JP2017063521A - Power receiving device - Google Patents

Power receiving device Download PDF

Info

Publication number
JP2017063521A
JP2017063521A JP2015186537A JP2015186537A JP2017063521A JP 2017063521 A JP2017063521 A JP 2017063521A JP 2015186537 A JP2015186537 A JP 2015186537A JP 2015186537 A JP2015186537 A JP 2015186537A JP 2017063521 A JP2017063521 A JP 2017063521A
Authority
JP
Japan
Prior art keywords
magnetic field
power
coil mechanism
power receiving
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186537A
Other languages
Japanese (ja)
Inventor
ナムトゥン ブー
Nam Tung Vu
ナムトゥン ブー
太樹 末吉
Hiroki Sueyoshi
太樹 末吉
畑中 武蔵
Takezo Hatanaka
武蔵 畑中
真弥 井上
Maya Inoue
真弥 井上
尚 津田
Nao Tsuda
尚 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2015186537A priority Critical patent/JP2017063521A/en
Priority to PCT/JP2016/077824 priority patent/WO2017051821A1/en
Publication of JP2017063521A publication Critical patent/JP2017063521A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Abstract

PROBLEM TO BE SOLVED: To enable charge with sufficient power transmission efficiency even when positioning accuracy of a power receiving device with respect to a power feeding device is low.SOLUTION: The power receiving device includes: a power receiving coil mechanism 2 that receives electricity by a magnetic field; a power supply coil mechanism 3 having a magnetic field generating surface 3a with a coil diameter larger than that of coil surfaces 2a and 2b of the power receiving coil mechanism 2 and being formed so that a magnetic field generating region of a curved magnetic force line in the magnetic field generating surface 3a expands more than a magnetic field generating region of a magnetic force line that travels straight; and a magnetic member 4 disposed in the power receiving coil mechanism 2.SELECTED DRAWING: Figure 1

Description

本発明は、非接触で電力を受給電する受給電装置に関する。   The present invention relates to a power supply / reception device that receives and supplies power without contact.

従来、給電装置から受電装置に電力を無線送電し、受電装置の二次電池に電力を充電する構成が開示されている(特許文献1〜6)。これらの無線送電においては、給電コイルや受電コイル、磁性部材についてコイル径や配置等を調整し、給電装置と充電装置とを所定の位置関係に設定した条件下で送電効率を高めるように構成されている。   Conventionally, a configuration has been disclosed in which power is wirelessly transmitted from a power feeding device to a power receiving device and a secondary battery of the power receiving device is charged with power (Patent Documents 1 to 6). These wireless power transmissions are configured to increase the power transmission efficiency under conditions in which the power supply coil, the power reception coil, and the magnetic member are adjusted in coil diameter, arrangement, etc., and the power supply device and the charging device are set in a predetermined positional relationship. ing.

特開2012−222989号公報JP 2012-2222989 A 特開2013−239692号公報JP 2013-233962 A 特開2013−240260号公報JP2013-240260A 特開2014−183660号公報JP 2014-183660 A 特開2014−204452号公報JP 2014-204452 A 特開2014−209813号公報JP 2014-209913 A

ところで、従来のように、給電装置に対して受電装置を所定の位置関係に設定しようとすると、受電装置を所定位置及び所定姿勢に位置決めすることが必要になるため、受電装置の取扱い性が低くなり易い。特に、携帯機器等のように受電装置が小型化した場合は、取り扱い性の低下が顕著になる。従って、給電装置に対する受電装置の位置決め精度が低くても十分な送電効率で充電できることが望まれている。   By the way, since it is necessary to position the power receiving device in a predetermined position and a predetermined posture when trying to set the power receiving device in a predetermined positional relationship with respect to the power feeding device as in the past, handling of the power receiving device is low. It is easy to become. In particular, when the power receiving device is downsized, such as a portable device, the handleability is significantly reduced. Therefore, it is desired that charging can be performed with sufficient power transmission efficiency even if the positioning accuracy of the power receiving device with respect to the power feeding device is low.

そこで、本発明の目的は、給電装置に対する受電装置の位置決め精度が低くても十分な送電効率で充電できる受給電装置を提供することにある。   Therefore, an object of the present invention is to provide a power supply / reception device that can be charged with sufficient power transmission efficiency even if the positioning accuracy of the power reception device with respect to the power supply device is low.

本発明は、受給電装置であって、磁界により受電する受電コイル機構と、前記受電コイル機構のコイル径よりも大きなコイル径の磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構と、前記受電コイル機構に配置された磁性部材と、を有する。   The present invention is a power supply / reception device, and includes a power receiving coil mechanism that receives power by a magnetic field, and a magnetic field generating surface having a coil diameter larger than a coil diameter of the power receiving coil mechanism, and a magnetic field of magnetic field lines that are curved on the magnetic field generating surface. A power supply coil mechanism formed so as to be larger than a magnetic field generation region of magnetic field lines in which the generation region goes straight; and a magnetic member disposed in the power reception coil mechanism.

上記の構成によれば、給電コイル機構の磁界生成面が受電コイル機構のコイル径よりも大きなコイル径を有し、さらに湾曲する磁力線の磁界生成領域が受電コイル機構に対して拡大されることによって、受電コイル機構が給電コイル機構の磁界生成面上において任意の場所に位置されても、給電コイル機構からの多くの湾曲した磁束が受電コイル機構に対して鎖交する可能性が高くなる。   According to the above configuration, the magnetic field generation surface of the power supply coil mechanism has a coil diameter larger than the coil diameter of the power reception coil mechanism, and the magnetic field generation region of the curved magnetic field lines is expanded with respect to the power reception coil mechanism. Even if the power receiving coil mechanism is positioned at an arbitrary position on the magnetic field generation surface of the power feeding coil mechanism, there is a high possibility that many curved magnetic fluxes from the power feeding coil mechanism are linked to the power receiving coil mechanism.

また、受電コイル機構においては、磁性部材が配置されているため、相互インダクタンスが増大している。これにより、受電コイル機構は、磁性部材により磁束密度が増大され、磁界強度が高められている。従って、磁性部材が受電コイル機構の磁界強度を増大させることによって、充電特性を高い状態に維持し、受電コイル機構の配置の自由度が高められた状態において所望以上の電力を受電コイル機構に受電させることが容易になっている。   Further, in the power receiving coil mechanism, since the magnetic member is disposed, the mutual inductance is increased. Thereby, as for the receiving coil mechanism, the magnetic flux density is increased by the magnetic member, and the magnetic field strength is increased. Therefore, the magnetic member increases the magnetic field strength of the receiving coil mechanism, thereby maintaining the charging characteristics in a high state and receiving more power than desired in the receiving coil mechanism in a state where the degree of freedom of arrangement of the receiving coil mechanism is increased. It is easy to make.

本発明における前記磁性部材は、前記受電コイル機構及び前記給電コイル機構の内で、前記受電コイル機構にのみ配置されていてもよい。   The magnetic member in the present invention may be disposed only in the power receiving coil mechanism among the power receiving coil mechanism and the power feeding coil mechanism.

上記の構成によれば、磁性部材が受電コイル機構にのみ配置されることによって、磁界生成面における直進する磁力線の磁界生成領域は、給電コイル機構に磁性部材が配置されている場合と比較して、磁界生成面の中心部の狭い領域に制限される。この結果、磁界生成面における湾曲する磁力線の磁界生成領域を直進する磁力線の磁界生成領域よりも容易に拡大させることができる。   According to the above configuration, the magnetic member is arranged only in the power receiving coil mechanism, so that the magnetic field generation region of the magnetic force lines moving straight on the magnetic field generation surface is compared with the case where the magnetic member is arranged in the power feeding coil mechanism. In addition, it is limited to a narrow area at the center of the magnetic field generating surface. As a result, the magnetic field generation region of the magnetic field lines that are curved on the magnetic field generation surface can be more easily expanded than the magnetic field generation region of the magnetic field lines that travel straight.

本発明は、前記受電コイル機構の前記磁性部材において、当該磁性部材の一端側と他端側との中間部に前記受電コイル機構が位置するように配置されていてもよい。   In the magnetic member of the power receiving coil mechanism according to the present invention, the power receiving coil mechanism may be disposed in an intermediate portion between one end side and the other end side of the magnetic member.

上記の構成によれば、磁性部材の一端側及び他端側の何れの側が給電コイル機構の磁界生成面に接近する姿勢にされた場合あっても、磁性部材の一端側と他端側との中間部に受電コイル機構が位置されているため、給電コイル機構の磁界生成面に対する受電コイル機構の一方のコイル面と他方のコイル面との位置関係が磁性部材の存在により大幅に異なる状態にされることがない。これにより、受電コイル機構の一方側のコイル面が磁界生成面に向き合う場合と、受電コイル機構の他方側のコイル面が磁界生成面に向き合う場合とで、磁性部材による充電特性に大幅な相違がないため、受電コイル機構を磁界生成面に対して配置する際の姿勢の自由度を高めることができる。   According to said structure, even if it is a case where any side of the one end side and other end side of a magnetic member is made into the attitude | position which approaches the magnetic field generation surface of a feed coil mechanism, between one end side and the other end side of a magnetic member Since the power receiving coil mechanism is located in the middle portion, the positional relationship between one coil surface of the power receiving coil mechanism and the other coil surface with respect to the magnetic field generation surface of the power feeding coil mechanism is significantly different due to the presence of the magnetic member. There is nothing to do. As a result, there is a significant difference in the charging characteristics of the magnetic member between when the coil surface on one side of the power receiving coil mechanism faces the magnetic field generation surface and when the coil surface on the other side of the power receiving coil mechanism faces the magnetic field generation surface. Therefore, the freedom degree of the attitude | position at the time of arrange | positioning a receiving coil mechanism with respect to a magnetic field generation surface can be raised.

本発明の受給電装置であって、前記受電コイル機構は、受電コイルと受電共振器とを有し、前記給電コイル機構は、給電コイルと、前記受電共振器との間で磁界共振により電力伝送を行う給電共振器とを有し、前記受電コイル機構は、前記受電コイルの一端側と他端側との中間部に前記受電共振器を配置していてもよい。   In the power supply / reception device according to the present invention, the power reception coil mechanism includes a power reception coil and a power reception resonator, and the power supply coil mechanism transmits power by magnetic field resonance between the power supply coil and the power reception resonator. And the power receiving coil mechanism may be arranged at an intermediate portion between one end side and the other end side of the power receiving coil.

上記の構成によれば、磁性部材の一端側と他端側との中間部に、受電コイル機構における受電コイルと受電共振器とが配置され、さらに、受電コイルの中間部に受電共振器が配置された構成となる。これにより、磁性部材の一端側及び他端側の何れの側が給電コイル機構の磁界生成面に接近する姿勢にされた場合あっても、磁界生成面に対する受電共振器及び受電コイル機構の一方のコイル面と他方のコイル面との位置関係が大幅に異なる状態にされることがない。これにより、受電コイル機構の一方側のコイル面が磁界生成面に向き合う場合と、受電コイル機構の他方側のコイル面が磁界生成面に向き合う場合とで、電力伝送の送電特性及び磁性部材による充電特性に大幅な相違がないため、受電コイル機構を磁界生成面に対して配置する際の姿勢の自由度を高めることができる。   According to said structure, the receiving coil and receiving resonator in a receiving coil mechanism are arrange | positioned in the intermediate part of the one end side and other end side of a magnetic member, and also a receiving resonator is arrange | positioned in the intermediate part of a receiving coil It becomes the composition which was done. As a result, even if either one of the one end side and the other end side of the magnetic member is brought into a posture approaching the magnetic field generation surface of the power feeding coil mechanism, one coil of the power receiving resonator and the power receiving coil mechanism with respect to the magnetic field generation surface The positional relationship between the surface and the other coil surface is not significantly different. Thus, the power transmission characteristics of the power transmission and the charging by the magnetic member are performed when the coil surface on one side of the power receiving coil mechanism faces the magnetic field generation surface and when the coil surface on the other side of the power receiving coil mechanism faces the magnetic field generation surface. Since there is no significant difference in characteristics, the degree of freedom in posture when the power receiving coil mechanism is arranged with respect to the magnetic field generation surface can be increased.

本発明は、受給電装置であって、磁界により受電する受電コイル機構を備えた駆動機器と、前記駆動機器を載置可能な載置面を有した台部材と、前記載置面に対向配置された磁界生成面を有し、前記磁界を生成する給電コイル機構とを備えた充電器とを有し、
前記給電コイル機構の磁界生成面は、前記受電コイル機構のコイル径よりも大きなコイル径を有し、前記駆動機器は、一部が前記載置面の周縁部上に位置した条件下で、前記磁界生成面における湾曲する磁力線の磁界生成領域上に前記受電コイル機構を位置させるように形成されている。
The present invention is a power supply / reception device, and includes a driving device having a power receiving coil mechanism for receiving power by a magnetic field, a base member having a mounting surface on which the driving device can be mounted, and an opposing arrangement to the mounting surface. And a charger having a feeding coil mechanism for generating the magnetic field,
The magnetic field generation surface of the power feeding coil mechanism has a coil diameter larger than the coil diameter of the power receiving coil mechanism, and the driving device is configured so that a part of the driving device is located on a peripheral portion of the mounting surface. The power receiving coil mechanism is formed so as to be positioned on the magnetic field generation region of the curved magnetic field lines on the magnetic field generation surface.

上記の構成において、直進する磁束の磁界生成領域においては、駆動機器が受電コイル機構のコイル面を磁束に対して平行にする姿勢で載置されると、受電コイル機構の電力の生成が停止されるが、上記の構成によれば、受電コイル機構が上記の磁界生成領域を避けて配置されるため、受電コイル機構が電力を受電しなくなるという事態が発生する可能性を低減することができる。   In the above configuration, in the magnetic field generation region of the magnetic flux that goes straight, when the driving device is placed in a posture in which the coil surface of the power receiving coil mechanism is parallel to the magnetic flux, the power generation of the power receiving coil mechanism is stopped. However, according to the above configuration, since the power receiving coil mechanism is arranged so as to avoid the magnetic field generation region, it is possible to reduce the possibility that the power receiving coil mechanism does not receive power.

