ON / OFF) of the three-port valve 106. The workpiece W can be removed from the conveying path 20 or reversed on the conveying path 20 by the compressed air.

ところで、このようなパーツフィーダ2においてワークWの高速排出および高速処理を適切に行うためには、圧縮空気が噴射された際に不適切な姿勢のワークWに隣接する他のワークWにまで影響を及ぼさないよう、高速搬送される各ワークWに圧縮空気を吹きかける時間を短くすることが重要であり、エアオンオフ回路10からの1回の噴射毎に、圧縮空気の圧力の立ち上がり、立ち下がりを早める必要がある。   By the way, in order to appropriately perform high-speed discharge and high-speed processing of the workpiece W in the parts feeder 2 as described above, when the compressed air is injected, the workpiece W is affected to other workpieces W adjacent to the workpiece W in an inappropriate posture. It is important to shorten the time for which the compressed air is blown to each workpiece W transported at a high speed so that the pressure rises and falls for each injection from the air on / off circuit 10. It is necessary to accelerate.

図3に示すエアオンオフ回路10では、電磁弁として3ポート弁106を用いることで、通電時にスムーズに給気して圧縮空気の圧力の立ち上がりを早めるとともに、ある到達圧力に達している状態で圧縮空気の圧力を下げたい(オフにしたい)場合、3ポート弁106とエア給排路21との間のエア配管経路7内の残圧を、エア給排路21(エア排出ブロック)および3ポート弁106の両方から抜いて排気(大気開放)することができ、圧縮空気の圧力の立ち下がり(キレ)を早めることができる。   In the air on / off circuit 10 shown in FIG. 3, by using a three-port valve 106 as an electromagnetic valve, the air is smoothly supplied during energization to accelerate the rise of the pressure of the compressed air, and the compression is performed in a state where a certain reached pressure is reached. When the air pressure is to be reduced (turned off), the residual pressure in the air piping path 7 between the 3-port valve 106 and the air supply / discharge path 21 is changed to the air supply / discharge path 21 (air discharge block) and 3 ports. Both valves 106 can be extracted and exhausted (released to the atmosphere), so that the fall of the pressure of compressed air (clearance) can be accelerated.

特開2015−30566号公報Japanese Patent Laying-Open No. 2015-30566

しかしながら、近年ワークWの微小化が進んでおり(超微小化)、ワークWの適切な排除や反転のために1回の噴射で圧縮空気をワークWに吹きかけられる時間がますます短くなっている。そのため、エア給排路21から噴射される圧縮空気の圧力が低くなって、チェック弁付きニードル弁50が最低使用圧力以下で使用されることになり、チェック弁側51の自由流が機能せず、ニードル弁側52の制御流のみが機能する状態になりやすい。このとき、ニードル弁側52は流量を絞った形で調整されており、残圧排気の配管抵抗が高く、排気流量が少ないので、図4に示すように、1回毎の噴射における立下り領域Aの傾斜が緩やかになり、圧縮空気の圧力の立ち下がりが遅くなって、立ち下がり応答性が低下するという問題がある。   However, in recent years, the miniaturization of the workpiece W has progressed (ultra miniaturization), and the time for which the compressed air can be blown onto the workpiece W by one injection for the proper removal and inversion of the workpiece W has become shorter and shorter. Yes. For this reason, the pressure of the compressed air injected from the air supply / discharge passage 21 is lowered, and the needle valve 50 with a check valve is used below the minimum operating pressure, and the free flow on the check valve side 51 does not function. Only the control flow on the needle valve side 52 tends to function. At this time, the needle valve side 52 is adjusted so that the flow rate is reduced, the piping resistance of the residual pressure exhaust is high, and the exhaust flow rate is small. Therefore, as shown in FIG. 4, the falling region in each injection There is a problem that the slope of A becomes gentle, the fall of the pressure of the compressed air becomes slow, and the fall response is lowered.

このような問題を解決するために、図5に示すように、チェック弁付きニードル弁50の代わりに3ポート弁106の入力側にニードル弁5を配置して、排気時のチェック弁の影響をなくした構成とすることが考えられる。このような構成であると、3ポート弁106が非通電となったときのエア配管経路7内の残圧がエア給排路21および3ポート弁106の両方から適切に大気開放されるので、図6に示すように1回毎の噴射における立下り領域Aの傾斜が急になり、立下り応答性が改善すると考えられる。   In order to solve such a problem, as shown in FIG. 5, the needle valve 5 is arranged on the input side of the 3-port valve 106 instead of the needle valve 50 with a check valve, and the influence of the check valve at the time of exhaust is reduced. It can be considered to have a lost configuration. With such a configuration, the residual pressure in the air piping path 7 when the 3-port valve 106 is de-energized is appropriately released to the atmosphere from both the air supply / discharge path 21 and the 3-port valve 106. As shown in FIG. 6, it is considered that the slope of the falling region A in each injection becomes steep and the falling response is improved.

