JP2017062191A - Battery simulation apparatus - Google Patents

Battery simulation apparatus Download PDF

Info

Publication number
JP2017062191A
JP2017062191A JP2015188082A JP2015188082A JP2017062191A JP 2017062191 A JP2017062191 A JP 2017062191A JP 2015188082 A JP2015188082 A JP 2015188082A JP 2015188082 A JP2015188082 A JP 2015188082A JP 2017062191 A JP2017062191 A JP 2017062191A
Authority
JP
Japan
Prior art keywords
battery
active material
active materials
electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015188082A
Other languages
Japanese (ja)
Inventor
育郎 後藤
Ikuro Goto
育郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015188082A priority Critical patent/JP2017062191A/en
Publication of JP2017062191A publication Critical patent/JP2017062191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery simulation apparatus capable of highly accurately analyzing the output voltage and charge state of a battery, with a small calculation load by devising a battery model applicable to a mixed electrode battery.SOLUTION: In a battery simulation apparatus 15, for use in analyzing a battery that contains two kinds of cathode active materials (lithium manganite, lithium-nickel-manganese-cobalt oxide) in a cathode, a mixed electrode model part 18 performs: computing an applied-current ratios xand xfor each cathode active at a given clock-time t, with an assumption that a closed circuit potential φof a lithium manganite 11 is equal to a closed circuit potential φof a lithium-nickel-manganese-cobalt oxide 12 (step 1); and computing Li density c, c, c.ave, and c.aveof each of the active materials at a given clock-time t on the basis of the applied-current ratios xand xcalculated in the step 1 (step 2).SELECTED DRAWING: Figure 4

Description

本発明は、電池の内部状態を解析するシミュレーション装置の技術に関する。   The present invention relates to a technology of a simulation apparatus that analyzes an internal state of a battery.

電気自動車やハイブリッド車等に用いられる電池において、充放電に伴う出力電圧や充電率等の特性の変化を正確に把握するために、電池の内部状態を解析する電池モデルおよび電池モデルに基づいたシミュレーション装置が提案されている。
例えば非特許文献1では,電極反応に拘わるすべての物理量を考慮して計算するモデル(本明細書ではNEWMANモデルとする)が開示されており、高精度な電池内部情報解析が可能である。しかしながら計算負荷が大きく、計算コストの点で好ましくない。
A battery model that analyzes the internal state of a battery and a simulation based on the battery model in order to accurately grasp changes in characteristics such as output voltage and charging rate associated with charging and discharging in batteries used in electric vehicles and hybrid vehicles A device has been proposed.
For example, Non-Patent Document 1 discloses a model (hereinafter referred to as a NEWMAN model) that is calculated in consideration of all physical quantities related to the electrode reaction, and enables high-accuracy battery internal information analysis. However, the calculation load is large, which is not preferable in terms of calculation cost.

また非特許文献2では、負極及び正極の夫々の活物質が全て同じ反応をすると見なし、夫々の電極を1個の活物質粒子で代表させたモデル(本明細書ではSPモデルとする)が開示されている。計算負荷が小さくなるものの、電解液中の電位およびLi濃度変化を無視しているため、解析精度が低下する問題がある。
更に特許文献1には、SPモデルと同様に電極を1個の活物質粒子で代表させ、かつ電解液中の電位およびLi濃度変化を考慮したモデルが開示されており、計算負荷を低減させつつ、解析精度の低下が抑制されることが示されている。
Further, Non-Patent Document 2 discloses a model in which each of the active materials of the negative electrode and the positive electrode is considered to have the same reaction, and each electrode is represented by one active material particle (hereinafter referred to as an SP model). Has been. Although the calculation load is reduced, there is a problem that the analysis accuracy is lowered because the potential and Li concentration change in the electrolyte are ignored.
Further, Patent Document 1 discloses a model in which an electrode is represented by a single active material particle as in the SP model, and changes in potential and Li concentration in the electrolyte are taken into account, while reducing the calculation load. It is shown that a decrease in analysis accuracy is suppressed.

特開2012−154665号公報JP 2012-154665 A

Journal of The Electrochemical Society,140(6),1526−1533(1993)Journal of The Electrochemical Society, 140 (6), 1526-1533 (1993) Journal of The Electrochemical Society,151(10),A1584−A1591(2004)Journal of The Electrochemical Society, 151 (10), A1584-A1591 (2004)

ところで、近年では、例えばリチウムイオン二次電池において、出力や寿命を向上させるために1つの電極に活物質を複数種類用いた混合電極を採用した電池が開発されている。そして、このような混合電極電池についても出力電圧や充電率等を正確に推定するための電池モデルが必要とされている。
Newmanモデルに基づき混合電極電池を解析することは可能であるが、前述の通り計算負荷が大きくなり、好ましくない。
By the way, in recent years, for example, in a lithium ion secondary battery, a battery employing a mixed electrode using a plurality of types of active materials as one electrode has been developed in order to improve output and life. Also for such a mixed electrode battery, a battery model for accurately estimating the output voltage, the charging rate and the like is required.
Although it is possible to analyze a mixed electrode battery based on the Newman model, the calculation load increases as described above, which is not preferable.