本発明は、受給電装置であって、磁界により受電する受電コイル機構を備えた駆動機器と、前記駆動機器を載置可能な載置面を有した台部材と、前記載置面に対向配置され、前記磁界を生成する磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構とを備えた充電器とを有し、
前記給電コイル機構の前記磁界生成面は、前記受電コイル機構のコイル径よりも大きなコイル径を有し、前記駆動機器は、一端側と他端側との中間部に前記受電コイル機構が位置するように配置された磁性部材を有し、一部が前記載置面の周縁部上に位置した条件下で、前記磁界生成面における湾曲する磁力線の磁界生成領域上に前記受電コイル機構を位置させるように形成されている。
The present invention is a power supply / reception device, and includes a driving device having a power receiving coil mechanism for receiving power by a magnetic field, a base member having a mounting surface on which the driving device can be mounted, and an opposing arrangement to the mounting surface. And a feeding coil mechanism having a magnetic field generation surface for generating the magnetic field and formed so that a magnetic field generation region of a curved magnetic force line on the magnetic field generation surface is larger than a magnetic field generation region of a magnetic force line that travels straight. With a charger,
The magnetic field generation surface of the power feeding coil mechanism has a coil diameter larger than the coil diameter of the power receiving coil mechanism, and the power receiving coil mechanism is located in an intermediate portion between one end side and the other end side of the driving device. The receiving coil mechanism is positioned on the magnetic field generation region of the magnetic field lines that are curved on the magnetic field generation surface under the condition that the magnetic member is arranged in a manner and a part is positioned on the peripheral portion of the placement surface. It is formed as follows.

上記の構成によれば、受電コイル機構を充電する場合における受電コイル機構の配置の自由度及び配置したときの受電コイル機構の姿勢の自由度を拡大できることから、駆動機器を充電器の台部材に対して載置する際の位置決めや姿勢を気にすることなく容易に載置することが可能になる。   According to the above configuration, the degree of freedom of the arrangement of the power receiving coil mechanism when charging the power receiving coil mechanism and the degree of freedom of the posture of the power receiving coil mechanism when arranged can be expanded. On the other hand, it becomes possible to place easily without worrying about the positioning and posture at the time of placing.

本発明における前記台部材は、前記載置面の周縁部から外周方向に傾斜され、前記駆動機器を滑りにより前記載置面の内周方向に移動させる側周面を有していてもよい。   The said base member in this invention may have the side peripheral surface which inclines in the outer peripheral direction from the peripheral part of the said mounting surface, and moves the said drive device to the inner peripheral direction of the said mounting surface by sliding.

上記の構成によれば、台部材における側周面が載置面よりも周縁部から外周方向に傾斜されることによって、載置面から離れた側の側周面のサイズは、載置面よりも大きなものとなる。そして、側周面に当接するように駆動機器を載置した場合でも、駆動機器が側周面を内周方向に滑って載置面上に移動する。これにより、側周面と載置面とが載置領域となり、この載置領域に駆動機器を載置する動作を行うことで載置面に載置することが可能になるため、駆動機器の載置面への載置作業が容易になる。   According to said structure, the side peripheral surface in a base member inclines in an outer peripheral direction from a peripheral part rather than a mounting surface, and the size of the side peripheral surface on the side away from a mounting surface is larger than a mounting surface. Will also be big. Even when the driving device is placed so as to come into contact with the side circumferential surface, the driving device slides on the side circumferential surface in the inner circumferential direction and moves onto the placement surface. As a result, the side peripheral surface and the mounting surface become a mounting area, and it is possible to mount the driving device on the mounting surface by performing an operation of mounting the driving device on the mounting region. The mounting work on the mounting surface becomes easy.

本発明における前記駆動機器は、自重により前記受電コイル機構のコイル面を前記給電コイル機構の磁界生成面に対向させる外形状に形成されていてもよい。   The driving device according to the present invention may be formed in an outer shape in which the coil surface of the power receiving coil mechanism is opposed to the magnetic field generation surface of the power feeding coil mechanism by its own weight.

上記の構成によれば、駆動機器がどのような姿勢で台部材に載置された場合でも、駆動機器の自重により受電コイル機構のコイル面が給電コイル機構の磁界生成面に対向される姿勢になるため、駆動機器を台部材に載置する場合の作業性を向上させることができる。   According to the above configuration, even when the driving device is mounted on the base member in any posture, the coil surface of the power receiving coil mechanism is opposed to the magnetic field generation surface of the power feeding coil mechanism by the weight of the driving device. Therefore, workability when the drive device is placed on the base member can be improved.

本発明における前記駆動機器は、補聴器であってもよい。   The drive device in the present invention may be a hearing aid.

本発明は、湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大された磁界生成面を備えた給電コイル機構に対向配置される受電コイル機構を備えた受電装置であって、前記受電コイル機構は、前記給電コイル機構の磁界生成面よりも小さなコイル径を有し、前記給電コイル機構及び前記受電コイル機構の内で、前記受電コイル機構にのみ配置された磁性部材を備えている。   The present invention is a power receiving device including a power receiving coil mechanism disposed opposite to a power feeding coil mechanism having a magnetic field generation surface that is expanded from a magnetic field generation region of a magnetic field line in which a magnetic field generation region of a curved magnetic force line goes straight, The power receiving coil mechanism includes a magnetic member having a coil diameter smaller than a magnetic field generation surface of the power feeding coil mechanism, and is disposed only in the power receiving coil mechanism among the power feeding coil mechanism and the power receiving coil mechanism. Yes.

上記の構成によれば、受電コイル機構が給電コイル機構の磁界生成面よりも小さなコイル径を有することから、給電コイル機構の磁界生成面が受電コイル機構のコイル径よりも大きなコイル径を有し、さらに湾曲する磁力線の磁界生成領域が受電コイル機構に対して拡大されることによって、受電コイル機構が給電コイル機構の磁界生成面上において任意の場所に位置されても、給電コイル機構からの多くの湾曲した磁束が受電コイル機構に対して鎖交する可能性が高くなる。   According to the above configuration, since the receiving coil mechanism has a smaller coil diameter than the magnetic field generation surface of the feeding coil mechanism, the magnetic field generation surface of the feeding coil mechanism has a coil diameter larger than the coil diameter of the receiving coil mechanism. Furthermore, even if the receiving coil mechanism is located at an arbitrary position on the magnetic field generation surface of the feeding coil mechanism, the magnetic field generation region of the magnetic field lines that are further curved is enlarged with respect to the receiving coil mechanism. There is a high possibility that the curved magnetic flux interlinks with the receiving coil mechanism.

また、受電コイル機構においては、磁性部材が配置されているため、相互インダクタンスが増大している。これにより、受電コイル機構は、磁性部材により磁束密度が増大され、磁界強度が高められている。従って、磁性部材が受電コイル機構の磁界強度を増大させることによって、充電特性を高い状態に維持し、受電コイル機構の配置の自由度が高められた状態において所望以上の電力を受電コイル機構に受電させることが容易になっている。   Further, in the power receiving coil mechanism, since the magnetic member is disposed, the mutual inductance is increased. Thereby, as for the receiving coil mechanism, the magnetic flux density is increased by the magnetic member, and the magnetic field strength is increased. Therefore, the magnetic member increases the magnetic field strength of the receiving coil mechanism, thereby maintaining the charging characteristics in a high state and receiving more power than desired in the receiving coil mechanism in a state where the degree of freedom of arrangement of the receiving coil mechanism is increased. It is easy to make.

本発明は、磁性部材を有して磁界により受電する受電コイル機構が、対向配置される給電装置であって、前記受電コイル機構のコイル径よりも大きなコイル径の磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構を備えている。   The present invention is a power feeding device in which a power receiving coil mechanism that has a magnetic member and receives power by a magnetic field is opposed to each other, and has a magnetic field generation surface having a coil diameter larger than the coil diameter of the power receiving coil mechanism, A feeding coil mechanism is provided that is formed so that the magnetic field generation region of the curved magnetic field lines on the magnetic field generation surface is larger than the magnetic field generation region of the magnetic field lines that advance straight.

上記の構成によれば、給電コイル機構の磁界生成面が受電コイル機構のコイル径よりも大きなコイル径を有し、さらに湾曲する磁力線の磁界生成領域が受電コイル機構に対して拡大されることによって、受電コイル機構が給電コイル機構の磁界生成面上において任意の場所に位置されても、給電コイル機構からの多くの湾曲した磁束を受電コイル機構に対して鎖交させる可能性を高めることができる。   According to the above configuration, the magnetic field generation surface of the power supply coil mechanism has a coil diameter larger than the coil diameter of the power reception coil mechanism, and the magnetic field generation region of the curved magnetic field lines is expanded with respect to the power reception coil mechanism. Even if the power receiving coil mechanism is located at an arbitrary position on the magnetic field generation surface of the power feeding coil mechanism, it is possible to increase the possibility that many curved magnetic fluxes from the power feeding coil mechanism are linked to the power receiving coil mechanism. .

本発明における前記給電装置は、磁性部材を備えていなくてもよい。   The power feeding device according to the present invention may not include a magnetic member.

上記の構成によれば、湾曲する磁力線の磁界生成領域が受電コイル機構に対してさらに拡大されることによって、給電コイル機構からの多くの湾曲した磁束を受電コイル機構に対して鎖交させる可能性を一層高めることができる。   According to the above configuration, the magnetic field generation region of the curved magnetic field lines is further enlarged with respect to the power receiving coil mechanism, so that a large number of curved magnetic fluxes from the power feeding coil mechanism may be linked to the power receiving coil mechanism. Can be further enhanced.

本発明によれば、給電装置に対する受電装置の位置決め精度が低くても十分な送電効率で充電できる。   According to the present invention, charging can be performed with sufficient power transmission efficiency even if the positioning accuracy of the power receiving device with respect to the power feeding device is low.

受給電装置のブロック図である。It is a block diagram of a power supply / reception device. 受電コイル機構の充電状況を示す説明図である。It is explanatory drawing which shows the charge condition of a receiving coil mechanism. 受給電装置のブロック図である。It is a block diagram of a power supply / reception device. 受電コイル機構の充電状況を示す説明図である。It is explanatory drawing which shows the charge condition of a receiving coil mechanism. 受電コイル機構の充電状況を示す説明図である。It is explanatory drawing which shows the charge condition of a receiving coil mechanism. 台部材に駆動機器が載置された状態を示す説明図である。It is explanatory drawing which shows the state in which the drive device was mounted in the base member. 駆動機器の形状と重心位置を示す説明図である。It is explanatory drawing which shows the shape and gravity center position of a drive device. 駆動機器における受電コイル機構の配置位置を示す説明図である。It is explanatory drawing which shows the arrangement position of the receiving coil mechanism in a drive device. 駆動機器のブロック図である。It is a block diagram of a drive device. 台部材に駆動機器が載置された状態を示す説明図である。It is explanatory drawing which shows the state in which the drive device was mounted in the base member.

本発明の一実施形態を図面に基づいて説明する。
(受給電装置1:概要)
図1に示すように、本実施形態に係る受給電装置1は、磁界により受電する受電コイル機構2と、磁界を生成する磁界生成面3aを有した給電コイル機構3と、受電コイル機構2に配置された磁性部材4とを有している。給電コイル機構3は、受電コイル機構2のコイル径よりも大きなコイル径の磁界生成面3a有し、磁界生成面3aにおける湾曲する磁力線の磁界生成領域(以下、湾曲生成領域と称する。)が直進する磁力線の磁界生成領域(以下、直進生成領域と称する。)よりも拡大するように形成されている。尚、受電コイル機構2及び給電コイル機構3の磁界生成面3aのコイル径は、受電コイル機構2のコイル面2a・2b及び給電コイル機構3の磁界生成面3aが円形状や楕円形状、四角形状等の各種の形状を採り得るため、受電コイル機構2のコイル面2a・2b及び給電コイル機構3の磁界生成面3aの平均径を意味する。
An embodiment of the present invention will be described with reference to the drawings.
(Power supply / reception device 1: Overview)
As shown in FIG. 1, a power receiving and feeding device 1 according to this embodiment includes a power receiving coil mechanism 2 that receives power by a magnetic field, a power feeding coil mechanism 3 that has a magnetic field generating surface 3 a that generates a magnetic field, and a power receiving coil mechanism 2. The magnetic member 4 is disposed. The feeding coil mechanism 3 has a magnetic field generation surface 3a having a coil diameter larger than the coil diameter of the power reception coil mechanism 2, and a magnetic field generation region (hereinafter referred to as a bending generation region) of a curved magnetic field line on the magnetic field generation surface 3a. It is formed so as to be larger than the magnetic field generation region (hereinafter referred to as a straight generation region) of the magnetic field lines. The coil diameter of the magnetic field generation surface 3a of the power reception coil mechanism 2 and the power supply coil mechanism 3 is such that the coil surfaces 2a and 2b of the power reception coil mechanism 2 and the magnetic field generation surface 3a of the power supply coil mechanism 3 are circular, elliptical, or rectangular. The average diameter of the coil surfaces 2a and 2b of the power receiving coil mechanism 2 and the magnetic field generation surface 3a of the power feeding coil mechanism 3 is meant.

図2に示すように、上記のように構成された受給電装置1は、受電コイル機構2の磁界生成面3aにおいて、湾曲生成領域Aが直進生成領域Bよりも拡大されることによって、湾曲した磁力線の集合した磁束からなる磁界が拡大することになる。従って、給電コイル機構3の磁界生成面3aが受電コイル機構2のコイル径よりも大きなコイル径を有し、さらに湾曲した磁束の磁界生成領域が受電コイル機構2に対して拡大されることによって、受電コイル機構2が給電コイル機構3の磁界生成面3a上において任意の場所に配置されても、給電コイル機構3からの多くの湾曲した磁束が受電コイル機構2に対して鎖交する可能性が高くなる。   As shown in FIG. 2, the power supply / reception device 1 configured as described above is curved on the magnetic field generation surface 3 a of the power reception coil mechanism 2 by the bending generation region A being expanded more than the straight-ahead generation region B. A magnetic field composed of a magnetic flux in which magnetic lines of force are gathered is expanded. Therefore, the magnetic field generation surface 3a of the power feeding coil mechanism 3 has a coil diameter larger than the coil diameter of the power receiving coil mechanism 2, and the magnetic field generation region of the curved magnetic flux is further expanded with respect to the power receiving coil mechanism 2. Even if the power receiving coil mechanism 2 is arranged at an arbitrary position on the magnetic field generation surface 3 a of the power feeding coil mechanism 3, there is a possibility that many curved magnetic fluxes from the power feeding coil mechanism 3 are linked to the power receiving coil mechanism 2. Get higher.