しかしながら、このようなエアオンオフ回路20では、オフ中にレギュレータ4から供給される圧縮空気によりニードル弁5と3ポート弁106の第1ポート106aとの間のエア配管経路7内で圧力が上がるので、図6に示すように1発目の圧縮空気の圧力が2発目以降の圧力よりも高くなり、動作時すなわち動作初期の圧力が不安定になって、安定してワークを処理できないという新たな問題が生じる。   However, in such an air on / off circuit 20, the pressure increases in the air piping path 7 between the needle valve 5 and the first port 106 a of the three-port valve 106 due to the compressed air supplied from the regulator 4 during the off-state. As shown in FIG. 6, the pressure of the first compressed air becomes higher than the pressure of the second and subsequent pressures, the pressure at the time of operation, that is, the initial pressure becomes unstable, and the workpiece cannot be processed stably. Problems arise.

本発明は、このような課題を有効に解決することを目的としており、圧縮空気の噴射の応答性が早く、かつ動作時の圧力が安定しているエアオンオフ回路およびパーツフィーダを提供することを目的としている。   An object of the present invention is to effectively solve such problems, and to provide an air on / off circuit and a parts feeder in which compressed air injection response is fast and pressure during operation is stable. It is aimed.

本発明は以上のような問題点を鑑み、次のような手段を講じたものである。   The present invention takes the following measures in view of the above problems.

すなわち、本発明のエアオンオフ回路は、エア給排路を有する被噴射機構に対して圧縮空気を給排気するものであって、圧縮空気の流量を調整する流量制御弁と、この流量制御弁の下流に配置される方向切替弁とを備え、前記方向切替弁は、前記流量制御弁の出口と前記被噴射機構のエア給排路とを接続する第1の切替位置と、前記流量制御弁の出口および前記被噴射機構のエア給排路を大気開放する第2の切替位置とに切替え可能に構成される。   That is, the air on / off circuit of the present invention supplies / exhausts compressed air to / from an injection mechanism having an air supply / discharge path, and controls a flow rate control valve for adjusting the flow rate of the compressed air, A directional switching valve disposed downstream, wherein the directional switching valve has a first switching position that connects an outlet of the flow control valve and an air supply / discharge path of the injection target mechanism, and the flow control valve The outlet and the air supply / discharge path of the ejection target mechanism are configured to be switchable to a second switching position that opens to the atmosphere.

このような構成であると、被噴射機構のエア給排路への給気前において方向切替弁を第2の切替位置にすることで、流量制御弁を通過した圧縮空気が方向切替弁から大気中に開放されるので、流量制御弁と方向切替弁との間で圧縮空気の圧力が高くなることを抑制できる。そのため、方向切替弁が第1の切替位置に最初に切り替えられた際に、エア給排路から噴射される1発目の圧縮空気の圧力が、2発目以降の圧縮空気の圧力よりも高くなることを抑制できる。また、エア給排路への排気時、すなわち方向切替弁の第2の切替位置への切替直後には、方向切替弁と被噴射機構との間の残圧がエア給排路および方向切替弁の両方から適切に大気に開放されるので、圧縮空気の圧力の立ち下がりを早めることができる。したがって、動作時にエア給排路に給気される圧縮空気の圧力を安定させることができるとともに、立下り応答性を良好にして、圧縮空気の噴射の応答性を早めることができる。   With such a configuration, the compressed air that has passed through the flow control valve is moved from the direction switching valve to the atmosphere by setting the direction switching valve to the second switching position before supplying air to the air supply / discharge passage of the injection target mechanism. Since it opens inside, it can suppress that the pressure of compressed air becomes high between a flow control valve and a direction switching valve. Therefore, when the direction switching valve is first switched to the first switching position, the pressure of the first compressed air injected from the air supply / discharge path is higher than the pressure of the second and subsequent compressed air. Can be suppressed. Further, at the time of exhausting to the air supply / discharge path, that is, immediately after switching the direction switching valve to the second switching position, the residual pressure between the direction switching valve and the injection target mechanism is caused by the air supply / discharge path and the direction switching valve. Since both are appropriately released to the atmosphere, the fall of the pressure of the compressed air can be accelerated. Accordingly, it is possible to stabilize the pressure of the compressed air supplied to the air supply / exhaust passage during operation, improve the falling response, and accelerate the response of the compressed air injection.

上記効果を安定して発揮するためには、前記方向切替弁は、前記流量制御弁の出口に通ずる第1ポートと、前記被噴射機構のエア給排路に通ずる第2ポートと、大気域に通ずる第3ポートおよび第4ポートとを少なくとも備え、前記第1の切替位置で前記第1ポートと前記第2ポートを連通させ、前記第2の切替位置で前記第1ポートおよび前記第2ポートをそれぞれ前記第3ポートまたは第4ポートに連通させる4ポート以上の切替弁であることが好適である。   In order to exert the above effect stably, the direction switching valve includes a first port that communicates with an outlet of the flow control valve, a second port that communicates with an air supply / discharge path of the injection target mechanism, and an atmospheric region. At least a third port and a fourth port that communicate with each other, wherein the first port and the second port are communicated at the first switching position, and the first port and the second port are communicated at the second switching position. It is preferable that the switching valve has four or more ports that communicate with the third port or the fourth port, respectively.

