JP2017064598A - Spiral type separation membrane element and method for manufacturing the same - Google Patents

Spiral type separation membrane element and method for manufacturing the same Download PDF

Info

Publication number
JP2017064598A
JP2017064598A JP2015190904A JP2015190904A JP2017064598A JP 2017064598 A JP2017064598 A JP 2017064598A JP 2015190904 A JP2015190904 A JP 2015190904A JP 2015190904 A JP2015190904 A JP 2015190904A JP 2017064598 A JP2017064598 A JP 2017064598A
Authority
JP
Japan
Prior art keywords
separation membrane
supply
permeation
thickness
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190904A
Other languages
Japanese (ja)
Inventor
直紀 中島
Naoki Nakajima
直紀 中島
博司 梅谷
Hiroshi Umetani
博司 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015190904A priority Critical patent/JP2017064598A/en
Publication of JP2017064598A publication Critical patent/JP2017064598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to reduce pressure loss of a spiral type separation membrane element.SOLUTION: A spiral type separation membrane element comprising a permeation fluid collection pipe, plural separation membranes which are wound around the permeation fluid collection pipe, and an encapsulation material which blocks an end of the separation membrane is characterized in that a thickness of the encapsulation material at the end of the separation membrane in a longer direction of the permeation fluid collection pipe is smaller than a thickness of a permeation side flow passage material.SELECTED DRAWING: Figure 8A

Description

本発明は、液体、気体等の流体に含まれる成分を分離するために使用されるスパイラル型分離膜エレメントに関する。   The present invention relates to a spiral separation membrane element used for separating components contained in a fluid such as liquid or gas.

液体、気体等の流体に含まれる成分を分離する方法としては、スパイラル型、平膜型、中空糸型エレメント等、様々な方法がある。特に、海水、かん水などに含まれるイオン性物質を取り除く水処理用途においては、一定容積の中に大きな膜面積を確保することができ、高効率で分離処理できるスパイラル型分離膜エレメントの利用が拡大している。   There are various methods for separating components contained in fluids such as liquid and gas, such as spiral type, flat membrane type, and hollow fiber type elements. In particular, in water treatment applications that remove ionic substances contained in seawater, brine, etc., the use of spiral-type separation membrane elements that can secure a large membrane area in a certain volume and can be separated efficiently is expanded. doing.

一般的に、スパイラル型分離膜エレメント(以下、単に「分離膜エレメント」と称する。)は、複数の分離膜と、分離膜を透過した流体を収集する透過流体収集管(以下、単に「収集管」と称する。)と、を備える。複数の分離膜は重ねられており、各分離膜は、その供給側の面が、隣り合う分離膜のうちの一方の供給側の面と向かい合うように配置され、かつ、その透過側の面が、隣り合う分離膜のうちの他方の透過側の面と向かい合うように配置される。
また、分離膜エレメントは、分離膜間に配置されることで流路を形成する流路材として、供給側流路材と、透過側流路材と、をさらに備える。供給側流路材は、隣り合う分離膜の供給側の面の間に挿入され、透過側流路材は、隣り合う分離膜の透過側の面の間に挿入される。隣り合う分離膜の透過側の面は、一辺(収集管の長手方向に平行かつ近接する辺)で収集管に対し開放され、残りの3辺は、隣り合う分離膜の透過側の面どうしで閉塞(封止)されている。一方、隣り合う分離膜の供給側の面は、一辺(収集管の長手方向に平行かつ近接する辺)で収集管に対し閉塞され、残りの3辺は供給側に開放されている。
In general, a spiral type separation membrane element (hereinafter simply referred to as “separation membrane element”) includes a plurality of separation membranes and a permeated fluid collection tube (hereinafter simply referred to as “collection tube”) that collects fluid that has passed through the separation membrane. ").). A plurality of separation membranes are stacked, and each separation membrane is arranged such that its supply-side surface faces one supply-side surface of adjacent separation membranes, and its permeation-side surface is These are arranged so as to face the other permeation side surface of the adjacent separation membranes.
The separation membrane element further includes a supply-side flow channel material and a permeation-side flow channel material as flow channel materials that form a flow channel by being disposed between the separation membranes. The supply-side channel material is inserted between the supply-side surfaces of the adjacent separation membranes, and the permeation-side channel material is inserted between the permeation-side surfaces of the adjacent separation membranes. The permeation side surface of the adjacent separation membrane is open to the collection tube at one side (the side parallel to and close to the longitudinal direction of the collection tube), and the remaining three sides are between the permeation side surfaces of the adjacent separation membranes. It is closed (sealed). On the other hand, the supply-side surface of the adjacent separation membrane is closed with respect to the collection tube at one side (side parallel to and close to the longitudinal direction of the collection tube), and the remaining three sides are open to the supply side.

供給流体は、巻回され円柱状になった分離膜エレメントの一方の端面(収集管の長手方向に直角な端面の一方)から流入し、供給側流路材により形成された供給側流路の中を通り、濾過されなかった(分離膜を透過しなかった)流体は、濃縮流体となり、もう一方の端面(収集管の長手方向に直角な端面のもう一方)から流出する。
分離膜エレメントは、供給流体に高い圧力を付与するほど、分離膜の裏表の面に大きな圧力差を作ることができ、分離膜を透過する流体の量を増やすことができ、透過流体を多く取り出すことができる。
The supply fluid flows in from one end face of the separation membrane element wound into a columnar shape (one of the end faces perpendicular to the longitudinal direction of the collection tube), and is supplied to the supply-side flow path formed by the supply-side flow path material. The fluid that has passed through and has not been filtered (not permeated through the separation membrane) becomes a concentrated fluid and flows out from the other end surface (the other end surface perpendicular to the longitudinal direction of the collection tube).
The higher the pressure applied to the supply fluid, the greater the separation membrane element can create a large pressure difference between the front and back surfaces of the separation membrane, the amount of fluid that permeates the separation membrane can be increased, and a larger amount of permeated fluid is taken out. be able to.

供給流体が供給側流路を通過する際に発生する抵抗(つまり圧力損失)の増加は、供給流体の圧力低下につながり、分離膜エレメントの造水量(1つの分離膜エレメントにおける1日あたりの透過流体生成量)の低下につながるため、これまで、圧力損失の低減を目的とした構造を有する供給側流路材が、種々報告されている(例えば、特許文献1、2参照)。   The increase in resistance (that is, pressure loss) generated when the supply fluid passes through the supply-side flow path leads to a decrease in the pressure of the supply fluid, and the amount of water produced in the separation membrane element (permeation per day in one separation membrane element) In the past, various supply-side channel materials having a structure aimed at reducing pressure loss have been reported (for example, see Patent Documents 1 and 2).

一方、本発明者らの知見によれば、分離膜エレメント端部において、供給流体が分離膜エレメントに流入(または流出)する際にも、流路の急激な縮小(または拡大)により圧力損失が発生し、エレメント造水量の低下につながるが、その圧力損失低減を目的とした取り組みは少ない。   On the other hand, according to the knowledge of the present inventors, even when the supply fluid flows into (or flows out) into the separation membrane element at the end of the separation membrane element, the pressure loss is caused by the rapid contraction (or expansion) of the flow path. Although this will lead to a decrease in the amount of water produced by the element, there are few efforts aimed at reducing the pressure loss.

特許文献3では、セラミックスフィルター用のハニカム構造体において、エレメント端面の封止部を外側に向かって突出させることで、流入部での供給流体の流れをスムーズにし、圧力損失を低減する方法が示されている。
しかし、本発明者らの知見によれば、この方法は、スパイラル型分離膜エレメントの分野では、封止部がスパイラル状をしていることによる突出部製作性の難しさや、突出部が存在すると端面上に端板を設け難くなるなどの理由により、実用し難く、現状、スパイラル型分離膜エレメントの流入部の圧力損失低減については、有用な方法は示されていない。
Patent Document 3 discloses a method for reducing the pressure loss by smoothing the flow of the supply fluid at the inflow portion by projecting the sealing portion of the element end face toward the outside in the honeycomb structure for ceramic filter. Has been.
However, according to the knowledge of the present inventors, in the field of spiral-type separation membrane elements, this method is difficult to produce protrusions due to the sealing part being spiral, or there is a protrusion. Because it is difficult to provide an end plate on the end face, it is difficult to put it to practical use. At present, no useful method has been shown for reducing the pressure loss at the inflow portion of the spiral separation membrane element.