また、受電コイル機構2においては、磁性部材4が配置されているため、相互インダクタンスが増大している。これにより、受電コイル機構2は、磁性部材4により磁束密度が増大され、磁界強度が高められている。従って、磁性部材4が受電コイル機構2の磁界強度を増大させることによって、充電特性を高い状態に維持し、受電コイル機構2の配置の自由度が高められた状態において所望以上の電力を受電コイル機構2に受電させることが容易になっている。   Moreover, in the receiving coil mechanism 2, since the magnetic member 4 is arrange | positioned, the mutual inductance is increasing. Thereby, as for the receiving coil mechanism 2, magnetic flux density is increased by the magnetic member 4, and the magnetic field strength is raised. Accordingly, the magnetic member 4 increases the magnetic field strength of the power receiving coil mechanism 2 to maintain the charging characteristics in a high state, and in the state where the degree of freedom of arrangement of the power receiving coil mechanism 2 is increased, the power receiving coil receives more power than desired. It is easy for the mechanism 2 to receive power.

図1に示すように、受電コイル機構2は、受電コイル21と、受電コイル21側に設けられた受電共振器22とを有している。一方、給電コイル機構3は、1以上の給電コイル31と、給電コイル31側に設けられ、受電共振器22との間で磁界共振により電力伝送を行う給電共振器32とを有している。ここで、『磁界共振』とは、受電共振器22及び給電共振器323間において共振周波数で同調する共振現象を起こすことをいう。受電コイル21や受電共振器22、給電コイル31、給電共振器32に用いられるコイルの種類としては、スパイラル型やソレノイド型、ループ型が例示される。   As illustrated in FIG. 1, the power receiving coil mechanism 2 includes a power receiving coil 21 and a power receiving resonator 22 provided on the power receiving coil 21 side. On the other hand, the power supply coil mechanism 3 includes one or more power supply coils 31 and a power supply resonator 32 that is provided on the power supply coil 31 side and transmits power to the power reception resonator 22 by magnetic field resonance. Here, “magnetic field resonance” refers to causing a resonance phenomenon that is tuned at the resonance frequency between the power receiving resonator 22 and the power feeding resonator 323. Examples of the types of coils used for the power receiving coil 21, the power receiving resonator 22, the power feeding coil 31, and the power feeding resonator 32 include a spiral type, a solenoid type, and a loop type.

尚、本実施形態においては、受電コイル機構2及び給電コイル機構3間における電力伝送を磁界共鳴方式により行う構成について説明するが、これに限定されるものではない。即ち、図3に示すように、受給電装置1Aは、受電コイル機構2Aの受電コイル21Aと給電コイル機構3Aの給電コイル31Aとの間における電力伝送を電磁誘導方式により行うように構成されていてもよい。但し、電磁誘導方式においては、給電コイル機構は給電コイルのみであり、受電コイル機構は受電コイルのみである。   In the present embodiment, a configuration in which power transmission between the power receiving coil mechanism 2 and the power feeding coil mechanism 3 is performed by a magnetic resonance method will be described, but the present invention is not limited to this. That is, as shown in FIG. 3, the power supply / reception device 1A is configured to perform power transmission between the power reception coil 21A of the power reception coil mechanism 2A and the power supply coil 31A of the power supply coil mechanism 3A by an electromagnetic induction method. Also good. However, in the electromagnetic induction system, the feeding coil mechanism is only the feeding coil, and the receiving coil mechanism is only the receiving coil.

(受給電装置1:各部材の位置関係)
図1に示すように、受電コイル機構2の内周側には、磁性部材4が配置されている。受電コイル機構2と磁性部材4との軸方向の位置関係は、特に限定されるものではないが、磁性部材4の一端側と他端側との中間部に受電コイル機構2が位置するように配置されていることが好ましい。ここで、磁性部材4の一端側と他端側との『中間部』は、一端側と他端側とで挟まれた領域における一端及び他端を除いた任意の部分を意味する。
(Power supply / reception device 1: positional relationship of each member)
As shown in FIG. 1, a magnetic member 4 is disposed on the inner peripheral side of the power receiving coil mechanism 2. The positional relationship in the axial direction between the power receiving coil mechanism 2 and the magnetic member 4 is not particularly limited, but the power receiving coil mechanism 2 is positioned at an intermediate portion between one end side and the other end side of the magnetic member 4. It is preferable that they are arranged. Here, the “intermediate portion” between the one end side and the other end side of the magnetic member 4 means an arbitrary portion excluding one end and the other end in a region sandwiched between the one end side and the other end side.

尚、受電コイル機構2と磁性部材4との軸方向の位置関係は、磁性部材4の一端側と他端側との中心部に受電コイル機構2が位置するように配置されていることがより好ましい。また、受電コイル機構2と磁性部材4との軸方向の位置関係は、受電コイル機構2の一方側のコイル面2aが磁界生成面3aに向き合う場合と、受電コイル機構2の他方側のコイル面2bが磁界生成面3aに向き合う場合とで、磁性部材4による充電特性に大幅な相違がない状態が好ましい。即ち、磁性部材4による充電特性の相違が、30%以内であることが好ましく、10%以内であることがより好ましい。   Note that the axial positional relationship between the power receiving coil mechanism 2 and the magnetic member 4 is such that the power receiving coil mechanism 2 is positioned at the center between the one end side and the other end side of the magnetic member 4. preferable. Further, the axial positional relationship between the power receiving coil mechanism 2 and the magnetic member 4 is such that the coil surface 2a on one side of the power receiving coil mechanism 2 faces the magnetic field generating surface 3a and the coil surface on the other side of the power receiving coil mechanism 2. It is preferable that the charging characteristics of the magnetic member 4 are not significantly different between the case where 2b faces the magnetic field generating surface 3a. That is, the difference in charging characteristics due to the magnetic member 4 is preferably within 30%, and more preferably within 10%.

上記の構成によれば、磁性部材4の一端側及び他端側の何れの側が給電コイル機構3の磁界生成面3aに接近する姿勢にされた場合あっても、磁性部材4の一端側と他端側との中間部に受電コイル機構2が位置されているため、磁界生成面3aに対する受電コイル機構2の一方のコイル面2aと他方のコイル面2bとの位置関係が磁性部材4の存在により大幅に異なる状態にされることがない。これにより、受電コイル機構2の一方側のコイル面2aが磁界生成面3aに向き合う場合と、受電コイル機構2の他方側のコイル面2bが磁界生成面3aに向き合う場合とで、磁性部材4による充電特性に大幅な相違がないため、受電コイル機構2を給電コイル機構3(磁界生成面3a)に対して配置する際の姿勢の自由度を高めることができる。   According to the above configuration, even if either one of the one end side and the other end side of the magnetic member 4 is brought into a posture approaching the magnetic field generation surface 3 a of the power feeding coil mechanism 3, Since the power receiving coil mechanism 2 is located in the middle of the end side, the positional relationship between one coil surface 2a and the other coil surface 2b of the power receiving coil mechanism 2 with respect to the magnetic field generating surface 3a is due to the presence of the magnetic member 4. It will not be significantly different. Thus, the magnetic member 4 is used when the coil surface 2a on one side of the power receiving coil mechanism 2 faces the magnetic field generation surface 3a and when the coil surface 2b on the other side of the power receiving coil mechanism 2 faces the magnetic field generation surface 3a. Since there is no significant difference in charging characteristics, it is possible to increase the degree of freedom of the posture when the power receiving coil mechanism 2 is arranged with respect to the power feeding coil mechanism 3 (magnetic field generation surface 3a).

また、受電コイル機構2における受電共振器22は、受電コイル21を内周側に位置させるように配置されている。即ち、受電コイル機構2は、最外周側の受電コイル21と、最内周側の磁性部材4との間に、受電コイル21が配置された構成にされている。受電共振器22と受電コイル21との軸方向の位置関係は、特に限定されるものではないが、受電コイル21の一端側と他端側との中間部に受電共振器22が配置されていることが好ましい。尚、受電共振器22と受電コイル21との軸方向の位置関係は、受電コイル21の一端側と他端側との中心部に受電共振器22が配置されていることがより好ましい。   In addition, the power receiving resonator 22 in the power receiving coil mechanism 2 is disposed so that the power receiving coil 21 is positioned on the inner peripheral side. That is, the power receiving coil mechanism 2 is configured such that the power receiving coil 21 is disposed between the power receiving coil 21 on the outermost peripheral side and the magnetic member 4 on the innermost peripheral side. Although the positional relationship in the axial direction between the power receiving resonator 22 and the power receiving coil 21 is not particularly limited, the power receiving resonator 22 is disposed in an intermediate portion between one end side and the other end side of the power receiving coil 21. It is preferable. In addition, as for the positional relationship in the axial direction between the power receiving resonator 22 and the power receiving coil 21, it is more preferable that the power receiving resonator 22 is arranged at the center between one end side and the other end side of the power receiving coil 21.

上記の構成によれば、受電共振器22と受電コイル21と磁性部材4との軸方向の位置関係は、磁性部材4の一端側と他端側との中間部に受電コイル機構2が配置され、且つ、受電コイル21の一端側と他端側との中間部に受電共振器22が配置された状態になる。これにより、磁性部材4の一端側及び他端側の何れの側が給電コイル機構3の磁界生成面3aに接近する姿勢にされた場合あっても、磁界生成面3aに対する受電共振器22及び受電コイル機構2の一方のコイル面2aと他方のコイル面2bとの位置関係が大幅に異なる状態にされることがない。これにより、受電コイル機構2の一方のコイル面2aが磁界生成面3aに向き合う場合と、受電コイル機構2の他方のコイル面2bが磁界生成面3aに向き合う場合とで、電力伝送の送電特性及び磁性部材4による充電特性に大幅な相違がないため、受電コイル機構2を磁界生成面3aに対して配置する際の姿勢の自由度を高めることができる。   According to the above configuration, the axial relationship among the power receiving resonator 22, the power receiving coil 21, and the magnetic member 4 is such that the power receiving coil mechanism 2 is disposed at an intermediate portion between one end side and the other end side of the magnetic member 4. In addition, the power receiving resonator 22 is disposed in an intermediate portion between the one end side and the other end side of the power receiving coil 21. As a result, even if one of the one end side and the other end side of the magnetic member 4 is brought into a posture approaching the magnetic field generating surface 3a of the power feeding coil mechanism 3, the power receiving resonator 22 and the power receiving coil with respect to the magnetic field generating surface 3a are provided. The positional relationship between one coil surface 2a and the other coil surface 2b of the mechanism 2 is not significantly different. Thereby, when one coil surface 2a of the receiving coil mechanism 2 faces the magnetic field generation surface 3a and when the other coil surface 2b of the receiving coil mechanism 2 faces the magnetic field generation surface 3a, Since there is no significant difference in the charging characteristics of the magnetic member 4, it is possible to increase the degree of freedom in posture when the power receiving coil mechanism 2 is arranged with respect to the magnetic field generating surface 3a.

また、例えば図4に示すように、受電コイル21が磁性部材4の一方端側に配置された非対称の場合は、受電コイル機構2の正逆方向の向きにより電力の生成効率に大きな差が生じることがあるが、図5に示すように、受電共振器22と受電コイル21とを磁性部材4の中間部に配置した対称の場合は、このような大きな差が生じることがない。   For example, as shown in FIG. 4, when the power receiving coil 21 is asymmetrically arranged on one end side of the magnetic member 4, there is a large difference in power generation efficiency depending on the direction of the power receiving coil mechanism 2 in the forward and reverse directions. However, as shown in FIG. 5, such a large difference does not occur when the power receiving resonator 22 and the power receiving coil 21 are symmetrically arranged in the intermediate portion of the magnetic member 4.

(受給電装置1:磁性部材4)
図1に示すように、磁性部材4は、内周側に後述の二次電池10や電子部品を収納できるように円筒形状に形成されている。磁性部材4は、円筒形状の他、三角柱形状や四角柱形状、多角柱形状等の角柱形状の筒状であってもよいし、各種の外形を有した中実状であってもよい。磁性部材4の中心軸は、受電コイル機構2のコイル面2a・2bの中心点においてコイル面2a・2bに直交するように配置されている。即ち、受電コイル機構2は、磁性部材4の中心軸が受電コイル機構2のコイル中心軸に一致され、磁性部材4の側周面と受電コイル21のコイル内周面との距離が全周において同一とされている。尚、磁性部材4の中心軸が受電コイル機構2のコイル中心軸に交差されていてもよい。また、磁性部材4は、受電コイル機構2の外周側に配置されていてもよいし、受電コイル機構2の内周側及び外周側にそれぞれ配置されていてもよい。
(Power supply / reception device 1: Magnetic member 4)
As shown in FIG. 1, the magnetic member 4 is formed in a cylindrical shape so that a secondary battery 10 and an electronic component described later can be accommodated on the inner peripheral side. The magnetic member 4 may have a cylindrical shape, a prismatic cylindrical shape such as a triangular prism shape, a quadrangular prism shape, or a polygonal prism shape, or a solid shape having various external shapes. The central axis of the magnetic member 4 is disposed so as to be orthogonal to the coil surfaces 2 a and 2 b at the center point of the coil surfaces 2 a and 2 b of the power receiving coil mechanism 2. That is, in the power receiving coil mechanism 2, the central axis of the magnetic member 4 is aligned with the coil central axis of the power receiving coil mechanism 2, and the distance between the side peripheral surface of the magnetic member 4 and the inner peripheral surface of the power receiving coil 21 is the entire circumference. Identical. Note that the central axis of the magnetic member 4 may intersect the coil central axis of the power receiving coil mechanism 2. The magnetic member 4 may be disposed on the outer peripheral side of the power receiving coil mechanism 2, or may be disposed on the inner peripheral side and the outer peripheral side of the power receiving coil mechanism 2.

