JP2017063553A - Application method for power supply unit - Google Patents

Application method for power supply unit Download PDF

Info

Publication number
JP2017063553A
JP2017063553A JP2015187815A JP2015187815A JP2017063553A JP 2017063553 A JP2017063553 A JP 2017063553A JP 2015187815 A JP2015187815 A JP 2015187815A JP 2015187815 A JP2015187815 A JP 2015187815A JP 2017063553 A JP2017063553 A JP 2017063553A
Authority
JP
Japan
Prior art keywords
storage battery
power supply
inverter
load
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015187815A
Other languages
Japanese (ja)
Inventor
佐藤 豊
Yutaka Sato
豊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2015187815A priority Critical patent/JP2017063553A/en
Publication of JP2017063553A publication Critical patent/JP2017063553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an application method for power supply unit with a storage battery, capable of achieving a peak shift and simple life determination of the storage battery with a simple configuration.SOLUTION: The application method for power supply unit includes: connecting a coil, a rectifier circuit and an inverter between a commercial power supply and a load connected with the commercial power supply and receiving power supply from the commercial power supply; further parallel-connecting the storage battery between the rectifier circuit, which is constructed by building a switching semiconductor with a reflux diode into a bridge, and the inverter; always switching the semiconductor for boosting; performing conversion into DC to charge the storage battery; performing conversion into AC using an inverter; supplying electric power to a load after step-down; at peaking-shift, stopping switching of the semiconductor; and supplying electric power from the storage battery to the load.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電池を備える電源装置の運用方法に関するものである。 The present invention relates to a method for operating a power supply device including a storage battery.

商用電源を用いて負荷に電力を供給するに際し、省エネルギー化の為に商用電源のピークシフトが行われ、その為に商用電源と蓄電池を併用することが知られている。 When supplying power to a load using a commercial power source, it is known that a peak shift of the commercial power source is performed for energy saving, and the commercial power source and a storage battery are used together for that purpose.

例えば、ピークシフトの為に、商用電源をスイッチと整流回路を介して負荷と接続すると共に整流回路と負荷の間に蓄電池を並列に昇降圧チョッパーを介して接続し、商用電源の電力量上昇を感知した際はスイッチにより蓄電池から負荷へ電力を供給することが提案されている(特許文献1)。 For example, for peak shift, a commercial power supply is connected to a load via a switch and a rectifier circuit, and a storage battery is connected in parallel between the rectifier circuit and the load via a step-up / down chopper to increase the power amount of the commercial power supply. It has been proposed to supply electric power from a storage battery to a load with a switch when sensing (Patent Document 1).

これらに用いられる蓄電池の充電状態や不良或いは寿命によっては出力電圧低下などの恐れがある為、蓄電池の状態を内部抵抗の測定によりその交換時期を判断し、電源装置としての支障を来たさないようにすることも提案されている(特許文献2)。 Depending on the state of charge, failure, or life of the storage battery used for these, there is a risk of output voltage drop, etc. Therefore, the replacement time of the storage battery is judged by measuring internal resistance, so that it does not hinder the power supply device It has also been proposed to do so (Patent Document 2).

特開平11−72254号公報JP-A-11-72254 特開2010−127880号公報JP 2010-127880 A

しかしながら、これら従来の電源装置では、ピークシフト動作の際、蓄電池電力からインバータを介して負荷へ電力供給するため、商用電源を制御する必要があった。また、ピークシフトの為に、昇降圧チョッパーなどが必要であり、また、蓄電池の状態を監視するために内部抵抗測定の為の設備が必要であるなど、部品点数が増え回路として複雑なものであった。 However, in these conventional power supply devices, it is necessary to control the commercial power supply in order to supply power from the battery power to the load via the inverter during the peak shift operation. In addition, a step-up / step-down chopper is required for peak shifting, and equipment for measuring internal resistance is required to monitor the state of the storage battery. there were.

本発明は、これらの課題を解決したもので、商用電源とこれを整流して蓄電池を充電する整流回路と再び交流に戻して負荷へ電力を供給するインバータを備える電源装置において、商用電源と整流回路の間にコイルを配し、整流回路をスイッチング半導体で構成してスイッチング動作により電源電圧を昇圧して蓄電池を充電すると共にインバータを介して負荷へ電力を供給し、ピークシフト時はスイッチング半導体のスイッチングを停止して高圧の蓄電池からインバータを介して負荷へ電力を供給するようにしたものである。 The present invention solves these problems. In a power supply apparatus including a commercial power source, a rectifier circuit that rectifies the commercial power source and charges a storage battery, and an inverter that returns the current to an alternating current and supplies power to a load, the commercial power source and the rectifier are provided. Coils are arranged between the circuits, the rectifier circuit is made of a switching semiconductor, the power supply voltage is boosted by switching operation to charge the storage battery, and the power is supplied to the load via the inverter. Switching is stopped and power is supplied from a high-voltage storage battery to a load via an inverter.