特開2000−000437号公報JP 2000-000437 A 実開昭59−44506号公報Japanese Utility Model Publication No.59-44506 特開2012−91097号公報JP 2012-91097 A

本発明の目的は、分離膜エレメント端部において、供給流体が分離膜エレメント内に流入(または流出)する際に発生する圧力損失の低減を図ることにある。   An object of the present invention is to reduce the pressure loss that occurs when the supply fluid flows into (or flows out) into the separation membrane element at the end of the separation membrane element.

上記課題を解決するため、本発明は、下記の構成からなる。すなわち、
透過流体収集管と、
供給側の面と透過側の面とを有し、前記透過流体収集管の周囲に巻回された複数の分離膜と、
前記分離膜の供給側の面に沿って供給側流路を形成する供給側流路材と、
前記分離膜の透過側の面に沿って透過側流路を形成する透過側流路材と、
前記透過側流路を、前記分離膜の前記透過流体収集管の長手方向の端部及び長手方向に平行かつ前記透過流体収集管から遠いほうの端部において閉塞する封止材と
を備えるスパイラル型分離膜エレメントであって、
前記分離膜の前記透過流体収集管の長手方向の端部の前記封止材の厚みが、前記透過側流路材の厚みより小さいことを特徴とする、
スパイラル型分離膜エレメント。
前記封止材の、前記透過流体収集管の長手方向における端部の厚みが、前記透過側流路材の厚みの10%以上30%以下であることを特徴とする、請求項1に記載のスパイラル型分離膜エレメント。
In order to solve the above problems, the present invention has the following configuration. That is,
A permeating fluid collection tube;
A plurality of separation membranes having a supply side surface and a permeate side surface and wound around the permeate fluid collection tube;
A supply-side channel material that forms a supply-side channel along the supply-side surface of the separation membrane;
A permeate-side channel material forming a permeate-side channel along the permeate-side surface of the separation membrane;
A spiral type comprising: a permeation-side flow path; and a sealing material that closes the separation membrane at a longitudinal end portion of the permeation fluid collection tube and an end portion parallel to the longitudinal direction and far from the permeation fluid collection tube. A separation membrane element,
The thickness of the sealing material at the end of the separation membrane in the longitudinal direction of the permeated fluid collection tube is smaller than the thickness of the permeation side flow path material,
Spiral type separation membrane element.
The thickness of the edge part of the said sealing material in the longitudinal direction of the said permeated fluid collection pipe | tube is 10% or more and 30% or less of the thickness of the said permeation | transmission side flow path material. Spiral type separation membrane element.

前記透過流体収集管および前記透過流体収集管の周囲に巻回された前記分離膜を備えるスパイラル型分離膜エレメントの製造方法であって、下記工程(a)〜(d)を備えることを特徴とするスパイラル型分離膜エレメントの製造方法。   A method for producing a spiral separation membrane element comprising the permeation fluid collection tube and the separation membrane wound around the permeation fluid collection tube, comprising the following steps (a) to (d): For manufacturing a spiral separation membrane element.

(a)前記分離膜の供給側の面に沿って供給側流路材を設けて供給側流路を形成し、前記分離膜の透過側の面に沿って透過側流路材を設けて透過側流路を形成する工程、
(b)隣り合う前記分離膜の透過側の面を、前記透過流体収集管の長手方向の端部において、前記封止材を塗布し、接着させる工程、
(c)前記封止材を塗布したラインを、接着した隣り合う前記分離膜の供給側の面からプレスすることで、前記封止材の厚みを前記透過側流路材の厚みより小さくする工程
(d)前記工程(c)を経た前記分離膜を、前記透過流体収集管の周囲に巻回する工程。
(A) A supply-side flow path material is provided along the supply-side surface of the separation membrane to form a supply-side flow path, and a permeation-side flow path material is provided along the permeation-side surface of the separation membrane. Forming a side channel,
(B) Applying and adhering the sealing material to the permeation side surface of the adjacent separation membrane at the longitudinal end portion of the permeated fluid collection tube;
(C) The process of making the thickness of the said sealing material smaller than the thickness of the said permeation | transmission side channel material by pressing the line which apply | coated the said sealing material from the surface of the supply side of the adjoining said separation membrane. (D) A step of winding the separation membrane having undergone the step (c) around the permeated fluid collection tube.

本発明の分離膜エレメントは、エレメント端部において分離膜どうしを閉塞(封止)し、供給流体(または濃縮流体)の透過側流路への流入を防止する役割を果たす封止材の厚みを小さくすることにより、供給流体(または濃縮流体)が分離膜エレメントに流入(または流出)する際に発生する渦による圧力損失を低減することで、エレメントの造水性能を向上させる。   The separation membrane element of the present invention has a thickness of a sealing material that plays a role of blocking (sealing) the separation membranes at the end portion of the element and preventing the supply fluid (or concentrated fluid) from flowing into the permeate-side flow path. By making it smaller, the water loss performance of the element is improved by reducing pressure loss due to vortices generated when the supply fluid (or concentrated fluid) flows into (or flows out) the separation membrane element.

本発明の実施の一形態におけるスパイラル型分離膜エレメントの構造を示す概略図Schematic showing the structure of a spiral separation membrane element in one embodiment of the present invention 分離膜エレメント内部での、流体の流れを示した概略図Schematic showing the flow of fluid inside the separation membrane element 供給側流路材として用いられるドット形状の凹凸の上面図Top view of dot-shaped irregularities used as supply-side channel material 供給側流路材として用いられるドット形状の凹凸の断面図Cross-sectional view of dot-shaped irregularities used as supply-side channel material 透過側流路材として用いられるトリコットの上面図Top view of tricot used as permeate channel material 透過側流路材として用いられるトリコットの断面図Cross section of tricot used as permeate side channel material 透過側流路材として用いられるストライプ形状の凹凸の上面図Top view of striped irregularities used as permeate channel material 透過側流路材として用いられるストライプ形状の凹凸の断面図Cross-sectional view of striped irregularities used as permeate-side channel material 本発明の実施の一形態におけるスパイラル型分離膜エレメントの構造を示す概略図Schematic showing the structure of a spiral separation membrane element in one embodiment of the present invention 本発明の実施の一形態におけるスパイラル型分離膜エレメントの流体の流入および流出の様子示す概略図Schematic which shows the mode of the inflow and outflow of the fluid of the spiral separation membrane element in one Embodiment of this invention 本発明の実施の一形態におけるスパイラル型分離膜エレメントの上流側端部の断面模式図1 is a schematic cross-sectional view of an upstream end portion of a spiral separation membrane element according to an embodiment of the present invention. 従来のスパイラル型分離膜エレメントの上流側端部の断面模式図Cross-sectional schematic diagram of the upstream end of a conventional spiral-type separation membrane element 本発明の実施の一形態におけるスパイラル型分離膜エレメントの下流側端部の断面模式図Sectional schematic diagram of the downstream end of the spiral-type separation membrane element in one embodiment of the present invention 従来のスパイラル型分離膜エレメントの下流側端部の断面模式図Cross-sectional schematic diagram of the downstream end of a conventional spiral separation membrane element

本発明のスパイラル型分離膜エレメント(以下、単に「分離膜エレメント」と称する。)の実施態様の一例について、図面を参照しながら説明する。   An example of an embodiment of the spiral separation membrane element of the present invention (hereinafter simply referred to as “separation membrane element”) will be described with reference to the drawings.

図1に示すように、分離膜エレメント100は、分離膜1と、供給側流路材2と、透過側流路材3と、透過流体収集管4(以下、単に「収集管」と称する。)と、供給側端板7および透過側端板8を備える。分離膜エレメント100は、図示しない手段で供給される供給流体101を透過流体102と濃縮流体103とに分離することができる。   As shown in FIG. 1, the separation membrane element 100 is referred to as a separation membrane 1, a supply-side channel material 2, a permeation-side channel material 3, and a permeate fluid collection tube 4 (hereinafter simply referred to as “collection tube”). And a supply side end plate 7 and a transmission side end plate 8. The separation membrane element 100 can separate the supply fluid 101 supplied by means (not shown) into the permeated fluid 102 and the concentrated fluid 103.