SPモデルおよび特許文献1のモデルでは、計算を簡素化できるものの、各電極において活物質が全て同じ反応をすると見なすことから、混合電極電池に対して適用すると、異なる種類の活物質の特性が出力電圧の推定結果に正確に反映されない問題がある。また、活物質種類毎の充電率が推定できないため、充電率の正確な推定が困難である。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、混合電極電池に適用できる電池モデルを考案して計算量が少なくかつ高精度に出力電圧や充電状態を解析可能な電池のシミュレーション装置を提供することにある。
Although the calculation can be simplified in the SP model and the model of Patent Document 1, since it is considered that all the active materials have the same reaction in each electrode, characteristics of different types of active materials are output when applied to a mixed electrode battery. There is a problem that is not accurately reflected in the voltage estimation result. Moreover, since the charging rate for each active material type cannot be estimated, it is difficult to accurately estimate the charging rate.
The present invention has been made to solve such problems. The object of the present invention is to devise a battery model that can be applied to a mixed electrode battery to reduce the amount of calculation and to accurately output voltage and charge state. It is an object of the present invention to provide a battery simulation apparatus capable of analyzing the above.

上記の目的を達成するために、本発明の電池のシミュレーション装置は、正極及び負極の少なくとも一方の電極に複数の種類の活物質を含む電池のシミュレーション装置であって、SPモデルおよび特許文献1のモデルと同様に夫々の電極を活物質粒子で代表させるが、複数の種類の活物質粒子が用いられている電極では、その種類数の活物質粒子で代表させる。例えば2種類の異なる種類の活物質が用いられている場合、2個の異なる種類の粒子で代表させる。そして、本発明の電池のシミュレーション装置は、前記複数の活物質粒子が並列に接続されていると見なし、夫々の活物質の閉回路電位(電流が印加された時の電位)が同一であるとして、所定の時刻における前記活物質毎の印加電流比を演算する第1ステップ実行部と、前記第1ステップ実行部において演算した前記印加電流比に基づいて前記所定の時刻における前記活物質夫々の反応物質濃度(Li濃度)を演算する第2ステップ実行部と、を有することを特徴とする。   In order to achieve the above object, a battery simulation apparatus according to the present invention is a battery simulation apparatus including a plurality of types of active materials in at least one of a positive electrode and a negative electrode. Each electrode is represented by active material particles in the same manner as in the model, but in an electrode in which a plurality of types of active material particles are used, the number of types of active material particles is represented. For example, when two different types of active materials are used, they are represented by two different types of particles. The battery simulation apparatus of the present invention considers that the plurality of active material particles are connected in parallel, and assumes that the closed circuit potentials (potentials when current is applied) of the active materials are the same. A first step execution unit that calculates an applied current ratio for each of the active materials at a predetermined time, and a reaction of each of the active materials at the predetermined time based on the applied current ratio calculated in the first step execution unit And a second step execution unit for calculating a substance concentration (Li concentration).

好ましくは、前記シミュレーション装置は、更に、前記印加電流比および前記反応物質濃度に基づいた各活物質夫々の充電率演算、および前記閉回路電位、電池電圧を演算する第3ステップ実行部を有するとよい。   Preferably, the simulation apparatus further includes a charge rate calculation for each active material based on the applied current ratio and the reactant concentration, and a third step execution unit for calculating the closed circuit potential and the battery voltage. Good.

本発明によれば、第1ステップ実行部で、複数の異なる種類の活物質夫々の閉回路電位が同一であるとして、所定の時刻における活物質毎の印加電流比を演算し、第2ステップ実行部で、当該印加電流比に基づいて所定の時刻における活物質夫々の反応物質濃度を演算するので、この印加電流比および反応物質濃度に基づいて閉回路電位および活物質種類毎の充電率を演算することができる。これにより、電極を活物質粒子で代表させる計算負荷の小さいシミュレーション方法であっても、特性を反映した正確な出力電圧および充電率の推定が可能となる。   According to the present invention, the first step execution unit calculates the applied current ratio for each active material at a predetermined time, assuming that the closed circuit potentials of a plurality of different types of active materials are the same, and executes the second step. Since the reactive material concentration of each active material at a predetermined time is calculated based on the applied current ratio, the closed circuit potential and the charging rate for each active material type are calculated based on the applied current ratio and the reactive material concentration. can do. This makes it possible to accurately estimate the output voltage and the charging rate reflecting characteristics even in a simulation method with a small calculation load in which the electrode is represented by active material particles.

