JP2017062991A - Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2017062991A
JP2017062991A JP2015188625A JP2015188625A JP2017062991A JP 2017062991 A JP2017062991 A JP 2017062991A JP 2015188625 A JP2015188625 A JP 2015188625A JP 2015188625 A JP2015188625 A JP 2015188625A JP 2017062991 A JP2017062991 A JP 2017062991A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015188625A
Other languages
Japanese (ja)
Other versions
JP6555050B2 (en
Inventor
宏美 唐澤
Hiromi Karasawa
宏美 唐澤
崇 坂本
Takashi Sakamoto
崇 坂本
須田 聡一郎
Soichiro Suda
聡一郎 須田
健志 政吉
Kenji Masakichi
健志 政吉
隆行 宮内
Takayuki Miyauchi
隆行 宮内
佐藤 力
Tsutomu Sato
力 佐藤
昌功 小野田
Masanori Onoda
昌功 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015188625A priority Critical patent/JP6555050B2/en
Publication of JP2017062991A publication Critical patent/JP2017062991A/en
Application granted granted Critical
Publication of JP6555050B2 publication Critical patent/JP6555050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery, having high discharge capacity, excellent in permeability of an electrolytic solution into a negative electrode material layer, having low expansion coefficient of an electrode, and excellent in charge/discharge cycle characteristics, even when a negative electrode is subjected to high electrode density treatment.SOLUTION: The negative electrode material for a lithium ion secondary battery includes composite particles in which a plurality of flat graphite particles is aggregated or bonded so that orientation planes are not parallel to each other. An interlayer distance d (002) of a graphite crystal obtained by an X-ray diffraction measurement using a CuKα ray is not more than 3.38Å. A diffraction peak corresponding to (101) plane of rhombohedral graphite and a diffraction peak corresponding to (012) plane are not observed by the X-ray diffraction measurement using the CuKα ray. The pellet density is 1.40 g/cmto 1.65 g/cm.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、他の二次電池であるニッケル・カドミウム電池、ニッケル・水素電池、又は鉛蓄電池に比べ、より高いエネルギー密度を有する。このため、携帯電話、ポータブル電子機器等の携帯電化製品用の電源として用いられている。   Lithium ion secondary batteries have higher energy density than other secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, or lead-acid batteries. For this reason, it is used as a power source for portable electronic products such as mobile phones and portable electronic devices.

リチウムイオン二次電池開発の最近のトレンドとしては、スマートフォンの普及に伴う高容量化及びコンパクト化が挙げられ、更に電気自動車及び蓄電用途への対応として長寿命化も挙げられる。このため、負極の高密度化による高容量化と優れた充放電サイクル特性とが求められる。上記特性を得るための負極材として、人造黒鉛、鱗片状天然黒鉛を球形化した球状天然黒鉛等の結晶化度の高い炭素材料が注目されている。   Recent trends in the development of lithium ion secondary batteries include higher capacity and downsizing with the spread of smartphones, and longer life for electric vehicles and power storage applications. For this reason, high capacity | capacitance by the high density of a negative electrode and the outstanding charging / discharging cycling characteristics are calculated | required. As a negative electrode material for obtaining the above characteristics, carbon materials with high crystallinity such as artificial graphite and spherical natural graphite obtained by spheroidizing flaky natural graphite have attracted attention.

人造黒鉛においては、特許文献1に示されるように、複数の扁平状の1次粒子を、配向面が非平行となるように集合又は結合させてなる2次粒子構造を有する黒鉛粒子を負極活物質として用いることで、充放電サイクル特性の改善を図っている。   In artificial graphite, as disclosed in Patent Document 1, graphite particles having a secondary particle structure in which a plurality of flat primary particles are aggregated or bonded so that their orientation planes are non-parallel are used as negative electrode active materials. By using it as a substance, the charge / discharge cycle characteristics are improved.

リチウムイオン二次電池は、上記のように負極の電極密度を高くすることで体積当たりのエネルギー密度を大きくすることができる。しかし、負極の電極密度を高くすると、電解液の負極材層内への浸透性が低下するため、充放電容量が低下し、充放電サイクル特性が低下するという問題を引き起こし易い。特に、負極の電極密度が1.7g/cmを超えるような強いプレスを加えると、黒鉛結晶の異方性が大きくなるため、黒鉛粒子へのリチウムイオンの吸蔵及び放出の繰り返しによる電極の厚さ方向の膨張率及び収縮率が大きくなり、粒子間剥離が進行し、充放電サイクル特性の低下に繋がる。 In the lithium ion secondary battery, the energy density per volume can be increased by increasing the electrode density of the negative electrode as described above. However, when the electrode density of the negative electrode is increased, the permeability of the electrolytic solution into the negative electrode material layer is lowered, so that the charge / discharge capacity is lowered and the charge / discharge cycle characteristics are liable to be caused. In particular, when a strong press is applied such that the electrode density of the negative electrode exceeds 1.7 g / cm 3 , the anisotropy of the graphite crystal increases, so the thickness of the electrode due to repeated insertion and extraction of lithium ions into the graphite particles. The expansion coefficient and contraction ratio in the vertical direction are increased, the delamination between the particles proceeds, and the charge / discharge cycle characteristics are deteriorated.

球状天然黒鉛は、剥離強度が強く、電極を強い力でプレスしても集電体から剥がれにくいという特長を有する。しかし、電解液との反応性が高く、電解液の浸透性も低いことから、初回充放電効率及び高速充放電効率に改善の余地がある。また、負極の電極密度を高めると、粒子が集電体に沿う方向に配向し、電極の膨張率が大きくなる結果、充放電サイクル特性の低下に繋がってしまう。   Spherical natural graphite has the advantage that it has a high peel strength and is difficult to peel off from the current collector even if the electrode is pressed with a strong force. However, since the reactivity with the electrolyte is high and the permeability of the electrolyte is low, there is room for improvement in the initial charge / discharge efficiency and the high-speed charge / discharge efficiency. Further, when the electrode density of the negative electrode is increased, the particles are oriented in the direction along the current collector, and the expansion coefficient of the electrode is increased. As a result, the charge / discharge cycle characteristics are deteriorated.

負極材として用いられる他の炭素材料として、特許文献2では、メソフェーズピッチから抽出されたメソフェーズ小球体を黒鉛化して得られた球状で微細組織の配向が放射状又はブルックス−テーラー型の黒鉛化粒子、及び微細組織の配向がラメラ型又はブルックス−テーラー型の炭素繊維が提案されている。しかし、前者の黒鉛化粒子は放電容量が低く、後者の炭素繊維は負極の電極密度が1.7g/cmを超えるような高密度化が困難であり、また長繊維が混在するとセパレータを貫通し短絡が起こり易いという問題がある。 As another carbon material used as a negative electrode material, in Patent Document 2, spherical or fine structure oriented graphitized particles obtained by graphitizing mesophase microspheres extracted from mesophase pitch, In addition, a carbon fiber having a lamellar type or a Brooks-Tailor type orientation has been proposed. However, the former graphitized particles have a low discharge capacity, and the latter carbon fibers are difficult to increase in density so that the electrode density of the negative electrode exceeds 1.7 g / cm 3. However, there is a problem that a short circuit easily occurs.

特開平10−158005号公報JP-A-10-158005 特許第2637305号公報Japanese Patent No. 2,637,305

本発明は、上記事情に鑑みてなされたものであり、負極の高電極密度化処理を行っても、高い放電容量を有し、負極材層内への電解液の浸透性に優れ、電極の膨張率が低く、且つ、充放電サイクル特性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを課題とする。   The present invention has been made in view of the above circumstances, and has a high discharge capacity and excellent electrolyte permeability into the negative electrode material layer even when the electrode density is increased. A negative electrode material for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having a low expansion coefficient and excellent charge / discharge cycle characteristics, a negative electrode material slurry for a lithium ion secondary battery, and a lithium ion secondary battery It is an object to provide a negative electrode and a lithium ion secondary battery.

上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含み、
CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、
CuKα線を用いたX線回折測定により、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されず、
ペレット密度が1.40g/cm〜1.65g/cmであるリチウムイオン二次電池用負極材。
Specific means for solving the above problems include the following embodiments.
<1> A plurality of flat graphite particles include composite particles that are aggregated or bonded so that the orientation planes are non-parallel,
The graphite crystal interlayer distance d (002) determined by X-ray diffraction measurement using CuKα rays is 3.38 mm or less,
According to the X-ray diffraction measurement using CuKα rays, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed,
Pellet density of 1.40g / cm 3 ~1.65g / cm 3 and a negative electrode material for a lithium ion secondary battery.

<2> 前記複合粒子が球状の黒鉛粒子を更に含む<1>に記載のリチウムイオン二次電池用負極材。 <2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein the composite particles further include spherical graphite particles.

<3> 窒素ガス吸着のBET法による比表面積が1.0m/g〜3.5m/gである<1>又は<2>に記載のリチウムイオン二次電池用負極材。 <3> The specific surface area by BET method of nitrogen gas adsorption is 1.0m 2 /g~3.5m 2 / g <1 > or negative electrode material for a lithium ion secondary battery according to <2>.

<4> 真比重が2.22以上である<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <4> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>, wherein the true specific gravity is 2.22 or more.

<5> <1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着材と、溶剤とを含むリチウムイオン二次電池用負極材スラリー。 <5> A negative electrode material slurry for a lithium ion secondary battery, comprising the negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>, an organic binder, and a solvent.

<6> 集電体と、集電体上に形成された<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層とを有するリチウムイオン二次電池用負極。 <6> A lithium ion secondary battery having a current collector and a negative electrode material layer including the negative electrode material for a lithium ion secondary battery according to any one of <1> to <4> formed on the current collector. Negative electrode for secondary battery.

<7> 正極と、電解質と、<6>に記載のリチウムイオン二次電池用負極とを有するリチウムイオン二次電池。 <7> A lithium ion secondary battery having a positive electrode, an electrolyte, and the negative electrode for a lithium ion secondary battery according to <6>.

本発明によれば、負極の高電極密度化処理を行っても、高い放電容量を有し、負極材層内への電解液の浸透性に優れ、電極の膨張率が低く、且つ、充放電サイクル特性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することができる。   According to the present invention, even when the electrode density is increased, the anode has a high discharge capacity, excellent permeability of the electrolyte into the anode material layer, low electrode expansion rate, and charge / discharge. A negative electrode material for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having excellent cycle characteristics, a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery Can be provided.

リチウムイオン二次電池用負極材に含まれる複合粒子の走査型電子顕微鏡(SEM)画像の一例を示す図である。It is a figure which shows an example of the scanning electron microscope (SEM) image of the composite particle contained in the negative electrode material for lithium ion secondary batteries. リチウムイオン二次電池用負極材に含まれる複合粒子の走査型電子顕微鏡(SEM)画像の他の例を示す図である。It is a figure which shows the other example of the scanning electron microscope (SEM) image of the composite particle contained in the negative electrode material for lithium ion secondary batteries. 実施例1のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing X-ray diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 1. 実施例2のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 2. 実施例3のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 3. FIG. 実施例4のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 4. 実施例5のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 5. FIG. 実施例6のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 6. 実施例7のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of Example 7. FIG. 比較例1のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 1. 比較例2のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing an X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 2. 比較例3のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 3. 比較例4のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 4. 比較例5のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 5. 比較例6のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 6. 比較例7のリチウムイオン二次電池用負極材についてX線回折測定を行って得られた回折プロファイルを示す図である。It is a figure which shows the diffraction profile obtained by performing a X-ray-diffraction measurement about the negative electrode material for lithium ion secondary batteries of the comparative example 7.

以下、本実施形態のリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池の一例について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。   Hereinafter, examples of the negative electrode material for a lithium ion secondary battery, the negative electrode material slurry for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and the lithium ion secondary battery of the present embodiment will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.

本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本明細書において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, the numerical ranges indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.

<リチウムイオン二次電池用負極材>
本実施形態のリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう。)は、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含み、CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、CuKα線を用いたX線回折測定により、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されず、ペレット密度が1.40g/cm〜1.65g/cmである。
<Anode material for lithium ion secondary battery>
In the negative electrode material for a lithium ion secondary battery of the present embodiment (hereinafter also simply referred to as “negative electrode material”), a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel. The interlayer distance d (002) of the graphite crystal obtained by X-ray diffraction measurement using CuKα rays including the composite particles is 3.38 mm or less, and the rhombohedral graphite of the rhombohedral graphite is measured by X-ray diffraction measurement using CuKα rays. (101) without being diffracted peaks corresponding to diffraction peak and (012) plane corresponding observed in surface, pellet density of 1.40g / cm 3 ~1.65g / cm 3 .