この様な構成と運転方法にすることで、ピークシフト時の運用において、蓄電池の寿命や不具合が発生し、所定の電力が得られない場合であっても、スイッチング半導体に還流ダイオードを備えているので、回路には昇圧前の電力が常時印加され、負荷への電力供給は継続して行われることから、電源装置としての支障を来たす事がなくなる。
更に、蓄電池の放電電圧や放電時間を計測して、蓄電池の運用状態を監視する監視装置を備える事で、蓄電池の寿命を簡易的に予測することもできる。
By adopting such a configuration and operation method, the switching semiconductor is provided with a free-wheeling diode even when the battery life or trouble occurs and the predetermined power cannot be obtained during peak shift operation. Therefore, power before boosting is always applied to the circuit, and power supply to the load is continuously performed, so that there is no problem as a power supply device.
Furthermore, the lifetime of a storage battery can also be easily estimated by providing the monitoring apparatus which measures the discharge voltage and discharge time of a storage battery, and monitors the operation state of a storage battery.

本発明によれば、例え蓄電池に不具合が発生しても還流ダイオードによって形成される整流回路により最小限の電源が確保され、電源装置としての支障が無くなる。更に、蓄電池の運用状態を計測していれば蓄電池の寿命を簡易的に予測し得る効果もある。 According to the present invention, even if a malfunction occurs in the storage battery, a minimum power source is secured by the rectifier circuit formed by the freewheeling diode, and there is no trouble as a power supply device. Furthermore, if the operation state of the storage battery is measured, there is an effect that the life of the storage battery can be easily predicted.

本発明実施形態を説明するための構成図である。It is a block diagram for demonstrating this invention embodiment.

図に基づき、本発明の実施形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態を説明するための構成図である。図面において、1は商用電源、2はコイル、3は還流ダイオードを備えるスイッチング半導体4個をブリッジに組んだ整流回路、4は鉛蓄電池からなる蓄電池、5はインバータ、6は負荷である。整流回路4は還流ダイオードを備えるスイッチング半導体で、例えばIGBT(Insulated Gate Bipolar Transistor)やFET(field effect transistor)などが用いられ、これら4個をブリッジに組んで構成されている。これらは商用電源1にコイル2、整流回路3、インバータ5及び負荷6の順に接続され、蓄電池4は整流回路3とインバータ5の間にそれぞれ並列接続されている。図中7はインバータ5の入力側に並列に接続された電解コンデンサ、8、9はインバータ5の出力側で接続されたコイルと並列接続されたコンデンサである。 FIG. 1 is a configuration diagram for explaining an embodiment of the present invention. In the drawings, 1 is a commercial power source, 2 is a coil, 3 is a rectifier circuit in which four switching semiconductors each having a reflux diode are assembled in a bridge, 4 is a storage battery made of a lead storage battery, 5 is an inverter, and 6 is a load. The rectifier circuit 4 is a switching semiconductor provided with a freewheeling diode. For example, an IGBT (Insulated Gate Bipolar Transistor), an FET (field effect transistor), or the like is used, and these four are assembled in a bridge. These are connected to the commercial power source 1 in the order of the coil 2, the rectifier circuit 3, the inverter 5, and the load 6, and the storage battery 4 is connected in parallel between the rectifier circuit 3 and the inverter 5. In the figure, 7 is an electrolytic capacitor connected in parallel to the input side of the inverter 5, and 8 and 9 are capacitors connected in parallel to a coil connected on the output side of the inverter 5.

このように構成された電源装置は、常時は商用電源1の電力を受け、整流回路3のブリジに組まれたスイッチング半導体がオンオフを繰り返して直流に整流し、蓄電池4に電力を供給して充電しつつ、インバータ5により交流に変換されて負荷6に電力を供給する。この際、整流回路3のスイッチング半導体をオンオフすることで、コイル2により整流回路3の出力は昇圧される。 The power supply device configured in this manner always receives power from the commercial power source 1, and the switching semiconductor built in the bridge of the rectifier circuit 3 repeatedly turns on and off to rectify to direct current, and supplies power to the storage battery 4 for charging. However, it is converted into alternating current by the inverter 5 and power is supplied to the load 6. At this time, the output of the rectifier circuit 3 is boosted by the coil 2 by turning on and off the switching semiconductor of the rectifier circuit 3.