収集管4は、一方向(図中のx軸方向)に長い円筒状の部材である。収集管4の側面には透過流体を収集管内部に導入するための複数の収集孔5が設けられている。   The collection tube 4 is a cylindrical member that is long in one direction (x-axis direction in the drawing). A plurality of collecting holes 5 for introducing permeated fluid into the collecting tube are provided on the side surface of the collecting tube 4.

分離膜1は、所望の分離性能を有する膜であればいずれでもよい。分離膜としては、NF(Nanofiltration)膜またはRO(Reverse Osmosis)膜が好ましく用いられる。分離膜は、たとえば、i)基材と、分離機能層と、基材と分離機能層との間に配置された多孔性支持層とを備えていてもよいし、あるいは、ii)分離機能層と基材とを備えていて、基材と分離機能層との間に多孔性支持層が設けられていない構成であってもよい。なお、ii)の分離膜は、i)の分離膜における多孔性支持層と同様の構成を有する層を分離機能層として備えてもよい。
分離膜1は、図2に示すように、供給流体101に接する供給側の面11と透過流体102に接する透過側の面12を有する。供給側流路に供給流体が供給されると、供給流体は、分離膜を供給側の面11から透過側の面12側へ透過した透過流体と、供給側流路に留まる濃縮流体103とに分離される。たとえば、上述したi)の分離膜の場合、分離機能層が供給側の面として配置され、基材が透過側の面として配置されることが多い。
The separation membrane 1 may be any membrane as long as it has a desired separation performance. As the separation membrane, an NF (Nanofiltration) membrane or an RO (Reverse Osmosis) membrane is preferably used. The separation membrane may include, for example, i) a base material, a separation functional layer, and a porous support layer disposed between the base material and the separation functional layer, or ii) a separation functional layer. And a base material, and a porous support layer may not be provided between the base material and the separation functional layer. Note that the separation membrane of ii) may include a layer having the same configuration as the porous support layer in the separation membrane of i) as a separation functional layer.
As shown in FIG. 2, the separation membrane 1 has a supply side surface 11 in contact with the supply fluid 101 and a permeation side surface 12 in contact with the permeate fluid 102. When the supply fluid is supplied to the supply-side flow path, the supply fluid is divided into a permeated fluid that has passed through the separation membrane from the supply-side surface 11 to the permeate-side surface 12 side, and a concentrated fluid 103 that remains in the supply-side flow path. To be separated. For example, in the case of the separation membrane of i) described above, the separation functional layer is often disposed as the supply side surface and the base material is disposed as the permeation side surface.