本発明の実施形態に係るシミュレーション方法および装置により解析される電池の概略構成図である。It is a schematic block diagram of the battery analyzed by the simulation method and apparatus which concern on embodiment of this invention. 本実施形態に係る電池のシミュレーション方法の概念図である。It is a conceptual diagram of the simulation method of the battery which concerns on this embodiment. 電池モデル式で使用する変数および定数の一覧表である。It is a list of variables and constants used in the battery model formula. 本実施形態に係る電池シミュレーション装置の構成を説明するブロック図である。It is a block diagram explaining the structure of the battery simulation apparatus which concerns on this embodiment. 本実施形態に係る電池において定電流放電した際の、混合正極の閉回路電位の推移の一例を示すグラフである。It is a graph which shows an example of transition of the closed circuit potential of a mixed positive electrode at the time of constant current discharge in the battery concerning this embodiment. 本実施形態に係る電池において定電流放電した際の、混合正極における活物質夫々の充電率の推移の一例を示すグラフである。It is a graph which shows an example of transition of the charging rate of each active material in a mixed positive electrode at the time of carrying out constant current discharge in the battery concerning this embodiment. 電荷移動反応による過電圧の理論式と,理論式を線形近似した場合の印加電流に対する応答の差を説明するためのグラフである。It is a graph for demonstrating the difference of the response with respect to the applied current at the time of carrying out the linear approximation of the theoretical formula of the overvoltage by a charge transfer reaction.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明の実施形態に係るシミュレーション方法および装置により解析される電池1の概略構成図である。
図1に示すように、本実施形態のシミュレーション方法および装置により解析される電池1は、充放電可能な二次電池であって、例えばリチウムイオン二次電池である。電池1は、電解液を満たした容器内に正極2、負極3、セパレータ4を備えており、正極2と負極3との間でリチウムイオンを移動させることで充放電が可能となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a battery 1 analyzed by a simulation method and apparatus according to an embodiment of the present invention.
As shown in FIG. 1, a battery 1 analyzed by the simulation method and apparatus of the present embodiment is a chargeable / dischargeable secondary battery, for example, a lithium ion secondary battery. The battery 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 in a container filled with an electrolytic solution, and charging / discharging is possible by moving lithium ions between the positive electrode 2 and the negative electrode 3.

電解液は、リチウムイオンの伝導性を有する非水電解液であり、液体状,ゲル状,固体状といったさまざまな状態のものが使用されている。
セパレータ4は、例えば樹脂等によってフィルム状に形成され、正極2と負極3との接触による短絡を防止しつつリチウムイオンの移動を許容する。
正極2は、例えば板状又は箔状の金属(アルミニウム等)で形成された正極集電体5を備えている。また、正極2は、結着材、導電補助材とともに正極活物質を含んで構成されている。正極活物質は、二種類のリチウム金属酸化物、例えばマンガン酸リチウム11(Li1-xMn24)及びリチウムニッケルマンガンコバルト酸化物12(Li1-yNi1/3Mn1/3Co1/32)が用いられている。
The electrolyte is a non-aqueous electrolyte having lithium ion conductivity, and is used in various states such as liquid, gel, and solid.
The separator 4 is formed into a film shape, for example, with a resin or the like, and allows movement of lithium ions while preventing a short circuit due to contact between the positive electrode 2 and the negative electrode 3.
The positive electrode 2 includes a positive electrode current collector 5 formed of, for example, a plate-like or foil-like metal (aluminum or the like). The positive electrode 2 includes a positive electrode active material together with a binder and a conductive auxiliary material. The positive electrode active material includes two types of lithium metal oxides such as lithium manganate 11 (Li 1-x Mn 2 O 4 ) and lithium nickel manganese cobalt oxide 12 (Li 1-y Ni 1/3 Mn 1/3 Co). 1/3 O 2 ) is used.

負極3は、例えば板状又は箔状の金属(銅等)で形成された負極集電体6を備えている。また、負極3は、結着材、導電補助材とともに負極活物質13を含んで構成されている。負極活物質13は、例えば黒鉛,アモルファスカーボンといった炭素系材料が用いられている。
上記のように、本実施形態の電池1は、正極活物質としてマンガン酸リチウム11とリチウムニッケルマンガンコバルト酸化物12の2種類を採用している。
The negative electrode 3 includes a negative electrode current collector 6 made of, for example, a plate-like or foil-like metal (copper or the like). The negative electrode 3 includes a negative electrode active material 13 together with a binder and a conductive auxiliary material. For the negative electrode active material 13, for example, a carbon-based material such as graphite or amorphous carbon is used.
As described above, the battery 1 of the present embodiment employs two types of lithium manganate 11 and lithium nickel manganese cobalt oxide 12 as the positive electrode active material.