その理由は、整流回路3のスイッチング半導体をオフすると、還流ダイオードを介して商用電源の電力が供給されるが、オンすると蓄電池電圧により商用電源1の電力は整流回路3には流れ込まず、そのエネルギーはコイル2に蓄えられ、次のスイッチング半導体がオフの時、商用電源の電力と共に蓄えられたエネルギーが放出され昇圧されるものである。これを繰り返す為蓄電池4は高圧で充電される。 The reason is that when the switching semiconductor of the rectifier circuit 3 is turned off, the power of the commercial power supply is supplied via the freewheeling diode. However, when turned on, the power of the commercial power supply 1 does not flow into the rectifier circuit 3 due to the storage battery voltage. Is stored in the coil 2, and when the next switching semiconductor is off, the energy stored together with the power of the commercial power source is released and boosted. In order to repeat this, the storage battery 4 is charged at a high voltage.

なお、使用される蓄電池4自体も高圧用に構成されている。即ち、商用電源1の電圧が200Vの場合、通常なら電圧2Vの鉛蓄電池を100個直列に接続して200Vとなる様に構成するが、本発明の場合は昇圧されるので、例えば、2Vの鉛蓄電池を115個直列に接続して230Vとしている。 The storage battery 4 itself used is also configured for high voltage. That is, when the voltage of the commercial power supply 1 is 200V, normally, 100 lead batteries having a voltage of 2V are connected in series to be 200V. However, in the present invention, the voltage is boosted. 115 lead acid batteries are connected in series to 230V.

そして、インバータ5では、スイッチングのオンオフ比率を調整し、その出力が100Vと成るように調整しているものである。 In the inverter 5, the on / off ratio of switching is adjusted so that the output becomes 100V.

このようなスイッチングのオンオフは、それぞれ整流回路3に接続された整流制御部10とインバータ5に接続されたインバータ制御部11により各スイチング半導体のオンオフが制御されているものである。なお、図中12はインバータ5の出力側に接続された電圧計で、インバータ5の出力電圧を監視し、電圧が変動した場合はインバータ制御部11によりインバータ5のオンオフを制御し、出力電圧が100Vとなるようにしている。 Such switching on / off is such that on / off of each switching semiconductor is controlled by the rectification control unit 10 connected to the rectification circuit 3 and the inverter control unit 11 connected to the inverter 5. In the figure, reference numeral 12 denotes a voltmeter connected to the output side of the inverter 5, which monitors the output voltage of the inverter 5. When the voltage fluctuates, the inverter controller 11 controls on / off of the inverter 5, and the output voltage is It is set to 100V.

そして、商用電源1側に接続された電力量計13により電力量を計測し、ピークシフトの必要が生じた場合は、整流制御部10により、整流回路3のスイッチングを停止すると、商用電源1は、昇圧されずに整流回路3に電力が供給されるも、蓄電池4の電圧が230Vと高い為蓄電池4が放電してインバータ5を介して負荷6へ電力が供給される。そして2時間とか3時間の所定の時間経過後に再び整流回路3のスイッチングを開始するものであり、蓄電池の放電により商用電力の消費を抑制することが出来る。
なお、この際、蓄電池が万一、故障や寿命で所定の電力が得られない場合でも、スイッチングを停止している整流回路はダイオードブリッジにより電力を供給しているので、負荷への電力供給が途絶えることはない。
And when the amount of electric power is measured with the watt-hour meter 13 connected to the commercial power source 1 side and the necessity of a peak shift arises, if the rectification control part 10 stops switching of the rectifier circuit 3, the commercial power source 1 will be Although the power is supplied to the rectifier circuit 3 without being boosted, the voltage of the storage battery 4 is as high as 230 V, so the storage battery 4 is discharged and the power is supplied to the load 6 via the inverter 5. Then, switching of the rectifier circuit 3 is started again after a predetermined time of 2 hours or 3 hours, and the consumption of commercial power can be suppressed by discharging the storage battery.
At this time, even if the storage battery is not able to obtain the predetermined power due to failure or life, the rectifier circuit that has stopped switching supplies power through the diode bridge, so power supply to the load is not possible. There is no interruption.