本実施形態の負極材を用いることにより、負極の高電極密度化処理を行っても、高い放電容量を有し、負極材層内への電解液の浸透性に優れ、電極の膨張率が低く、且つ、充放電サイクル特性に優れるリチウムイオン二次電池を得ることができる。また、本実施形態の負極材を用いると、負極材層内への電解液の浸透性に優れることから、負極を高電極密度化処理した場合においても電池の内部抵抗を抑制でき、充放電効率、安全性、低温特性、及び充放電負荷特性に優れるリチウムイオン二次電池を得ることができる。   By using the negative electrode material of the present embodiment, even if the electrode density increasing treatment of the negative electrode is performed, it has a high discharge capacity, excellent permeability of the electrolyte solution into the negative electrode material layer, and a low expansion coefficient of the electrode. And the lithium ion secondary battery which is excellent in charging / discharging cycling characteristics can be obtained. In addition, when the negative electrode material of the present embodiment is used, it is excellent in the permeability of the electrolytic solution into the negative electrode material layer. Therefore, even when the negative electrode is subjected to a high electrode density treatment, the internal resistance of the battery can be suppressed, and the charge / discharge efficiency Thus, a lithium ion secondary battery excellent in safety, low temperature characteristics, and charge / discharge load characteristics can be obtained.

(複合粒子)
本実施形態の負極材は、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含む。
(Composite particles)
The negative electrode material of this embodiment includes composite particles in which a plurality of flat graphite particles are aggregated or bonded so that their orientation planes are non-parallel.

本実施形態の扁平状の黒鉛粒子は、形状に異方性を有する非球状の粒子である。扁平状の黒鉛粒子としては、例えば、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。
扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が1.2〜5であってもよく、1.3〜3であってもよい。アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してA/Bを測定し、その平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a及び接線aを選択して、この接線a及び接線aの間の距離を長軸方向の長さAとする。また、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b及び接線bを選択して、この接線b及び接線bの間の距離を短軸方向の長さBとする。
The flat graphite particles of this embodiment are non-spherical particles having anisotropy in shape. Examples of the flat graphite particles include graphite particles having a shape such as a scale shape, a scale shape, or a partial lump shape.
The flat graphite particles may have an aspect ratio represented by A / B of 1.2 to 5 when the length in the major axis direction is A and the length in the minor axis direction is B. It may be 1.3 to 3. The aspect ratio is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value. In the observation of the aspect ratio, the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed using a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a 1 and the tangent line a 2 having the maximum distance are selected. The distance between the tangent line a 1 and the tangent line a 2 is a length A in the major axis direction. In addition, two parallel tangents circumscribing the outer periphery of the graphite particle, the tangent line b 1 and the tangent line b 2 having the smallest distance are selected, and the distance between the tangent line b 1 and the tangent line b 2 is determined. The length B in the minor axis direction is assumed.

扁平状の黒鉛粒子の配向面が非平行であるとは、扁平状の黒鉛粒子の最も断面積の大きい面に平行な面(配向面)が一定方向に揃っていないことをいう。扁平状の黒鉛粒子の配向面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、配向面が互いに非平行な状態で集合又は結合していることにより、粒子の電極上での配向性が高まることを抑制し、充放電による電極膨張を低減でき、優れた充放電サイクル特性が得られる傾向にある。
なお、本実施形態の負極材は、扁平状の黒鉛粒子の配向面が平行となるように、複数の扁平状の黒鉛粒子が集合又は結合している構造を部分的に含んでいてもよい。
The orientation plane of the flat graphite particles being non-parallel means that planes (alignment planes) parallel to the plane having the largest cross-sectional area of the flat graphite particles are not aligned in a certain direction. Whether or not the orientation planes of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. Multiple flat graphite particles are assembled or bonded with their orientation planes being non-parallel to each other, thereby suppressing the increase in the orientation of the particles on the electrode and reducing electrode expansion due to charge / discharge. , Excellent charge / discharge cycle characteristics tend to be obtained.
In addition, the negative electrode material of this embodiment may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that the orientation planes of the flat graphite particles are parallel.

扁平状の黒鉛粒子が集合又は結合している状態とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。結合とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。また、集合とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダーが焼成工程で黒鉛化した黒鉛であってもよい。機械的な強度の面からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であってもよい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。   The state in which flat graphite particles are aggregated or bonded refers to a state in which two or more flat graphite particles are aggregated or bonded. The bond means a state in which the particles are chemically bonded directly or via a carbon substance. In addition, the term “aggregate” refers to a state in which the particles are not chemically bonded but the shape as an aggregate is maintained due to the shape or the like. The flat graphite particles may be aggregated or bonded via a carbon substance. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing step. From the viewpoint of mechanical strength, it may be in a state where two or more flat graphite particles are bonded via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.

本実施形態の複合粒子における扁平状の黒鉛粒子の合計数は、3個以上であってもよく、10個以上であってもよい。   The total number of flat graphite particles in the composite particles of the present embodiment may be 3 or more, or 10 or more.

扁平状の黒鉛粒子の平均粒径としては、集合又は結合のし易さの観点から、50μm以下であってもよく、25μm以下であってもよく、15μm以下であってもよい。扁平状の黒鉛粒子の平均粒径は、1μm以上であってもよい。平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。
なお、平均粒径は、レーザー回折粒度分布測定装置(例えば、SALD−3000J、株式会社島津製作所製)を用いて、以下の条件で測定することができる。
吸光度:0.05〜0.20
ソニケーション:1分間〜3分間
The average particle diameter of the flat graphite particles may be 50 μm or less, 25 μm or less, or 15 μm or less from the viewpoint of easy aggregation or bonding. The average particle size of the flat graphite particles may be 1 μm or more. The average particle diameter can be measured by a laser diffraction particle size distribution measuring device, and is a particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
In addition, an average particle diameter can be measured on condition of the following using the laser diffraction particle size distribution measuring apparatus (for example, SALD-3000J, Shimadzu Corporation make).
Absorbance: 0.05-0.20
Sonic: 1 to 3 minutes

扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。   The flat graphite particles and their raw materials are not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch. Among them, graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, so that the density of the negative electrode tends to be increased.

本実施形態の複合粒子は、球状の黒鉛粒子を更に含んでいてもよい。一般に、球状の黒鉛粒子は扁平状の黒鉛粒子よりも高密度であるため、複合粒子が球状の黒鉛粒子を含むことにより負極材の密度を高くすることができ、高密度化処理の際に加える圧力を低減することができる。その結果、扁平状の黒鉛粒子が集電体の面に沿う方向に配向することが抑制され、リチウムイオンの移動が良好となる傾向にある。特に、負極の電極密度が1.7g/cmを超える場合は、扁平状の黒鉛粒子の配向を抑制することにより、負極材層内への電解液の浸透性が高まり、放電容量及び充放電サイクル特性が向上する傾向にある。 The composite particles of this embodiment may further contain spherical graphite particles. In general, since spherical graphite particles are denser than flat graphite particles, the composite particles contain spherical graphite particles, so that the density of the negative electrode material can be increased and added during densification treatment. The pressure can be reduced. As a result, the orientation of the flat graphite particles in the direction along the surface of the current collector is suppressed, and the movement of lithium ions tends to be good. In particular, when the electrode density of the negative electrode exceeds 1.7 g / cm 3 , by suppressing the orientation of the flat graphite particles, the permeability of the electrolyte into the negative electrode material layer is increased, and the discharge capacity and charge / discharge are reduced. Cycle characteristics tend to improve.

本実施形態の複合粒子が球状の黒鉛粒子を含む場合、扁平状の黒鉛粒子と球状の黒鉛粒子とは、炭素物質を介して集合又は結合していてもよい。炭素物質は、例えば、タール、ピッチ等のバインダーが焼成工程で黒鉛化した黒鉛であってもよい。複合粒子が球状の黒鉛粒子を含んでいるか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。   When the composite particles of this embodiment include spherical graphite particles, the flat graphite particles and the spherical graphite particles may be aggregated or bonded via a carbon substance. The carbon material may be, for example, graphite obtained by graphitizing a binder such as tar or pitch in the firing step. Whether or not the composite particles include spherical graphite particles can be confirmed, for example, by observation with a scanning electron microscope.

本実施形態の複合粒子が球状の黒鉛粒子を含む場合、扁平状の黒鉛粒子と球状の黒鉛粒子との合計数は、3個以上であってもよく、10個以上であってもよい。   When the composite particles of the present embodiment include spherical graphite particles, the total number of flat graphite particles and spherical graphite particles may be 3 or more, or 10 or more.

球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極材として十分な飽和タップ密度を得る観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であってもよい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であってもよい。球状天然黒鉛は、剥離強度が強く電極を強い力でプレスしても集電体から剥がれにくいという特長を有するため、球状の黒鉛粒子を含む複合粒子を用いることで、より強力な剥離強度を有する負極材が得られる傾向にある。   Examples of the spherical graphite particles include spherical artificial graphite and spherical natural graphite. From the viewpoint of obtaining a sufficient saturated tap density as the negative electrode material, the spherical graphite particles may be high-density graphite particles. Specifically, it may be spherical natural graphite that has been subjected to a particle spheroidization treatment so as to increase the tap density. Spherical natural graphite has the advantage that it has a high peel strength and is difficult to peel off from the current collector even if the electrode is pressed with a strong force, so it has a stronger peel strength by using composite particles containing spherical graphite particles. A negative electrode material tends to be obtained.

球状の黒鉛粒子の平均粒径は特に制限されず、5μm〜40μmであってもよく、8μm〜35μmであってもよく、10μm〜30μmであってもよい。平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。球状の黒鉛粒子の平均粒径は、扁平状の黒鉛粒子の平均粒径と同様に測定することができる。   The average particle diameter of the spherical graphite particles is not particularly limited, and may be 5 μm to 40 μm, 8 μm to 35 μm, or 10 μm to 30 μm. The average particle diameter can be measured by a laser diffraction particle size distribution measuring device, and is a particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution. The average particle diameter of the spherical graphite particles can be measured in the same manner as the average particle diameter of the flat graphite particles.

球状の黒鉛粒子の飽和タップ密度は特に制限されず、0.8g/cm〜1.1g/cmであってもよく、0.9g/cm〜1.05g/cmであってもよい。飽和タップ密度の測定は既知の方法で行うことができる。好ましくは、充填密度測定装置(例えば、KRS−406、株式会社蔵持科学器械製作所製)を用い、メスシリンダーに球状の黒鉛粒子を100mL入れ、密度が飽和するまでタップ(所定の高さからメスシリンダーを落下させる)して算出する。 Saturated tapping density of the graphite particles spherical is not particularly limited, may be 0.8g / cm 3 ~1.1g / cm 3 , even 0.9g / cm 3 ~1.05g / cm 3 Good. The saturation tap density can be measured by a known method. Preferably, using a packing density measuring device (for example, KRS-406, manufactured by Kuramochi Scientific Instruments Co., Ltd.), 100 mL of spherical graphite particles are put into a measuring cylinder, and a tap (from a predetermined height to a measuring cylinder is reached until the density is saturated. Drop) and calculate.

球状の黒鉛粒子の円形度は0.70以上であってもよく、0.85以上であってもよい。球状の黒鉛粒子の中には、負極材の製造過程で機械的力によって変形するものが存在する。しかし、負極材に含まれる球状の黒鉛粒子の全体としての円形度は高い方が負極材としての配向性が低くなり、負極材層内への電解液の浸透性を高めることができる。特に、低温下で使用されるリチウムイオン二次電池の場合、電解液の粘度が高くなり易いが、負極材に円形度の高い球状の黒鉛粒子を使用することで、放電容量及び充放電サイクル特性が向上する傾向にある。
本実施形態の負極材に含まれる球状の黒鉛粒子の円形度を高くするための方法としては、円形度が高い球状の黒鉛粒子を原料として使用することが挙げられる。円形度は、複合粒子に含まれる球状の黒鉛粒子の部分について測定する。
The circularity of the spherical graphite particles may be 0.70 or more, or 0.85 or more. Some spherical graphite particles are deformed by mechanical force during the production process of the negative electrode material. However, the higher the circularity of the spherical graphite particles contained in the negative electrode material, the lower the orientation as the negative electrode material, and the higher the permeability of the electrolyte solution into the negative electrode material layer. In particular, in the case of a lithium ion secondary battery used at low temperatures, the viscosity of the electrolyte solution tends to be high, but by using spherical graphite particles with a high degree of circularity for the negative electrode material, discharge capacity and charge / discharge cycle characteristics Tend to improve.
An example of a method for increasing the circularity of the spherical graphite particles contained in the negative electrode material of the present embodiment is to use spherical graphite particles having a high circularity as a raw material. The degree of circularity is measured for a portion of spherical graphite particles contained in the composite particles.