特に、前記流量制御弁がニードル弁であることが好適である。或いは、一般的に入手しやすいチェック弁付きニードル弁(スピードコントコーラ)でも好適である。   In particular, the flow control valve is preferably a needle valve. Alternatively, a needle valve with a check valve (speed controller) that is generally available is also suitable.

或いは、流量制御弁の開閉を、手動でなく、デジタル制御するためには、前記流量制御弁が比例弁であることが好適である。   Alternatively, in order to digitally control the opening / closing of the flow control valve instead of manually, it is preferable that the flow control valve is a proportional valve.

一方、微小化したワークが搬送路上を高速搬送されている場合であっても、ワークの搬送路上からの排除または搬送路上での姿勢変更を適切に行うことができるパーツフィーダを実現するためには、上記エアオンオフ回路により給排気されるエア給排路を用いて、搬送路上を搬送されるワークのうち不良なものを前記搬送路上から排除または前記搬送路上で姿勢変更させる前記被噴射機構を備える構成であることが好ましい。   On the other hand, in order to realize a parts feeder that can appropriately remove a workpiece from the conveyance path or change the posture on the conveyance path even when a miniaturized workpiece is conveyed on the conveyance path at high speed And using the air supply / exhaust path that is supplied and exhausted by the air on / off circuit, including the ejected mechanism that removes defective ones of the workpieces conveyed on the conveying path from the conveying path or changes the posture on the conveying path. A configuration is preferred.

以上、説明した本発明によれば、給気前において方向切替弁を第2の切替位置にして流量制御弁を通過した圧縮空気を方向切替弁から大気中に開放させることで、動作時にエア給排路に給気される圧縮空気の圧力を安定させるとともに、方向切替弁の第2の切替位置への切替直後には、方向切替弁と被噴射機構との間の残圧をエア給排路および方向切替弁の両方から適切に大気に開放させて圧縮空気の圧力の立ち下がりを早め、圧縮空気の噴射の応答性を早めることができるエアオンオフ回路およびパーツフィーダを提供することが可能となる。   As described above, according to the present invention described above, air supply during operation is performed by opening the direction switching valve to the second switching position before supplying air and releasing the compressed air that has passed through the flow control valve from the direction switching valve to the atmosphere. Immediately after the direction switching valve is switched to the second switching position, the residual pressure between the direction switching valve and the injection target mechanism is reduced to the air supply / discharge path while stabilizing the pressure of the compressed air supplied to the exhaust path. It is possible to provide an air-on / off circuit and a parts feeder that can be released to the atmosphere appropriately from both the directional control valve and the directional switching valve to accelerate the fall of the pressure of the compressed air and to accelerate the response of the compressed air injection. .

本発明の一実施形態に係るエアオンオフ回路を示す模式図。The schematic diagram which shows the air on-off circuit which concerns on one Embodiment of this invention. 同エアオンオフ回路における圧縮空気の噴射時の圧力を示すグラフ。The graph which shows the pressure at the time of the injection of the compressed air in the air on / off circuit. 従来のエアオンオフ回路の構成を示す模式図。The schematic diagram which shows the structure of the conventional air on-off circuit. 同エアオンオフ回路における圧縮空気の噴射時の圧力を示すグラフ。The graph which shows the pressure at the time of the injection of the compressed air in the air on / off circuit. 従来構成を一部変更したエアオンオフ回路を示す模式図。The schematic diagram which shows the air on / off circuit which changed the conventional structure partially. 同エアオンオフ回路における圧縮空気の噴射時の圧力を示すグラフ。The graph which shows the pressure at the time of the injection of the compressed air in the air on / off circuit.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の一実施形態であるエアオンオフ回路1は、被噴射機構としての不良ワーク処理手段22を有するパーツフィーダ2に適用される。パーツフィーダ2は、搬送路20に沿って複数のワークWを搬送するものであり、図示しない良否判別手段によりワークWの姿勢等を判別して良否を判別する。不良と判別されたワークWは、不良ワーク処理手段22により、搬送路20に設定された所定の処理位置で搬送路20上から排除または搬送路20上で反転して姿勢矯正される。   As shown in FIG. 1, an air on / off circuit 1 according to an embodiment of the present invention is applied to a parts feeder 2 having a defective work processing means 22 as an injection target mechanism. The parts feeder 2 conveys a plurality of workpieces W along the conveyance path 20, and determines the quality by determining the posture of the workpiece W by a quality determination unit (not shown). The work W determined to be defective is removed from the conveyance path 20 at a predetermined processing position set in the conveyance path 20 or reversed on the conveyance path 20 by the defective workpiece processing means 22 to correct the posture.