この様に、本発明では、簡単な回路構成にしてスイッチング動作を停止するだけでピークシフト運転に切替えることができる。 Thus, in the present invention, it is possible to switch to the peak shift operation simply by stopping the switching operation with a simple circuit configuration.

更に、ピークシフト運転に移行した際に万一蓄電池に容量不足や故障、寿命などの支障を来たし、所定の電力が得られない場合であっても、商用電源が常に接続されているので、無瞬断に商用電源から電力を負荷に供給することが出来る。 Furthermore, even if the storage battery is inadequate in capacity, failure, life, etc. when it shifts to peak shift operation, and the specified power cannot be obtained, the commercial power supply is always connected. Electric power can be supplied to the load from a commercial power source in the event of a momentary interruption.

更に、蓄電池の出力側に電圧計14を接続し蓄電池の放電電圧を計測する共に、所定の電圧値になるまでの時間計測部15を付加して蓄電池の運用状態を監視する監視装置16を備えれば、所定の電圧値になるまでの蓄電池4の運用時間が分かり、その運用時間の長短により蓄電池の寿命や劣化状態がわかるので、蓄電池の交換時期も判別出来ると言う効果もある。 Furthermore, a voltmeter 14 is connected to the output side of the storage battery to measure the discharge voltage of the storage battery, and a monitoring device 16 is provided for monitoring the operating state of the storage battery by adding a time measurement unit 15 until a predetermined voltage value is reached. Then, since the operation time of the storage battery 4 until it becomes a predetermined voltage value is known, and the life and deterioration state of the storage battery are known from the length of the operation time, there is an effect that the replacement time of the storage battery can also be determined.

具体的には、商用電源として200Vを用い、整流回路のスイッチング操作により約270Vまで上昇させ、115個の単電池を直列接続した鉛蓄電池を約2.4V/セルで充電すると共に、インバータにより交流に変換すると共にその電圧を100Vに低下させて負荷に電力を供給し、商用電源の消費電力量が電力会社と契約した所定の電力量を超える恐れのある所定の値となり、ピークシフトが必要となった場合に、整流回路のスイッチングを停止して蓄電池から電力を負荷に供給する。この時の蓄電池の出力電圧は通常単電池当たり2Vであるので、2×115=230Vである。この蓄電池電圧は放電と共に低下し、放電電圧を電圧計により計測した値が約205Vとなった段階で、再び整流回路のスイッチングを開始し、蓄電池の充電と負荷への電力供給を再開する。 Specifically, 200V is used as a commercial power source, and it is raised to about 270V by switching operation of the rectifier circuit. A lead storage battery in which 115 unit cells are connected in series is charged at about 2.4V / cell, and an AC is supplied by an inverter. The power is supplied to the load by reducing the voltage to 100V and the power consumption amount of the commercial power source becomes a predetermined value that may exceed the predetermined power amount contracted with the power company, and a peak shift is required. When this happens, switching of the rectifier circuit is stopped and power is supplied from the storage battery to the load. Since the output voltage of the storage battery at this time is usually 2 V per unit cell, 2 × 115 = 230 V. This storage battery voltage decreases with the discharge, and when the value measured by the voltmeter becomes about 205 V, the switching of the rectifier circuit is started again, and the charging of the storage battery and the power supply to the load are resumed.

この205Vになるまでの時間は負荷の消費電力量にもよるが、例えば工場などにおいて、ピークシフト時間を1日当たり3時間行えば契約した電力量を超えない場合は、毎日所定の時間を決め、これを整流制御部10に入力させておけば、電力量計によらず、毎日同じ時間にピークシフト運転に切替え、蓄電池の放電電圧が205Vになるまで実施する。そして、この205Vになるまでの時間が3時間に近づいていることが監視装置により判別した場合は、その原因を調査し、必要なら新しい蓄電池を手配し交換することで、電源装置として支障なく利用することができる。 The time to reach 205V depends on the power consumption of the load. For example, in a factory or the like, if the peak shift time is performed for 3 hours per day and the contracted power amount is not exceeded, a predetermined time is determined every day. If this is input to the rectification control unit 10, the peak shift operation is switched every day at the same time regardless of the watt-hour meter, and the operation is performed until the discharge voltage of the storage battery reaches 205V. If the monitoring device determines that the time to reach 205V is approaching 3 hours, investigate the cause, and if necessary, arrange and replace a new storage battery so that it can be used as a power supply. can do.