球状の黒鉛粒子の円形度は、球状の黒鉛粒子の断面を写真撮影して下記式により求めることができる。
円形度=(相当円の周囲長)/(球状の黒鉛粒子の断面像の周囲長)
ここで「相当円」とは、球状の黒鉛粒子の断面像と同じ面積を持つ円である。球状の黒鉛粒子の断面像の周囲長とは、撮像した球状の黒鉛粒子の断面像の輪郭線の長さである。
明細書における円形度は、走査型電子顕微鏡で球状の黒鉛粒子の断面を倍率1000倍に拡大し、任意に10個の球状の黒鉛粒子を選択し、上記方法にて個々の球状の黒鉛粒子の円形度を測定し、その平均をとった値である。
The degree of circularity of the spherical graphite particles can be determined by the following formula by taking a photograph of a cross section of the spherical graphite particles.
Circularity = (perimeter of equivalent circle) / (perimeter of cross-sectional image of spherical graphite particles)
Here, the “equivalent circle” is a circle having the same area as the cross-sectional image of the spherical graphite particles. The peripheral length of the cross-sectional image of the spherical graphite particles is the length of the outline of the cross-sectional image of the captured spherical graphite particles.
In the present specification, the circularity is determined by enlarging the cross section of the spherical graphite particles with a scanning electron microscope to a magnification of 1000 times, arbitrarily selecting 10 spherical graphite particles, and individually spherical graphite particles by the above method. This is a value obtained by measuring the degree of circularity and taking the average.

本実施形態の負極材を用いて負極を製造した場合に球状の黒鉛粒子の断面像を観察する方法としては、試料電極(後述)又は観察対象の電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で観察する方法、イオンミリング装置(例えば、E−3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査型電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で観察する方法等が挙げられる。   As a method of observing a cross-sectional image of spherical graphite particles when a negative electrode is manufactured using the negative electrode material of the present embodiment, a sample electrode (described later) or an electrode to be observed is embedded in an epoxy resin and then mirror-polished. The electrode cross section is prepared using a method of observing the electrode cross section with a scanning electron microscope (for example, VE-7800, manufactured by Keyence Corporation) and an ion milling apparatus (for example, E-3500, manufactured by Hitachi High Technology Corporation). And a method of observing with a scanning electron microscope (for example, VE-7800, manufactured by Keyence Corporation).

本実施形態の負極材に含まれる複合粒子の走査型電子顕微鏡画像の一例を図1に示す。配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子によって複合粒子(図中の実線で示す部分)が形成されている。   An example of a scanning electron microscope image of the composite particles contained in the negative electrode material of this embodiment is shown in FIG. Composite particles (portions indicated by solid lines in the figure) are formed by a plurality of flat graphite particles that are aggregated or bonded so that the orientation planes are non-parallel.

本実施形態の負極材に含まれる複合粒子の走査型電子顕微鏡画像の他の例を図2に示す。図中の点線で示す部分が球状の黒鉛粒子である。球状の黒鉛粒子と、その周囲に存在する配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子とによって複合粒子(図中の実線で示す部分)が形成されている。   Another example of the scanning electron microscope image of the composite particles contained in the negative electrode material of this embodiment is shown in FIG. The part shown with the dotted line in a figure is a spherical graphite particle. Composite particles (parts indicated by solid lines in the figure) are formed by spherical graphite particles and a plurality of flat graphite particles that are aggregated or bonded so that the orientation planes around them are non-parallel. Yes.

本実施形態の負極材は、複合粒子のほかに、複合粒子を形成していない扁平状の黒鉛粒子又は球状の黒鉛粒子を含んでいてもよい。   The negative electrode material of this embodiment may contain flat graphite particles or spherical graphite particles that do not form composite particles, in addition to the composite particles.

(黒鉛結晶の層間距離d(002))
本実施形態の負極材は、CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、3.37Å以下であってもよく、3.36Å以下であってもよい。黒鉛結晶の層間距離d(002)が3.38Å以下であることで、炭素の六角網平面間に挿入又は脱離できるリチウムイオン量が多くなり、放電容量が向上する傾向にある。黒鉛結晶の層間距離d(002)の下限値に特に制限はないが、純粋な黒鉛結晶のd(002)の理論値は通常3.35Å程度とされる。
(Distance between graphite crystal layers d (002))
In the negative electrode material of the present embodiment, the interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement using CuKα rays is 3.38 mm or less, may be 3.37 mm or less, and may be 3.36 mm. It may be the following. When the interlayer distance d (002) of the graphite crystal is 3.38 mm or less, the amount of lithium ions that can be inserted or removed between the hexagonal planes of carbon increases, and the discharge capacity tends to be improved. Although there is no particular limitation on the lower limit value of the interlayer distance d (002) of the graphite crystal, the theoretical value of d (002) of the pure graphite crystal is usually about 3.35 mm.

黒鉛結晶の層間距離d(002)は、詳しくは、X線(CuKα線)を負極材に照射し、回折線をゴニオメーターにより測定して得られた回折プロファイルにより、回折角2θが24度〜26度の範囲に現れるd(002)面に対応する回折ピークより、ブラッグの式を用い算出することができる。   Specifically, the interlayer distance d (002) of the graphite crystal is determined by the diffraction profile obtained by irradiating the negative electrode material with X-rays (CuKα rays) and measuring the diffraction lines with a goniometer. From the diffraction peak corresponding to the d (002) plane appearing in the range of 26 degrees, it can be calculated using the Bragg equation.

なお、CuKα線を用いたX線回折測定は、測定範囲を10度≦2θ≦35度として、後述の菱面体晶黒鉛ピークの測定条件を採用することができる。   In the X-ray diffraction measurement using CuKα rays, the measurement range of 10 ° ≦ 2θ ≦ 35 ° can be used, and the measurement conditions for rhombohedral graphite peaks described later can be employed.

(菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピーク)
黒鉛には六方晶黒鉛と菱面体晶黒鉛とがある。六方晶黒鉛は、CuKα線を用いたX線回折測定により、回折角2θが41.7度〜42.7度の範囲((100)面)及び43.7度〜44.7度の範囲((101)面)に回折ピークが現れる。菱面体晶黒鉛は、CuKα線を用いたX線回折測定により、回折角2θが42.8度〜43.8度の範囲((101)面)及び45.5度〜46.5度の範囲((012)面)に回折ピークが現れる。そのため、黒鉛は、通常、回折角2θが40度〜50度の範囲に回折ピークが2本又は4本現れる。
(Diffraction peak corresponding to (101) plane of rhombohedral graphite and diffraction peak corresponding to (012) plane)
Graphite includes hexagonal graphite and rhombohedral graphite. Hexagonal graphite has a diffraction angle 2θ in the range of 41.7 ° to 42.7 ° ((100) plane) and in the range of 43.7 ° to 44.7 ° by X-ray diffraction measurement using CuKα rays ( A diffraction peak appears on the (101) plane. The rhombohedral graphite has a diffraction angle 2θ in the range of 42.8 degrees to 43.8 degrees ((101) plane) and in the range of 45.5 degrees to 46.5 degrees by X-ray diffraction measurement using CuKα rays. A diffraction peak appears at ((012) plane). Therefore, graphite usually has two or four diffraction peaks in the range of diffraction angle 2θ of 40 degrees to 50 degrees.

なお、六方晶黒鉛は、炭素の六角網平面構造からなる層が(2/3、1/3)ずつ平行移動して積み重なる、いわゆるAB型積層構造をなしている。一方、菱面体晶黒鉛は、炭素の六角網平面構造が、まず(2/3、1/3)平行移動し、次いで(1/3、2/3)平行移動して積み重なる、いわゆるABC型積層構造をなしている。菱面体晶構造は、六方晶黒鉛を粉砕した際に生じる格子歪によって形成される。   The hexagonal graphite has a so-called AB-type laminated structure in which layers of carbon hexagonal network planar structures are moved in parallel (2/3, 1/3) and stacked. On the other hand, rhombohedral graphite is a so-called ABC type laminate in which the hexagonal network plane structure of carbon is first (2/3, 1/3) translated and then (1/3, 2/3) translated and stacked. It has a structure. The rhombohedral structure is formed by lattice strain generated when hexagonal graphite is pulverized.

本実施形態の負極材は、CuKα線を用いたX線回折測定により、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されないものである。すなわち、本実施形態の負極材は、実質的に六方晶黒鉛からなるものである。このような負極材をリチウムイオン二次電池に使用した場合、黒鉛化の程度が高いため、高い放電容量を示し、格子歪が非常に少ないため、電解液との反応が抑えられる結果、充放電効率が向上し、充放電サイクル特性が向上する傾向にある。   In the negative electrode material of this embodiment, the diffraction peak corresponding to the (101) plane and the diffraction peak corresponding to the (012) plane of rhombohedral graphite are not observed by X-ray diffraction measurement using CuKα rays. That is, the negative electrode material of the present embodiment is substantially made of hexagonal graphite. When such a negative electrode material is used for a lithium ion secondary battery, the degree of graphitization is high, so a high discharge capacity is exhibited, and since the lattice distortion is very small, the reaction with the electrolytic solution is suppressed. Efficiency tends to improve and charge / discharge cycle characteristics tend to improve.

なお、CuKα線を用いたX線回折測定は、以下の条件で行うことができる。
−測定装置及び条件−
X線回折装置:MultiFlex、株式会社リガク製
ゴニオメーター:MultiFlexゴニオメーター(シャッターなし)
アタッチメント:標準試料ホルダー
モノクロメーター:固定モノクロメーター
走査モード:2θ/θ
走査タイプ:連続
出力:40kV、40mA
発散スリット:1度
散乱スリット:1度
受光スリット:0.30mm
モノクロ受光スリット:0.8mm
測定範囲:41度≦2θ≦47.5度
サンプリング幅:0.01度
X-ray diffraction measurement using CuKα rays can be performed under the following conditions.
-Measurement equipment and conditions-
X-ray diffractometer: MultiFlex, Rigaku Corporation goniometer: MultiFlex goniometer (without shutter)
Attachment: Standard specimen holder Monochromator: Fixed monochromator Scanning mode: 2θ / θ
Scan type: Continuous output: 40 kV, 40 mA
Divergence slit: 1 degree scattering slit: 1 degree light receiving slit: 0.30 mm
Monochrome light receiving slit: 0.8mm
Measurement range: 41 degrees ≤ 2θ ≤ 47.5 degrees Sampling width: 0.01 degrees

(ペレット密度)
本実施形態の負極材は、ペレット密度が1.40g/cm〜1.65g/cmであり、1.45g/cm〜1.65g/cmであってもよい。ペレット密度が1.65g/cm以下であると、プレスを加えて負極の高密度化処理を行う際に、黒鉛粒子の変形により粒子間空隙量が少なくなることが抑えられ、電解液が負極材層全体に浸透し易くなり、充放電サイクル特性が向上する傾向にある。また、ペレット密度が1.40g/cm以上であると、黒鉛粒子自身が変形し易くなり、負極の電極密度が1.7g/cmを超えるように強いプレスを加えた場合であっても、粒子自身の崩壊が抑えられ、充放電特性及び充放電サイクル特性の低下を抑制できる傾向にある。
(Pellet density)
The negative electrode material of the present embodiment, the pellet density of 1.40g / cm 3 ~1.65g / cm 3 , may be 1.45g / cm 3 ~1.65g / cm 3 . When the pellet density is 1.65 g / cm 3 or less, it is possible to suppress a decrease in the amount of voids due to the deformation of the graphite particles when the negative electrode is densified by applying a press. It tends to penetrate into the entire material layer and tends to improve charge / discharge cycle characteristics. Further, when the pellet density is 1.40 g / cm 3 or more, the graphite particles themselves are easily deformed, and even when a strong press is applied so that the electrode density of the negative electrode exceeds 1.7 g / cm 3. Further, the collapse of the particles themselves is suppressed, and the deterioration of the charge / discharge characteristics and the charge / discharge cycle characteristics tends to be suppressed.

なお、ペレット密度は、錠剤成型機(錠剤底面積:1.327cm)に負極材を1.0g投入し、1000kgの圧力を30秒間加えた後の錠剤の体積密度を求めることで得られる。 In addition, a pellet density is obtained by calculating | requiring the volume density of the tablet after throwing 1.0g of negative electrode materials into a tablet molding machine (tablet bottom area: 1.327cm < 2 >) and applying the pressure of 1000 kg for 30 second.