なお、電池1の正極集電体5と負極集電体6とは電気負荷7を介して接続され電気回路が構成されている。
そして、本実施形態の電池のシミュレーション装置は、このような2種類の正極活物質を採用した電池1、所謂混合電極電池の充放電特性を解析可能なシミュレーション装置である。
Note that the positive electrode current collector 5 and the negative electrode current collector 6 of the battery 1 are connected via an electric load 7 to form an electric circuit.
The battery simulation apparatus according to the present embodiment is a simulation apparatus that can analyze the charge / discharge characteristics of the battery 1 that employs such two types of positive electrode active materials, that is, a so-called mixed electrode battery.

図2は、本実施形態に係る電池のシミュレーション方法の概念図である。なお、図2中に記載された矢印は、放電時の印加電流の流れ(実際には電流印加によって駆動される,活物質と化学反応するLiイオンの流れ)を示している。
本実施形態に係るシミュレーション方法では、電池モデルとして、正極を異なる種類の活物質粒子で代表させ、かつそれらが並列に接続されていると見なすモデルを採用する。そして、図2に示すように、2種類の正極活物質(マンガン酸リチウム11、リチウムニッケルマンガンコバルト酸化物12)を有する電池1は、印加電流Iに比例した量のLiがマンガン酸リチウム11とリチウムニッケルマンガンコバルト酸化物12とに、夫々の活物質の閉回路電位が等しくなるよう分割して反応するものとする。
FIG. 2 is a conceptual diagram of a battery simulation method according to this embodiment. Note that the arrows described in FIG. 2 indicate the flow of applied current during discharge (actually, the flow of Li ions that are driven by applying a current and chemically react with the active material).
In the simulation method according to the present embodiment, as the battery model, a model is used in which the positive electrode is represented by different types of active material particles and they are considered to be connected in parallel. As shown in FIG. 2, the battery 1 having two types of positive electrode active materials (lithium manganate 11 and lithium nickel manganese cobalt oxide 12) has an amount of Li proportional to the applied current I and lithium manganate 11. The lithium nickel manganese cobalt oxide 12 is divided and reacted so that the closed circuit potentials of the respective active materials are equal.

本実施形態に係るシミュレーション方法では、以下に示す理論式によって、電池1の特性を演算、解析する。ただしSPモデルおよび先行特許1に準じて、電極積層方向の一次元反応のみを考慮し、各電極にて同じ種類(同一の組成式を持つ)の全ての活物質粒子で同じ反応が起こると仮定する。また,図3に理論式で使用する変数および定数の一覧を示す。   In the simulation method according to the present embodiment, the characteristics of the battery 1 are calculated and analyzed by the following theoretical formula. However, according to the SP model and prior patent 1, only one-dimensional reaction in the electrode stacking direction is considered, and it is assumed that the same reaction occurs in all active material particles of the same type (having the same composition formula) at each electrode. To do. Fig. 3 shows a list of variables and constants used in the theoretical formula.

電池セル電圧Vcellは、下記(1)式のように、正極電位φp及び負極電位φnの差として求められる。 The battery cell voltage V cell is obtained as a difference between the positive electrode potential φ p and the negative electrode potential φ n as shown in the following formula (1).

Figure 2017062191
Figure 2017062191

図2に示されるように正極に2種類の活物質(マンガン酸リチウムをj=1、リチウムニッケルマンガンコバルト酸化物をj=2とする)が用いられている場合、本発明のモデルではそれらが並列に接続されているとみなす。このため電極電位φi(i=p(正極),n(負極))は、下記(2)式のように活物質の閉回路電位によって記述される。 As shown in FIG. 2, when two types of active materials (where lithium manganate is j = 1 and lithium nickel manganese cobalt oxide is j = 2) are used for the positive electrode, It is assumed that they are connected in parallel. Therefore, the electrode potential φ i (i = p (positive electrode), n (negative electrode)) is described by the closed circuit potential of the active material as shown in the following equation (2).

Figure 2017062191
Figure 2017062191

ここで夫々の活物質の閉回路電位が同一になるように、2種類の活物質の間で印加電流が分割されると考える。正極における印加電流比(電流分割比)をxp,jとすると、jp,jとの間に下記式(3)の関係がある。負極は1種類の活物質であるため、印加電流比は定義されない。 Here, it is considered that the applied current is divided between the two types of active materials so that the closed circuit potentials of the respective active materials are the same. When the applied current ratio (current division ratio) at the positive electrode is x p, j , there is a relationship of the following formula (3) between j p, j . Since the negative electrode is one type of active material, the applied current ratio is not defined.

Figure 2017062191
Figure 2017062191

p,jは下記式(4)を満たす。 x p, j satisfies the following formula (4).