供給側流路材2は、分離膜1の供給側の面11の間に供給流体が流れる流路(隙間)を設けるために挿入されるスペーサーである。供給側流路材2としては、スペーサーの機能を有するものであればいずれでも良いが、網目の構造をもつネットが、安価で、かつスペーサーの機能も十分に果たすことから好ましい。
供給側流路材の厚みは、薄くすれば、供給流体の膜面線速度が大きくなり膜面の流れが乱れるので、膜表面で供給流体の濃度差が生じることで供給流体が分離膜へ透過するのを妨げる働きをする濃度分極が小さくなり、エレメントの性能が向上し好ましい。一方、供給流体中の不純物や微生物などのファウリング物質が供給側流路を閉塞してエレメント性能が低下し、エレメントの圧力損失が大きくなるという観点から、供給側流路材は薄くし過ぎることなく、供給側流路材の平均厚みは、0.1mm以上が好ましい。
そこで、供給側流路材の平均厚みは、0.1mm以上0.7mm以下、好ましくは0.25mm以上0.5mm以下、であることが明らかとなっている。
このとき、供給側流路材を5cm×5cmの大きさのサンプルになるよう切り出し、厚みを1つのサンプルから30箇所測定し、これを3つのサンプルについて行い、各サンプルで得られた値の平均値を、供給側流路材の平均厚みと定義することが好ましい。
ただし、供給側流路材2は、分離膜1の供給側の面11の間に供給流体が流れる隙間を設けられるものであれば、他の部材に変更可能である。また、分離膜1として凹凸が形成された分離膜を用いることで、その凹凸が流路の機能を果たすために、供給側流路材2を省略することもできる。凹凸が形成された分離膜を用いる場合は、流動抵抗の低減、濃度分極の低減、およびファウリングの低減を考慮したとき、その凹凸が、図3A、図3Bに示すように、ドット状であることが好ましい。
透過側流路材3は、分離膜1の透過側の面12の間に透過流体が流れる流路(隙間)を設けるために挿入されるスペーサーである。透過側流路材3としては、スペーサーの機能を有するものであればいずれでも良いが、流動抵抗が少なく透過流体が流れやすい構造が好ましく、表面に凹凸構造を形成するトリコットが最も一般的に用いられる。トリコットは、図4A、図4Bに示すように、編目の方向に垂直な断面において、糸が凸部となり分離膜を支持し、糸と糸の間の領域が凹部となり、分離膜を透過した透過流体の流路を形成している。
透過側流路材の厚みは、厚くすれば、流路が大きくなることで流動抵抗が小さくなり、透過流体が流れやすくなり好ましい。一方、一定容積中に確保できる膜面積の観点から、透過側流路材を厚くし過ぎることなく、透過側流路材の平均厚みは、0.5mm以下が好ましい。
そこで、透過側流路材の平均厚みは、0.1mm以上0.5mm以下、好ましくは0.2mm以上0.4mm以下、であることが明らかとなっている。
このとき、透過側流路材を5cm×5cmの大きさのサンプルになるよう切り出し、厚みを1つのサンプルから30箇所測定し、これを3つのサンプルについて行い、各サンプルで得られた値の平均値を、供給側流路材の平均厚みと定義することが好ましい。
ただし、透過側流路材3は、分離膜1の透過側の面の間に透過流体が流れる隙間を設けられるものであれば、他の部材に変更可能である。また、分離膜1として凹凸が形成された分離膜を用いることで、その凹凸が流路の機能を果たすために、透過側流路材3を省略することもできる。凹凸が形成された分離膜を用いる場合は、流動抵抗の低減を考慮したとき、その凹凸が、図5A、図5Bに示すような、ストライプ状であることが好ましい。
透過側流路材3は、図6に示すように分離膜1と封止材9で構成される封筒状膜対6において、向かい合う2つの透過側の面12の間に配置される。このとき、封止材9が塗布された分離膜1の3辺のうち向かい合う2辺においては、透過側流路材3が封止材の塗布ラインよりも内側になるよう配置される。すなわち、分離膜の透過側の面どうしが、封止材9によって閉塞される。
封筒状膜対6は、透過側の面12が内側になるように重ね合わされた2枚の分離膜により、または折り畳まれた1枚の分離膜1により形成される。封筒状膜対6の平面形状は長方形であり、封筒状膜対6は3辺が封止材9によって閉塞され、1辺が開放されている。封筒状膜対6は、その開放部が収集管4を向くように配置され、さらに収集管4の周囲に巻き付けられる。ここで、封止材9によって閉塞された3辺とは、封筒状膜対6を収集管4の周囲に巻き付けた際に収集管4の長手方向の端部に位置する分離膜1の辺(2辺)、及び、収集管4の長手方向に平行かつ収集管4から遠いほうの分離膜1の端部の辺をいう。分離膜エレメントにおいては、複数の封筒状膜対6が重なるように巻回されている。封筒状膜対6の外側の面は供給側の面11であり、隣り合う封筒状膜対6は供給側の面11が向かい合うように配置され、その間に、供給側流路材2が配置される。つまり、隣り合う封筒状膜対6の間には供給側流路が形成され、封筒状膜対6の内側には透過側流路が形成される。
また、重なり合う2枚の封筒状膜対6の向かい合う分離膜は、収集管の長手方向に平行かつ近接する辺で、封止材9によって封止され、これにより、供給流体が収集管に対し閉塞される。このとき、重なり合う2枚の封筒状膜対6の向かい合う分離膜は、収集管の長手方向に平行かつ近接する辺で、連続する1枚の分離膜であっても構わない。
ここで、封止材9とは、隣り合う2枚の分離膜の間を、接着することで、分離膜間を密封できる材料を指す。
The supply-side channel material 2 is a spacer inserted to provide a channel (gap) through which the supply fluid flows between the supply-side surfaces 11 of the separation membrane 1. The supply-side channel material 2 may be any material as long as it has a spacer function, but a net having a mesh structure is preferable because it is inexpensive and sufficiently functions as a spacer.
If the thickness of the supply-side channel material is reduced, the membrane surface linear velocity of the supply fluid increases and the flow of the membrane surface is disturbed, so that the supply fluid permeates the separation membrane due to the difference in concentration of the supply fluid on the membrane surface. This is preferable because the concentration polarization that works to prevent the element from becoming small is reduced, and the performance of the element is improved. On the other hand, the supply-side flow path material should be made too thin from the viewpoint that the fouling substances such as impurities and microorganisms in the supply fluid block the supply-side flow path and the element performance deteriorates and the pressure loss of the element increases. In addition, the average thickness of the supply-side channel material is preferably 0.1 mm or more.
Thus, it has been clarified that the average thickness of the supply-side channel material is 0.1 mm or more and 0.7 mm or less, preferably 0.25 mm or more and 0.5 mm or less.
At this time, the supply-side channel material is cut out to be a sample having a size of 5 cm × 5 cm, the thickness is measured from 30 points from one sample, this is performed for three samples, and the average value obtained in each sample is measured. The value is preferably defined as the average thickness of the supply-side channel material.
However, the supply-side channel material 2 can be changed to other members as long as a gap through which the supply fluid flows is provided between the supply-side surfaces 11 of the separation membrane 1. Further, by using a separation membrane having irregularities formed as the separation membrane 1, the irregularities serve as a flow path, so that the supply-side flow path material 2 can be omitted. When using separation membranes with irregularities formed, the irregularities are dot-shaped as shown in FIG. 3A and FIG. 3B when considering reduction in flow resistance, concentration polarization, and fouling. It is preferable.
The permeate-side channel material 3 is a spacer inserted to provide a channel (gap) through which the permeated fluid flows between the permeate-side surfaces 12 of the separation membrane 1. Any material may be used as the permeation side channel material 3 as long as it has a spacer function, but a structure with low flow resistance and easy flow of the permeated fluid is preferable, and a tricot that forms an uneven structure on the surface is most commonly used. It is done. As shown in FIGS. 4A and 4B, in the tricot, in the cross section perpendicular to the direction of the stitch, the yarn becomes a convex portion to support the separation membrane, and the region between the yarn and the yarn becomes a concave portion, and the permeation that has passed through the separation membrane. A fluid flow path is formed.
If the thickness of the permeate-side channel material is increased, the flow resistance is reduced by increasing the size of the channel, and the permeated fluid can easily flow. On the other hand, from the viewpoint of the membrane area that can be secured in a certain volume, the average thickness of the permeate-side channel material is preferably 0.5 mm or less without making the permeate-side channel material too thick.
Therefore, it has been clarified that the average thickness of the permeate-side channel material is 0.1 mm or more and 0.5 mm or less, preferably 0.2 mm or more and 0.4 mm or less.
At this time, the permeation-side channel material was cut out to be a sample having a size of 5 cm × 5 cm, the thickness was measured from 30 points from one sample, this was performed for three samples, and the average value obtained for each sample The value is preferably defined as the average thickness of the supply-side channel material.
However, the permeation-side flow path member 3 can be changed to another member as long as a gap through which the permeated fluid flows is provided between the permeation-side surfaces of the separation membrane 1. Further, by using a separation membrane having irregularities formed as the separation membrane 1, the irregularity functions as a flow path, so that the permeation side flow path material 3 can be omitted. In the case of using a separation membrane with irregularities formed, it is preferable that the irregularities have a stripe shape as shown in FIGS. 5A and 5B in consideration of reduction of flow resistance.
As shown in FIG. 6, the permeate-side flow path member 3 is disposed between the two permeate-side surfaces 12 in the envelope-shaped membrane pair 6 composed of the separation membrane 1 and the sealant 9. At this time, the permeation-side flow path material 3 is disposed on the inner side of the sealing material application line on two opposite sides of the three sides of the separation membrane 1 to which the sealing material 9 is applied. That is, the permeation side surfaces of the separation membrane are closed by the sealing material 9.
The envelope-shaped membrane pair 6 is formed by two separation membranes that are overlapped with each other so that the permeation-side surface 12 is on the inside, or by one folded separation membrane 1. The planar shape of the envelope-shaped membrane pair 6 is rectangular, and the envelope-shaped membrane pair 6 is closed on three sides by the sealing material 9 and opened on one side. The envelope-shaped membrane pair 6 is disposed so that the opening portion faces the collection tube 4, and is further wound around the collection tube 4. Here, the three sides blocked by the sealing material 9 are the sides of the separation membrane 1 (at the end in the longitudinal direction of the collection tube 4 when the envelope-shaped membrane pair 6 is wound around the collection tube 4 ( 2 sides) and the side of the end of the separation membrane 1 that is parallel to the longitudinal direction of the collection tube 4 and far from the collection tube 4. In the separation membrane element, the plurality of envelope membrane pairs 6 are wound so as to overlap each other. The outer surface of the envelope-shaped membrane pair 6 is a supply-side surface 11, and the adjacent envelope-shaped membrane pairs 6 are arranged so that the supply-side surfaces 11 face each other, and the supply-side flow path member 2 is arranged therebetween. The That is, a supply-side flow path is formed between adjacent envelope-shaped membrane pairs 6, and a permeate-side flow path is formed inside the envelope-shaped film pairs 6.
The opposing separation membranes of the two overlapping envelope membrane pairs 6 are sealed with a sealing material 9 on the side parallel to and close to the longitudinal direction of the collection tube, whereby the supply fluid is blocked from the collection tube. Is done. At this time, the opposing separation membranes of the two overlapping envelope membrane pairs 6 may be a single separation membrane that is continuous and close to the longitudinal direction of the collection tube.
Here, the sealing material 9 refers to a material that can seal between the separation membranes by adhering between two adjacent separation membranes.

封止材としては、酸やアルカリなどの薬液洗浄に耐えるものであれば、特に限定されず、市販されているものを用いることができる。また、封止材の形態としては、例えば、接着剤、接着テープ、熱接着フィルムなどが挙げられる。   The sealing material is not particularly limited as long as it can withstand cleaning with chemicals such as acid and alkali, and commercially available materials can be used. Moreover, as a form of a sealing material, an adhesive agent, an adhesive tape, a heat bonding film etc. are mentioned, for example.

封止材として用いられる接着剤としては、瞬間接着剤、並びに、2液混合タイプ、ホットメルト系、熱可塑性樹脂系、熱硬化性樹脂系、エマルジョン系およびエラストマー系の接着剤を含む公知の接着剤が挙げられる。
また、分離膜間を封止する方法としては、封止材を用いた接着に限らず、加熱、レーザーおよび超音波などによる溶着等が挙げられる。溶着とは、分離膜1を熱によって溶かし、加圧して冷却することで接着させることを指す。
Adhesives used as the sealing material include instant adhesives and known adhesives including two-component mixed type, hot melt type, thermoplastic resin type, thermosetting resin type, emulsion type and elastomer type adhesives. Agents.
In addition, the method for sealing between separation membranes is not limited to adhesion using a sealing material, and includes heating, welding by laser, ultrasonic waves, and the like. The term “welding” means that the separation membrane 1 is melted by heat, and bonded by being pressurized and cooled.

供給側端板7および透過側端板8は、それぞれ、巻回体の上流側端部および下流側端部に取り付けられる。   The supply side end plate 7 and the transmission side end plate 8 are attached to the upstream end and the downstream end of the wound body, respectively.

なお、分離膜エレメントは、上述した以外の部材を備えることができる。例えば、分離膜の巻回体の周囲は、フィルム等の他部材で覆われていてもよい。   Note that the separation membrane element can include members other than those described above. For example, the periphery of the wound body of the separation membrane may be covered with another member such as a film.