(比表面積)
本実施形態の負極材は、窒素ガス吸着のBET法による比表面積が1.0m/g〜3.5m/gであってもよく、1.0m/g〜3.0m/gであってもよい。
比表面積は、電解液との界面の面積を示す指標である。すなわち、比表面積の値が3.5m/g以下であると、負極材と電解液との界面の面積が大きすぎず、電解液の分解反応における反応面積の増加が抑制され、ガス発生を抑制でき、電極の膨張特性、及び初回充放電効率が良好となる傾向にある。また、比表面積の値が1.0m/g以上であると、単位面積当たりにかかる電流密度が急上昇せず、負荷が抑制されるため、充放電効率、充電受入性、急速充放電特性等が良好となる傾向にある。
(Specific surface area)
The negative electrode material of the present embodiment has a specific surface area by the BET method of nitrogen gas adsorption may be 1.0m 2 /g~3.5m 2 / g, 1.0m 2 /g~3.0m 2 / g It may be.
The specific surface area is an index indicating the area of the interface with the electrolytic solution. That is, when the value of the specific surface area is 3.5 m 2 / g or less, the area of the interface between the negative electrode material and the electrolytic solution is not too large, the increase in the reaction area in the decomposition reaction of the electrolytic solution is suppressed, and gas generation is suppressed. The expansion characteristics of the electrode and the initial charge / discharge efficiency tend to be good. Further, when the specific surface area value is 1.0 m 2 / g or more, the current density per unit area does not increase rapidly, and the load is suppressed, so that charge / discharge efficiency, charge acceptance, rapid charge / discharge characteristics, etc. Tends to be good.

比表面積の測定は以下の方法で行うことができる。例えば、負極材を測定セルに充填し、真空脱気しながら200℃で加熱前処理を行って得た試料に、ガス吸着装置(例えば、ASAP2010、株式会社島津製作所製)を用いて窒素ガスを吸着させる。得られた試料について5点法でBET解析を行い、比表面積を算出する。   The specific surface area can be measured by the following method. For example, a negative electrode material is filled in a measurement cell, and a sample obtained by performing preheating treatment at 200 ° C. while vacuum degassing is used to apply nitrogen gas using a gas adsorption device (for example, ASAP2010, manufactured by Shimadzu Corporation). Adsorb. A BET analysis is performed on the obtained sample by a five-point method, and a specific surface area is calculated.

本実施形態の負極材の比表面積は、例えば、平均粒径を調整することにより上記範囲とすることができる。なお、平均粒径が小さいほど比表面積が大きくなる傾向にある。   The specific surface area of the negative electrode material of this embodiment can be made into the said range by adjusting an average particle diameter, for example. The specific surface area tends to increase as the average particle size decreases.

(真比重)
本実施形態の負極材は、真比重が2.22以上であってもよく、2.22〜2.27であってもよい。真比重が2.22以上であるとリチウムイオン二次電池の単位体積当たりの充放電容量が増大し、高容量化し易くなる傾向にある。また、真比重が2.22以上であると、黒鉛の結晶性が高くなる結果、電解液との反応性が低くなり、初回充放電効率が向上する傾向にある。
(True specific gravity)
The negative electrode material of this embodiment may have a true specific gravity of 2.22 or more, or 2.22 to 2.27. When the true specific gravity is 2.22 or more, the charge / discharge capacity per unit volume of the lithium ion secondary battery is increased, and the capacity tends to be increased. Further, when the true specific gravity is 2.22 or more, the crystallinity of graphite increases, and as a result, the reactivity with the electrolytic solution decreases and the initial charge / discharge efficiency tends to be improved.

本実施形態の負極材の真比重を2.22以上とする方法としては、結晶性の高い天然黒鉛を用いる方法、結晶性を高くした人造黒鉛を用いる方法等が挙げられる。黒鉛の結晶性を高くするには、例えば、2000℃以上の温度で熱処理を施せばよい。
真比重は、比重瓶を用いたブタノール置換法(JIS R 7212−1995)により測定することができる。
Examples of the method for setting the true specific gravity of the negative electrode material of the present embodiment to 2.22 or more include a method using natural graphite having high crystallinity and a method using artificial graphite having high crystallinity. In order to increase the crystallinity of graphite, for example, heat treatment may be performed at a temperature of 2000 ° C. or higher.
The true specific gravity can be measured by a butanol substitution method (JIS R 7212-1995) using a specific gravity bottle.

(平均粒径(メディアン径))
本実施形態の負極材の平均粒径(メディアン径)は特に制限されない。配向性への影響及び電解液の浸透性の観点から、負極材の平均粒径は、10μm〜30μmであってもよく、10μm〜25μmであってもよい。平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。球状の黒鉛粒子の平均粒径は、扁平状の黒鉛粒子の平均粒径と同様に測定することができる。なお、本実施形態の負極材の平均粒径は、複合粒子及び複合粒子を形成していない黒鉛粒子を含めた平均値である。
(Average particle diameter (median diameter))
The average particle diameter (median diameter) of the negative electrode material of this embodiment is not particularly limited. From the viewpoint of the influence on the orientation and the permeability of the electrolytic solution, the average particle diameter of the negative electrode material may be 10 μm to 30 μm or 10 μm to 25 μm. The average particle diameter can be measured by a laser diffraction particle size distribution measuring device, and is a particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution. The average particle diameter of the spherical graphite particles can be measured in the same manner as the average particle diameter of the flat graphite particles. In addition, the average particle diameter of the negative electrode material of this embodiment is an average value including the composite particles and the graphite particles not forming the composite particles.

本実施形態の負極材を用いて負極を製造した場合の平均粒径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で観察する方法、イオンミリング装置(例えば、E−3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査式電子顕微鏡(例えば、VE−7800、株式会社キーエンス製)で測定する方法等が挙げられる。この場合の平均粒径は、複合粒子及び複合粒子を形成していない黒鉛粒子から任意に選択した100個の粒径の中央値である。   As a method of measuring the average particle diameter when the negative electrode is manufactured using the negative electrode material of the present embodiment, a sample electrode is prepared, the electrode is embedded in an epoxy resin, and then mirror-polished to scan the cross section of the electrode. A method of observing with a microscope (for example, VE-7800, manufactured by Keyence Corporation), a cross section of an electrode using an ion milling device (for example, E-3500, manufactured by Hitachi High-Technology Corporation), and a scanning electron microscope (for example, , VE-7800, manufactured by Keyence Corporation), and the like. The average particle size in this case is the median value of 100 particle sizes arbitrarily selected from composite particles and graphite particles not forming composite particles.

上記試料電極は、例えば、以下のようにして作製することができる。まず、本実施形態の負極材98質量部、バインダーとしてのスチレンブタジエンゴム1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物に水を添加して分散液を調製する。水の添加量は、分散液の25℃における粘度が1500mPa・s〜2500mPa・sとなるように調節する。この分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工した後、110℃で1時間乾燥させることによって、試料電極を作製することができる。   The sample electrode can be produced, for example, as follows. First, water is added to a mixture of 98 parts by mass of the negative electrode material, 1 part by mass of styrene butadiene rubber as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener to prepare a dispersion. The amount of water added is adjusted so that the viscosity of the dispersion at 25 ° C. is 1500 mPa · s to 2500 mPa · s. A sample electrode can be prepared by applying the dispersion to a thickness of about 70 μm (at the time of coating) on a copper foil having a thickness of 10 μm and then drying at 110 ° C. for 1 hour.

<負極材の製造方法>
本実施形態の負極材の製造方法は特に制限されない。以下、本実施形態の負極材の製造方法の一例について説明する。
本実施形態の負極材の製造方法は、例えば、黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも1種と、黒鉛化可能なバインダーとを含む混合物を得る工程(以下、「工程(a)」ともいう)と、工程(a)で得られた混合物を焼成する工程(以下、「工程(b)」ともいう)と、工程(b)で得られた焼成物を粉砕する工程(以下、「工程(c)」ともいう)と、工程(c)で得られた粉砕物と、黒鉛化触媒とを含む混合物を得る工程(以下、「工程(d)」ともいう)と、工程(d)で得られた混合物を焼成する工程(以下、「工程(e)」ともいう)と、工程(e)で得られた焼成物を粉砕する工程(以下、「工程(f)」ともいう)とを有する。
<Method for producing negative electrode material>
The manufacturing method of the negative electrode material of this embodiment is not particularly limited. Hereinafter, an example of the manufacturing method of the negative electrode material of this embodiment is demonstrated.
The method for producing a negative electrode material of the present embodiment includes, for example, a step of obtaining a mixture containing at least one selected from the group consisting of graphitizable aggregates and graphite and a graphitizable binder (hereinafter referred to as “step”). (Also referred to as “(a)”), a step of firing the mixture obtained in step (a) (hereinafter also referred to as “step (b)”), and a step of pulverizing the fired product obtained in step (b). (Hereinafter also referred to as “step (c)”), a step of obtaining a mixture containing the pulverized product obtained in step (c) and a graphitization catalyst (hereinafter also referred to as “step (d)”), A step of firing the mixture obtained in the step (d) (hereinafter also referred to as “step (e)”) and a step of grinding the fired product obtained in the step (e) (hereinafter referred to as “step (f)”). Also called).

工程(a)では、黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも1種と、黒鉛化可能なバインダーとを含む混合物を得る。
黒鉛化可能な骨材としては、フルードコークス、ニードルコークス、モザイクコークス等のコークスが挙げられる。黒鉛化可能な骨材は粉末状であれば特に制限はない。例えば、ニードルコークス等の黒鉛化しやすいコークス粉末であってもよい。
黒鉛としては、鱗片状人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、球状人造黒鉛、球状天然黒鉛等が挙げられる。黒鉛は粉末状であれば特に制限はない。
黒鉛化可能なバインダーとしては、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。
In the step (a), a mixture containing at least one selected from the group consisting of a graphitizable aggregate and graphite and a graphitizable binder is obtained.
Examples of the aggregate that can be graphitized include coke such as fluid coke, needle coke, and mosaic coke. The aggregate that can be graphitized is not particularly limited as long as it is powdery. For example, coke powder that is easily graphitized such as needle coke may be used.
Examples of graphite include flaky artificial graphite, flaky natural graphite, flaky natural graphite, spherical artificial graphite, and spherical natural graphite. The graphite is not particularly limited as long as it is powdered.
Examples of the graphitizable binder include coal-based, petroleum-based and artificial pitches and tars, thermoplastic resins, thermosetting resins, and the like.

上記のとおり、工程(a)の混合物は黒鉛を含んでいてもよい。本製造方法によれば、原料を焼成により黒鉛化する際に、原料に含まれる重金属、磁性異物、及び不純物が高熱により除去されるため、原料として天然黒鉛等を用いる場合であっても、酸処理、水洗等を省略することができる。これにより、製造コストが削減でき、且つ、安全性の高い負極材を提供できる。更に、原料の少なくとも一部として黒鉛を用いることで、原料の黒鉛化に要する黒鉛化触媒の量の低減、黒鉛化のための焼成時間の短縮等により製造コストが削減できる。その結果、高価である人造黒鉛を用いつつもより安価な負極材を提供することができる。また、負極材の製造に使用するバインダー成分を減らすことができる。   As described above, the mixture of step (a) may contain graphite. According to this production method, when the raw material is graphitized by firing, heavy metals, magnetic foreign substances, and impurities contained in the raw material are removed by high heat, so even if natural graphite or the like is used as the raw material, Processing, washing, etc. can be omitted. Thereby, a manufacturing cost can be reduced and a highly safe negative electrode material can be provided. Furthermore, by using graphite as at least a part of the raw material, the production cost can be reduced by reducing the amount of graphitization catalyst required for graphitization of the raw material, shortening the firing time for graphitization, and the like. As a result, a cheaper negative electrode material can be provided while using expensive artificial graphite. Moreover, the binder component used for manufacture of a negative electrode material can be reduced.

工程(a)の混合物が黒鉛を含む場合、黒鉛の含有量は、混合物100質量部に対し、40質量部〜72質量部であってもよく、52質量部〜65質量部であってもよく、55質量部〜60質量部であってもよい。黒鉛の含有量が上記範囲であると、負極を高電極密度化処理した場合おいても、高い放電容量、低い電極膨張率、及び優れた充放電サイクル特性を示す傾向にある。   When the mixture of the step (a) includes graphite, the content of graphite may be 40 parts by mass to 72 parts by mass, or 52 parts by mass to 65 parts by mass with respect to 100 parts by mass of the mixture. 55 parts by mass to 60 parts by mass. When the graphite content is in the above range, even when the negative electrode is subjected to a high electrode density treatment, it tends to exhibit high discharge capacity, low electrode expansion coefficient, and excellent charge / discharge cycle characteristics.