Figure 2017062191
Figure 2017062191

正極活物質や負極活物質等の活物質は、それぞれに固有のLi組成−電位プロファイルを有しているため、活物質の開回路電位Ui,jは、下記式(5)のように、活物質の表面Li濃度ci,j,surfを引数として持つ。 Since each of the active materials such as the positive electrode active material and the negative electrode active material has a unique Li composition-potential profile, the open circuit potential U i, j of the active material is expressed by the following equation (5): It has the surface Li concentration c i, j, surf of the active material as an argument.

Figure 2017062191
Figure 2017062191

ここで活物質内のLi濃度ci,j(r,t)は、活物質を半径Ri,jの粒子とみなすと、以下(6)式に従う。境界条件は(7)式である。 Here, the Li concentration c i, j (r, t) in the active material follows the following equation (6) when the active material is regarded as particles having a radius R i, j . The boundary condition is Equation (7).

Figure 2017062191
Figure 2017062191

Figure 2017062191
Figure 2017062191

活物質の表面Li濃度ci,j,surfおよび平均濃度c.avei,jは、以下(8)(9)式で定義される。 The surface Li concentration c i, j, surf and the average concentration c.ave i, j of the active material are defined by the following equations (8) and (9).

Figure 2017062191
Figure 2017062191

Figure 2017062191
Figure 2017062191

ここで(3)式を考慮すると、ci,j,surfはxi,j×Iを引数に持つ。
各活物質の電荷移動反応による過電圧ηi,jは、下記式(10)により求められる。ここで(3)式を考慮すると、ηi,jはxi,j×I,ci,j,surfを引数として持つ。
Here, considering equation (3), c i, j, surf has x i, j × I as an argument.
The overvoltage η i, j due to the charge transfer reaction of each active material is obtained by the following equation (10). Here, considering equation (3), η i, j has x i, j × I, c i, j, surf as arguments.

Figure 2017062191
Figure 2017062191

直流抵抗による電圧変化をΔVi,j(=FRd,i,ji,j)と書く場合、(3)式を考慮すると、ΔVi,jはxi,j×Iを引数として持つ。以上から各項の引数を明確にして記述すれば、正極について(2)式は(11)式へと書き換えられる。 When the voltage change due to the DC resistance is written as ΔV i, j (= FR d, i, j j i, j ), ΔV i, j has x i, j × I as an argument , considering equation (3). . From the above, if the argument of each term is clearly described, Equation (2) can be rewritten to Equation (11) for the positive electrode.

Figure 2017062191
Figure 2017062191

ここで(4)、(11)式は時間経過とともに変化するため、シミュレーション開始からの時間をtとして、以下(12)、(13)式と書ける。ただし以降の式展開で、電解液電位φe,pは両辺に共通のため省略している。 Here, since the equations (4) and (11) change with the passage of time, the following equation (12) and (13) can be written, where t is the time from the start of the simulation. However, in the following formula development, the electrolyte potential φ e, p is omitted because it is common to both sides.

Figure 2017062191
Figure 2017062191

Figure 2017062191
Figure 2017062191

(12),(13)式を連立することでxp,1、xp,2が求まるが、前述の通りcp,j,surfはそれ自身がxp,jを引数として持つので、(12)、(13)式を直接解く事は困難である。このため実際のシミュレーションにおいては、ある時刻tkにおける xp,j(tk)を算出するために、活物質中のLi拡散が遅い点に着目したcp,j,surf(tk)≒cp,j,surf(tk-1)とする近似を導入する。上記近似の導入により、時刻tkにおける式(12)は下記式(14)にすることができる。 X p, 1 and x p, 2 can be obtained by simultaneous equations (12) and (13), but as described above, c p, j, surf itself has x p, j as an argument. It is difficult to directly solve the equations (12) and (13). Therefore, in actual simulation, in order to calculate x p, j (t k ) at a certain time t k , c p, j, surf (t k ) ≈ focusing on the point where Li diffusion in the active material is slow An approximation is introduced as c p, j, surf (t k-1 ). By introducing the above approximation, the equation (12) at the time t k can be changed to the following equation (14).