磁性部材4は、受電コイル機構2及び給電コイル機構3の内で、受電コイル機構2にのみ配置されている。この構成によれば、磁性部材4が受電コイル機構2にのみ配置されることによって、磁界生成面3aにおける直進生成領域は、給電コイル機構3に磁性部材4が配置されている場合と比較して、磁界生成面3aの中心部の狭い領域に制限される。この結果、湾曲生成領域を直進生成領域よりも容易に拡大することができる。   The magnetic member 4 is disposed only in the power receiving coil mechanism 2 among the power receiving coil mechanism 2 and the power feeding coil mechanism 3. According to this configuration, since the magnetic member 4 is disposed only in the power receiving coil mechanism 2, the straight travel generation region in the magnetic field generation surface 3 a is compared with the case where the magnetic member 4 is disposed in the power feeding coil mechanism 3. , The magnetic field generating surface 3a is limited to a narrow region. As a result, the curve generation region can be more easily enlarged than the straight travel generation region.

磁性部材4は、磁性粉末が分散された樹脂により形成されている。この磁性部材4で使用する樹脂は、熱硬化性樹脂でも熱可塑性樹脂でもよく、特に限定されるものではない。例えば、熱硬化性樹脂であれば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ビニルエステル樹脂、シアノエステル樹脂、マレイミド樹脂、シリコン樹脂などが挙げられる。また、熱可塑性樹脂であれば、アクリル系樹脂、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂などが挙げられる。なお、本実施例では、エポキシ樹脂を主成分とした樹脂を用いている。   The magnetic member 4 is made of a resin in which magnetic powder is dispersed. The resin used in the magnetic member 4 may be a thermosetting resin or a thermoplastic resin, and is not particularly limited. For example, if it is a thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, a vinyl ester resin, a cyano ester resin, a maleimide resin, a silicon resin, etc. are mentioned. Examples of thermoplastic resins include acrylic resins, vinyl acetate resins, polyvinyl alcohol resins, and the like. In this embodiment, a resin mainly composed of an epoxy resin is used.

また、樹脂中に分散する磁性粉末には、軟磁性粉末を使用している。軟磁性粉末としては、特に限定されるものではないが、純Fe、Fe−Si、Fe−Al−Si(センダスト)、Fe−Ni(パーマロイ)、ソフトフェライト、Fe基アモルファス、Co基アモルファス、Fe−Co(パーメンジュール)などを用いることができる。また、磁性部材4の形状についても、併せて適宜選択される。   Also, soft magnetic powder is used as the magnetic powder dispersed in the resin. The soft magnetic powder is not particularly limited, but pure Fe, Fe-Si, Fe-Al-Si (Sendust), Fe-Ni (permalloy), soft ferrite, Fe-based amorphous, Co-based amorphous, Fe -Co (permendule) or the like can be used. Further, the shape of the magnetic member 4 is also appropriately selected.

(受給電装置1の適用例)
次に、受給電装置1が充電器7に設けられた駆動機器5に電力を無線伝送により供給するように構成された場合について説明する。
(Application example of power supply / reception device 1)
Next, the case where the power supply / reception device 1 is configured to supply power to the driving device 5 provided in the charger 7 by wireless transmission will be described.

受給電装置1は、磁界により受電する受電コイル機構2を備えた駆動機器5と、駆動機器5に電力を無線伝送により供給する充電器7とを有している。充電器7は、駆動機器5を載置可能な載置面6aを有した台部材6と、載置面6aに対向配置された磁界生成面3aを有し、磁界を生成する給電コイル機構3とを備えている。給電コイル機構3の磁界生成面3aは、受電コイル機構2のコイル径よりも大きなコイル径を有している。駆動機器5は、一部が載置面6aの周縁部上に位置した条件下で、給電コイル機構3の磁界生成面3aにおける湾曲生成領域に受電コイル機構2を位置させるように形成されている。   The power supply / reception device 1 includes a drive device 5 including a power receiving coil mechanism 2 that receives power by a magnetic field, and a charger 7 that supplies power to the drive device 5 by wireless transmission. The charger 7 includes a base member 6 having a mounting surface 6a on which the driving device 5 can be mounted, and a magnetic field generating surface 3a disposed to face the mounting surface 6a, and generates a magnetic field. And. The magnetic field generation surface 3 a of the power feeding coil mechanism 3 has a coil diameter larger than the coil diameter of the power receiving coil mechanism 2. The drive device 5 is formed so that the power receiving coil mechanism 2 is positioned in the bending generation region in the magnetic field generation surface 3a of the power feeding coil mechanism 3 under a condition that a part thereof is positioned on the peripheral edge of the placement surface 6a. .

上記の構成において、直進生成領域においては、駆動機器5が受電コイル機構2のコイル面2a・2bを磁束に対して平行にする姿勢で載置されると、受電コイル機構2の電力の生成が停止されるが、上記の構成によれば、受電コイル機構2が上記の磁界領域を避けて配置されるため、受電コイル機構2が電力を受電しなくなるという事態が発生する可能性を低減することができる。   In the above configuration, when the drive device 5 is placed in a posture in which the coil surfaces 2a and 2b of the power receiving coil mechanism 2 are parallel to the magnetic flux in the straight traveling generation region, the power generation of the power receiving coil mechanism 2 is generated. Although it is stopped, according to the above configuration, the receiving coil mechanism 2 is arranged avoiding the magnetic field region, so that the possibility that the receiving coil mechanism 2 will not receive power is reduced. Can do.

また、受給電装置1は、駆動機器5及び充電器7が下記のように構成されていてもよい。充電器7は、駆動機器5を載置可能な載置面6aを有した台部材6と、載置面6aに対向配置され、磁界を生成する磁界生成面3aを有し、磁界生成面3aにおける湾曲生成領域が直進生成領域よりも拡大するように形成された給電コイル機構3とを備えている。給電コイル機構3の磁界生成面3aは、受電コイル機構2のコイル径よりも大きなコイル径を有している。駆動機器5は、一部が載置面6aの周縁部上に位置した条件下で、磁界生成面3aにおける湾曲生成領域上に受電コイル機構2を位置させるように形成されている。   In the power supply / reception device 1, the drive device 5 and the charger 7 may be configured as follows. The charger 7 includes a base member 6 having a mounting surface 6a on which the driving device 5 can be mounted, a magnetic field generating surface 3a that is disposed opposite to the mounting surface 6a and generates a magnetic field, and the magnetic field generating surface 3a. And a feed coil mechanism 3 formed so that the curve generation region is larger than the straight travel generation region. The magnetic field generation surface 3 a of the power feeding coil mechanism 3 has a coil diameter larger than the coil diameter of the power receiving coil mechanism 2. The drive device 5 is formed so that the power receiving coil mechanism 2 is positioned on the curve generation region on the magnetic field generation surface 3a under the condition that a part of the drive device 5 is positioned on the periphery of the placement surface 6a.

上記の構成によれば、受電コイル機構2を充電する場合における受電コイル機構2の配置の自由度及び配置したときの受電コイル機構2の姿勢の自由度を拡大できることから、駆動機器5を充電器7の台部材6に対して載置する際の位置決めや姿勢を気にすることなく容易に載置することが可能になる。   According to said structure, since the freedom degree of arrangement | positioning of the receiving coil mechanism 2 in the case of charging the receiving coil mechanism 2 and the freedom degree of the attitude | position of the receiving coil mechanism 2 when arrange | positioning can be expanded, the drive device 5 is a charger. 7 can be placed easily without worrying about the positioning and posture when placed on the base member 6.

(受給電装置1の適用例:駆動機器5)
駆動機器5としては、携帯機器が例示される。携帯機器は、「ハンドヘルド(手で持つことが可能)」及び「ウェアラブル(身体に装着可能:人体装着機器)」の何れの機器も含む。具体的には、携帯機器は、ポータブルコンピュータ(ラップトップ、ノートパソコン、タブレットPC等)や、ヘッドセット、カメラ、音響機器・AV機器(携帯音楽プレーヤー、ICレコーダー、ポータブルDVDプレーヤー等)、計算機(ポケットコンピュータ、電卓)、ゲーム機、コンピュータ周辺機器(携帯プリンター、携帯スキャナ、携帯モデム等)、専用情報機器(電子辞書、電子手帳、電子書籍、ポータブルデータターミナル等)、携帯通信端末、音声通信端末(携帯電話、PHS、衛星電話、第三者無線、アマチュア無線、特定小電力無線・パーソナル無線・市民ラジオ等)、データ通信端末(携帯電話・PHS(フィーチャーフォン・スマートフォン)、ポケットベル等)、放送受信機 (テレビ・ラジオ)、携帯ラジオ、携帯テレビ、ワンセグ、その他機器(腕時計、懐中時計)、補聴器、ハンドヘルドGPS、防犯ブザー、懐中電灯・ペンライト、電池パック等を例示することができる。また、『補聴器』は、耳掛け型補聴器、耳穴型補聴器、メガネ型補聴器を例示することができる。尚、駆動機器5は、パーソナルコンピュータ等の据置型機器であってもよい。
(Application example of power supply / reception device 1: drive device 5)
As the driving device 5, a portable device is exemplified. Portable devices include both “handheld” devices (which can be held by hand) and “wearable devices (which can be worn on the body: human-mounted devices)”. Specifically, portable devices include portable computers (laptops, notebook computers, tablet PCs, etc.), headsets, cameras, audio / AV devices (portable music players, IC recorders, portable DVD players, etc.), computers ( Pocket computers, calculators), game consoles, computer peripherals (portable printers, portable scanners, portable modems, etc.), dedicated information devices (electronic dictionaries, electronic notebooks, electronic books, portable data terminals, etc.), portable communication terminals, voice communication terminals (Cell phones, PHS, satellite phones, third party radios, amateur radios, specified low power radios, personal radios, citizen radios, etc.), data communication terminals (cell phones, PHSs (feature phones / smart phones), pagers, etc.), Broadcast receiver (TV / radio), portable radio, Examples include portable TVs, One Seg, other devices (watches, pocket watches), hearing aids, handheld GPS, security buzzers, flashlights / penlights, battery packs, and the like. In addition, examples of the “hearing aid” include ear-hook type hearing aids, ear hole type hearing aids, and glasses type hearing aids. The driving device 5 may be a stationary device such as a personal computer.

駆動機器5は、自重により受電コイル機構2のコイル面2a・2bを給電コイル機構3の磁界生成面3aに対向させる外形状に形成されている。これにより、駆動機器5がどのような姿勢で台部材6に載置された場合でも、駆動機器5の自重により受電コイル機構2のコイル面2a・2bが給電コイル機構3の磁界生成面3aに対向される姿勢になるため、駆動機器5を台部材6に載置する場合の作業性を向上させることができる。   The driving device 5 is formed in an outer shape in which the coil surfaces 2 a and 2 b of the power receiving coil mechanism 2 are opposed to the magnetic field generation surface 3 a of the power feeding coil mechanism 3 by its own weight. As a result, the coil surfaces 2 a and 2 b of the power receiving coil mechanism 2 become the magnetic field generation surface 3 a of the power feeding coil mechanism 3 due to the weight of the driving device 5 regardless of the posture of the driving device 5 placed on the base member 6. Since it becomes the attitude | position which opposes, the workability | operativity in the case of mounting the drive device 5 in the base member 6 can be improved.

図6に示すように、駆動機器5が耳穴型補聴器である場合について具体的に説明すると、駆動機器5は、耳穴の周面に接触するように形成された筐体51を有している。筐体51は、耳穴の挿入方向に対して直交する縦断面形状が長手方向及び短手方向を有した楕円体形状に形成されている。   As shown in FIG. 6, the case where the driving device 5 is an ear hole type hearing aid will be specifically described. The driving device 5 includes a housing 51 formed so as to be in contact with the peripheral surface of the ear hole. The casing 51 is formed in an ellipsoidal shape in which a longitudinal cross-sectional shape orthogonal to the insertion direction of the ear hole has a longitudinal direction and a lateral direction.

図7に示すように、駆動機器5は、筐体51の縦断面の中心と、駆動機器5の重心とが短手方向に偏芯されている。そして、筐体51の縦断面における長手方向の両端壁は、偏芯された重心の作用により自重で回転する形状に形成されている。これにより、駆動機器5がどのような姿勢で載置された場合でも、重心の偏芯方向を上下方向(重力方向)に一致させるように筐体51に対して回転力を付与し、短手方向の両端部の壁面を載置面6aに当接せる姿勢で停止するようになっている。   As shown in FIG. 7, in the driving device 5, the center of the longitudinal section of the casing 51 and the center of gravity of the driving device 5 are eccentric in the short direction. And the both end walls of the longitudinal direction in the longitudinal cross section of the housing | casing 51 are formed in the shape rotated with dead weight by the effect | action of the eccentric gravity center. As a result, regardless of the posture of the driving device 5, a rotational force is applied to the housing 51 so that the eccentric direction of the center of gravity coincides with the vertical direction (gravity direction). It stops in a posture in which the wall surfaces at both ends in the direction are brought into contact with the placement surface 6a.

駆動機器5の筐体51内には、受電コイル機構2が設けられている。受電コイル機構2は、筐体51の縦断面における短手方向の両端面の壁面にコイル面2a・2bが対向するように配置されている。これにより、駆動機器5が自重により短手方向の壁面を載置面6aに当接した姿勢で停止したときに、給電コイル機構3の磁界生成面3aに受電コイル機構2のコイル面2a・2bを対向させるようになっている。   The power receiving coil mechanism 2 is provided in the casing 51 of the driving device 5. The power receiving coil mechanism 2 is disposed so that the coil surfaces 2 a and 2 b face the wall surfaces of both end surfaces in the short direction in the longitudinal section of the housing 51. As a result, when the driving device 5 stops in a posture in which the wall surface in the short direction is in contact with the placement surface 6a due to its own weight, the coil surfaces 2a and 2b of the power receiving coil mechanism 2 are placed on the magnetic field generation surface 3a of the power feeding coil mechanism 3. Are designed to face each other.