不良ワーク処理手段22は、搬送路20の側壁20aを貫通して形成され、処理位置に向けてエアオンオフ回路1を介して供給された圧縮空気が通過するエア給排路21を有する。   The defective workpiece processing means 22 has an air supply / discharge path 21 formed through the side wall 20a of the conveyance path 20 and through which compressed air supplied through the air on / off circuit 1 passes toward the processing position.

エアオンオフ回路1は、圧縮空気源3(工場設備)に接続され、圧縮空気源3や負荷側の圧力によらず、圧縮空気源3から供給された圧縮空気を一定値に減圧するレギュレータ4と、レギュレータ4の下流に配置され、レギュレータ4で減圧された圧縮空気の流量を調整する流量制御弁としてのニードル弁5と、ニードル弁5の下流に配置される方向切替弁(電磁弁)としての4ポート弁6とを備える。圧縮空気源3とレギュレータ4とは第1エア配管経路7aで接続され、レギュレータ4とニードル弁5とは第2エア配管経路7bで接続され、ニードル弁5と4ポート弁6とは第3エア配管経路7cで接続され、4ポート弁6とエア給排路21とは第4エア配管経路7dで接続される。   The air on / off circuit 1 is connected to a compressed air source 3 (factory equipment) and includes a regulator 4 that reduces the compressed air supplied from the compressed air source 3 to a constant value regardless of the compressed air source 3 or the pressure on the load side. The needle valve 5 as a flow rate control valve that is arranged downstream of the regulator 4 and adjusts the flow rate of the compressed air decompressed by the regulator 4, and the direction switching valve (solenoid valve) that is arranged downstream of the needle valve 5 4 port valve 6 is provided. The compressed air source 3 and the regulator 4 are connected by a first air piping path 7a, the regulator 4 and the needle valve 5 are connected by a second air piping path 7b, and the needle valve 5 and the 4-port valve 6 are connected by a third air. The 4-port valve 6 and the air supply / discharge passage 21 are connected by a fourth air piping route 7d.

4ポート弁6は、第3エア配管経路7cすなわちニードル弁5の出口に通ずる第1ポート6aと、第4エア配管経路7dすなわちパーツフィーダ2のエア給排路21に通ずる第2ポート6bと、大気域に通ずる第3ポート6cおよび第4ポート6dとを備える。4ポート弁6は、スプール60の通路63を介して第1ポート6aと第2ポート6bを内部で連通させる図1(b)に示す第1の切替位置Rと、スプール60の通路61,62を介して第1ポート6aおよび第2ポート6bをそれぞれ第3ポート6cまたは第4ポート6dに内部で連通させる同図(a)に示す第2の切替位置Lとに切替え可能に構成される。なお、第1の切替位置Rでは、通路64を介して第3ポート6cと第4ポート6dとが連通される。   The 4-port valve 6 includes a first port 6a that communicates with the third air piping path 7c, that is, the outlet of the needle valve 5, and a second port 6b that communicates with the fourth air piping path 7d, that is, the air supply / discharge path 21 of the parts feeder 2. A third port 6c and a fourth port 6d communicating with the atmosphere are provided. The 4-port valve 6 includes a first switching position R shown in FIG. 1B that allows the first port 6 a and the second port 6 b to communicate with each other via a passage 63 of the spool 60, and passages 61 and 62 of the spool 60. The first port 6a and the second port 6b are configured to be switchable to a second switching position L shown in FIG. 6 (a) that internally communicates with the third port 6c or the fourth port 6d, respectively. Note that, at the first switching position R, the third port 6c and the fourth port 6d communicate with each other through the passage 64.

この切替えは、4ポート弁6に備わる電磁ソレノイド66への通電により、スプール60が変位することで行われ、電磁ソレノイド66への非通電時には、図1(a)に示す第2の切替位置Lとなり、ニードル弁5から4ポート弁6に供給された圧縮空気が第1ポート6aより入力されて通路61を通り第3ポート6cから常に大気中に開放される。一方、電磁ソレノイド66への通電時には、スプール60が変位して同図(b)に示す第1の切替位置Rとなり、ニードル弁5から供給された圧縮空気を第1ポート6aから入力させて通路63を介して第2ポート6bより出力させ、エア給排路21に給気する。これによりエア給排路21から所定位置に向けて圧縮空気が噴射される。そして、電磁ソレノイド66への通電が停止されると、スプール60が弾性体65の弾性力で押し戻されて第2の切替位置Lに戻り、このときの第4エア配管経路7d内の残圧は、エア給排路21から大気中に開放されるとともに、4ポート弁6の第2ポート6bから通路62を介して第4ポート6dより大気開放される。   This switching is performed by the displacement of the spool 60 by energization of the electromagnetic solenoid 66 provided in the 4-port valve 6. When the electromagnetic solenoid 66 is not energized, the second switching position L shown in FIG. Thus, the compressed air supplied from the needle valve 5 to the 4-port valve 6 is inputted from the first port 6a, passes through the passage 61, and is always released from the third port 6c to the atmosphere. On the other hand, when the electromagnetic solenoid 66 is energized, the spool 60 is displaced to the first switching position R shown in FIG. 5B, and the compressed air supplied from the needle valve 5 is input from the first port 6a to the passage. The air is supplied from the second port 6b through the air supply 63 and supplied to the air supply / discharge passage 21. Thereby, compressed air is injected toward the predetermined position from the air supply / discharge path 21. When the energization of the electromagnetic solenoid 66 is stopped, the spool 60 is pushed back by the elastic force of the elastic body 65 and returns to the second switching position L. At this time, the residual pressure in the fourth air piping path 7d is The air supply / discharge passage 21 is opened to the atmosphere, and the second port 6b of the 4-port valve 6 is opened to the atmosphere through the passage 62 through the fourth port 6d.