黒鉛化可能なバインダーの含有量は、工程(a)の混合物100質量部に対し、10質量部〜30質量部であってもよく、15質量部〜25質量部であってもよい。黒鉛化可能なバインダーの含有量を適切な範囲とすることで、黒鉛化して得られる扁平状の黒鉛粒子の比表面積が大きくなりすぎることを抑制できる。更に、バインダーを黒鉛化して得られる扁平状の黒鉛粒子の放電容量は、黒鉛の理論放電容量に比べ少ないため、黒鉛化可能なバインダーの含有量を上記の範囲とすることで、高い放電容量を有するリチウムイオン二次電池を実現可能な負極材が得られる傾向にある。   The content of the graphitizable binder may be 10 to 30 parts by mass or 15 to 25 parts by mass with respect to 100 parts by mass of the mixture in the step (a). By setting the content of the graphitizable binder in an appropriate range, it is possible to suppress the specific surface area of the flat graphite particles obtained by graphitization from becoming too large. Furthermore, the discharge capacity of the flat graphite particles obtained by graphitizing the binder is smaller than the theoretical discharge capacity of graphite. Therefore, by setting the content of the graphitizable binder in the above range, a high discharge capacity can be obtained. There exists a tendency to obtain the negative electrode material which can implement | achieve the lithium ion secondary battery which has.

工程(a)の混合物を得るための混合方法に特に制限はなく、例えば、ニーダー等を用いて混合することができる。混合は、黒鉛化可能なバインダーの軟化点以上の温度で行ってもよい。具体的には、黒鉛化可能なバインダーがピッチ、タール等である場合には50℃〜300℃の温度で混合してもよく、熱硬化性樹脂である場合には20℃〜100℃の温度で混合してもよい。   There is no restriction | limiting in particular in the mixing method for obtaining the mixture of a process (a), For example, it can mix using a kneader etc. Mixing may be performed at a temperature above the softening point of the graphitizable binder. Specifically, when the graphitizable binder is pitch, tar, etc., it may be mixed at a temperature of 50 ° C. to 300 ° C., and when it is a thermosetting resin, a temperature of 20 ° C. to 100 ° C. May be mixed.

工程(b)では、工程(a)で得られた混合物を焼成する。焼成は、工程(a)で得られた混合物が酸化し難い雰囲気で行うことが好ましく、例えば、窒素雰囲気中、アルゴンガス中、又は真空中で焼成する方法が挙げられる。焼成温度は、600℃以上であってもよく、600℃〜1500℃であってもよい。この焼成により、工程(a)で得られた混合物中に含まれる有機成分を除くことができる。   In step (b), the mixture obtained in step (a) is baked. Firing is preferably performed in an atmosphere in which the mixture obtained in step (a) is not easily oxidized. Examples thereof include a method of firing in a nitrogen atmosphere, argon gas, or vacuum. The firing temperature may be 600 ° C. or higher, or 600 ° C. to 1500 ° C. By this firing, the organic component contained in the mixture obtained in step (a) can be removed.

なお、工程(b)及び後述する工程(e)では、焼成される混合物に対して加圧等の成形処理を行わず、黒鉛製容器等に入れて焼成することが好ましい。成形処理を行わないことにより、焼成物を粉砕する際の粉砕強度を低くすることができ、結果として比表面積の増大を抑えることができる。比表面積の増大を抑えると電解液との反応面積の増大が抑えられることから、充放電効率の低下及び電解液の分解によるガス発生が抑制される傾向にある。また、焼成物を粉砕する際の粉砕強度を低くすることができる結果、格子歪の発生が抑えられ、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークの発現が抑えられる。菱面体晶黒鉛の生成を抑えることにより、電解液との反応性が抑えられ、充放電効率の低下が抑えられる傾向にある。   In the step (b) and the step (e) to be described later, it is preferable that the mixture to be fired is not subjected to a molding treatment such as pressurization and is fired in a graphite container or the like. By not performing the molding treatment, the pulverization strength when pulverizing the fired product can be lowered, and as a result, an increase in specific surface area can be suppressed. If the increase in the specific surface area is suppressed, the increase in the reaction area with the electrolytic solution can be suppressed, so that the reduction in charge / discharge efficiency and the gas generation due to the decomposition of the electrolytic solution tend to be suppressed. In addition, as a result of reducing the pulverization strength when pulverizing the fired product, the occurrence of lattice distortion is suppressed, and the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction corresponding to the (012) plane. Peak expression is suppressed. By suppressing the formation of rhombohedral graphite, the reactivity with the electrolytic solution is suppressed, and the decrease in charge / discharge efficiency tends to be suppressed.

また、成形処理を行わないことにより、成形処理を行う場合よりも組成物又は混合物の熱伝導性が抑えられ、得られる負極材の結晶性が適度に抑えられる結果、粒子が過度に柔らかくなることが抑えられ、負極材のペレット密度を1.65g/cm以下にし易くなる。ペレット密度を1.65g/cm以下にすると、電極をプレス処理した際の粒子の配向が抑えられ、電極の膨張率が低下する傾向にある。特に、負極を高電極密度化処理した場合においては、粒子の配向が抑えられる。その結果、電解液の浸透性が向上し、高い放電容量が維持される傾向にある。更に、電池の内部抵抗の上昇が抑えられ、充放電サイクル特性が向上する傾向にある。 Further, by not performing the molding process, the thermal conductivity of the composition or the mixture is suppressed as compared with the case of performing the molding process, and as a result, the crystallinity of the obtained negative electrode material is moderately suppressed, resulting in excessively soft particles. And the pellet density of the negative electrode material is easily made 1.65 g / cm 3 or less. When the pellet density is 1.65 g / cm 3 or less, the orientation of the particles when the electrode is pressed is suppressed, and the expansion coefficient of the electrode tends to decrease. In particular, when the negative electrode is subjected to a high electrode density treatment, the orientation of the particles can be suppressed. As a result, the permeability of the electrolytic solution is improved, and a high discharge capacity tends to be maintained. Furthermore, an increase in the internal resistance of the battery is suppressed, and the charge / discharge cycle characteristics tend to be improved.

工程(c)では、工程(b)で得られた焼成物を粉砕する。焼成物の粉砕方法に特に制限はない。例えば、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕後の粉砕物の平均粒径(メディアン径)は100μm以下であってもよく、10μm〜50μmであってもよい。なお、工程(c)では、負極材として所望の平均粒径よりもやや小さくなるように粉砕するのが好ましい。その理由は、工程(d)で粉砕物を黒鉛化すると、黒鉛化触媒により粒子同士が結着し粒径が大きくなる場合があるからである。
粉砕後には、粉砕物の篩分けを行ってもよい。篩分けの方法に特に制限はなく、例えば、振動篩、回転乾式篩等を用いて既知の方法により行うことができる。
In step (c), the fired product obtained in step (b) is pulverized. There is no restriction | limiting in particular in the grinding | pulverization method of a baked product. For example, it can be performed by a known method using a jet mill, a vibration mill, a pin mill, a hammer mill or the like. The average particle size (median diameter) of the pulverized product after pulverization may be 100 μm or less, or 10 μm to 50 μm. In the step (c), it is preferable that the negative electrode material is pulverized so as to be slightly smaller than a desired average particle diameter. The reason is that if the pulverized product is graphitized in the step (d), the particles are bound to each other by the graphitization catalyst and the particle size may be increased.
After pulverization, the pulverized product may be sieved. There is no restriction | limiting in particular in the method of sieving, For example, it can carry out by a known method using a vibration sieve, a rotary dry sieve, etc.

工程(d)では、工程(c)で得られた粉砕物と、黒鉛化触媒とを含む混合物を得る。黒鉛化触媒としては、ケイ素、鉄、ニッケル、チタン、ホウ素等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、酸化物、窒化物などが挙げられる。
工程(c)で得られた粉砕物と黒鉛化触媒との混合方法に特に制限はなく、少なくとも黒鉛化のための焼成前に黒鉛化触媒が混合物中の粒子内部又は粒子表面に存在するような混合方法であればよい。
In step (d), a mixture containing the pulverized material obtained in step (c) and the graphitization catalyst is obtained. Examples of the graphitization catalyst include substances having a graphitization catalytic action such as silicon, iron, nickel, titanium, and boron, and carbides, oxides, nitrides, and the like of these substances.
There is no particular limitation on the mixing method of the pulverized product obtained in step (c) and the graphitization catalyst, and at least the graphitization catalyst is present inside the particle surface or on the particle surface before firing for graphitization. Any mixing method may be used.

混合物中における黒鉛化触媒の含有量は、混合物100質量部に対し、1質量部〜15質量部であってもよい。黒鉛化触媒の量が1質量部以上であると、黒鉛の結晶の発達が良好になり、リチウムイオン二次電池の放電容量が向上する傾向にある。   The content of the graphitization catalyst in the mixture may be 1 part by mass to 15 parts by mass with respect to 100 parts by mass of the mixture. When the amount of the graphitization catalyst is 1 part by mass or more, the development of graphite crystals tends to be good, and the discharge capacity of the lithium ion secondary battery tends to be improved.

工程(e)では、工程(d)で得られた混合物を焼成する。焼成温度は、黒鉛化可能な成分を黒鉛化できる温度であれば特に制限されない。焼成温度は、例えば、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。また、焼成温度は、3200℃以下であってもよい。焼成温度が2000℃以上であると結晶の変化が生じ、黒鉛の結晶の発達が良好となり、焼成後に残存する黒鉛化触媒の量が少なくなる(すなわち、灰分量の増加が抑制される)傾向にある。その結果、リチウムイオン二次電池の充放電容量及び充放電サイクル特性が向上する傾向にある。また、焼成温度が3200℃以下であると、黒鉛の一部が昇華するのを抑制できる。   In step (e), the mixture obtained in step (d) is baked. The firing temperature is not particularly limited as long as it is a temperature at which a graphitizable component can be graphitized. The firing temperature may be, for example, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher. Further, the firing temperature may be 3200 ° C. or lower. If the calcination temperature is 2000 ° C. or more, the crystal changes, the graphite crystal develops better, and the amount of the graphitization catalyst remaining after the calcination tends to decrease (that is, the increase in the ash content is suppressed). is there. As a result, the charge / discharge capacity and charge / discharge cycle characteristics of the lithium ion secondary battery tend to be improved. Moreover, it can suppress that a part of graphite sublimates that a calcination temperature is 3200 degrees C or less.

工程(f)では、工程(e)で得られた焼成物を粉砕する。焼成物の粉砕方法に特に制限はない。例えば、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕後の粉砕物の平均粒径(メディアン径)は100μm以下であってもよく、10μm〜50μmであってもよい。
粉砕後には、粉砕物の篩分けを行ってもよい。篩分けの方法に特に制限はなく、例えば、振動篩、回転乾式篩等を用いて既知の方法により行うことができる。
In the step (f), the fired product obtained in the step (e) is pulverized. There is no restriction | limiting in particular in the grinding | pulverization method of a baked product. For example, it can be performed by a known method using a jet mill, a vibration mill, a pin mill, a hammer mill or the like. The average particle size (median diameter) of the pulverized product after pulverization may be 100 μm or less, or 10 μm to 50 μm.
After pulverization, the pulverized product may be sieved. There is no restriction | limiting in particular in the method of sieving, For example, it can carry out by a known method using a vibration sieve, a rotary dry sieve, etc.

本実施形態の負極材は、前述の複合粒子及び黒鉛粒子とは形状及び物性の少なくとも一方が異なる炭素質粒子又は吸蔵金属粒子を含んでいてもよい。炭素質粒子としては、例えば、天然黒鉛粒子、人造黒鉛粒子、低結晶性炭素物質で被覆された黒鉛粒子、樹脂被覆黒鉛粒子、及び非晶質炭素粒子等が挙げられる。
また、本実施形態の負極材は、複合粒子の表面の一部又は全部が低結晶性炭素物質で被覆されていてもよい。複合粒子の表面の一部又は全部を低結晶性炭素物質で被覆することにより、急速充電等の入出力特性の向上が期待できる。
The negative electrode material of the present embodiment may include carbonaceous particles or occluded metal particles that are different in shape and physical properties from the composite particles and graphite particles described above. Examples of the carbonaceous particles include natural graphite particles, artificial graphite particles, graphite particles coated with a low crystalline carbon material, resin-coated graphite particles, and amorphous carbon particles.
In the negative electrode material of the present embodiment, part or all of the surface of the composite particle may be coated with a low crystalline carbon material. By covering part or all of the surface of the composite particles with a low crystalline carbon material, it is possible to improve input / output characteristics such as rapid charging.