また、駆動機器5は、受電コイル機構2を縦断面における短手方向の中央部に配置している。これにより、駆動機器5が縦断面における短手方向の一方の壁面及び他方の壁面の何れの壁面に載置面6aを当接させた姿勢で停止しても、給電コイル機構3から受ける受電コイル機構2の磁界強度を同一に近い状態にしている。   Moreover, the drive device 5 arrange | positions the receiving coil mechanism 2 in the center part of the transversal direction in a longitudinal cross section. Thus, even if the driving device 5 stops in a posture in which the mounting surface 6a is brought into contact with one of the wall surface in the longitudinal direction and the other wall surface in the longitudinal section, the power receiving coil received from the power feeding coil mechanism 3 The magnetic field strength of the mechanism 2 is set to be almost the same.

図8に示すように、駆動機器5は、受電コイル機構2を耳穴の挿入方向の後端側に配置している。受電コイル機構2の配置位置は、筐体51の一部が載置面6aの周縁部上に位置した条件下で、給電コイル機構3の磁界生成面3aにおける湾曲生成領域Aに受電コイル機構2を位置させるように形成されている。具体的に説明すると、筐体51の耳穴挿入方向の先端部51aが載置面6aの外周縁上に位置し、筐体51の長手方向が載置面6aの半径方向に一致した条件下において、直進生成領域Bと筐体51の後端部51bとの間に、受電コイル機構2が配置されている。これにより、駆動機器5が載置面6a上において、長手方向がどのような向きで載置面6aに沿って載置された場合でも、受電コイル機構2が湾曲生成領域Aに位置することになる。   As shown in FIG. 8, the drive device 5 has the power receiving coil mechanism 2 disposed on the rear end side in the insertion direction of the ear hole. The power receiving coil mechanism 2 is arranged at a position where the part of the casing 51 is located on the peripheral edge of the mounting surface 6a, and the power receiving coil mechanism 2 is located in the curve generation region A on the magnetic field generating surface 3a of the power feeding coil mechanism 3. Is formed so as to be positioned. More specifically, the tip 51a of the housing 51 in the ear hole insertion direction is positioned on the outer peripheral edge of the mounting surface 6a, and the longitudinal direction of the housing 51 is aligned with the radial direction of the mounting surface 6a. The power receiving coil mechanism 2 is disposed between the straight travel generation region B and the rear end portion 51 b of the casing 51. As a result, the receiving coil mechanism 2 is positioned in the curve generation region A regardless of the longitudinal direction of the driving device 5 placed on the placement surface 6a along the placement surface 6a. Become.

駆動機器5は、上述の受電コイル機構2と、受電コイル機構2で受電された電力が供給される電力制御回路91とを有している。電力制御回路91と受電コイル機構2は、磁性部材4と共に受電モジュール9として一体化されている。受電モジュール9は、二次電池10に接続されている。   The drive device 5 includes the above-described power receiving coil mechanism 2 and a power control circuit 91 to which power received by the power receiving coil mechanism 2 is supplied. The power control circuit 91 and the power receiving coil mechanism 2 are integrated as a power receiving module 9 together with the magnetic member 4. The power receiving module 9 is connected to the secondary battery 10.

受電モジュール9について詳細に説明すると、受電モジュール9は、電力を受電する機能を有した受電装置である。受電モジュール9は、湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大された磁界生成面3aを備えた給電コイル機構3に対向配置される受電コイル機構2を備えており、受電コイル機構2は、給電コイル機構3の磁界生成面3aよりも小さなコイル径を有し、給電コイル機構3及び受電コイル機構2の内で、受電コイル機構2にのみ配置された磁性部材4を備えている。   The power receiving module 9 will be described in detail. The power receiving module 9 is a power receiving device having a function of receiving power. The power receiving module 9 includes a power receiving coil mechanism 2 disposed opposite to a power feeding coil mechanism 3 having a magnetic field generating surface 3a that is larger than a magnetic field generating region of a magnetic force line in which a magnetic field generating region of a bending magnetic force line goes straight. The power receiving coil mechanism 2 has a smaller coil diameter than the magnetic field generation surface 3a of the power feeding coil mechanism 3, and the magnetic member 4 disposed only on the power receiving coil mechanism 2 is included in the power feeding coil mechanism 3 and the power receiving coil mechanism 2. I have.

上記の構成によれば、受電コイル機構2が給電コイル機構3の磁界生成面3aよりも小さなコイル径を有することから、給電コイル機構3の磁界生成面3aが受電コイル機構2のコイル径よりも大きなコイル径を有し、さらに湾曲する磁力線の磁界生成領域が受電コイル機構2に対して拡大されることによって、受電コイル機構2が給電コイル機構3の磁界生成面3a上において任意の場所に位置されても、給電コイル機構3からの多くの湾曲した磁束が受電コイル機構2に対して鎖交する可能性が高くなる。   According to the above configuration, since the power receiving coil mechanism 2 has a smaller coil diameter than the magnetic field generation surface 3 a of the power feeding coil mechanism 3, the magnetic field generation surface 3 a of the power feeding coil mechanism 3 is smaller than the coil diameter of the power receiving coil mechanism 2. The receiving coil mechanism 2 is positioned at an arbitrary position on the magnetic field generating surface 3a of the feeding coil mechanism 3 by expanding the magnetic field generation region of the magnetic field lines having a large coil diameter and bending to the receiving coil mechanism 2. Even if it is done, the possibility that many curved magnetic fluxes from the feeding coil mechanism 3 are linked to the receiving coil mechanism 2 is increased.

また、受電コイル機構2においては、磁性部材4が配置されているため、相互インダクタンスが増大している。これにより、受電コイル機構2は、磁性部材4により磁束密度が増大され、磁界強度が高められている。従って、磁性部材4が受電コイル機構2の磁界強度を増大させることによって、充電特性を高い状態に維持し、受電コイル機構2の配置の自由度が高められた状態において所望以上の電力を受電コイル機構2に受電させることが容易になっている。   Moreover, in the receiving coil mechanism 2, since the magnetic member 4 is arrange | positioned, the mutual inductance is increasing. Thereby, as for the receiving coil mechanism 2, magnetic flux density is increased by the magnetic member 4, and the magnetic field strength is raised. Accordingly, the magnetic member 4 increases the magnetic field strength of the power receiving coil mechanism 2 to maintain the charging characteristics in a high state, and in the state where the degree of freedom of arrangement of the power receiving coil mechanism 2 is increased, the power receiving coil receives more power than desired. It is easy for the mechanism 2 to receive power.

(受給電装置1の適用例:駆動機器5:電力制御回路91)
図1に示すように、電力制御回路91は、回路基板に実装されている。回路基板は、他の部位よりも小さな磁界強度となるように共振現象により形成された磁界空間に配置されている。具体的には、受電コイル機構2は、共振現象を利用した給電時において受電コイル機構2の内側位置や近傍位置に磁界の小さな空間部分を出現させ、この空間部分を回路基板の配置場所としている。尚、本実施形態においては、磁性部材4の内部に空間部分を出現させ、この空間部分に回路基板が二次電池10と共に配置されていることが好ましい。これにより、駆動機器5は、回路基板における磁界に起因する渦電流の発生が抑制されることにより誤動作や所定温度以上の発熱が防止される結果、小型化が可能になっている。『磁界の小さな空間部分』についての詳細は後述する。
(Application example of power supply / reception device 1: drive device 5: power control circuit 91)
As shown in FIG. 1, the power control circuit 91 is mounted on a circuit board. The circuit board is disposed in a magnetic field space formed by a resonance phenomenon so as to have a magnetic field strength smaller than that of other parts. Specifically, the power receiving coil mechanism 2 causes a space portion with a small magnetic field to appear at a position inside or near the power receiving coil mechanism 2 during power feeding using a resonance phenomenon, and this space portion is used as a circuit board placement location. . In the present embodiment, it is preferable that a space portion appears inside the magnetic member 4 and the circuit board is disposed together with the secondary battery 10 in this space portion. As a result, the drive device 5 can be reduced in size as a result of preventing malfunction and heat generation above a predetermined temperature by suppressing the generation of eddy currents due to the magnetic field in the circuit board. Details of the “space portion with a small magnetic field” will be described later.

図9に示すように、電力制御回路91は、二次電池10に対する充電を制御する機能を有している。尚、電力制御回路91は、放電を制御する機能も併せ持った回路であってもよい。電力制御回路91は、二次電池10に対する充電を切り替えるスイッチ機能を回路内部に備えている。   As shown in FIG. 9, the power control circuit 91 has a function of controlling charging of the secondary battery 10. The power control circuit 91 may be a circuit having a function of controlling discharge. The power control circuit 91 has a switch function for switching charging of the secondary battery 10 in the circuit.

具体的に説明すると、電力制御回路91は、交流電力を出力する受電コイル機構2を介して外部から給電された交流電力を整流することにより直流電力を出力する整流・安定化部911と、整流・安定化部911から出力された直流電力を充電電圧で二次電池10に供給する充電部912と、信号処理を実行する変圧部915と、充電部912への電力の入力を検知する検知部917と、検知部917が充電部912への電力の入力を検知したときにだけ変圧部915を作動状態から停止状態に切り替える切替制御部916とを有している。変圧部915は、二次電池10の充電電力により作動する駆動機構11に接続されている。   More specifically, the power control circuit 91 includes a rectification / stabilization unit 911 that outputs DC power by rectifying AC power supplied from outside via the power receiving coil mechanism 2 that outputs AC power, A charging unit 912 that supplies DC power output from the stabilization unit 911 to the secondary battery 10 with a charging voltage, a transformer 915 that performs signal processing, and a detection unit that detects input of power to the charging unit 912 917 and a switching control unit 916 that switches the transformer 915 from the operating state to the stopped state only when the detecting unit 917 detects the input of power to the charging unit 912. The transformer 915 is connected to the drive mechanism 11 that is operated by the charging power of the secondary battery 10.

整流・安定化部911は、整流・安定化ICを用いることができる。整流・安定化ICは、フルブリッジ同期整流、電圧コンディショニング及びワイヤレス・パワー制御、電圧・電流・温度の異常に対する保護機能等の各機能をワンチップに集積したICである。尚、受電コイル機構2から出力される電力が直流電力の場合は、整流・安定化部911は省かれる。   The rectification / stabilization unit 911 can use a rectification / stabilization IC. The rectification / stabilization IC is an IC in which various functions such as full-bridge synchronous rectification, voltage conditioning and wireless power control, and a protection function against voltage / current / temperature abnormalities are integrated on one chip. Note that when the power output from the power receiving coil mechanism 2 is DC power, the rectification / stabilization unit 911 is omitted.

充電部912は、定電流/定電圧リニア・チャージャ用のIC(充電回路)であり、充電電流が設定値の所定値まで減少したことを報知する機能やタイマによる充電終了機能、サーマル・フィードバックによる充電電流の安定化機能、高電力動作時や高周囲温度条件下におけるチップ温度制限機能等を有している。   The charging unit 912 is an IC (charging circuit) for a constant current / constant voltage linear charger, and has a function for notifying that the charging current has decreased to a predetermined value of the set value, a charging end function by a timer, and thermal feedback. It has a charging current stabilization function, a chip temperature limiting function during high power operation and under high ambient temperature conditions, and the like.

変圧部915は、二次電池10の充電電力を駆動機構11の駆動電力に変換して出力する信号処理を実行する変圧部として機能する変圧回路である。変圧部915は、降圧用途としてリニアレギュレータを適用可能であり、昇圧及び降圧の用途としてスイッチングレギュレータを適用可能である。尚、これらの各レギュレータは、半導体素子により電流を高速でオン・オフする方式等を例示することができる。   The transformer unit 915 is a transformer circuit that functions as a transformer unit that performs signal processing for converting the charging power of the secondary battery 10 into the driving power of the driving mechanism 11 and outputting it. The transformer 915 can apply a linear regulator as a step-down use, and can apply a switching regulator as a step-up and step-down use. Each of these regulators can be exemplified by a method of turning on and off current at high speed by a semiconductor element.

検知部917は、整流・安定化部911から充電部912に直流電力が出力されたことを示す検知信号を出力する検知回路である。検知部917は、トランジスタ等のアナログ回路により形成されていてもよい。具体的に説明すると、検知部917は、NPNトランジスタのベース端子を整流・安定化部911及び充電部912間の出力電力線に接続し、エミッタ端子をグランドに接続する。また、コレクタ端子を二次電池10のプラス側に抵抗器を介して接続することによって、ハイインピーダンス状態にすると共に、切替制御部916の入力端子に接続する。   The detection unit 917 is a detection circuit that outputs a detection signal indicating that DC power is output from the rectification / stabilization unit 911 to the charging unit 912. The detection unit 917 may be formed of an analog circuit such as a transistor. More specifically, the detection unit 917 connects the base terminal of the NPN transistor to the output power line between the rectification / stabilization unit 911 and the charging unit 912, and connects the emitter terminal to the ground. In addition, the collector terminal is connected to the positive side of the secondary battery 10 via a resistor, whereby the high impedance state is established and the collector terminal is connected to the input terminal of the switching control unit 916.

これにより、整流・安定化部911から直流電力が出力されていない場合は、検知部917のベース端子がローレベルとなってエミッタ端子及びコレクタ端子間が非導通状態となるため、ハイレベルの検知信号が切替制御部916の入力端子に入力されることになる。一方、整流・安定化部911から直流電力が出力電力線を介して充電部912に送給されると、ベース端子がハイレベルとなる結果、コレクタ端子及びエミッタ端子が導通状態となり、コレクタ端子がグランド電位のローレベルの検知信号に変化する。この結果、整流・安定化部911から充電部912に直流電力が出力された場合、切替制御部916の入力端子にローレベルの検知信号が入力されることになる。尚、検知部917は、デジタル回路により形成されていてもよい。   As a result, when DC power is not output from the rectifying / stabilizing unit 911, the base terminal of the detecting unit 917 is at a low level and the emitter terminal and the collector terminal are in a non-conductive state. The signal is input to the input terminal of the switching control unit 916. On the other hand, when DC power is sent from the rectifying / stabilizing unit 911 to the charging unit 912 via the output power line, the base terminal becomes high level, and as a result, the collector terminal and the emitter terminal become conductive, and the collector terminal is grounded. It changes to a low level detection signal. As a result, when DC power is output from the rectification / stabilization unit 911 to the charging unit 912, a low-level detection signal is input to the input terminal of the switching control unit 916. Note that the detection unit 917 may be formed of a digital circuit.