図1に示すように、供給流体101は、供給側端板7を介して分離膜1の供給側の面11の間にある供給側流路材内に供給される。供給側流路材内から分離膜1を透過した透過流体102は、透過側流路材3により封筒状膜対6内に形成された流路を通って、収集孔5を通り収集管4へと流れ込む。収集管4を流れた透過流体は、下流側端板8を通って、透過流体102として、分離膜エレメント100の外部に排出される。また、分離膜を透過しなかった供給流体は、濃縮流体103となり、供給側の面11の間を通って下流側端板8から外部に排出される。こうして、供給流体101は、透過流体102と濃縮流体103とに分離される。   As shown in FIG. 1, the supply fluid 101 is supplied into a supply-side channel material between the supply-side surfaces 11 of the separation membrane 1 via the supply-side end plate 7. The permeated fluid 102 that has permeated the separation membrane 1 from within the supply-side flow path material passes through the flow path formed in the envelope-shaped membrane pair 6 by the permeation-side flow path material 3, passes through the collection hole 5, and enters the collection tube 4. And flow into. The permeated fluid that has flowed through the collection tube 4 passes through the downstream end plate 8 and is discharged as the permeated fluid 102 to the outside of the separation membrane element 100. The supply fluid that has not permeated the separation membrane becomes the concentrated fluid 103, passes between the supply-side surfaces 11, and is discharged to the outside from the downstream end plate 8. Thus, the supply fluid 101 is separated into the permeate fluid 102 and the concentrated fluid 103.

図7に、エレメント上流側端部で、供給流体101が、分離膜エレメント内部に流入する様子と、エレメント下流側端部で、濃縮流体103が、分離膜エレメント外部に流出する様子と、を示す。
図8Aに、本発明の分離膜エレメントの上流側端部の、図7に示したD−D’断面の模式図を示す。図8Bに、従来の分離膜エレメントの上流側端部の、図7に示したD−D’断面の模式図を示す。どちらも、供給流体が、封筒状膜対6の間に流入し、供給側流路内に流入している様子を示している。
従来の流入部では、図8Bに示したように、分離膜1の端部の封止材9の厚みH9が透過側流路材3の厚みH3以上になっており、供給流体が封筒状膜対6の間に流入する際に、前記封筒状膜の封止端部に衝突して流れが乱れることとなる。結果として、封止端部で図8Bに示したような渦20が大きく形成され、圧力損失となる。
このとき、封止材を3cm×3cmの大きさのサンプルになるよう切り出し、封止材端部の厚みを1つのサンプルから30箇所測定し、これを3つのサンプルについて行い、各サンプルで得られた値の平均値を、封止材9の厚みH9と定義することが好ましい。これに対し、本発明の流入部では、図8Aに示したように、透過側流路材3の端部が、封止材9の透過側流路側の端部よりも内側に位置され、分離膜1の端部の封止材9の厚みH9が、透過側流路材3の厚みH3より小さくなっており、供給流体が封筒状膜対6の間に流入する際の、流れの乱れが小さくなる。結果として、本発明の分離膜エレメントの上流側端部では、封止端部で形成される渦20が従来よりも小さくなり、圧力損失が低減される。
図9Aに、本発明の分離膜エレメントの下流側端部の、図7に示したE−E’断面の模式図を示す。図9Bに、従来の分離膜エレメントの上流側端部の、図7に示したE−E’断面の模式図を示す。どちらも、濃縮流体が、封筒状膜対6の間から流出し、供給側流路内から流出している様子を示している。
従来の流出部では、流入部と同様に、図9Bに示したように、分離膜1の端部の封止材9の厚みH9が透過側流路材3の厚みH3以上になっており、濃縮流体が封筒状膜対6の間から流出する際に、拡大した流れが前記封筒状膜の封止端部に巻き込み、封止端部で渦30が大きく形成され、圧力損失となる。
これに対し、本発明の流出部では、図9Aに示したように、透過側流路材3の端部が、封止材9の透過側流路側の端部よりも内側に位置され、分離膜1の端部の封止材9の厚みH9が、透過側流路材3の厚みH3より小さくなっており、供給流体が封筒状膜対6の間から流出する際の、流れの巻き込みが小さくなる。結果として、本発明の分離膜エレメントの下流側端部では、封止端部で形成される渦30が従来よりも小さくなり、圧力損失が低減される。
また、供給流体101が供給側流路材2に流入する際に発生する圧力上昇部40に関して、従来の形態においては、図8Bに示したように、前記圧力上昇が供給側流路材端部で発生する。一方、本発明の形態では、図8Aに示したように、分離膜の供給側の面11と供給側流路材2の間の領域で発生する。分離膜の供給側の面近傍で上昇した圧力は、供給流体が分離膜を透過するために使用されるため、造水性能の向上に寄与する。その点においても本発明の形態は優れているといえる。
このとき、封筒状膜対6の封止材端部の厚みH9は、小さくすれば、エレメント端部での供給流体の流入(または濃縮流体の流出)で形成される渦が小さくなることで、圧力損失が小さくなり、好ましい。また、封筒状膜対6の封止材端部の厚みH9が、透過側流路材3の厚みH3より10%以上の大きさであると、封止材の接着性を確保でき、流体が封止材による閉塞部を通過してしまうリーク不良を抑制することができ、好ましい。
そこで、封筒状膜対6の封止材端部の厚みH9は、透過側流路材3の厚みH3より小さく10%以上であることが好ましく、透過側流路材3の厚みH3の30%以下10%以上であることがさらに好ましい。このような範囲にすることで、エレメント端部での供給流体の流入(または濃縮流体の流出)で形成される渦を小さくすることができ、圧力損失が小さくなり、好ましい。
<製造方法>
分離膜エレメント100の製造方法は、以下の工程を含む。
(a)分離膜1と封止材9から、透過側流路材3を内包するように封筒状膜対6を加工する工程
(b)透過側流路材を内包した封筒状膜対6と供給側流路材2を積層し、収集管4の周囲に巻囲する工程、
分離膜エレメントの製造方法は、その他に、分離膜1を製造する工程、供給側流路材2を製造する工程、透過側流路材3を製造する工程、工程(b)の後に端板等の他の部材を装着する工程など、さらなる工程を含んでもよい。
FIG. 7 shows a state in which the supply fluid 101 flows into the separation membrane element at the upstream end of the element and a state in which the concentrated fluid 103 flows out of the separation membrane element at the downstream end of the element. .
FIG. 8A is a schematic diagram of the DD ′ cross section shown in FIG. 7 at the upstream end of the separation membrane element of the present invention. FIG. 8B is a schematic diagram of the DD ′ cross section shown in FIG. 7 at the upstream end of the conventional separation membrane element. In both cases, the supply fluid flows between the envelope-shaped membrane pair 6 and flows into the supply-side flow path.
In the conventional inflow portion, as shown in FIG. 8B, the thickness H9 of the sealing material 9 at the end of the separation membrane 1 is equal to or greater than the thickness H3 of the permeate-side flow path material 3, and the supply fluid is an envelope-like membrane. When it flows in between the pair 6, it will collide with the sealing edge part of the said envelope-shaped film | membrane, and a flow will be disturb | confused. As a result, a large vortex 20 as shown in FIG. 8B is formed at the sealing end, resulting in a pressure loss.
At this time, the sealing material is cut out so as to be a sample having a size of 3 cm × 3 cm, and the thickness of the end portion of the sealing material is measured at 30 points from one sample, and this is performed for three samples. It is preferable to define the average of the values as the thickness H9 of the sealing material 9. On the other hand, in the inflow portion of the present invention, as shown in FIG. 8A, the end portion of the permeation side flow path member 3 is positioned inside the end portion of the sealing material 9 on the permeate side flow passage side, and is separated. The thickness H9 of the sealing material 9 at the end of the membrane 1 is smaller than the thickness H3 of the permeate-side flow path material 3, and the turbulence of the flow when the supply fluid flows in between the envelope-shaped membrane pair 6 is prevented. Get smaller. As a result, at the upstream end portion of the separation membrane element of the present invention, the vortex 20 formed at the sealed end portion becomes smaller than the conventional one, and the pressure loss is reduced.
FIG. 9A shows a schematic diagram of the EE ′ cross section shown in FIG. 7 at the downstream end of the separation membrane element of the present invention. FIG. 9B is a schematic diagram of the EE ′ cross section shown in FIG. 7 at the upstream end of the conventional separation membrane element. In both cases, the concentrated fluid flows out from between the envelope-shaped membrane pair 6 and out of the supply-side flow path.
In the conventional outflow part, like the inflow part, as shown in FIG. 9B, the thickness H9 of the sealing material 9 at the end of the separation membrane 1 is equal to or greater than the thickness H3 of the permeate-side flow path material 3. When the concentrated fluid flows out from between the pair of envelope-shaped membranes 6, the expanded flow is entangled with the sealed end portion of the envelope-shaped membrane, and a large vortex 30 is formed at the sealed end portion, resulting in a pressure loss.
On the other hand, in the outflow part of the present invention, as shown in FIG. 9A, the end of the permeate-side flow path member 3 is positioned on the inner side of the end of the sealant 9 on the permeate-side flow path side and separated. The thickness H9 of the sealing material 9 at the end of the membrane 1 is smaller than the thickness H3 of the permeate-side flow path material 3, and the entrainment of the flow when the supply fluid flows out from between the envelope-shaped membrane pair 6 occurs. Get smaller. As a result, at the downstream end portion of the separation membrane element of the present invention, the vortex 30 formed at the sealed end portion becomes smaller than the conventional one, and the pressure loss is reduced.
Further, regarding the pressure increase portion 40 that is generated when the supply fluid 101 flows into the supply side flow path member 2, in the conventional form, as shown in FIG. Occurs. On the other hand, in the embodiment of the present invention, as shown in FIG. 8A, it occurs in the region between the supply-side surface 11 of the separation membrane and the supply-side flow path member 2. The pressure increased in the vicinity of the surface on the supply side of the separation membrane is used for the supply fluid to permeate the separation membrane, and thus contributes to the improvement of the water production performance. In this respect, the embodiment of the present invention is excellent.
At this time, if the thickness H9 of the sealing material end of the envelope-shaped membrane pair 6 is reduced, the vortex formed by the inflow of supply fluid (or outflow of concentrated fluid) at the end of the element is reduced, The pressure loss is reduced, which is preferable. Further, when the thickness H9 of the end portion of the sealing material of the envelope-shaped membrane pair 6 is 10% or more than the thickness H3 of the permeation-side flow path material 3, the adhesiveness of the sealing material can be ensured, and the fluid It is preferable because it is possible to suppress a leakage defect that passes through the blocking portion due to the sealing material.
Therefore, the thickness H9 of the end portion of the sealing material of the pair of envelope films 6 is preferably smaller than the thickness H3 of the permeation side flow path material 3 and 10% or more, and 30% of the thickness H3 of the permeation side flow path material 3. More preferably, it is 10% or less. By setting it as such a range, the vortex formed by the inflow of the supply fluid (or the outflow of the concentrated fluid) at the end of the element can be reduced, and the pressure loss is reduced, which is preferable.
<Manufacturing method>
The manufacturing method of the separation membrane element 100 includes the following steps.
(A) Process of processing the envelope-shaped membrane pair 6 from the separation membrane 1 and the sealing material 9 so as to enclose the permeation-side channel material 3 (b) Envelope-shaped membrane pair 6 enclosing the permeation-side channel material; Laminating the supply-side channel material 2 and surrounding it around the collection tube 4;
The manufacturing method of the separation membrane element includes, in addition, a step of manufacturing the separation membrane 1, a step of manufacturing the supply-side flow channel material 2, a step of manufacturing the permeation-side flow channel material 3, an end plate after the step (b), etc. Additional steps such as a step of mounting other members may be included.