<リチウムイオン二次電池用負極材スラリー>
本実施形態のリチウムイオン二次電池用負極材スラリー(以下、単に「負極材スラリー」ともいう。)は、本実施形態の負極材と、有機結着材と、溶剤とを含む。
<Anode material slurry for lithium ion secondary battery>
The negative electrode material slurry for a lithium ion secondary battery of the present embodiment (hereinafter also simply referred to as “negative electrode material slurry”) includes the negative electrode material of the present embodiment, an organic binder, and a solvent.

本実施形態の負極材スラリーに含まれる有機結着材に特に制限はない。有機結着材としては、例えば、スチレン−ブタジエンゴム;エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等)及びエチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)に由来する(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。
なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリル又はメタクリロニトリルを意味する。
There is no restriction | limiting in particular in the organic binder contained in the negative electrode material slurry of this embodiment. Examples of the organic binder include styrene-butadiene rubber; ethylenically unsaturated carboxylic acid ester (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth)) Acrylates) and (meth) acrylic copolymers derived from ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.); polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin , Polymer compounds such as polyphosphazene, polyacrylonitrile, polyimide, and polyamideimide.
(Meth) acrylate means acrylate or methacrylate, and (meth) acrylonitrile means acrylonitrile or methacrylonitrile.

本実施形態の負極材スラリーに含まれる溶剤に特に制限はない。溶剤としては、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等の有機溶剤が挙げられる。   There is no restriction | limiting in particular in the solvent contained in the negative electrode material slurry of this embodiment. Examples of the solvent include organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and γ-butyrolactone.

本実施形態の負極材スラリーは、必要に応じて、粘度を調整するための増粘材を含んでいてもよい。増粘材としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。   The negative electrode material slurry of this embodiment may contain a thickening material for adjusting the viscosity, if necessary. Examples of the thickening material include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, and casein.

本実施形態の負極材スラリーは、必要に応じて、導電助剤を含んでいてもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。   The negative electrode material slurry of this embodiment may contain a conductive additive as necessary. Examples of the conductive aid include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.

<リチウムイオン二次電池用負極>
本実施形態のリチウムイオン二次電池用負極(以下、「負極」ともいう。)は、集電体と、集電体上に形成された本実施形態の負極材を含む負極材層とを有する。
<Anode for lithium ion secondary battery>
A negative electrode for a lithium ion secondary battery of the present embodiment (hereinafter also referred to as “negative electrode”) has a current collector and a negative electrode material layer including the negative electrode material of the present embodiment formed on the current collector. .

集電体の材質及び形状は特に制限されない。集電体としては、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等が挙げられる。また、集電体としては、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。   The material and shape of the current collector are not particularly limited. Examples of the current collector include a belt-like foil, a belt-like perforated foil, a belt-like mesh made of a metal or an alloy such as aluminum, copper, nickel, titanium, and stainless steel. As the current collector, porous materials such as porous metal (foamed metal) and carbon paper can also be used.

本実施形態の負極材を含む負極材層を集電体上に形成する方法は特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により、負極材層を集電体上に形成することができる。負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。   The method for forming the negative electrode material layer including the negative electrode material of the present embodiment on the current collector is not particularly limited. For example, the negative electrode material layer is formed on the current collector by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method. Can be formed. When integrating a negative electrode material layer and a collector, it can carry out by well-known methods, such as a roll, a press, and these combination.

負極材層を集電体上に形成して得られた負極は、用いた有機結着材の種類に応じて熱処理してもよい。熱処理することにより溶剤が除去され、有機結着材の硬化による高強度化が進み、粒子間及び粒子と集電体との間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。   The negative electrode obtained by forming the negative electrode material layer on the current collector may be heat-treated depending on the type of the organic binder used. By performing the heat treatment, the solvent is removed, the strength of the organic binder is increased by hardening, and the adhesion between the particles and between the particles and the current collector can be improved. The heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.

上記熱処理を行う前に、負極をプレス(加圧処理)してもよい。加圧処理することにより電極密度を調整することができる。電極密度は、1.5g/cm〜1.9g/cmであってもよく、1.6g/cm〜1.8g/cmであってもよい。電極密度が高いほど体積容量が向上し、集電体への負極材層の密着性が向上し、充放電サイクル特性も向上する傾向がある。 Before performing the heat treatment, the negative electrode may be pressed (pressure treatment). The electrode density can be adjusted by the pressure treatment. Electrode density may be 1.5g / cm 3 ~1.9g / cm 3 , may be 1.6g / cm 3 ~1.8g / cm 3 . As the electrode density is higher, the volume capacity is improved, the adhesion of the negative electrode material layer to the current collector is improved, and the charge / discharge cycle characteristics tend to be improved.

<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、正極と、電解質と、前述した負極とを有する。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of this embodiment includes a positive electrode, an electrolyte, and the negative electrode described above. The lithium ion secondary battery can be configured, for example, such that a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected.

正極は、負極と同様にして、集電体表面上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等を用いることができる。   The positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode. As the current collector, a strip-shaped foil, strip-shaped punched foil, strip-shaped mesh or the like made of a metal or alloy such as aluminum, titanium, or stainless steel can be used.

正極材層に用いる正極材は、特に制限されない。正極材としては、例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。更には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、導電性ポリマー(ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等)、多孔質炭素などを、1種単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)は、容量が高いために正極材として好適である。 The positive electrode material used for the positive electrode material layer is not particularly limited. Examples of the positive electrode material include metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions. Furthermore, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x , 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 8 , olivine type LiMPO 2 (M: Co, Ni, Mn, Fe ), Conductive polymer (polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc.), porous carbon, etc. More than one species can be used in combination. Among them, lithium nickelate (LiNiO 2 ) and its double oxide (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x, 0 <y; LiNi 2−x Mn x O 4 , 0 <x ≦ 2 ) Is suitable as a positive electrode material because of its high capacity.

セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム、及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。   As a separator, the nonwoven fabric, cloth, microporous film, and those combination which have polyolefins, such as polyethylene and a polypropylene, as a main component are mentioned, for example. In addition, when a lithium ion secondary battery has a structure where a positive electrode and a negative electrode do not contact, it is not necessary to use a separator.

電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等を1種単独で又は2種以上を組み合わせて含む非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。中でも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、充放電サイクル特性が著しく向上するために好適である。 As an electrolyte, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate Butylethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxy A so-called organic electrolytic solution in which solan, methyl acetate, ethyl acetate and the like are dissolved in a non-aqueous solvent containing one kind alone or a combination of two or more kinds can be used. Among these, an electrolytic solution containing fluoroethylene carbonate is preferable because it has a tendency to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and the charge / discharge cycle characteristics are remarkably improved.

本実施形態のリチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前述した負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。   The form of the lithium ion secondary battery of the present embodiment is not particularly limited, and examples thereof include paper batteries, button batteries, coin batteries, stacked batteries, cylindrical batteries, and prismatic batteries. In addition to the lithium ion secondary battery, the negative electrode material described above can be applied to any electrochemical device such as a hybrid capacitor that has a charge / discharge mechanism that inserts and desorbs lithium ions.

以下、実施例に基づき本発明を更に詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to the following examples.

[実施例1]
(1)平均粒径14μmのコークス粉末16質量部、平均粒径16μmの球状天然黒鉛(円形度0.90)64質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した。その後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径17μmの粉砕物を得た。平均粒径17μmの粉砕物100質量部と、黒鉛化触媒としての炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けを行い、実施例1の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
上記で得られた黒鉛粉末の平均粒径、比表面積、ペレット密度、黒鉛結晶の層間距離d(002)、及び真比重を測定した結果を表1に示す。また、CuKα線を用いたX線回折測定により、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークを測定した結果を図3に示す。測定はそれぞれ前述した方法により行った。
[Example 1]
(1) 16 parts by mass of coke powder having an average particle diameter of 14 μm, 64 parts by mass of spherical natural graphite (circularity 0.90) having an average particle diameter of 16 μm, and 20 parts by mass of tar pitch are mixed and stirred at 100 ° C. for 1 hour. A mixture was obtained. Next, this mixture was placed in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere. Then, it grind | pulverized using the hammer mill, sieved, and obtained the ground material with an average particle diameter of 17 micrometers. 100 parts by mass of a pulverized product having an average particle size of 17 μm and 12 parts by mass of silicon carbide as a graphitization catalyst are mixed, and the mixture is placed in a graphite vessel and baked at 2800 ° C. Turned into. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain graphite powder of Example 1 (a negative electrode material for a lithium ion secondary battery).
Table 1 shows the results of measuring the average particle diameter, specific surface area, pellet density, interlayer distance d (002) of graphite crystals, and true specific gravity of the graphite powder obtained above. Moreover, the result of having measured the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane by X-ray diffraction measurement using CuKα rays is shown in FIG. Each measurement was performed by the method described above.

なお、実施例1の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例1の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図3から分かるように、実施例1の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 1 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 1, composite particles containing spherical graphite particles were also observed.
Further, as can be seen from FIG. 3, in the graphite powder of Example 1, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were not observed.

(2)上記で得られた黒鉛粉末98質量部、スチレンブタジエンゴム(BM−400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリーを調製した。このスラリーを集電体(厚さ10μmの銅箔)に塗布し、105℃で1時間大気中で乾燥し、ロールプレスにて塗布物質(活物質)が電極密度1.70g/cmとなる条件で集電体と一体化し、リチウムイオン二次電池用負極を作製した。 (2) Kneading 98 parts by mass of the graphite powder obtained above, 1 part by mass of styrene butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC 2200, manufactured by Daicel Corporation) A slurry was prepared. This slurry is applied to a current collector (copper foil having a thickness of 10 μm), dried in air at 105 ° C. for 1 hour, and the applied material (active material) becomes an electrode density of 1.70 g / cm 3 by a roll press. A negative electrode for a lithium ion secondary battery was produced by integrating with a current collector under conditions.

上記リチウムイオン二次電池用負極の電解液浸透性の指標として、電解液浸透時間を下記に示す方法で測定した。電解液浸透時間の短い負極ほど、電解液浸透性に優れている。測定結果を表1に示す。   As an indicator of the electrolyte penetration of the negative electrode for lithium ion secondary batteries, the electrolyte penetration time was measured by the following method. The negative electrode with a shorter electrolyte solution penetration time is superior in electrolyte solution permeability. The measurement results are shown in Table 1.

<電解液浸透時間>
上記リチウムイオン二次電池用負極を用いて、試料質量:15.4mg、電極面積:1.54cm、電極密度1.70g/cmとなるような試料電極を作製した。シリンジに1μLのプロピレンカーボネート電解液を採り、作製した試料電極の表面に全量滴下した。滴下直後からプロピレンカーボネート電解液が全て電極内へ吸収されるまでの時間(秒)(目視にて電極表面のプロピレンカーボネート電解液が確認できなくなるまでの時間)を測定し、電解液浸透時間とした。
<Electrolyte penetration time>
A sample electrode having a sample mass of 15.4 mg, an electrode area of 1.54 cm 2 and an electrode density of 1.70 g / cm 3 was produced using the above negative electrode for a lithium ion secondary battery. 1 μL of propylene carbonate electrolytic solution was taken in a syringe and dropped entirely onto the surface of the prepared sample electrode. The time (seconds) from immediately after dropping until all the propylene carbonate electrolyte was absorbed into the electrode (time until the propylene carbonate electrolyte on the electrode surface could no longer be confirmed visually) was measured, and was defined as the electrolyte penetration time. .

(3)上記で得られた負極と、正極としての金属リチウムとを用いてリチウムイオン二次電池(2016型コインセル)を作製した。電解液としては、1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液を用いた。セパレータとしては、厚さ25μmのポリエチレン製微孔膜を用いた。スペーサーとしては、厚さ230μm、直径14mmの円形の銅板を用いた。 (3) A lithium ion secondary battery (2016 type coin cell) was produced using the negative electrode obtained above and metallic lithium as the positive electrode. As the electrolytic solution, a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass) was used. As the separator, a polyethylene microporous film having a thickness of 25 μm was used. As the spacer, a circular copper plate having a thickness of 230 μm and a diameter of 14 mm was used.

上記リチウムイオン二次電池の充電容量、放電容量、充放電効率、及び膨張率をそれぞれ下記に示す方法で測定した。測定結果を表1に示す。   The charge capacity, discharge capacity, charge / discharge efficiency, and expansion coefficient of the lithium ion secondary battery were measured by the methods shown below. The measurement results are shown in Table 1.