Figure 2017062191
Figure 2017062191

そして、本実施形態に係るシミューション方法では、まずステップ1として、時刻t(=tk)における印加電流比xp,j(t)を、上記式(13)と式(14)とを連立して求める。
次に、ステップ2では、ステップ1で演算した印加電流比xp,j(t)を上記式(3)に代入し、(6)〜(9)式よりcp,j,surf(t)、c.avep,j(t)を求める。
更にステップ3にて、ステップ1,2で演算したxp,j(t)およびcp,j,surf(t)、非特許文献1などの方法から別途算出した電解液電位φe,p、電解液中のLi濃度ce,pを(11)式に代入することで、正極電位φpを求める。また負極電位φnはj=1として同様に各時刻で求まる。このようにして、時間経過によって推移するφp及びφnが求められ、(1)式より電池セル電圧Vcellを求めることができる。
In the simulation method according to the present embodiment, first, as step 1, the applied current ratio x p, j (t) at time t (= t k ) is expressed by the above equations (13) and (14). Seek together.
Next, in step 2, the applied current ratio x p, j (t) calculated in step 1 is substituted into the above equation (3), and c p, j, surf (t) is calculated from equations (6) to (9). C.ave p, j (t) is obtained.
Further, in step 3, x p, j (t) and c p, j, surf (t) calculated in steps 1 and 2, the electrolyte potential φ e, p separately calculated from the method of Non-Patent Document 1, etc., The positive electrode potential φ p is obtained by substituting the Li concentration c e, p in the electrolytic solution into the equation (11). Similarly, the negative electrode potential φ n is obtained at each time with j = 1. In this way, φ p and φ n that change over time are obtained, and the battery cell voltage V cell can be obtained from equation (1).

また、ステップ2で演算したcp,j,surf(t) 、c.avep,j(t)から、活物質表面の局所的な充電率である表面充電率SOCp,j,surf、活物質の平均充電率SOC.avep,jが以下式(15)(16)より求まる。 Further, from c p, j, surf (t) and c.ave p, j (t) calculated in step 2, the surface charge rate SOC p, j, surf , which is the local charge rate of the active material surface, The average charging rate SOC.ave p, j of the substance is obtained from the following equations (15) and (16).

Figure 2017062191
Figure 2017062191

Figure 2017062191
Figure 2017062191

以上のように、本実施形態に係るシミュレーション方法では、経過時間毎に正極における2つの活物質の印加電流比が演算され、2つの活物質毎の特性が正確にシミュレーション結果に反映される。これにより、混合電極を用いた電池のセル電圧Vcellや活物質種類夫々の充電率SOCi,j,surf、SOC.avei,jが精度良く推定、解析することができる。
また、正極における2つの活物質の夫々について、SPモデルのように同一種類の活物質全てで同じ反応をすると見なして演算するので、負荷の小さい計算で解析することができる。
As described above, in the simulation method according to the present embodiment, the applied current ratio of the two active materials in the positive electrode is calculated for each elapsed time, and the characteristics of the two active materials are accurately reflected in the simulation result. As a result, the cell voltage V cell of the battery using the mixed electrode and the charging rates SOC i, j, surf and SOC.ave i, j of each active material type can be accurately estimated and analyzed.
Further, since each of the two active materials in the positive electrode is calculated assuming that the same reaction occurs in all the active materials of the same type as in the SP model, it can be analyzed by calculation with a small load.

図4は,本実施形態に係る電池シミュレーション装置15の構成を説明するブロック図である。図4に示すように、電池システムは、データ入力部14と、電池シミュレーション装置15より構成されている。
データ入力部14は、実際の電池で事前に取得された所定の時刻tにおけるデータテーブルを持ち、電池シミュレーション装置15へ各時刻における印加電流Iと電池温度Tを送付する。あるいは、図示されない電流センサ、温度センサにより実際の電池から印加電流Iと電池温度Tを計測し、オンラインで電池シミュレーション装置へデータを送付しても良い。
FIG. 4 is a block diagram illustrating the configuration of the battery simulation device 15 according to the present embodiment. As shown in FIG. 4, the battery system includes a data input unit 14 and a battery simulation device 15.
The data input unit 14 has a data table at a predetermined time t acquired in advance with an actual battery, and sends the applied current I and the battery temperature T at each time to the battery simulation device 15. Alternatively, the applied current I and the battery temperature T may be measured from an actual battery using a current sensor and a temperature sensor (not shown), and the data may be sent online to the battery simulation apparatus.

電池シミュレーション装置15は、本発明のシミュレーション装置に相当し、電池モデル部16と電池状態推定部17より構成される。電池モデル部16は、上述のシミュレーション方法に基づく混合電極モデル部18と、電解液モデル部19から構成される。
混合電極モデル部18は、上述のシミュレーション方法のステップ1を実行する本発明の第1ステップ実行部、およびステップ2を実行する本発明の第2ステップ実行部に相当し、印加電流比xi,jと活物質種類毎のLi濃度(反応物質濃度)ci,j,surf、c.avei,jを、データ入力部14からの入力値に基づき算出する。また電解液モデル部19は、各電極における電解液中のLi濃度ce,iおよび電位φe,pを、非特許文献1などに基づき算出する。
The battery simulation device 15 corresponds to the simulation device of the present invention, and includes a battery model unit 16 and a battery state estimation unit 17. The battery model unit 16 includes a mixed electrode model unit 18 and an electrolytic solution model unit 19 based on the above simulation method.
The mixed electrode model unit 18 corresponds to a first step execution unit of the present invention that executes Step 1 of the above-described simulation method and a second step execution unit of the present invention that executes Step 2, and the applied current ratio x i, j and Li concentration (reactant concentration) c i, j, surf and c.ave i, j for each active material type are calculated based on the input values from the data input unit 14. Further, the electrolytic solution model unit 19 calculates the Li concentration c e, i and the potential φ e, p in the electrolytic solution in each electrode based on Non-Patent Document 1 and the like.