そのため、4ポート弁6が第2の切替位置Lにある圧縮空気の噴射前では、ニードル弁5から供給される圧縮空気が4ポート弁6から大気開放され、ニードル弁5と4ポート弁6との間の第3エア配管経路7cでの圧力が高くなることを抑制できるので、4ポート弁6が第1の切替位置Rに切り替えられた際に4ポート弁6の入力圧力の上昇が抑えられ、ランダムに動作させても一定の圧で動作させることができ、図2に示すように1発目と2発目以降とで噴射時の圧縮空気の圧力をほぼ同程度に揃えることができる。   Therefore, before the injection of compressed air in which the 4-port valve 6 is in the second switching position L, the compressed air supplied from the needle valve 5 is released to the atmosphere from the 4-port valve 6, and the needle valve 5, the 4-port valve 6, As a result, it is possible to suppress an increase in pressure in the third air piping path 7c between the two ports, and when the 4-port valve 6 is switched to the first switching position R, an increase in the input pressure of the 4-port valve 6 is suppressed. Even if it is operated randomly, it can be operated at a constant pressure, and as shown in FIG. 2, the pressure of the compressed air at the time of injection can be made substantially the same for the first and second and subsequent shots.

なお、圧縮空気の噴射時の立ち上がり応答性については、圧力の変化開始は、4ポート弁6などの電磁弁の応答時間により決定される。また、第4エア配管経路7dの抵抗によりある傾きで立ち上がり、電磁弁の駆動時間により到達圧力が決まる。さらに、対象の機能、ワークWにマッチさせるため、さらにニードル弁5で調整することで、圧の立ち上がりの傾きが決まる。   As for the rising response at the time of injection of compressed air, the start of pressure change is determined by the response time of an electromagnetic valve such as the 4-port valve 6. Further, the pressure rises with a certain slope due to the resistance of the fourth air piping path 7d, and the ultimate pressure is determined by the drive time of the solenoid valve. Furthermore, in order to match the target function and the workpiece W, further adjustment with the needle valve 5 determines the slope of the pressure rise.

また、4ポート弁6を図1(b)に示す第1の切替位置Rから同図(a)に示す第2の切替位置Lに戻した直後には、4ポート弁6とパーツフィーダ2のエア給排路21との間の第4エア配管経路7d内の残圧が、エア給排路21および4ポート弁6の両方から適切に大気開放されるので、圧縮空気の圧力の立ち下がりを早めることができる。   Immediately after the 4-port valve 6 is returned from the first switching position R shown in FIG. 1 (b) to the second switching position L shown in FIG. 1 (a), the 4-port valve 6 and the parts feeder 2 Since the residual pressure in the fourth air piping path 7d between the air supply / discharge passage 21 and the air supply / discharge passage 21 and the 4-port valve 6 is appropriately released to the atmosphere, the pressure of the compressed air falls. You can expedite.

また、圧縮空気は、ワークWの反転や排除などの用途や、ワークWのサイズにより、その圧力、流量が異なるため、レギュレータ4や4ポート弁6はこれらに合わせて適宜調整される。   In addition, since the pressure and flow rate of the compressed air vary depending on the application such as reversal or exclusion of the workpiece W and the size of the workpiece W, the regulator 4 and the 4-port valve 6 are adjusted appropriately according to these.

以上のように本実施形態のエアオンオフ回路1は、エア給排路21を有する被噴射機構としての不良ワーク処理手段22に対して圧縮空気を給排気するものであって、圧縮空気の流量を調整する流量制御弁としてのニードル弁5と、このニードル弁5の下流に配置される方向切替弁としての4ポート弁6とを備え、4ポート弁6は、ニードル弁5の出口とパーツフィーダ2のエア給排路21とを接続する第1の切替位置Rと、ニードル弁5の出口およびパーツフィーダ2のエア給排路21を大気開放する第2の切替位置Lとで切替え可能に構成される。   As described above, the air on / off circuit 1 according to the present embodiment supplies and exhausts compressed air to and from the defective work processing means 22 as an injection target mechanism having the air supply / discharge passage 21. A needle valve 5 as a flow control valve to be adjusted and a four-port valve 6 as a direction switching valve arranged downstream of the needle valve 5 are provided. The four-port valve 6 includes an outlet of the needle valve 5 and a parts feeder 2. The first switching position R for connecting the air supply / discharge path 21 and the second switching position L for opening the outlet of the needle valve 5 and the air supply / discharge path 21 of the parts feeder 2 to the atmosphere are configured to be switchable. The