以上の通り、本発明によれば、簡単な回路構成でピークシフトが出来ると共に、蓄電池の寿命も簡易的に予測し得て、電源装置として支障なく運用できるものである。 As described above, according to the present invention, the peak shift can be performed with a simple circuit configuration, the life of the storage battery can be easily predicted, and the battery can be operated without any trouble.

1 商用電源
2 コイル
3 整流回路
4 蓄電池
5 インバータ
6 負荷
16 監視装置
DESCRIPTION OF SYMBOLS 1 Commercial power source 2 Coil 3 Rectifier circuit 4 Storage battery 5 Inverter 6 Load 16 Monitoring device

Claims (2)

商用電源とこれに接続され商用電源より電力供給を受ける負荷との間にコイルと整流回路とインバータを接続し、更に整流回路とインバータの間に蓄電池を並列接続し、該整流回路は還流ダイオードを備えるスイッチング半導体をブリッジに組んだもので、常時は半導体をスイッチングすることで昇圧すると共に直流へ変換して蓄電池を充電すると共にインバータにより交流へ変換すると共に降圧して負荷へ電力を供給し、ピークシフト時には半導体のスイッチングを停止して蓄電池から負荷へ電力を供給することを特徴とする電源装置の運用方法。 A coil, a rectifier circuit, and an inverter are connected between a commercial power source and a load connected to the commercial power source, and a storage battery is connected in parallel between the rectifier circuit and the inverter. The switching semiconductor is built in a bridge, which is normally boosted by switching the semiconductor, converted to direct current to charge the storage battery, converted to alternating current by an inverter, and stepped down to supply power to the load. A method of operating a power supply apparatus, characterized in that during a shift, semiconductor switching is stopped and power is supplied from a storage battery to a load. 蓄電池の運用状態を監視する監視装置を備え、運用状態により蓄電池を交換する様にした請求項1に記載の電源装置の運用方法   The operation method of the power supply device according to claim 1, comprising a monitoring device that monitors an operation state of the storage battery, and replacing the storage battery according to the operation state.
JP2015187815A 2015-09-25 2015-09-25 Application method for power supply unit Pending JP2017063553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187815A JP2017063553A (en) 2015-09-25 2015-09-25 Application method for power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187815A JP2017063553A (en) 2015-09-25 2015-09-25 Application method for power supply unit

Publications (1)

Publication Number Publication Date
JP2017063553A true JP2017063553A (en) 2017-03-30

Family

ID=58429494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187815A Pending JP2017063553A (en) 2015-09-25 2015-09-25 Application method for power supply unit

Country Status (1)

Country Link
JP (1) JP2017063553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313109A (en) * 2020-02-25 2020-06-19 中国科学院电工研究所 Improved battery network system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313109A (en) * 2020-02-25 2020-06-19 中国科学院电工研究所 Improved battery network system and method

Similar Documents

Publication Publication Date Title
KR101308783B1 (en) Uninterruptible power-supply system
US9065277B1 (en) Battery backup system for uninterrupted power supply
US9490661B2 (en) Uninterruptible power supply
US20150115875A1 (en) Charging circuit
RU2014145345A (en) BATTERY CAPACITY MANAGEMENT
JP2015154606A (en) Power storage state regulating circuit, power storage state regulating system, and battery pack
US9906072B2 (en) Systems and methods for matching an end of discharge for multiple batteries
JPWO2014188711A1 (en) DC power supply circuit
JP2010154628A (en) Voltage correction control method of power accumulation module
JP2011250608A (en) Solar cell system
WO2012043744A1 (en) Charging control device
JP2011103746A (en) Charging method of battery
JP2010259165A (en) Power supply device, electronic device, and capacitor capacitance estimation method
JP5569249B2 (en) Uninterruptible power system
WO2018139200A1 (en) Power conversion device and power conditioner
JP2015133817A (en) Backup power supply device
JP2014171313A (en) Dc/dc converter
JP2016158353A (en) Power conversion device
JP2017063553A (en) Application method for power supply unit
JP2015226445A (en) Charger
KR101157429B1 (en) Synchronous boost dc/dc converter and fuel cell system comprising the same
JP2015213384A (en) Battery voltage compensation system
JP6214577B2 (en) Power supply system for float charging with balance function
KR101586827B1 (en) Hybrid type battery charger and charging method using the same
WO2019058821A1 (en) Power storage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107