切替制御部916は、検知部917からローレベルの検知信号が入力されたときに変圧部915を停止状態にする一方、ハイレベルの検知信号が入力されたとき(ローレベルの検知信号が入力されていないとき)に変圧部915を作動状態にする切替制御回路である。尚、本実施形態においては、ローレベルの検知信号を変圧部915の停止条件及びハイレベルの検知信号を変圧部915の作動条件としているが、これに限定されるものではなく、ローレベルの検知信号を変圧部915の開始条件及びハイレベルの検知信号を変圧部915の停止条件としてもよい。   The switching control unit 916 stops the transformation unit 915 when a low level detection signal is input from the detection unit 917, while the high level detection signal is input (a low level detection signal is input). A switching control circuit that causes the transformer 915 to be in an activated state. In this embodiment, the low level detection signal is used as the stop condition for the transformer 915 and the high level detection signal is used as the operation condition for the transformer 915. However, the present invention is not limited to this. The signal may be the start condition of the transformer 915 and the high level detection signal may be the stop condition of the transformer 915.

これにより、電力制御回路91は、二次電池10の充電時における駆動機構11の作動の禁止と、充電停止時における駆動機構11の作動の許可とが、外部から二次電池10への給電の有無により自動的に切り替え可能な集積回路基板として形成されることによって、簡単な回路構成で高密度に形成可能にされている。   As a result, the power control circuit 91 prohibits the operation of the drive mechanism 11 when charging the secondary battery 10 and permits the operation of the drive mechanism 11 when charging is stopped. By being formed as an integrated circuit substrate that can be switched automatically depending on the presence or absence, it can be formed with high density with a simple circuit configuration.

(受給電装置1の適用例:駆動機器5:駆動機構11)
駆動機構11としては、電力を運動エネルギに変換するスピーカやモータ等の部品を組み込んだ機構、電力を光エネルギに変換するLED光源やレーザ光源等の部品を組み込んだ発光機構や照明機構、マイコンが例示されるが、電力により作動するあらゆる種類の機器を適用可能である。受電コイル機構2は、機械的に非接触な状態で給電される無線給電に対応する構成にされている。無線給電としては、電磁誘導方式や磁界共鳴方式(磁気共鳴方式)が例示される。
(Application example of power supply / reception device 1: drive device 5: drive mechanism 11)
The drive mechanism 11 includes a mechanism that incorporates components such as a speaker and a motor that convert electric power into kinetic energy, a light emitting mechanism and illumination mechanism that incorporate components such as an LED light source and a laser light source that convert electric power into light energy, and a microcomputer. Although illustrated, all types of equipment that operates with electrical power are applicable. The power receiving coil mechanism 2 is configured to support wireless power feeding in which power is fed in a mechanically non-contact state. Examples of the wireless power feeding include an electromagnetic induction method and a magnetic field resonance method (magnetic resonance method).

(受給電装置1の適用例:駆動機器5:二次電池10)
二次電池10は、充放電可能な電池について全ての種類を適用することができる。例えば、鉛蓄電池、制御弁式鉛蓄電池、リチウムイオン電池、リチウムイオンポリマー電池、リン酸鉄リチウムイオン電池、リチウム・硫黄電池、チタン酸・リチウム電池、ニッケル・カドミウム蓄電池、ニッケル・水素充電池、ニッケル・鉄電池、ニッケル・リチウム電池、ニッケル・亜鉛電池、充電式アルカリ電池、ナトリウム・硫黄電池、レドックス・フロー電池、亜鉛・臭素フロー電池、シリコン電池、銀亜鉛電池(Silver−Zinc)等を二次電池10として例示することができる。
(Application example of power supply / reception device 1: drive device 5: secondary battery 10)
As the secondary battery 10, all kinds of chargeable / dischargeable batteries can be applied. For example, lead acid battery, control valve type lead acid battery, lithium ion battery, lithium ion polymer battery, iron phosphate lithium ion battery, lithium / sulfur battery, titanic acid / lithium battery, nickel / cadmium battery, nickel / hydrogen rechargeable battery, nickel・ Secondary iron batteries, nickel / lithium batteries, nickel / zinc batteries, rechargeable alkaline batteries, sodium / sulfur batteries, redox flow batteries, zinc / bromine flow batteries, silicon batteries, silver-zinc batteries (Silver-Zinc), etc. The battery 10 can be exemplified.

ニッケル水素二次電池10の公称電圧は、一次電池である空気電池の公称電圧と同様に、1.2V〜1.4Vである。ここで、『公称電圧』とは、電池を通常の状態で使用した場合に得られる端子間の電圧の目安として定められている値であり、満充電に近い電池では、公称電圧よりも高い端子電圧が得られるが、放電が進んだ場合や、負荷に大きな電流を供給する場合は、公称電圧よりも低い端子電圧となる。   The nominal voltage of the nickel metal hydride secondary battery 10 is 1.2V to 1.4V, similar to the nominal voltage of the air battery that is the primary battery. Here, “nominal voltage” is a value determined as a measure of the voltage between the terminals obtained when the battery is used in a normal state. For a battery that is nearly fully charged, a terminal that is higher than the nominal voltage. A voltage can be obtained, but when discharging progresses or when a large current is supplied to the load, the terminal voltage is lower than the nominal voltage.

公称電圧が空気電池の公称電圧を上回る二次電池10としては、鉛蓄電池、制御弁式鉛蓄電池、リチウムイオン電池、リチウムポリマー電池、二酸化マンガンリチウム二次電池、チタン酸カーボンリチウム二次電池等を例示することができる。   As the secondary battery 10 whose nominal voltage exceeds the nominal voltage of the air battery, a lead storage battery, a control valve type lead storage battery, a lithium ion battery, a lithium polymer battery, a manganese dioxide lithium secondary battery, a carbon lithium titanate secondary battery, etc. It can be illustrated.

また、リチウムイオン電池及びリチウムポリマー電池の公称電圧は3.6V〜3.7Vである。二酸化マンガンリチウム二次電池の公称電圧は3.0Vである。チタン酸カーボンリチウム二次電池の公称電圧は1.5Vである。また、リチウムイオン電池における『放電終止電圧』と『充電終止電圧』との電圧範囲は、2.7V〜4.2Vである。『放電終止電圧』とは、安全に放電を行える放電電圧の最低値の電圧のことであり、『充電終止電圧』とは安全に充電を行える充電電圧の最高値の電圧のことである。   Moreover, the nominal voltage of a lithium ion battery and a lithium polymer battery is 3.6V-3.7V. The nominal voltage of the manganese dioxide lithium secondary battery is 3.0V. The nominal voltage of the carbon lithium titanate secondary battery is 1.5V. Further, the voltage range between the “end-of-discharge voltage” and the “end-of-charge voltage” in the lithium ion battery is 2.7V to 4.2V. The “end-of-discharge voltage” refers to the lowest value of the discharge voltage that allows safe discharge, and the “end-of-charge voltage” refers to the highest value of the charge voltage that allows safe charge.

二次電池10は、リチウムイオン電池であることが好ましい。この場合には、リチウムイオン電池の公称電圧が3.6V〜3.7Vの範囲であるため、空気電池やニッケル水素二次電池の公称電圧である1.2V〜1.4Vを上回っている。また、リチウムイオン電池の電池電圧が放電に伴って4.2V程度から2.7V程度に低下する放電特性を示すことになるが、空気電池やニッケル水素二次電池よりもエネルギ密度が高いため、空気電池やニッケル水素二次電池を用いた場合よりも機器をより長い時間、駆動することができる。   The secondary battery 10 is preferably a lithium ion battery. In this case, since the nominal voltage of the lithium ion battery is in the range of 3.6 V to 3.7 V, it exceeds 1.2 V to 1.4 V, which is the nominal voltage of the air battery or nickel hydride secondary battery. Moreover, although the battery voltage of a lithium ion battery will show the discharge characteristic which falls from about 4.2V to about 2.7V with discharge, since an energy density is higher than an air battery or a nickel-hydrogen secondary battery, The device can be driven for a longer time than when an air battery or a nickel hydride secondary battery is used.

(受給電装置1の適用例:充電器7)
図10に示すように、上記のように構成された駆動機器5に対して充電を行う充電器7は、給電コイル機構3を内蔵した台部材6を有している。台部材6は、駆動機器5を載置する載置面6aと、載置面6aの周縁部に形成された側周面6bとを有している。載置面6aは、給電コイル機構3の磁界生成面3aと同一の円形状に形成されており、載置面6aの中心部と磁界生成面3aの中心部とが上下方向において一致されている。側周面6bは、載置面6aの周縁部から外周方向に傾斜され、駆動機器5を滑りにより載置面6aの内周方向に移動させるように形成されている。
(Application example of power supply / reception device 1: charger 7)
As shown in FIG. 10, the charger 7 that charges the driving device 5 configured as described above includes a base member 6 in which the feeding coil mechanism 3 is built. The base member 6 has a mounting surface 6a on which the driving device 5 is mounted and a side peripheral surface 6b formed on the peripheral edge of the mounting surface 6a. The placement surface 6a is formed in the same circular shape as the magnetic field generation surface 3a of the power feeding coil mechanism 3, and the center portion of the placement surface 6a and the center portion of the magnetic field generation surface 3a are aligned in the vertical direction. . The side peripheral surface 6b is inclined in the outer peripheral direction from the peripheral edge of the mounting surface 6a, and is formed so as to move the driving device 5 in the inner peripheral direction of the mounting surface 6a by sliding.

上記の構成によれば、台部材6における側周面6bが載置面6aよりも周縁部から外周方向に傾斜されることによって、載置面6aから離れた側となる上面側の側周面6bのサイズが載置面6aよりも大きなものとなる。そして、側周面6bに当接するように駆動機器5を載置した場合でも、駆動機器5が側周面6bを内周方向に滑って載置面6a上に移動する。これにより、側周面6bと載置面6aとが載置領域となり、この載置領域に駆動機器5を載置する動作を行うことで載置面6aに載置することが可能になるため、駆動機器5の載置面6aへの載置作業が容易になる。   According to said structure, when the side peripheral surface 6b in the base member 6 inclines in an outer peripheral direction from a peripheral part rather than the mounting surface 6a, the side peripheral surface of the upper surface side used as the side away from the mounting surface 6a. The size of 6b is larger than the placement surface 6a. Even when the driving device 5 is placed so as to come into contact with the side circumferential surface 6b, the driving device 5 slides on the side circumferential surface 6b in the inner circumferential direction and moves onto the placement surface 6a. As a result, the side peripheral surface 6b and the mounting surface 6a serve as a mounting region, and it is possible to mount the driving device 5 on the mounting surface by performing the operation of mounting the driving device 5 on the mounting region. The mounting operation of the driving device 5 on the mounting surface 6a is facilitated.

側周面6bは、載置面6aによる駆動機器5に対する最大静止摩擦力と側周面6bによる駆動機器5に対する最大静止摩擦力との合力が、駆動機器5の重量よりも小さくなるように形成されていることが好ましい。これにより、駆動機器5を自重で載置面6aに滑り落とすことが可能になる。   The side peripheral surface 6b is formed such that the resultant force of the maximum static friction force on the driving device 5 by the mounting surface 6a and the maximum static friction force on the driving device 5 by the side peripheral surface 6b is smaller than the weight of the driving device 5. It is preferable that As a result, the driving device 5 can be slid down onto the placement surface 6a by its own weight.

また、載置面6a及び側周面6bは、駆動機器5との接触面積が小さくなるように、多数の凹凸を有していることが好ましい。この場合は、載置面6a及び側周面6bの最大静止摩擦係数を容易に減少させることができる。また、載置面6a及び側周面6bは、駆動機器5に対する滑り性を向上させるため、フッ素コート(テフロン(登録商標))や平滑性を上げるガラスコート等により形成された接触層が台部材6の基材上に積層されていることが好ましい。さらに、載置面6a及び側周面6bは、接触層の積層構造と凹凸の表面形状との組み合わせであってもよいし、載置面6a及び側周面6bの何れか一方に接触層の積層構造と凹凸の表面形状との組み合わせが施されていてもよい。また、載置面6a及び側周面6bの一方に接触層が形成され、載置面6a及び側周面6bの他方に凹凸の表面形状が施されていてもよい。   Moreover, it is preferable that the mounting surface 6a and the side peripheral surface 6b have many unevenness | corrugations so that a contact area with the drive device 5 may become small. In this case, the maximum static friction coefficient of the mounting surface 6a and the side peripheral surface 6b can be easily reduced. Further, the mounting surface 6a and the side peripheral surface 6b have a contact layer formed of a fluorine coat (Teflon (registered trademark)) or a glass coat for improving smoothness to improve the slipperiness with respect to the drive device 5. 6 is preferably laminated on the base material. Furthermore, the mounting surface 6a and the side peripheral surface 6b may be a combination of a laminated structure of contact layers and an uneven surface shape. A combination of a laminated structure and an uneven surface shape may be applied. Further, a contact layer may be formed on one of the placement surface 6a and the side peripheral surface 6b, and an uneven surface shape may be provided on the other of the placement surface 6a and the side peripheral surface 6b.

充電器7の載置面6aの下方には、給電コイル機構3が配置されている。給電コイル機構3には、給電コイル機構3に対して交流電力を供給する発振制御回路81が接続されている。発振制御回路81と給電コイル機構3とは、取扱い性を向上させるように、給電モジュール8として一体化されている。発振制御回路81には、USB端子61が接続されている。USB端子61は、台部材6の外部に設けられたパソコン等の外部機器から図示しないUSBケーブルが接続可能にされており、外部機器から5Vの直流電力を発振制御回路81に供給可能にしている。尚、充電器7は、USB端子61の代わりに、家庭用の交流電力用コードが接続され、整流回路及び変圧器により交流電力から変換された直流電力を発振制御回路81に供給可能にされていてもよい。   Below the placement surface 6 a of the charger 7, the feeding coil mechanism 3 is arranged. An oscillation control circuit 81 that supplies AC power to the power supply coil mechanism 3 is connected to the power supply coil mechanism 3. The oscillation control circuit 81 and the power feeding coil mechanism 3 are integrated as a power feeding module 8 so as to improve handling. A USB terminal 61 is connected to the oscillation control circuit 81. The USB terminal 61 can be connected to a USB cable (not shown) from an external device such as a personal computer provided outside the base member 6, and can supply 5 V DC power to the oscillation control circuit 81 from the external device. . The charger 7 is connected to a household AC power cord instead of the USB terminal 61 so that the DC power converted from the AC power by the rectifier circuit and the transformer can be supplied to the oscillation control circuit 81. May be.