このような構成であると、パーツフィーダ2のエア給排路21への給気前において4ポート弁6を第2の切替位置Lにすることで、ニードル弁5を通過した圧縮空気が4ポート弁6から大気中に開放されるので、ニードル弁5と4ポート弁6との間で圧縮空気の圧力が高くなることを抑制できる。そのため、4ポート弁6が第1の切替位置Rに切り替えられた際に、エア給排路21から噴射される1発目の圧縮空気の圧力が、2発目以降の圧縮空気の圧力よりも高くなることを抑制できる。また、エア給排路21への排気直後、すなわち4ポート弁6の第2の切替位置Lへの切替直後には、4ポート弁6とパーツフィーダ2との間の残圧がエア給排路21および4ポート弁6の両方から適切に大気中に開放されるので、圧縮空気の圧力の立ち下がりを早めることができる。したがって、動作時にエア給排路21に給気される圧縮空気の圧力を安定させることができるとともに、立下り応答性を良好にして、圧縮空気の噴射の応答性が早い高速のエアオンオフ回路1を実現できる。   With such a configuration, the compressed air that has passed through the needle valve 5 is transferred to the 4-port valve 6 by setting the 4-port valve 6 to the second switching position L before supplying air to the air supply / discharge passage 21 of the parts feeder 2. Since the valve 6 is opened to the atmosphere, an increase in the pressure of the compressed air between the needle valve 5 and the 4-port valve 6 can be suppressed. Therefore, when the 4-port valve 6 is switched to the first switching position R, the pressure of the first compressed air injected from the air supply / exhaust passage 21 is higher than the pressure of the second and subsequent compressed air. It can suppress becoming high. Immediately after exhausting to the air supply / exhaust passage 21, that is, immediately after switching the 4-port valve 6 to the second switching position L, the residual pressure between the 4-port valve 6 and the parts feeder 2 is the air supply / exhaust passage. Since both the 21-port valve 4 and the 4-port valve 6 are appropriately opened to the atmosphere, the fall of the pressure of the compressed air can be accelerated. Therefore, the pressure of the compressed air supplied to the air supply / discharge passage 21 during operation can be stabilized, the falling response is good, and the compressed air injection response is fast. Can be realized.

また、4ポート弁6は、ニードル弁5の出口に通ずる第1ポート6aと、パーツフィーダ2のエア給排路21に通ずる第2ポート6bと、大気域に通ずる第3ポート6cおよび第4ポート6dとを少なくとも備え、第1の切替位置Rで第1ポート6aと第2ポート6bを内部で連通させ、第2の切替位置Lで第1ポート6aおよび第2ポート6bをそれぞれ第3ポート6cまたは第4ポート6dに内部で連通させていることから、上記の効果を安定して発揮することができる。   The 4-port valve 6 includes a first port 6a that communicates with the outlet of the needle valve 5, a second port 6b that communicates with the air supply / discharge passage 21 of the parts feeder 2, and a third port 6c and a fourth port that communicate with the atmosphere. 6d at least in the first switching position R, the first port 6a and the second port 6b communicate with each other, and in the second switching position L, the first port 6a and the second port 6b are respectively connected to the third port 6c. Alternatively, since the fourth port 6d communicates with the inside, the above effect can be stably exhibited.

特に、流量制御弁がニードル弁5であることから、開弁中に圧縮空気との摩擦抵抗を小さく抑え、閉弁時の負荷を小さくできる。   In particular, since the flow control valve is the needle valve 5, the frictional resistance with the compressed air can be kept small during the valve opening, and the load when the valve is closed can be reduced.

さらに、本発明のパーツフィーダ2が、本実施形態のエアオンオフ回路1により給排気されるエア給排路21から圧縮空気を噴射して、搬送路20上を搬送されるワークWのうち不良なものを搬送路20上から排除または搬送路20上で姿勢変更する被噴射機構としての不良ワーク処理手段22を備えることから、不良ワーク処理手段22より毎回同程度の圧力の圧縮空気を素早く噴射でき、圧縮空気の応答性が早いので、微小化したワークWが搬送路20上を高速で搬送されている場合であっても、各ワーク20に圧縮空気が吹きかけられる時間を短くして、隣接する他のワークWに影響を及ぼすことなく、不適切なワークWを搬送路20上から排除または搬送路20上で反転させて姿勢変更を行うことができる。   Further, the parts feeder 2 of the present invention injects compressed air from the air supply / discharge path 21 that is supplied and exhausted by the air on / off circuit 1 of the present embodiment, and is defective among the workpieces W conveyed on the conveyance path 20. Since the defective workpiece processing means 22 is provided as an ejected mechanism for removing the object from the conveying path 20 or changing the posture on the conveying path 20, it is possible to quickly inject compressed air having the same pressure from the defective workpiece processing means 22 each time. Since the responsiveness of the compressed air is fast, even when the miniaturized workpiece W is conveyed on the conveyance path 20 at a high speed, the time during which the compressed air is blown to each workpiece 20 is shortened and adjacent to each other. Without affecting other workpieces W, it is possible to remove the inappropriate workpiece W from the conveyance path 20 or reverse the posture on the conveyance path 20 to change the posture.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific structure of each part is not limited only to embodiment mentioned above.