電池状態推定部17は、上述のシミュレーション方法のステップ3を実行する本発明の第3ステップ実行部に相当し、電池モデル部16によって推定された物理量に基づき、活物質種類毎の充電率や出力電圧を演算する。なお上述した様にオンラインで解析を行う場合、オンラインでの活物質種類毎の充電率推定が可能である。
図5は、本実施形態の電池1において定電流放電した際の正極電位φpの推移の例を示すグラフであり、実線が実測値、破線が本実施形態の発明モデルによるシミュレーション方法での推定値、一点鎖線が正極の2種類の活物質を1つの活物質と見なすSPモデル(ただし電解液の影響を考慮)で推定した値である。なお、このグラフには2種類の電流値での結果を示している。
The battery state estimation unit 17 corresponds to a third step execution unit of the present invention that executes Step 3 of the above-described simulation method, and based on the physical quantity estimated by the battery model unit 16, the charge rate and output for each active material type Calculate the voltage. As described above, when the analysis is performed online, it is possible to estimate the charging rate for each active material type online.
FIG. 5 is a graph showing an example of the transition of the positive electrode potential φ p when the battery 1 of this embodiment is discharged at a constant current. The solid line is an actual measurement value, and the broken line is an estimation by the simulation method using the invention model of this embodiment. The value and the alternate long and short dash line are values estimated by an SP model (considering the influence of the electrolytic solution) in which two types of positive electrode active materials are regarded as one active material. This graph shows the results with two types of current values.

図5に示すように、本実施形態に係るシミュレーション方法では、時間経過とともに変化(低下)する正極電位φpを、SPモデルによる推定値よりも精度よく推定することができる。
図6は、本実施形態の電池1において定電流放電した際の活物質種類夫々の表面充電率SOCp,j,surfの推移の例を示すグラフであり、実線がマンガン酸リチウム11、破線がリチウムニッケルマンガンコバルト酸化物12を表している。
As shown in FIG. 5, in the simulation method according to the present embodiment, the positive electrode potential φ p that changes (decreases) over time can be estimated with higher accuracy than the estimated value based on the SP model.
FIG. 6 is a graph showing an example of the transition of the surface charge rate SOC p, j, surf for each type of active material when the battery 1 of the present embodiment is subjected to constant current discharge, where the solid line is lithium manganate 11 and the broken line is The lithium nickel manganese cobalt oxide 12 is represented.

図6に示すように、本実施形態に係るシミュレーション方法では、時間経過とともに活物質夫々の特性に基づいて変化する活物質の充電率を推定することができる。この活物質種類夫々の充電率は、全ての活物質を一つの活物質粒子で代表させるSPモデルや特許文献1モデルでは推定できない情報である。
また図7は、電荷移動反応による過電圧の理論式(10)と、理論式を線形近似した場合の印加電流に対する応答の差を説明するものである。本実施形態では、印加電流比xi,jを演算する際に、計算式(10)において、電荷移動反応による過電圧ηi,jを印加電流Iに対して非線形のまま扱っている。図7に示す通り、線形近似を行うと印加電流Iが大きい場合に理論からの誤差が大きくなる。したがって、本実施形態に係るシミュレーション方法は,ηi,jを線形近似して印加電流比xi,jを演算するよりも、より広い電流範囲で精度のよいシミュレーションが可能である。
As shown in FIG. 6, in the simulation method according to the present embodiment, it is possible to estimate the charge rate of the active material that changes based on the characteristics of each active material over time. The charge rate of each type of active material is information that cannot be estimated by the SP model in which all the active materials are represented by one active material particle or the Patent Document 1 model.
FIG. 7 explains the difference in response to the applied current when the theoretical formula (10) of the overvoltage due to the charge transfer reaction is linearly approximated. In this embodiment, when calculating the applied current ratio x i, j , the overvoltage η i, j due to the charge transfer reaction is handled in a non-linear manner with respect to the applied current I in the calculation formula (10). As shown in FIG. 7, when the linear approximation is performed, an error from the theory increases when the applied current I is large. Therefore, the simulation method according to the present embodiment enables accurate simulation over a wider current range than calculating the applied current ratio x i, j by linearly approximating η i, j .