給電モジュール8について詳細に説明すると、給電モジュール8は、電力を給電する機能を有した給電装置である。給電モジュール8は、磁性部材4を有して磁界により受電する受電コイル機構2が、対向配置されるものであり、受電コイル機構2のコイル径よりも大きなコイル径の磁界生成面3aを有し、磁界生成面3aにおける湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構3を備えている。   The power supply module 8 will be described in detail. The power supply module 8 is a power supply device having a function of supplying power. The power supply module 8 includes a magnetic member 4 and a power receiving coil mechanism 2 that receives power by a magnetic field, and is opposed to the power supply module 8. The power supply coil mechanism 3 is provided so that the magnetic field generation region of the magnetic field lines that are curved on the magnetic field generation surface 3a is larger than the magnetic field generation region of the magnetic field lines that advance straight.

上記の構成によれば、給電コイル機構3の磁界生成面3aが受電コイル機構2のコイル径よりも大きなコイル径を有し、さらに湾曲する磁力線の磁界生成領域が受電コイル機構2に対して拡大されることによって、受電コイル機構2が給電コイル機構3の磁界生成面3a上において任意の場所に位置されても、給電コイル機構3からの多くの湾曲した磁束を受電コイル機構2に対して鎖交させる可能性を高めることができる。   According to the above configuration, the magnetic field generation surface 3 a of the power supply coil mechanism 3 has a coil diameter larger than the coil diameter of the power reception coil mechanism 2, and the magnetic field generation region of the magnetic field lines that are further curved is enlarged with respect to the power reception coil mechanism 2. As a result, even when the power receiving coil mechanism 2 is positioned at an arbitrary position on the magnetic field generation surface 3 a of the power feeding coil mechanism 3, many curved magnetic fluxes from the power feeding coil mechanism 3 are chained to the power receiving coil mechanism 2. It is possible to increase the possibility of crossing.

尚、給電モジュール8は、磁性部材4を備えていなくてもよい。この構成によれば、湾曲する磁力線の磁界生成領域が受電コイル機構2に対してさらに拡大されることによって、給電コイル機構3からの多くの湾曲した磁束を受電コイル機構2に対して鎖交させる可能性を一層高めることができる。   The power supply module 8 may not include the magnetic member 4. According to this configuration, the magnetic field generation region of the curved magnetic field lines is further expanded with respect to the power receiving coil mechanism 2, so that many curved magnetic fluxes from the power feeding coil mechanism 3 are linked to the power receiving coil mechanism 2. The possibility can be further increased.

(磁界の小さな空間部分)
次に、駆動機器5における『磁界が小さな空間部分』について詳細に説明する。
(Space part with small magnetic field)
Next, the “space portion with a small magnetic field” in the drive device 5 will be described in detail.

図1に示すように、駆動機器5は、『磁界が小さな空間部分』を所望位置に形成するように構成されている。空間部分の所望位置への形成は、充電器7との位置関係や給電状態、内部構成等の給電条件を設定することにより実現することができる。   As shown in FIG. 1, the driving device 5 is configured to form a “space portion with a small magnetic field” at a desired position. Formation of the space portion at a desired position can be realized by setting power supply conditions such as a positional relationship with the charger 7, a power supply state, and an internal configuration.

例えば、駆動機器5は、充電器7の給電共振器32から受電共振器22に共振現象により電力を供給する際に、給電共振器32と受電共振器22との間の所望位置に、この所望位置以外の磁界強度よりも小さな磁界強度を有する磁界空間を『空間部分』として形成するように構成されていてもよい。   For example, when the driving device 5 supplies power from the power feeding resonator 32 of the charger 7 to the power receiving resonator 22 by a resonance phenomenon, the driving device 5 is placed at a desired position between the power feeding resonator 32 and the power receiving resonator 22. A magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the position may be formed as a “space portion”.

『空間部分』の形成方法を詳細に説明すると、充電器7の給電共振器32から駆動機器5の受電共振器22に対して共振現象により電力を供給するときに、給電共振器32に流れる電流の向きと受電共振器22に流れる電流の向きとが、逆向きになるように、給電共振器32に供給する電力の周波数を設定する方法が例示される。   The method of forming the “space portion” will be described in detail. When electric power is supplied from the power supply resonator 32 of the charger 7 to the power reception resonator 22 of the drive device 5 by a resonance phenomenon, the current flowing through the power supply resonator 32. A method of setting the frequency of the power supplied to the power feeding resonator 32 so that the direction of current and the direction of the current flowing through the power receiving resonator 22 are opposite is illustrated.

上記の形成方法によれば、共振現象を利用した電力伝送を行う際に、給電共振器32と受電共振器22を近接配置することにより、給電共振器32と受電共振器22との結合の強さを表す結合係数が高くなる。このように結合係数が高い状態で、伝送特性『S21』(給電共振器32から受電共振器22に電力を送電する際の送電効率の指標となる値)を計測すると、その測定波形は低周波側と高周波側とにピークが分離する。そして、この高周波側のピーク付近の周波数に、給電共振器32に供給する電力の周波数を設定することにより、給電共振器32に流れる電流の向きと受電共振器22に流れる電流の向きとが逆向きになり、給電共振器32の内周側に発生する磁界と受電共振器22の内周側に発生する磁界とが打ち消し合うことにより、給電共振器32及び受電共振器22の内周側に、磁界による影響が低減されて、給電共振器32及び受電共振器22の内周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を『空間部分』として形成することができる。   According to the above formation method, when power transmission is performed using a resonance phenomenon, the feeding resonator 32 and the power receiving resonator 22 are arranged close to each other, thereby strengthening the coupling between the power feeding resonator 32 and the power receiving resonator 22. The coupling coefficient representing the height increases. When the transmission characteristic “S21” (a value serving as an index of power transmission efficiency when power is transmitted from the power feeding resonator 32 to the power receiving resonator 22) is measured in a state where the coupling coefficient is high in this way, the measurement waveform is a low frequency. Peaks are separated on the high frequency side. Then, by setting the frequency of the power supplied to the power supply resonator 32 to the frequency near the peak on the high frequency side, the direction of the current flowing through the power supply resonator 32 and the direction of the current flowing through the power reception resonator 22 are reversed. The magnetic field generated on the inner peripheral side of the power feeding resonator 32 and the magnetic field generated on the inner peripheral side of the power receiving resonator 22 cancel each other, so that the power feeding resonator 32 and the power receiving resonator 22 have the inner peripheral side. The influence of the magnetic field is reduced, and a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the inner peripheral side of the power feeding resonator 32 and the power receiving resonator 22 can be formed as a “space portion”.

また、『空間部分』の他の形成方法として、給電共振器32から受電共振器22に対して共振現象により電力を供給するときに、給電共振器32に流れる電流の向きと受電共振器22に流れる電流の向きとが、同じ向きになるように、給電共振器32に供給する電力の周波数を設定する方法が例示される。   As another method for forming the “space portion”, when power is supplied from the power supply resonator 32 to the power reception resonator 22 by a resonance phenomenon, the direction of the current flowing through the power supply resonator 32 and the power reception resonator 22 are supplied. The method of setting the frequency of the electric power supplied to the electric power feeding resonator 32 so that the direction of the electric current which flows may become the same direction is illustrated.

上記の形成方法によれば、共振現象を利用した電力伝送を行う際に、給電共振器32と受電共振器22とを近接配置することにより、給電共振器32と受電共振器22との結合の強さを表す結合係数が高くなる。このように結合係数が高い状態で、伝送特性を計測すると、その測定波形は低周波側と高周波側とにピークが分離する。そして、この低周波側のピーク付近の周波数に、給電共振器32に供給する電力の周波数を設定することにより、給電共振器32に流れる電流の向きと受電共振器22に流れる電流の向きとが同じ向きになり、給電共振器32の外周側に発生する磁界と受電共振器22の外周側に発生する磁界とが打ち消し合うことにより、給電共振器32及び受電共振器22の外周側に、磁界による影響が低減されて、給電共振器32及び受電共振器22の外周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を『空間部分』として形成することができる。   According to the above formation method, when power transmission using the resonance phenomenon is performed, the feeding resonator 32 and the power receiving resonator 22 are disposed in proximity to each other, thereby coupling the power feeding resonator 32 and the power receiving resonator 22. The coupling coefficient representing strength increases. When the transmission characteristic is measured in such a state where the coupling coefficient is high, the peak of the measurement waveform is separated into the low frequency side and the high frequency side. Then, by setting the frequency of the power supplied to the power supply resonator 32 to the frequency near the peak on the low frequency side, the direction of the current flowing through the power supply resonator 32 and the direction of the current flowing through the power reception resonator 22 are changed. In the same direction, the magnetic field generated on the outer peripheral side of the power feeding resonator 32 and the magnetic field generated on the outer peripheral side of the power receiving resonator 22 cancel each other, so that a magnetic field is generated on the outer peripheral side of the power feeding resonator 32 and the power receiving resonator 22. Thus, the magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 32 and the power receiving resonator 22 can be formed as a “space portion”.

また、『空間部分』は、給電共振器32及び受電共振器22に関する調整パラメータを変化させて、給電共振器32及び受電共振器22の間に発生する磁界結合の強度に基づいて大きさが設定されてもよい。例えば、給電共振器32及び受電共振器22との間に発生する磁界結合を相対的に弱めることにより磁界空間の大きさを拡大することができる。一方、給電共振器32及び受電共振器22との間に発生する磁界結合を相対的に強めることにより磁界空間の大きさを小さくすることができる。これにより、駆動機器5のサイズに最適な『空間部分』を形成することができる。   In addition, the “space portion” is set based on the strength of the magnetic field coupling generated between the power supply resonator 32 and the power reception resonator 22 by changing the adjustment parameters related to the power supply resonator 32 and the power reception resonator 22. May be. For example, the size of the magnetic field space can be expanded by relatively weakening the magnetic field coupling generated between the power feeding resonator 32 and the power receiving resonator 22. On the other hand, the size of the magnetic field space can be reduced by relatively strengthening the magnetic field coupling generated between the power feeding resonator 32 and the power receiving resonator 22. Thereby, the “space portion” that is optimal for the size of the drive device 5 can be formed.

尚、給電共振器32の配置関係、及び、受電共振器22の配置関係を調整パラメータとし、この調整パラメータを変化させて、給電共振器32及び受電共振器22の間に発生する磁界結合の強度を変更することにより、磁界空間の大きさを変更してもよい。   The placement relationship of the power feeding resonator 32 and the placement relationship of the power receiving resonator 22 are used as adjustment parameters, and the strength of the magnetic field coupling generated between the power feeding resonator 32 and the power receiving resonator 22 by changing the adjustment parameters. The size of the magnetic field space may be changed by changing.

また、『空間部分』は、給電共振器32及び受電共振器22の形状を調整パラメータとし、これらのコイルの形状を所望の形状に変化させて、給電共振器32及び受電共振器22の間及び周辺に発生する磁界結合の強度を変更することにより、形状が所望の形状に設定されてもよい。この場合には、給電共振器32及び受電共振器22を所望の形状にすることにより、磁界強度が相対的に弱い磁界空間をコイルの形状に沿った所望の形状で形成することができる。   Further, the “space portion” uses the shapes of the power feeding resonator 32 and the power receiving resonator 22 as adjustment parameters, and changes the shape of these coils to a desired shape, and between the power feeding resonator 32 and the power receiving resonator 22. The shape may be set to a desired shape by changing the strength of magnetic field coupling generated in the periphery. In this case, by making the power feeding resonator 32 and the power receiving resonator 22 into desired shapes, a magnetic field space having a relatively weak magnetic field strength can be formed in a desired shape along the shape of the coil.

また、『空間部分』は、給電共振器32と給電コイル31との間の第1距離、及び、受電コイル21と受電共振器22との間の第2距離の少なくとも一つを調整パラメータとし、この調整パラメータに基づいて、大きさが設定されてもよい。例えば、給電共振器32と給電コイル31との間の第1距離、及び、受電コイル21と受電共振器22との間の第2距離を相対的に短くすることにより、磁界結合を相対的に弱めて磁界空間の大きさを拡大することができる。一方、給電共振器32と給電コイル31との間の第1距離、及び、受電コイル21と受電共振器22との間の第2距離を相対的に長くすることにより、磁界結合を相対的に強めて磁界空間の大きさを小さくすることができる。   The “space portion” has at least one of a first distance between the power feeding resonator 32 and the power feeding coil 31 and a second distance between the power receiving coil 21 and the power receiving resonator 22 as an adjustment parameter. The size may be set based on this adjustment parameter. For example, by relatively shortening the first distance between the power feeding resonator 32 and the power feeding coil 31 and the second distance between the power receiving coil 21 and the power receiving resonator 22, the magnetic field coupling is relatively It can be weakened to increase the size of the magnetic field space. On the other hand, by relatively increasing the first distance between the power supply resonator 32 and the power supply coil 31 and the second distance between the power reception coil 21 and the power reception resonator 22, the magnetic field coupling is relatively increased. By strengthening, the size of the magnetic field space can be reduced.

さらに、『空間部分』は、磁性部材4を利用して、或いは磁界空間用の磁性部材を追加して形成されていてもよい。具体的には、受電共振器22及び給電共振器32の対向面を除いた少なくとも一部の面を覆うように磁性部材を配置し、給電共振器32と受電共振器22との間で磁界を変化させて電力伝送を行うことで、所望位置に当該所望位置以外の磁界強度よりも小さな磁界強度を有する磁界空間を『空間部分』として形成してもよい。例えば、磁性部材は、受電共振器22の内周面を覆うように配置されていてもよい。この場合には、受電共振器22の内周側で発生する磁界を遮断して、受電共振器22の内周側に比較的に小さな磁界強度を有する磁界空間を『空間部分』として形成することができる。   Furthermore, the “space portion” may be formed using the magnetic member 4 or by adding a magnetic member for a magnetic field space. Specifically, a magnetic member is disposed so as to cover at least a part of the surface excluding the facing surfaces of the power receiving resonator 22 and the power feeding resonator 32, and a magnetic field is generated between the power feeding resonator 32 and the power receiving resonator 22. By performing power transmission while changing, a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the desired position at a desired position may be formed as a “space portion”. For example, the magnetic member may be disposed so as to cover the inner peripheral surface of the power receiving resonator 22. In this case, the magnetic field generated on the inner peripheral side of the power receiving resonator 22 is cut off, and a magnetic field space having a relatively small magnetic field strength is formed as a “space portion” on the inner peripheral side of the power receiving resonator 22. Can do.