例えば、本実施形態では前記流量制御弁としてニードル弁5が用いられるが、これに限定されず、流量制御弁として比例弁やチェック弁付きニードル弁(スピードコントローラ)が用いられてもよい。流量制御弁が比例弁であることで、弁の開閉を手動でなくデジタル制御できる。また、流量制御弁が4ポート弁6の入力側に配置されることから、流量制御弁としてチェック弁付きニードル弁が最低使用圧力以下で使用されても好適に利用することができる。   For example, in the present embodiment, the needle valve 5 is used as the flow control valve. However, the present invention is not limited to this, and a proportional valve or a needle valve with a check valve (speed controller) may be used as the flow control valve. Since the flow control valve is a proportional valve, it is possible to digitally control the opening and closing of the valve instead of manually. Further, since the flow control valve is arranged on the input side of the 4-port valve 6, even if a needle valve with a check valve is used as the flow control valve at a pressure lower than the minimum operating pressure, it can be used suitably.

また、本実施形態では方向切替弁として4ポート弁6が用いられたが、これに限定されず、5ポート弁やそれ以上のポートを持つ切替弁が用いられてもよい。また、電磁弁でなく、圧電バルブが用いられてもよい。   In this embodiment, the 4-port valve 6 is used as the direction switching valve. However, the present invention is not limited to this, and a switching valve having a 5-port valve or more ports may be used. In addition, a piezoelectric valve may be used instead of the electromagnetic valve.

さらに、本実施形態のエアオンオフ回路1は被噴射機構としての不良ワーク処理手段22を有するパーツフィーダ2に適用されたが、これに限定されず、外観検査機、測定分別機およびテーピング機などに適用されてもよい。   Furthermore, the air on / off circuit 1 of the present embodiment is applied to the parts feeder 2 having the defective workpiece processing means 22 as the injection target mechanism, but is not limited to this, and is applied to an appearance inspection machine, a measurement sorting machine, and a taping machine. May be applied.

その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other configurations can be variously modified without departing from the spirit of the present invention.

1・・・エアオンオフ回路
2・・・パーツフィーダ
5・・・ニードル弁(流量制御弁)
6・・・4ポート弁(方向切替弁)
6a・・・第1ポート
6b・・・第2ポート
6c・・・第3ポート
6d・・・第4ポート
20・・・搬送路
21・・・エア給排路
22・・・不良ワーク処理手段(被噴射機構)
W・・・ワーク
R・・・第1の切替位置
L・・・第2の切替位置
DESCRIPTION OF SYMBOLS 1 ... Air on-off circuit 2 ... Parts feeder 5 ... Needle valve (flow control valve)
6 ... 4 port valve (Direction switching valve)
6a ... 1st port 6b ... 2nd port 6c ... 3rd port 6d ... 4th port 20 ... Conveyance path 21 ... Air supply / discharge path 22 ... Defective work processing means (Injected mechanism)
W: Work R: First switching position L: Second switching position

Claims (5)

エア給排路を有する被噴射機構に対して圧縮空気を給排気するエアオンオフ回路であって、
圧縮空気の流量を調整する流量制御弁と、
この流量制御弁の下流に配置される方向切替弁とを備え、
前記方向切替弁は、
前記流量制御弁の出口と前記被噴射機構のエア給排路とを接続する第1の切替位置と、前記流量制御弁の出口および前記被噴射機構のエア給排路を大気開放する第2の切替位置とに切替え可能に構成されることを特徴とするエアオンオフ回路。
An air on / off circuit for supplying and exhausting compressed air to an injection mechanism having an air supply / discharge path,
A flow control valve for adjusting the flow rate of the compressed air;
A direction switching valve disposed downstream of the flow control valve,
The direction switching valve is
A first switching position for connecting the outlet of the flow control valve and the air supply / discharge path of the injected mechanism; and a second switching position for opening the outlet of the flow control valve and the air supply / discharge path of the injected mechanism to the atmosphere. An air on / off circuit configured to be switchable to a switching position.
前記方向切替弁は、前記流量制御弁の出口に通ずる第1ポートと、前記被噴射機構のエア給排路に通ずる第2ポートと、大気域に通ずる第3ポートおよび第4ポートとを少なくとも備え、前記第1の切替位置で前記第1ポートと前記第2ポートとを連通させ、前記第2の切替位置で前記第1ポートおよび前記第2ポートをそれぞれ前記第3ポートまたは第4ポートに連通させる4ポート以上の切替弁であることを特徴とする請求項1に記載のエアオンオフ回路。   The direction switching valve includes at least a first port that communicates with an outlet of the flow control valve, a second port that communicates with an air supply / discharge path of the injection target mechanism, and a third port and a fourth port that communicate with an atmospheric region. The first port and the second port communicate with each other at the first switching position, and the first port and the second port communicate with the third port or the fourth port at the second switching position, respectively. The air-on / off circuit according to claim 1, wherein the switching valve has four or more ports. 前記流量制御弁がニードル弁であることを特徴とする請求項1または2に記載のエアオンオフ回路。   3. The air on / off circuit according to claim 1, wherein the flow control valve is a needle valve. 前記流量制御弁が比例弁であることを特徴とする請求項1または2に記載のエアオンオフ回路。   The air-on / off circuit according to claim 1, wherein the flow control valve is a proportional valve. 請求項1〜4の何れか1つに記載のエアオンオフ回路により給排気されるエア給排路を用いて、搬送路上を搬送されるワークのうち不良なものを前記搬送路上から排除または前記搬送路上で姿勢変更させる前記被噴射機構を備えることを特徴とするパーツフィーダ。   Using the air supply / exhaust path supplied and exhausted by the air on / off circuit according to any one of claims 1 to 4, defective work out of the workpieces conveyed on the conveyance path is excluded from the conveyance path or the conveyance A parts feeder comprising the jetting mechanism that changes its posture on a road.
JP2015195836A 2015-10-01 2015-10-01 Air on / off circuit and parts feeder Active JP6601111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015195836A JP6601111B2 (en) 2015-10-01 2015-10-01 Air on / off circuit and parts feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195836A JP6601111B2 (en) 2015-10-01 2015-10-01 Air on / off circuit and parts feeder