上記工程(a)では、分離膜1の透過側の面12の3辺に、接着剤を塗布し(あるいは封止材9となる他の材料を配置し)、分離膜1の透過側の面12上に、接着剤を塗布した3辺のうち向かい合う2辺において、透過側流路材3が接着剤の塗布ラインよりも内側になるよう配置し、さらにその上に分離膜1を、接着剤を塗布した分離膜と透過側の面12が向い合わせになるように、配置する。接着剤が固化すると、1枚の透過側流路材3を内包する2枚の分離膜1で形成された封筒状膜対6が得られる。このとき、接着剤が固化する前に、封筒状膜対6の供給側の面から接着剤が塗布されたラインをプレスすることにより、封止材9の厚みH9を透過側流路材3の厚みH3より小さくすることができる。このとき、接着剤の塗布量は、所望の厚みH9に見合う量を塗布する必要がある。
塗布量を多くすれば、分離膜間を封止するに足る接着力が得やすくなる。
一方、少なくすれば、プレスしたときの接着剤が必要以上に広がることを防ぐことができ、有効膜面積を多く確保できる。
In the step (a), an adhesive is applied to three sides of the permeation side surface 12 of the separation membrane 1 (or another material that becomes the sealing material 9 is arranged), and the permeation side surface of the separation membrane 1 12 is arranged so that the permeation-side flow path material 3 is on the inner side of the adhesive application line on the two opposite sides of the three sides coated with the adhesive, and the separation membrane 1 is further disposed thereon. Is arranged so that the separation membrane to which the coating is applied and the permeation side surface 12 face each other. When the adhesive is solidified, an envelope-like membrane pair 6 formed by two separation membranes 1 including one permeation-side flow path material 3 is obtained. At this time, before the adhesive is solidified, the thickness H9 of the sealing material 9 is reduced to that of the permeate-side flow path material 3 by pressing a line to which the adhesive is applied from the surface on the supply side of the envelope film pair 6. The thickness can be smaller than H3. At this time, it is necessary to apply an amount of adhesive corresponding to a desired thickness H9.
If the coating amount is increased, an adhesive force sufficient to seal between the separation membranes can be easily obtained.
On the other hand, if the amount is reduced, it is possible to prevent the adhesive at the time of pressing from spreading more than necessary, and a large effective film area can be secured.

工程(b)では、封止された方が同じ方向を向くように、封筒状膜対6を重ねる。封筒状膜対6の間には、つまり分離膜1の供給側の面11の間には、供給側流路材2が配置される。こうして重ねられた封筒状膜対6と供給側流路材2を、封筒状膜対6の工程(a)で封止されなかった1辺が内側になるようにして、収集管4の周囲に巻回する。   In the step (b), the envelope film pair 6 is overlapped so that the sealed direction faces the same direction. Between the envelope membrane pair 6, that is, between the supply-side surface 11 of the separation membrane 1, the supply-side flow path member 2 is disposed. The envelope membrane pair 6 and the supply-side flow path material 2 stacked in this way are placed around the collection tube 4 so that one side that is not sealed in the step (a) of the envelope membrane pair 6 is on the inside. Wind.

その後、巻回体の外側にフィラメントを巻き付けたり、収集管4の長手方向両端に端板を取り付けたりして、分離膜エレメントが製造される。   Then, a separation membrane element is manufactured by winding a filament around the wound body or attaching end plates to both ends of the collection tube 4 in the longitudinal direction.

本発明は以下の実施例によってなんら限定されるものではない。
(分離膜の作製)
ポリエチレンテレフタレート繊維から抄紙法で得られた不織布(糸径:1デシテックス、厚み:90μm、通気度:0.9cc/cm/sec)を基材とし、基材上に、ポリスルホンの16.0重量%、ジメチルホルムアミド(DMF)溶液を、室温(25℃)で、180μmの厚みでキャストした。キャスト後、ただちに純水中に浸漬して5分間放置した。こうして繊維補強ポリスルホン支持膜からなる多孔性支持層(厚さ135μm)ロールを作製した。
The present invention is not limited in any way by the following examples.
(Preparation of separation membrane)
A nonwoven fabric (yield diameter: 1 dtex, thickness: 90 μm, air permeability: 0.9 cc / cm 2 / sec) obtained from a papermaking method from polyethylene terephthalate fiber is used as a base material, and 16.0 weight of polysulfone is formed on the base material. %, Dimethylformamide (DMF) solution was cast at room temperature (25 ° C.) with a thickness of 180 μm. After casting, it was immediately immersed in pure water and left for 5 minutes. Thus, a porous support layer (thickness 135 μm) roll made of a fiber-reinforced polysulfone support membrane was produced.