また、磁性部材は、給電共振器32及び受電共振器22の対向面とは反対側の面を覆うように配置されていてもよい。この場合には、受電共振器22の対向面とは反対側の面付近で発生する磁界を遮断して、受電共振器22の対向面とは反対側の面付近に比較的小さな磁界強度を有する磁界空間を『空間部分』として形成することができる。   Further, the magnetic member may be disposed so as to cover a surface opposite to the facing surfaces of the power feeding resonator 32 and the power receiving resonator 22. In this case, the magnetic field generated near the surface opposite to the surface opposite to the power receiving resonator 22 is cut off, and the magnetic field strength is relatively small near the surface opposite to the surface facing the power receiving resonator 22. The magnetic field space can be formed as a “space part”.

このように、駆動機器5は、上述の空間部分の形成方法の1以上の組み合わせに基づいて、受電コイル機構2の内側や近傍の所望位置に磁界強度の小さな磁界空間を『空間部分』として意図的に形成することが可能になっていると共に、『空間部分』の大きさや形状を設定することが可能になっている。即ち、駆動機器5は、受電コイル機構2の設置態様により所望の空間部分を形成することが可能になっている。   In this way, the drive device 5 intends a magnetic field space having a small magnetic field strength as a “space part” at a desired position inside or in the vicinity of the power receiving coil mechanism 2 based on one or more combinations of the above-described space part forming methods. The size and shape of the “space portion” can be set. That is, the drive device 5 can form a desired space portion depending on the installation mode of the power receiving coil mechanism 2.

以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態に限定されず、その他の実施形態にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。   In the above detailed description, the present invention has been described mainly with respect to characteristic parts so that the present invention can be more easily understood. However, the present invention is not limited to the embodiments described in the above detailed description, and other implementations are possible. It can also be applied to forms and its scope should be interpreted as widely as possible. The terms and terminology used in the present specification are used to accurately describe the present invention, and are not used to limit the interpretation of the present invention. Moreover, it would be easy for those skilled in the art to infer other configurations, systems, methods, and the like included in the concept of the present invention from the concept of the invention described in this specification. Accordingly, the description of the claims should be regarded as including an equivalent configuration without departing from the technical idea of the present invention. In addition, in order to fully understand the object of the present invention and the effects of the present invention, it is desirable to fully consider the literatures already disclosed.

1 受給電装置
1A 受給電装置
2 受電コイル機構
3 給電コイル機構
3a 磁界生成面
4 磁性部材
5 駆動機器
6台部材
6a 載置面
6b 側周面
7 充電器
8 給電モジュール
9 受電モジュール
10 二次電池
21 受電コイル
22 受電共振器
31 給電コイル
32 給電共振器
51 筐体
DESCRIPTION OF SYMBOLS 1 Power supply / reception apparatus 1A Power supply / reception apparatus 2 Power reception coil mechanism 3 Power supply coil mechanism 3a Magnetic field generation surface 4 Magnetic member 5 Driving device 6 base member 6a Mounting surface 6b Side peripheral surface 7 Charger 8 Power supply module 9 Power reception module 10 Secondary battery 21 Power receiving coil 22 Power receiving resonator 31 Power feeding coil 32 Power feeding resonator 51 Housing

Claims (12)

磁界により受電する受電コイル機構と、
前記受電コイル機構のコイル径よりも大きなコイル径の磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構と、
前記受電コイル機構に配置された磁性部材と、
を有することを特徴とする受給電装置。
A receiving coil mechanism for receiving power by a magnetic field;
A power supply having a magnetic field generation surface having a coil diameter larger than the coil diameter of the power receiving coil mechanism, and the magnetic field generation region of the curved magnetic force lines on the magnetic field generation surface is larger than the magnetic field generation region of the magnetic force lines moving straight. A coil mechanism;
A magnetic member disposed in the power receiving coil mechanism;
A power supply / reception device comprising:
前記磁性部材は、前記受電コイル機構及び前記給電コイル機構の内で、前記受電コイル機構にのみ配置されていることを特徴とする請求項1に記載の受給電装置。   The power supply / reception device according to claim 1, wherein the magnetic member is disposed only in the power reception coil mechanism among the power reception coil mechanism and the power supply coil mechanism. 前記受電コイル機構の前記磁性部材において、当該磁性部材の一端側と他端側との中間部に前記受電コイル機構が位置するように配置されていることを特徴とする請求項1又は2に記載の受給電装置。   The magnetic member of the power receiving coil mechanism is disposed so that the power receiving coil mechanism is positioned at an intermediate portion between one end side and the other end side of the magnetic member. Power supply / reception device. 前記受電コイル機構は、受電コイルと受電共振器とを有し、
前記給電コイル機構は、給電コイルと、前記受電共振器との間で磁界共振により電力伝送を行う給電共振器とを有し、
前記受電コイル機構は、
前記受電コイルの一端側と他端側との中間部に前記受電共振器を配置していることを特徴とする請求項3に記載の受給電装置。
The power receiving coil mechanism includes a power receiving coil and a power receiving resonator,
The power supply coil mechanism includes a power supply coil and a power supply resonator that transmits power by magnetic field resonance between the power reception resonator and the power supply coil mechanism.
The power receiving coil mechanism is
The power receiving / feeding device according to claim 3, wherein the power receiving resonator is disposed in an intermediate portion between one end side and the other end side of the power receiving coil.
磁界により受電する受電コイル機構を備えた駆動機器と、
前記駆動機器を載置可能な載置面を有した台部材と、前記載置面に対向配置された磁界生成面を有し、前記磁界を生成する給電コイル機構とを備えた充電器と
を有し、
前記給電コイル機構の磁界生成面は、前記受電コイル機構のコイル径よりも大きなコイル径を有し、
前記駆動機器は、一部が前記載置面の周縁部上に位置した条件下で、前記磁界生成面における湾曲する磁力線の磁界生成領域上に前記受電コイル機構を位置させるように形成されている
ことを特徴とする受給電装置。
A drive device having a power receiving coil mechanism for receiving power by a magnetic field;
A battery charger comprising: a base member having a mounting surface on which the driving device can be mounted; and a feeding coil mechanism that has a magnetic field generating surface disposed opposite to the mounting surface and generates the magnetic field. Have
The magnetic field generating surface of the power feeding coil mechanism has a coil diameter larger than the coil diameter of the power receiving coil mechanism,
The drive device is formed so that the power receiving coil mechanism is positioned on a magnetic field generation region of a curved magnetic field line on the magnetic field generation surface under a condition that a part of the drive device is positioned on a peripheral portion of the placement surface. A power supply / reception device.
磁界により受電する受電コイル機構を備えた駆動機器と、
前記駆動機器を載置可能な載置面を有した台部材と、前記載置面に対向配置され、前記磁界を生成する磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構とを備えた充電器と
を有し、
前記給電コイル機構の前記磁界生成面は、前記受電コイル機構のコイル径よりも大きなコイル径を有し、
前記駆動機器は、一端側と他端側との中間部に前記受電コイル機構が位置するように配置された磁性部材を有し、一部が前記載置面の周縁部上に位置した条件下で、前記磁界生成面における湾曲する磁力線の磁界生成領域上に前記受電コイル機構を位置させるように形成されている
ことを特徴とする受給電装置。
A drive device having a power receiving coil mechanism for receiving power by a magnetic field;
A base member having a mounting surface on which the driving device can be mounted, and a magnetic field generation surface that is disposed opposite to the mounting surface and generates the magnetic field, and generates a magnetic field line that curves on the magnetic field generation surface. A power supply coil mechanism formed so as to expand more than the magnetic field generation region of the magnetic field lines in which the region goes straight,
The magnetic field generation surface of the power feeding coil mechanism has a coil diameter larger than the coil diameter of the power receiving coil mechanism,
The drive device has a magnetic member disposed so that the power receiving coil mechanism is positioned at an intermediate portion between one end side and the other end side, and a part of the drive device is positioned on the peripheral portion of the mounting surface. Thus, the power receiving / feeding device is characterized in that the power receiving coil mechanism is positioned on a magnetic field generating region of a magnetic field line that is curved on the magnetic field generating surface.
前記台部材は、
前記載置面の周縁部から外周方向に傾斜され、前記駆動機器を滑りにより前記載置面の内周方向に移動させる側周面を有していることを特徴とする請求項5又は6に記載の受給電装置。
The base member is
7. The apparatus according to claim 5, further comprising a side peripheral surface that is inclined in an outer peripheral direction from a peripheral portion of the mounting surface and moves the driving device in an inner peripheral direction of the mounting surface by sliding. The power supply / reception device described.
前記駆動機器は、
自重により前記受電コイル機構のコイル面を前記給電コイル機構の磁界生成面に対向させる外形状に形成されていることを特徴とする請求項5乃至7の何れか1項に記載の受給電装置。
The drive device is
8. The power supply / reception device according to claim 5, wherein the power reception device is formed in an outer shape that causes a coil surface of the power reception coil mechanism to face a magnetic field generation surface of the power supply coil mechanism by its own weight.
前記駆動機器は、補聴器であることを特徴とする請求項5乃至8の何れか1項に記載の受給電装置。   The power supply / reception device according to claim 5, wherein the driving device is a hearing aid. 湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大された磁界生成面を備えた給電コイル機構に対向配置される受電コイル機構を備えた受電装置であって、
前記受電コイル機構は、前記給電コイル機構の磁界生成面よりも小さなコイル径を有し、
前記給電コイル機構及び前記受電コイル機構の内で、前記受電コイル機構にのみ配置された磁性部材を備えていることを特徴とする受電装置。
A power receiving device including a power receiving coil mechanism disposed opposite to a power feeding coil mechanism having a magnetic field generating surface that is larger than a magnetic field generating region of a magnetic force line in which a magnetic field generating line of curved magnetic force lines goes straight.
The power receiving coil mechanism has a smaller coil diameter than the magnetic field generation surface of the power feeding coil mechanism,
A power receiving device comprising a magnetic member disposed only in the power receiving coil mechanism among the power feeding coil mechanism and the power receiving coil mechanism.
磁性部材を有して磁界により受電する受電コイル機構が、対向配置される給電装置であって、
前記受電コイル機構のコイル径よりも大きなコイル径の磁界生成面を有し、前記磁界生成面における湾曲する磁力線の磁界生成領域が直進する磁力線の磁界生成領域よりも拡大するように形成された給電コイル機構を備えたことを特徴とする給電装置。
A power receiving coil mechanism that has a magnetic member and receives power by a magnetic field is a power feeding device that is disposed oppositely,
A power supply having a magnetic field generation surface having a coil diameter larger than the coil diameter of the power receiving coil mechanism, and the magnetic field generation region of the curved magnetic force lines on the magnetic field generation surface is larger than the magnetic field generation region of the magnetic force lines moving straight. A power supply device comprising a coil mechanism.
前記給電装置は、磁性部材を備えていないことを特徴とする請求項11に記載の給電装置。   The power feeding device according to claim 11, wherein the power feeding device does not include a magnetic member.
JP2015186537A 2015-09-24 2015-09-24 Power receiving device Pending JP2017063521A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015186537A JP2017063521A (en) 2015-09-24 2015-09-24 Power receiving device
PCT/JP2016/077824 WO2017051821A1 (en) 2015-09-24 2016-09-21 Power reception/feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186537A JP2017063521A (en) 2015-09-24 2015-09-24 Power receiving device

Publications (1)

Publication Number Publication Date
JP2017063521A true JP2017063521A (en) 2017-03-30

Family

ID=58386744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186537A Pending JP2017063521A (en) 2015-09-24 2015-09-24 Power receiving device

Country Status (2)

Country Link
JP (1) JP2017063521A (en)
WO (1) WO2017051821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204225A1 (en) * 2022-04-21 2023-10-26 株式会社村田製作所 Wireless power reception device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259171A (en) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd Non-contact transmission apparatus
JP2011083078A (en) * 2009-10-05 2011-04-21 Sony Corp Power transmission device, power receiving device, and power transmission system
JP5838562B2 (en) * 2011-02-17 2016-01-06 富士通株式会社 Wireless power transmission device and wireless power transmission system
JP5667019B2 (en) * 2011-09-14 2015-02-12 株式会社東芝 Wireless power transmission apparatus and method
JP6095957B2 (en) * 2012-04-17 2017-03-15 日東電工株式会社 Wireless power transmission device, power feeding device, and power receiving device
JP5906175B2 (en) * 2012-12-11 2016-04-20 日本電信電話株式会社 Power transmission method and magnetic resonance type wireless power transmission device
JP2015159664A (en) * 2014-02-24 2015-09-03 日東電工株式会社 Power supply device for portable device and charging device of the same
US9831685B2 (en) * 2014-05-16 2017-11-28 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204225A1 (en) * 2022-04-21 2023-10-26 株式会社村田製作所 Wireless power reception device

Also Published As

Publication number Publication date
WO2017051821A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5616496B1 (en) Power supply / reception device and portable device
WO2015049975A1 (en) Hearing aid
EP3410561B1 (en) Magnetic field formation device, power supplying device, power receiving device, power receiving and supplying device, and portable apparatus
US20160064944A1 (en) Power-receiving device
WO2017051821A1 (en) Power reception/feeding device
WO2017131058A1 (en) Magnetic field formation device, power supplying device, power receiving device, power receiving and supplying device, and portable apparatus
CN108604826B (en) Power supply device and power receiving and supplying device
EP3410564B1 (en) Magnetic field forming device, power reception/supply system, and method for forming magnetic field
WO2016195093A1 (en) Driving device and portable device equipped with same
WO2016195097A1 (en) Driving device and portable device equipped with same
WO2017131063A1 (en) Magnetic field formation device and power receiving device