Publications (2)

Publication Number Publication Date
JP2017065906A true JP2017065906A (en) 2017-04-06
JP6601111B2 JP6601111B2 (en) 2019-11-06

Family

ID=58493963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195836A Active JP6601111B2 (en) 2015-10-01 2015-10-01 Air on / off circuit and parts feeder

Country Status (1)

Country Link
JP (1) JP6601111B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222346A (en) * 1978-11-29 1980-09-16 Reisgies Rolf W Milk line back flushing method and apparatus
JPH01139927U (en) * 1988-03-22 1989-09-25
JPH023599U (en) * 1988-06-21 1990-01-10
JP2006335487A (en) * 2005-05-31 2006-12-14 Daishin:Kk Vibratory parts feeder
JP2012505356A (en) * 2008-10-10 2012-03-01 ノルルハイドロ・オサケユキテュア Digital hydraulic system
JP2015030566A (en) * 2013-07-31 2015-02-16 シンフォニアテクノロジー株式会社 Speed detection device for part feeder, and part feeder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222346A (en) * 1978-11-29 1980-09-16 Reisgies Rolf W Milk line back flushing method and apparatus
JPH01139927U (en) * 1988-03-22 1989-09-25
JPH023599U (en) * 1988-06-21 1990-01-10
JP2006335487A (en) * 2005-05-31 2006-12-14 Daishin:Kk Vibratory parts feeder
JP2012505356A (en) * 2008-10-10 2012-03-01 ノルルハイドロ・オサケユキテュア Digital hydraulic system
JP2015030566A (en) * 2013-07-31 2015-02-16 シンフォニアテクノロジー株式会社 Speed detection device for part feeder, and part feeder

Also Published As

Publication number Publication date
JP6601111B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
TWI784302B (en) Liquid material discharge device and coating device equipped therewith
KR102605235B1 (en) Air injection mechanism and parts feeder
JP2007110004A (en) Chemical supply system
US20170343020A1 (en) Intermittent air discharge apparatus
CN107895686B (en) Substrate processing method, substrate processing apparatus, and recording medium
JP2007149948A5 (en)
JP6601111B2 (en) Air on / off circuit and parts feeder
JP6759790B2 (en) Gate valve, vacuum processing device and control method of vacuum processing device
WO2017073736A1 (en) Air injection mechanism and parts feeder
JP2017067250A (en) Movable body driving device
WO2017171022A1 (en) Failure detection device
JP2002079483A (en) Suction conveyance device
JP2000199502A (en) Actuator control circuit
DE502007000453D1 (en) High-speed loader
JP5348950B2 (en) Work transfer system
KR102667678B1 (en) Air injection mechanism and parts feeder
JP2006199439A (en) Chute blockage preventive device of long-distance conveyor
US20240117822A1 (en) Fluid circuit for intermittent air discharge
JPH10335417A (en) Wafer carrier mechanism and wafer treating apparatus utilizing the same
JP2016060006A (en) Work suction holding mechanism
JP5195608B2 (en) Paste coating apparatus, electronic component joining apparatus, paste coating method, and electronic component joining method
JP7281621B2 (en) SUBSTRATE HOLDING DEVICE AND SUBSTRATE HOLDING METHOD
JP5195626B2 (en) Paste coating apparatus, electronic component joining apparatus, paste coating method, and electronic component joining method
JP6617489B2 (en) Component supply apparatus and component supply method
JP6434899B2 (en) Electro-pneumatic regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250