<充電容量及び放電容量>
充放電容量(初回充放電容量)の測定は、試料質量:15.4mg、電極面積:1.54cm、測定温度:25℃、電極密度:1.70g/cm、充電条件:定電流充電0.434mA、定電圧充電0V(Li/Li)、カット電流0.043mA、放電条件:定電流放電0.434mA、カット電圧1.5V(Li/Li)の条件で行った。
放電容量の測定は、上記充電条件及び放電条件により行った。
<Charge capacity and discharge capacity>
Measurement of charge / discharge capacity (initial charge / discharge capacity) is as follows: sample mass: 15.4 mg, electrode area: 1.54 cm 2 , measurement temperature: 25 ° C., electrode density: 1.70 g / cm 3 , charge condition: constant current charge The test was performed under the conditions of 0.434 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.043 mA, discharge conditions: constant current discharge 0.434 mA, cut voltage 1.5 V (Li / Li + ).
The discharge capacity was measured according to the above charging conditions and discharging conditions.

<充放電効率>
充放電効率は、1サイクル目の充放電測定における、充電容量の値に対する放電容量の値の割合(%)とした。
<Charge / discharge efficiency>
The charge / discharge efficiency was defined as the ratio (%) of the discharge capacity value to the charge capacity value in the charge / discharge measurement at the first cycle.

<膨張率>
負極電極の膨張率を求めるため、まず、充電容量及び放電容量を測定した条件にて2サイクルの充放電を行った。その後、3サイクル目の充電において充電率100%の状態で電池測定を終了させた。膨張率は、充放電開始前の負極電極の厚みに対する、充電率100%の状態での負極電極の厚みの割合(%)とした。
<Expansion coefficient>
In order to obtain the expansion coefficient of the negative electrode, first, two cycles of charge / discharge were performed under the conditions of measuring the charge capacity and discharge capacity. Thereafter, the battery measurement was terminated at the charge rate of 100% in the third cycle charge. The expansion coefficient was defined as the ratio (%) of the thickness of the negative electrode in a state where the charging rate was 100% with respect to the thickness of the negative electrode before the start of charge / discharge.

(4)充放電サイクル試験を行うため、正極に試料質量:35.9mg、電極面積:1.54cmのコバルト酸リチウムを使用した。負極には上記したリチウムイオン二次電池用負極を試料質量:20.0mg、電極面積:2.00cm、電極密度:1.70g/cmの条件で使用した。この正極及び負極を用いてリチウムイオン二次電池(2016型コインセル)を作製した。電解液としては、1.0MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(体積比:3/7)とビニレンカーボネート(0.5質量%)との混合液を用いた。セパレータとしては、厚さ25μmのポリエチレン製微孔膜を用いた。スペーサーとしては、厚さ300μm、直径16mmのSUS316L板と、厚さ250μm、直径15mmのSUS316Lウェーブワッシャーとを用いた。 (4) In order to perform the charge / discharge cycle test, lithium cobalt oxide having a sample mass of 35.9 mg and an electrode area of 1.54 cm 2 was used for the positive electrode. The negative electrode for lithium ion secondary batteries described above was used as the negative electrode under the conditions of sample mass: 20.0 mg, electrode area: 2.00 cm 2 , and electrode density: 1.70 g / cm 3 . A lithium ion secondary battery (2016 type coin cell) was produced using the positive electrode and the negative electrode. As the electrolytic solution, a mixed solution of ethylene carbonate / ethyl methyl carbonate (volume ratio: 3/7) containing 1.0 M LiPF 6 and vinylene carbonate (0.5% by mass) was used. As the separator, a polyethylene microporous film having a thickness of 25 μm was used. As the spacer, a SUS316L plate having a thickness of 300 μm and a diameter of 16 mm and a SUS316L wave washer having a thickness of 250 μm and a diameter of 15 mm were used.

上記リチウムイオン二次電池の200サイクル後の放電容量維持率を下記に示す方法で測定した。測定結果を表1に示す。   The discharge capacity maintenance rate after 200 cycles of the lithium ion secondary battery was measured by the method shown below. The measurement results are shown in Table 1.

<200サイクル後の放電容量維持率>
上記リチウムイオン二次電池を用いて、測定温度25℃にて以下の条件にて200サイクルの充放電試験を行った。200サイクル後の放電容量維持率は、4サイクル目の放電容量に対する、200サイクル目の放電容量の割合(%)とした。
(1〜3サイクル目)
充電条件:定電流充電0.49mA、定電圧充電4.2V、カット電流0.049mA
放電条件:定電流放電0.49mA、カット電圧2.75V
(4〜100サイクル目)
充電条件:定電流充電4.9mA、定電圧充電4.2V、カット電流0.049mA
放電条件:定電流放電4.9mA、カット電圧2.75V
(101サイクル目)
充電条件:定電流充電0.49mA、定電圧充電4.2V、カット電流0.049mA
放電条件:定電流放電0.49mA、カット電圧2.75V
(102〜200サイクル目)
充電条件:定電流充電4.9mA、定電圧充電4.2V、カット電流0.049mA
放電条件:定電流放電4.9mA、カット電圧2.75V
<Discharge capacity maintenance ratio after 200 cycles>
Using the above lithium ion secondary battery, a 200-cycle charge / discharge test was performed at a measurement temperature of 25 ° C. under the following conditions. The discharge capacity retention rate after 200 cycles was the ratio (%) of the discharge capacity at the 200th cycle to the discharge capacity at the 4th cycle.
(1st to 3rd cycles)
Charging conditions: constant current charge 0.49 mA, constant voltage charge 4.2 V, cut current 0.049 mA
Discharge conditions: constant current discharge 0.49 mA, cut voltage 2.75 V
(4th to 100th cycle)
Charging conditions: constant current charge 4.9 mA, constant voltage charge 4.2 V, cut current 0.049 mA
Discharge conditions: constant current discharge 4.9 mA, cut voltage 2.75 V
(101st cycle)
Charging conditions: constant current charge 0.49 mA, constant voltage charge 4.2 V, cut current 0.049 mA
Discharge conditions: constant current discharge 0.49 mA, cut voltage 2.75 V
(102nd to 200th cycles)
Charging conditions: constant current charge 4.9 mA, constant voltage charge 4.2 V, cut current 0.049 mA
Discharge conditions: constant current discharge 4.9 mA, cut voltage 2.75 V

[実施例2]
平均粒径14μmのコークス粉末28質量部、平均粒径21μmの球状天然黒鉛(円形度0.80)52質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径23μmの粉砕物を得た。平均粒径23μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けを行い、実施例2の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図4に示す。
[Example 2]
28 parts by mass of coke powder having an average particle diameter of 14 μm, 52 parts by mass of spherical natural graphite (circularity 0.80) having an average particle diameter of 21 μm, and 20 parts by mass of tar pitch are mixed and stirred at 100 ° C. for 1 hour. Obtained. Next, this mixture was put in a graphite vessel and baked at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 23 μm. 100 parts by mass of the pulverized product having an average particle size of 23 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was put into a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain a graphite powder of Example 2 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例2の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例2の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図4から分かるように、実施例2の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 2 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 2, composite particles containing spherical graphite particles were also observed.
As can be seen from FIG. 4, in the graphite powder of Example 2, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[実施例3]
平均粒径14μmのコークス粉末40質量部、平均粒径10μmの球状天然黒鉛(円形度0.91)20質量部、平均粒径14μmの鱗片状天然黒鉛20質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径17μmの粉砕物を得た。平均粒径17μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにより粉砕し、篩分けを行い、実施例3の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図5に示す。
[Example 3]
40 parts by mass of coke powder having an average particle diameter of 14 μm, 20 parts by mass of spherical natural graphite (circularity 0.91) having an average particle diameter of 10 μm, 20 parts by mass of scaly natural graphite having an average particle diameter of 14 μm, and 20 parts by mass of tar pitch. Mix and stir at 100 ° C. for 1 hour to obtain a mixture. The mixture was then placed in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 17 μm. 100 parts by mass of the pulverized product having an average particle diameter of 17 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was placed in a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain a graphite powder of Example 3 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例3の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例3の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図5から分かるように、実施例3の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 3 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 3, composite particles containing spherical graphite particles were also observed.
Further, as can be seen from FIG. 5, in the graphite powder of Example 3, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were not observed.

[実施例4]
平均粒径14μmのコークス粉末20質量部、平均粒径10μmの球状天然黒鉛(円形度0.91)30質量部、平均粒径16μm(円形度0.90)の球状天然黒鉛30質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径13μmの粉砕物を得た。平均粒径13μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにより粉砕し、篩分けを行い、実施例4の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図6に示す。
[Example 4]
20 parts by mass of coke powder having an average particle size of 14 μm, 30 parts by mass of spherical natural graphite having an average particle size of 10 μm (circularity of 0.91), 30 parts by mass of spherical natural graphite having an average particle size of 16 μm (circularity of 0.90), and 20 parts by mass of tar pitch was mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. Next, this mixture was put in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 13 μm. 100 parts by mass of the pulverized product having an average particle size of 13 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was placed in a graphite container and fired at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized by a hammer mill and sieved to obtain a graphite powder of Example 4 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例4の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例4の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図6から分かるように、実施例4の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
In addition, when the graphite powder of Example 4 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 4, composite particles containing spherical graphite particles were also observed.
Further, as can be seen from FIG. 6, in the graphite powder of Example 4, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were not observed.