多孔性支持層ロールを巻きだし(ほどき)、ポリスルホン支持膜の表面に、m−PDA1.5重量%、ε−カプロラクタム5.0重量%の水溶液を塗布した。エアーノズルから窒素を吹き付けることで支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn−ヘキサン溶液を、支持膜表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアーブローで除去し、50℃の熱水で洗浄して、2%のグリセリン水溶液に1分浸漬した後、100℃の熱風オーブンで3分間処理し、半乾燥状態の分離膜ロールを得た。   The porous support layer roll was unwound (unrolled), and an aqueous solution of 1.5% by weight of m-PDA and 5.0% by weight of ε-caprolactam was applied to the surface of the polysulfone support membrane. After removing excess aqueous solution from the surface of the support film by blowing nitrogen from an air nozzle, an n-hexane solution at 25 ° C. containing 0.06% by weight of trimesic acid chloride was applied so that the support film surface was completely wetted. . After that, the excess solution is removed from the membrane by air blow, washed with hot water at 50 ° C., immersed in a 2% glycerin aqueous solution for 1 minute, treated in a hot air oven at 100 ° C. for 3 minutes, and semi-dried. A separation membrane roll was obtained.

こうして、基材、ポリスルホン製支持膜、ポリアミド製分離機能層が順に積層された分離膜が得られた。   In this way, a separation membrane was obtained in which the base material, the polysulfone support membrane, and the polyamide separation functional layer were sequentially laminated.

(封止材端部の厚み)
表面から分離膜をはがした封止材を、3cm×3cmの大きさのサンプルになるよう切り出した。キーエンス製高精度形状測定システムKS−1100を用いて、封止材端部の厚みを1つのサンプルから30箇所測定し、これを3つのサンプルについて行い、封止材端部の厚みとして、各サンプルで得られた値の平均値を得た。
(供給側流路材および透過側流路材の厚み)
流路材を5cm×5cmの大きさのサンプルになるよう切り出した。キーエンス製高精度形状測定システムKS−1100を用いて、流路材の厚みを1つのサンプルから30箇所測定し、これを3つのサンプルについて行い、流路材の厚みとして、各サンプルで得られた値の平均値を得た。
(End material thickness)
The sealing material from which the separation membrane was peeled off from the surface was cut out to become a sample having a size of 3 cm × 3 cm. Using the high-precision shape measurement system KS-1100 manufactured by Keyence, the thickness of the end portion of the sealing material is measured from 30 points from one sample, and this is performed for three samples. The average value of the values obtained in step 1 was obtained.
(Thickness of supply side channel material and permeate side channel material)
The channel material was cut out to be a sample having a size of 5 cm × 5 cm. Using the Keyence high precision shape measurement system KS-1100, the thickness of the channel material was measured at 30 locations from one sample, and this was performed on three samples, and the thickness of the channel material was obtained for each sample. Average values were obtained.

(脱塩率(TDS除去率))
供給流体として食塩水を用い、食塩濃度:500mg/L、運転圧力:0.75MPa、運転温度:25℃、pH7でエレメント運転(回収率15%)した。このときの透過流体中の塩濃度を測定することにより、次の式から求めた。
TDS除去率(%)=100×{1−(透過流体中のTDS濃度/原流体中のTDS濃度)}。
(Desalination rate (TDS removal rate))
Saline was used as a supply fluid, and element operation (recovery rate: 15%) was performed at a salt concentration of 500 mg / L, an operation pressure of 0.75 MPa, an operation temperature of 25 ° C., and pH 7. By measuring the salt concentration in the permeating fluid at this time, it was obtained from the following equation.
TDS removal rate (%) = 100 × {1− (TDS concentration in permeate fluid / TDS concentration in raw fluid)}.

(造水量)
脱塩率の測定と同条件でエレメントを運転した。このとき、1つの分離膜エレメントにおける1日あたりの透過流体量(立方メートル)を、造水量(m/日)として表した。
(Water production)
The element was operated under the same conditions as the measurement of the desalting rate. At this time, the amount of permeated fluid (cubic meter) per day in one separation membrane element was expressed as the amount of water produced (m 3 / day).

(実施例1)
上述した分離膜と、透過側流路材としてトリコットと、封止材としてウレタン系接着剤(イソシアネート:ポリオール=1:3)と、を使用して、幅930mmの26枚の封筒状膜対を作製した。
その後、封筒状膜対と、供給側流路材として厚さ0.4mmのネットと、を使用して、有効膜面積が37.0mになるように、図1に示したような分離膜エレメントを作製した。
Example 1
Using the above-described separation membrane, tricot as the permeate-side channel material, and urethane adhesive (isocyanate: polyol = 1: 3) as the sealing material, 26 envelope membrane pairs having a width of 930 mm were formed. Produced.
Thereafter, the separation membrane as shown in FIG. 1 is used by using an envelope membrane pair and a net having a thickness of 0.4 mm as the supply-side channel material so that the effective membrane area becomes 37.0 m 2 . An element was produced.

このとき、図8Aおよび図9Aに示した透過側流路材の厚みH3と封止材の厚みH9は、H3=0.3mm、H9=0.03mmであり、透過側流路材と封止材の厚みの比は、H9/H3=0.1であった。   At this time, the thickness H3 of the permeation side channel material and the thickness H9 of the sealing material shown in FIGS. 8A and 9A are H3 = 0.3 mm and H9 = 0.03 mm. The thickness ratio of the material was H9 / H3 = 0.1.

このエレメントを圧力容器に入れ、上述の条件で運転したところ、脱塩率99.35%、造水量48.4m/日であった。各条件およびエレメントの評価結果を、他の実施例等とともに表1に示す。 When this element was put in a pressure vessel and operated under the above conditions, the salt rejection was 99.35% and the amount of water produced was 48.4 m 3 / day. Table 1 shows the evaluation results of the conditions and elements together with other examples.

Figure 2017064598
Figure 2017064598

(実施例2)
実施例2では、H3=0.3mm、H9=0.09mmであり、透過側流路材と封止材の厚みの比が、H9/H3=0.3である以外は、実施例1と同様の方法でエレメントを作製し評価を行った。その結果、脱塩率99.25%、造水量47.9m/日であった。
(Example 2)
In Example 2, H3 = 0.3 mm, H9 = 0.09 mm, and the ratio of the thickness of the permeation side flow path material to the sealing material is H9 / H3 = 0.3. Elements were prepared and evaluated in the same manner. As a result, the salt rejection was 99.25% and the amount of water produced was 47.9 m 3 / day.

(実施例3)
実施例3では、H3=0.3mm、H9=0.12mmであり、透過側流路材と封止材の厚みの比が、H9/H3=0.4である以外は、実施例1と同様の方法でエレメントを作製し評価を行った。その結果、脱塩率99.28%、造水量46.2m/日であった。
(Example 3)
In Example 3, H3 = 0.3 mm, H9 = 0.12 mm, and the ratio of the thickness of the permeation side flow path material to the sealing material is H9 / H3 = 0.4. Elements were prepared and evaluated in the same manner. As a result, the salt rejection was 99.28% and the amount of water produced was 46.2 m 3 / day.

(実施例4)
実施例4では、H3=0.3mm、H9=0.18mmであり、透過側流路材と封止材の厚みの比が、H9/H3=0.6である以外は、実施例1と同様の方法でエレメントを作製し評価を行った。その結果、脱塩率99.30%、造水量45.5m/日であった。
Example 4
In Example 4, H3 = 0.3 mm, H9 = 0.18 mm, and the ratio of the thickness of the permeation side flow path material to the sealing material is H9 / H3 = 0.6. Elements were prepared and evaluated in the same manner. As a result, the salt rejection was 99.30% and the amount of water produced was 45.5 m 3 / day.

(比較例1)
比較例1では、H3=0.3mm、H9=0.3mmであり、透過側流路材と封止材の厚みの比が、H9/H3=1.0である以外は、実施例1と同様の方法でエレメントを作製し評価を行った。その結果、脱塩率99.25%、造水量43.6m/日であった。
(Comparative Example 1)
In Comparative Example 1, H3 = 0.3 mm, H9 = 0.3 mm, and the ratio of the thickness of the permeation side flow path material to the sealing material is H9 / H3 = 1.0. Elements were prepared and evaluated in the same manner. As a result, the salt rejection was 99.25% and the amount of water produced was 43.6 m 3 / day.