[実施例5]
平均粒径14μmのコークス粉末20質量部、平均粒径16μmの球状天然黒鉛(円形度0.90)48質量部、平均粒径8μmの鱗片状天然黒鉛30質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径18μmの粉砕物を得た。平均粒径18μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにより粉砕し、篩分けを行い、実施例5の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図7に示す。
[Example 5]
20 parts by mass of coke powder having an average particle diameter of 14 μm, 48 parts by mass of spherical natural graphite (roundness 0.90) having an average particle diameter of 16 μm, 30 parts by mass of scaly natural graphite having an average particle diameter of 8 μm, and 20 parts by mass of tar pitch. Mix and stir at 100 ° C. for 1 hour to obtain a mixture. Next, this mixture was put in a graphite container and baked at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 18 μm. 100 parts by mass of a pulverized product having an average particle diameter of 18 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was placed in a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The fired product (graphitized powder) obtained was pulverized with a hammer mill and sieved to obtain graphite powder of Example 5 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例5の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例5の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図7から分かるように、実施例5の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 5 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 5, composite particles containing spherical graphite particles were also observed.
As can be seen from FIG. 7, in the graphite powder of Example 5, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[実施例6]
平均粒径14μmのコークス粉末28質量部、平均粒径8μmの鱗片状天然黒鉛52質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径17μmの粉砕物を得た。平均粒径17μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにより粉砕し、篩分けを行い、実施例6の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図8に示す。
[Example 6]
28 parts by mass of coke powder having an average particle diameter of 14 μm, 52 parts by mass of scaly natural graphite having an average particle diameter of 8 μm, and 20 parts by mass of tar pitch were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. The mixture was then placed in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 17 μm. 100 parts by mass of the pulverized product having an average particle diameter of 17 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was placed in a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain a graphite powder of Example 6 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例6の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。
また、図8から分かるように、実施例6の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 6 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
Further, as can be seen from FIG. 8, in the graphite powder of Example 6, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[実施例7]
平均粒径14μmのコークス粉末16質量部、平均粒径21μmの球状天然黒鉛(円形度0.80)64質量部、及びタールピッチ20質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径22μmの粉砕物を得た。平均粒径22μmの粉砕物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けを行い、実施例7の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図9に示す。
[Example 7]
16 parts by mass of coke powder having an average particle diameter of 14 μm, 64 parts by mass of spherical natural graphite (circularity 0.80) having an average particle diameter of 21 μm, and 20 parts by mass of tar pitch are mixed and stirred at 100 ° C. for 1 hour. Obtained. Next, this mixture was put in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 22 μm. The pulverized product having an average particle size of 22 μm was put in a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain graphite powder of Example 7 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、実施例7の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。更に、実施例7の黒鉛粉末においては、球状の黒鉛粒子を含む複合粒子も観察された。
また、図9から分かるように、実施例7の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
When the graphite powder of Example 7 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel. Furthermore, in the graphite powder of Example 7, composite particles containing spherical graphite particles were also observed.
Further, as can be seen from FIG. 9, in the graphite powder of Example 7, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[比較例1]
実施例1で使用した球状天然黒鉛のみを黒鉛製の容器に充填し、窒素雰囲気下2800℃で焼成して比較例1の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図10に示す。
[Comparative Example 1]
Only spherical natural graphite used in Example 1 was filled in a graphite container and fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite powder of Comparative Example 1 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例1の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子は含まれていなかった。
また、図10から分かるように、比較例1の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
In addition, when the graphite powder of Comparative Example 1 was observed with a scanning electron microscope, the composite particles in which a plurality of flat graphite particles were assembled or bonded so that the orientation planes were not parallel were not included. .
Further, as can be seen from FIG. 10, in the graphite powder of Comparative Example 1, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[比較例2]
平均粒径9μmの鱗片状天然黒鉛のみを黒鉛製の容器に充填し、窒素雰囲気下2800℃で焼成して比較例2の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図11に示す。
[Comparative Example 2]
Only a scaly natural graphite having an average particle size of 9 μm was filled in a graphite container and fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite powder of Comparative Example 2 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例2の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子は含まれていなかった。
また、図11から分かるように、比較例2の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
In addition, when the graphite powder of Comparative Example 2 was observed with a scanning electron microscope, the composite particles in which a plurality of flat graphite particles were assembled or bonded so that the orientation planes were not parallel were not included. .
As can be seen from FIG. 11, in the graphite powder of Comparative Example 2, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[比較例3]
平均粒径14μmのコークス粉末のみを黒鉛製の容器に充填し、窒素雰囲気下2800℃で焼成して比較例3の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図12に示す。
[Comparative Example 3]
Only a coke powder having an average particle size of 14 μm was filled in a graphite container and fired at 2800 ° C. in a nitrogen atmosphere to obtain a graphite powder of Comparative Example 3 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例3の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子は含まれていなかった。
また、図12から分かるように、比較例3の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
In addition, when the graphite powder of Comparative Example 3 was observed with a scanning electron microscope, the composite particles in which a plurality of flat graphite particles were assembled or bonded so that the orientation planes were not parallel were not included. .
As can be seen from FIG. 12, in the graphite powder of Comparative Example 3, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[比較例4]
平均粒径14μmのコークス粉末71.2質量部、ピッチ5.2質量部、及びコールタール23.6質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を黒鉛製の容器に入れ、窒素雰囲気中1000℃で焼成した後、ハンマーミルを用いて粉砕し、篩分けを行い、平均粒径34μmの粉砕物を得た。平均粒径34μmの粉砕物100質量部と炭化ケイ素12質量部とを混合し、その混合物を黒鉛製の容器に入れて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにより粉砕し、篩分けを行い、比較例4の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図13に示す。
[Comparative Example 4]
71.2 parts by mass of coke powder having an average particle size of 14 μm, 5.2 parts by mass of pitch, and 23.6 parts by mass of coal tar were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. Next, this mixture was put in a graphite container and fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized using a hammer mill and sieved to obtain a pulverized product having an average particle diameter of 34 μm. 100 parts by mass of a pulverized product having an average particle size of 34 μm and 12 parts by mass of silicon carbide were mixed, and the mixture was placed in a graphite container and baked at 2800 ° C. to graphitize the graphitizable component. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain a graphite powder (a negative electrode material for a lithium ion secondary battery) of Comparative Example 4.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例4の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。
また、図13から分かるように、比較例4の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されなかった。
In addition, when the graphite powder of Comparative Example 4 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
As can be seen from FIG. 13, in the graphite powder of Comparative Example 4, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed.

[比較例5]
平均粒径14μmのコークス粉末48質量部、タール32質量部、及び炭化ケイ素20質量部を100℃で1時間加熱混合し、得られた混合物を粉砕した。次いで、粉砕物をペレット状に加圧成形し、これを窒素中900℃で焼成し、黒鉛化炉を用いて2800℃で焼成し、黒鉛化した。得られた焼成物をハンマーミルにより粉砕し、篩分けを行い、比較例5の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図14に示す。
[Comparative Example 5]
48 parts by mass of coke powder having an average particle size of 14 μm, 32 parts by mass of tar, and 20 parts by mass of silicon carbide were heated and mixed at 100 ° C. for 1 hour, and the resulting mixture was pulverized. Next, the pulverized product was pressure-molded into pellets, fired at 900 ° C. in nitrogen, fired at 2800 ° C. using a graphitization furnace, and graphitized. The obtained fired product was pulverized with a hammer mill and sieved to obtain a graphite powder of Comparative Example 5 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例5の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。
また、図14から分かるように、比較例5の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察された。
When the graphite powder of Comparative Example 5 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
As can be seen from FIG. 14, in the graphite powder of Comparative Example 5, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were observed.

[比較例6]
平均粒径14μmのコークス粉末43質量部、タールピッチ18.5質量部、炭化ケイ素18.5質量部、及び球状天然黒鉛(円形度0.92)20質量部を100℃で1時間加熱混合し、得られた混合物を粉砕した。次いで、粉砕物をペレット状に加圧成形し、これを窒素雰囲気中900℃で焼成し、黒鉛化炉を用いて2800℃で焼成し、黒鉛化した。得られた焼成物をハンマーミルにより粉砕し、篩分けを行い、比較例6の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図15に示す。
[Comparative Example 6]
43 parts by mass of coke powder having an average particle size of 14 μm, 18.5 parts by mass of tar pitch, 18.5 parts by mass of silicon carbide, and 20 parts by mass of spherical natural graphite (roundness 0.92) were heated and mixed at 100 ° C. for 1 hour. The resulting mixture was ground. Next, the pulverized product was pressure-molded into pellets, fired at 900 ° C. in a nitrogen atmosphere, fired at 2800 ° C. using a graphitization furnace, and graphitized. The obtained fired product was pulverized with a hammer mill and sieved to obtain a graphite powder of Comparative Example 6 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例6の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含んでいた。
また、図15から分かるように、比較例6の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察された。
When the graphite powder of Comparative Example 6 was observed with a scanning electron microscope, a plurality of flat graphite particles contained composite particles that were assembled or bonded so that the orientation planes were non-parallel.
As can be seen from FIG. 15, in the graphite powder of Comparative Example 6, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were observed.

[比較例7]
実施例1で使用した平均粒径16μmの球状天然黒鉛90質量部とタールピッチ10質量部とを混合し、窒素雰囲気中1000℃で焼成した。その後、得られた焼成物をハンマーミルにより粉砕し、篩分けを行い、比較例7の黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1及び図16に示す。
[Comparative Example 7]
90 parts by weight of spherical natural graphite having an average particle diameter of 16 μm and 10 parts by weight of tar pitch used in Example 1 were mixed and fired at 1000 ° C. in a nitrogen atmosphere. Thereafter, the fired product obtained was pulverized with a hammer mill and sieved to obtain a graphite powder of Comparative Example 7 (a negative electrode material for a lithium ion secondary battery).
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG.

なお、比較例7の黒鉛粉末を走査型電子顕微鏡で観察したところ、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子は含まれていなかった。
また、図16から分かるように、比較例7の黒鉛粉末は、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察された。
In addition, when the graphite powder of Comparative Example 7 was observed with a scanning electron microscope, the composite particles in which a plurality of flat graphite particles were assembled or bonded so that the orientation planes were not parallel were not included. .
As can be seen from FIG. 16, in the graphite powder of Comparative Example 7, a diffraction peak corresponding to the (101) plane of rhombohedral graphite and a diffraction peak corresponding to the (012) plane were observed.

表1に示されるように、実施例1〜7では、負極の高電極密度化処理を行っても、高い放電容量を有し、負極材層内への電解液の浸透性に優れ、電極の膨張率が低く、且つ、充放電サイクル特性に優れたリチウムイオン二次電池を得ることができた。
一方、比較例1〜7は、放電容量、負極材層内への電解液の浸透性、充放電サイクル特性、及び電極の膨張率のいずれかで、評価が実施例よりも劣っていた。
As shown in Table 1, in Examples 1 to 7, even if the electrode density increasing treatment of the negative electrode was performed, the discharge capacity was high, the electrolyte solution was excellent in permeability into the negative electrode material layer, and the electrode A lithium ion secondary battery having a low expansion coefficient and excellent charge / discharge cycle characteristics could be obtained.
On the other hand, the comparative examples 1-7 were inferior to the Example in any one of discharge capacity, the permeability of the electrolyte solution in the negative electrode material layer, the charge / discharge cycle characteristics, and the expansion coefficient of the electrode.

Claims (7)

複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合している複合粒子を含み、
CuKα線を用いたX線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下であり、
CuKα線を用いたX線回折測定により、菱面体晶黒鉛の(101)面に対応する回折ピーク及び(012)面に対応する回折ピークが観察されず、
ペレット密度が1.40g/cm〜1.65g/cmであるリチウムイオン二次電池用負極材。
A plurality of flat graphite particles include composite particles that are assembled or bonded so that the orientation planes are non-parallel,
The graphite crystal interlayer distance d (002) determined by X-ray diffraction measurement using CuKα rays is 3.38 mm or less,
According to the X-ray diffraction measurement using CuKα rays, the diffraction peak corresponding to the (101) plane of rhombohedral graphite and the diffraction peak corresponding to the (012) plane were not observed,
Pellet density of 1.40g / cm 3 ~1.65g / cm 3 and a negative electrode material for a lithium ion secondary battery.
前記複合粒子が球状の黒鉛粒子を更に含む請求項1に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the composite particles further include spherical graphite particles. 窒素ガス吸着のBET法による比表面積が1.0m/g〜3.5m/gである請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。 The specific surface area by BET method of nitrogen gas adsorption 1.0m 2 /g~3.5m 2 / g and is claim 1 or negative electrode material for a lithium ion secondary battery according to claim 2. 真比重が2.22以上である請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。   The true specific gravity is 2.22 or more. The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3. 請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着材と、溶剤とを含むリチウムイオン二次電池用負極材スラリー。   The negative electrode material slurry for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries of any one of Claims 1-4, the organic binder, and a solvent. 集電体と、集電体上に形成された請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層とを有するリチウムイオン二次電池用負極。   A lithium ion secondary battery comprising: a current collector; and a negative electrode material layer comprising the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4 formed on the current collector. Negative electrode. 正極と、電解質と、請求項6に記載のリチウムイオン二次電池用負極とを有するリチウムイオン二次電池。   The lithium ion secondary battery which has a positive electrode, electrolyte, and the negative electrode for lithium ion secondary batteries of Claim 6.
JP2015188625A 2015-09-25 2015-09-25 Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP6555050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015188625A JP6555050B2 (en) 2015-09-25 2015-09-25 Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188625A JP6555050B2 (en) 2015-09-25 2015-09-25 Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017062991A true JP2017062991A (en) 2017-03-30
JP6555050B2 JP6555050B2 (en) 2019-08-07

Family

ID=58429123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188625A Active JP6555050B2 (en) 2015-09-25 2015-09-25 Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6555050B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026265A1 (en) * 2017-08-03 2019-02-07 日立化成株式会社 Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN111971828A (en) * 2018-03-28 2020-11-20 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2021152765A1 (en) * 2020-01-30 2021-08-05 昭和電工マテリアルズ株式会社 Method for producing negative electrode material for lithium ion secondary batteries and apparatus for producing negative electrode material for lithium ion secondary batteries
JP2021524134A (en) * 2019-01-03 2021-09-09 エルジー・ケム・リミテッド Negative electrode active material for secondary batteries, electrodes containing it, and manufacturing method thereof
CN114207880A (en) * 2019-07-31 2022-03-18 昭和电工材料株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4027411A4 (en) * 2019-09-02 2022-11-09 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026265A1 (en) * 2017-08-03 2019-02-07 日立化成株式会社 Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN111971828A (en) * 2018-03-28 2020-11-20 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2021524134A (en) * 2019-01-03 2021-09-09 エルジー・ケム・リミテッド Negative electrode active material for secondary batteries, electrodes containing it, and manufacturing method thereof
JP7144536B2 (en) 2019-01-03 2022-09-29 エルジー エナジー ソリューション リミテッド Negative electrode active material for secondary battery, electrode containing the same, and method for manufacturing the same
US11799072B2 (en) 2019-01-03 2023-10-24 Lg Energy Solution, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
CN114207880A (en) * 2019-07-31 2022-03-18 昭和电工材料株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4027411A4 (en) * 2019-09-02 2022-11-09 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2021152765A1 (en) * 2020-01-30 2021-08-05 昭和電工マテリアルズ株式会社 Method for producing negative electrode material for lithium ion secondary batteries and apparatus for producing negative electrode material for lithium ion secondary batteries

Also Published As

Publication number Publication date
JP6555050B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555050B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019026265A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226431B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4007017B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP7238885B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP7272350B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350