本発明のスパイラル型分離膜エレメントは、特に、かん水や海水の塩除去に好適に用いることができる。   In particular, the spiral separation membrane element of the present invention can be suitably used for removing salt from brine or seawater.

1 分離膜
11 分離膜の供給流体側の面
12 分離膜の透過流体側の面
2 供給側流路材
3 透過側流路材
4 透過流体収集管
5 収集孔
6 封筒状膜対
7 上流側端板
8 下流側端板
9 封止材
100 スパイラル型分離膜エレメント
101 供給流体
102 透過流体
103 濃縮流体
20 流入側封止端部で発生する渦
30 流出側封止端部で発生する渦
40 供給流体が供給側流路材に流入する際に発生する圧力上昇部
H3 透過側流路材の厚み
H9 封止材端部の厚み
DESCRIPTION OF SYMBOLS 1 Separation membrane 11 Supply fluid side surface of separation membrane 12 Permeation fluid side surface of separation membrane 2 Supply side flow path material 3 Permeation side flow path material 4 Permeate fluid collection tube 5 Collection hole 6 Envelope-shaped membrane pair 7 Upstream end Plate 8 Downstream end plate 9 Sealing material 100 Spiral separation membrane element 101 Supply fluid 102 Permeating fluid 103 Concentrated fluid 20 Vortex 30 generated at the inflow side sealing end 30 Vortex generated at the outflow side sealing end 40 Supply fluid Pressure increase part generated when water flows into the supply side channel material H3 Thickness of the permeation side channel material H9

Claims (3)

透過流体収集管と、
供給側の面と透過側の面とを有し、前記透過流体収集管の周囲に巻回された複数の分離膜と、
前記分離膜の供給側の面に沿って供給側流路を形成する供給側流路材と、
前記分離膜の透過側の面に沿って透過側流路を形成する透過側流路材と、
前記透過側流路を、前記分離膜の前記透過流体収集管の長手方向の端部及び長手方向に平行かつ前記透過流体収集管から遠いほうの端部において閉塞する封止材と
を備えるスパイラル型分離膜エレメントであって、
前記分離膜の前記透過流体収集管の長手方向の端部の前記封止材の厚みが、前記透過側流路材の厚みより小さいことを特徴とする、
スパイラル型分離膜エレメント。
A permeating fluid collection tube;
A plurality of separation membranes having a supply side surface and a permeate side surface and wound around the permeate fluid collection tube;
A supply-side channel material that forms a supply-side channel along the supply-side surface of the separation membrane;
A permeate-side channel material forming a permeate-side channel along the permeate-side surface of the separation membrane;
A spiral type comprising: a permeation-side flow path; and a sealing material that closes the separation membrane at a longitudinal end portion of the permeation fluid collection tube and an end portion parallel to the longitudinal direction and far from the permeation fluid collection tube. A separation membrane element,
The thickness of the sealing material at the end of the separation membrane in the longitudinal direction of the permeated fluid collection tube is smaller than the thickness of the permeation side flow path material,
Spiral type separation membrane element.
前記封止材の、前記透過流体収集管の長手方向における端部の厚みが、前記透過側流路材の厚みの10%以上30%以下であることを特徴とする、請求項1に記載のスパイラル型分離膜エレメント。 The thickness of the edge part of the said sealing material in the longitudinal direction of the said permeated fluid collection pipe | tube is 10% or more and 30% or less of the thickness of the said permeation | transmission side flow path material. Spiral type separation membrane element. 前記透過流体収集管および前記透過流体収集管の周囲に巻回された前記分離膜を備えるスパイラル型分離膜エレメントの製造方法であって、下記工程(a)〜(d)を備えることを特徴とするスパイラル型分離膜エレメントの製造方法。
(a)前記分離膜の供給側の面に沿って供給側流路材を設けて供給側流路を形成し、前記分離膜の透過側の面に沿って透過側流路材を設けて透過側流路を形成する工程、
(b)隣り合う前記分離膜の透過側の面を、前記透過流体収集管の長手方向の端部において、前記封止材を塗布し、接着させる工程、
(c)前記封止材を塗布したラインを、接着した隣り合う前記分離膜の供給側の面からプレスすることで、前記封止材の厚みを前記透過側流路材の厚みより小さくする工程
(d)前記工程(c)を経た前記分離膜を、前記透過流体収集管の周囲に巻回する工程。
A method for producing a spiral separation membrane element comprising the permeation fluid collection tube and the separation membrane wound around the permeation fluid collection tube, comprising the following steps (a) to (d): For manufacturing a spiral separation membrane element.
(A) A supply-side flow path material is provided along the supply-side surface of the separation membrane to form a supply-side flow path, and a permeation-side flow path material is provided along the permeation-side surface of the separation membrane. Forming a side channel,
(B) Applying and adhering the sealing material to the permeation side surface of the adjacent separation membrane at the longitudinal end portion of the permeated fluid collection tube;
(C) The process of making the thickness of the said sealing material smaller than the thickness of the said permeation | transmission side channel material by pressing the line which apply | coated the said sealing material from the surface of the supply side of the adjoining said separation membrane. (D) A step of winding the separation membrane having undergone the step (c) around the permeated fluid collection tube.
JP2015190904A 2015-09-29 2015-09-29 Spiral type separation membrane element and method for manufacturing the same Pending JP2017064598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190904A JP2017064598A (en) 2015-09-29 2015-09-29 Spiral type separation membrane element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190904A JP2017064598A (en) 2015-09-29 2015-09-29 Spiral type separation membrane element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2017064598A true JP2017064598A (en) 2017-04-06

Family

ID=58490884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190904A Pending JP2017064598A (en) 2015-09-29 2015-09-29 Spiral type separation membrane element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017064598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421415A (en) * 2018-05-16 2018-08-21 南京帝膜净水材料开发有限公司 A kind of wound membrane element
CN113975917A (en) * 2021-11-22 2022-01-28 杭州科斯玛膜科技有限公司 Gas-liquid separation filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421415A (en) * 2018-05-16 2018-08-21 南京帝膜净水材料开发有限公司 A kind of wound membrane element
CN113975917A (en) * 2021-11-22 2022-01-28 杭州科斯玛膜科技有限公司 Gas-liquid separation filter

Similar Documents

Publication Publication Date Title
KR100846647B1 (en) Spiral separation membrane element
JP6136269B2 (en) Separation membrane element for water treatment
JP2017148805A (en) Separation membrane, separation membrane element, and method of manufacturing separation membrane
WO2013005826A1 (en) Separation membrane, separation membrane element, and method for producing separation membrane
JP7067060B2 (en) Separation membrane element
JP6609042B2 (en) Filter assembly including a spiral wound module, a salt seal, and an end cap
JP2015205269A (en) Separation membrane structure and separation membrane element
TW201347838A (en) Apparatus and method for bi-directional detect osmosis
JP5623984B2 (en) Spiral type filtration module and liquid processing method using the same
JP2020512930A (en) Spiral wound module assembly with integrated pressure monitoring
JP2017064598A (en) Spiral type separation membrane element and method for manufacturing the same
JP2015107483A (en) Spiral flow water treatment apparatus
JP2015110220A (en) Spiral-type separation membrane element and production method of the same
JP2006218345A (en) Spiral type membrane element and its production method
JP2018086638A (en) Spiral type separation membrane element
CN214681061U (en) Roll type membrane element and filtering device
JP2014140837A (en) Separation membrane element
JP6637232B2 (en) Permeation-side flow path material for spiral-type membrane element and method for producing the same
JP2019025419A (en) Separation membrane element and vessel
CN207929012U (en) A kind of wound fil-tration membrane module
JP2016068081A (en) Separation membrane element
JP6973650B2 (en) Separation membrane element and its usage, as well as water treatment equipment
JP2014193460A (en) Separation membrane and separation membrane element
WO2018021387A1 (en) Separation membrane element
JP2014193459A (en) Separation membrane element