なお、本発明は、上記実施形態に限定するものではない。例えば上記実施形態では、正極に電極活物質が2種類用いられている混合電池にシミュレーション方法を適用しているが、1つの電極に2種類より多くの種類の電極活物質が用いられている混合電池にも適用することができる。また、リチウム化合物以外の活物質を使用するリチウムイオン二次電池以外の混合電池にも適用することができる。   In addition, this invention is not limited to the said embodiment. For example, in the above embodiment, the simulation method is applied to a mixed battery in which two types of electrode active materials are used for the positive electrode, but mixing in which more than two types of electrode active materials are used for one electrode. It can also be applied to batteries. Moreover, it is applicable also to mixed batteries other than the lithium ion secondary battery which uses active materials other than a lithium compound.

1 電池
2 正極
3 負極
11 マンガン酸リチウム(活物質)
12 リチウムニッケルマンガンコバルト酸化物(活物質)
15 電池シミュレーション装置(シミュレーション装置)
17 電池状態推定部(第3ステップ実行部)
18 混合電極モデル部(第1ステップ実行部、第2ステップ実行部)
1 battery 2 positive electrode 3 negative electrode 11 lithium manganate (active material)
12 Lithium nickel manganese cobalt oxide (active material)
15 Battery simulation device (simulation device)
17 Battery state estimation unit (third step execution unit)
18 Mixed electrode model part (first step execution part, second step execution part)

Figure 2017062191
Figure 2017062191

Claims (2)

正極及び負極の少なくとも一方の電極に複数の種類の活物質を含む電池のシミュレーション装置であって、
前記電極を複数の種類の活物質粒子で代表させ、前記活物質夫々の閉回路電位が同一であるとして、所定の時刻における前記複数の活物質毎の印加電流比を演算する第1ステップ実行部と、
前記第1ステップ実行部において演算した前記印加電流比に基づいて、前記所定の時刻における前記活物質夫々の反応物質濃度を演算する第2ステップ実行部と、
を有することを特徴とする電池のシミュレーション装置。
A battery simulation apparatus including a plurality of types of active materials in at least one of a positive electrode and a negative electrode,
A first step execution unit that calculates an applied current ratio for each of the plurality of active materials at a predetermined time assuming that the electrode is represented by a plurality of types of active material particles and that the closed circuit potential of each of the active materials is the same. When,
A second step execution unit that calculates the reactant concentration of each of the active materials at the predetermined time based on the applied current ratio calculated in the first step execution unit;
A battery simulation apparatus comprising:
前記シミュレーション装置は、更に、前記印加電流比および前記反応物質濃度に基づいた各活物質夫々の充電率演算、および前記閉回路電位、電池電圧を演算する第3ステップ実行部を有することを特徴とする請求項1記載の電池のシミュレーション装置。   The simulation apparatus further includes a third step execution unit for calculating a charging rate of each active material based on the applied current ratio and the concentration of the reactant, and calculating the closed circuit potential and the battery voltage. The battery simulation device according to claim 1.
JP2015188082A 2015-09-25 2015-09-25 Battery simulation apparatus Pending JP2017062191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015188082A JP2017062191A (en) 2015-09-25 2015-09-25 Battery simulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188082A JP2017062191A (en) 2015-09-25 2015-09-25 Battery simulation apparatus

Publications (1)

Publication Number Publication Date
JP2017062191A true JP2017062191A (en) 2017-03-30

Family

ID=58430085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188082A Pending JP2017062191A (en) 2015-09-25 2015-09-25 Battery simulation apparatus

Country Status (1)

Country Link
JP (1) JP2017062191A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004469A (en) * 2017-07-04 2019-01-14 한국과학기술연구원 Virtual simulation method and electronic device for cathode
WO2020129477A1 (en) * 2018-12-18 2020-06-25 パナソニックIpマネジメント株式会社 Battery state estimation device, battery state estimation method, and battery system
WO2020129478A1 (en) * 2018-12-18 2020-06-25 パナソニックIpマネジメント株式会社 Battery state estimation device, battery state estimation method, and battery system
JP2023525751A (en) * 2020-09-22 2023-06-19 エルジー エナジー ソリューション リミテッド BATTERY DEVICE AND BATTERY STATE ESTIMATION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154665A (en) * 2011-01-24 2012-08-16 Toyota Central R&D Labs Inc Simulation device of secondary battery
US20130311115A1 (en) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Battery System and Method with Parameter Estimator
KR20150043214A (en) * 2013-10-14 2015-04-22 주식회사 엘지화학 Apparatus for estimating state of secondary battery including blended cathode material and Method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154665A (en) * 2011-01-24 2012-08-16 Toyota Central R&D Labs Inc Simulation device of secondary battery
US20130311115A1 (en) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Battery System and Method with Parameter Estimator
KR20150043214A (en) * 2013-10-14 2015-04-22 주식회사 엘지화학 Apparatus for estimating state of secondary battery including blended cathode material and Method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004469A (en) * 2017-07-04 2019-01-14 한국과학기술연구원 Virtual simulation method and electronic device for cathode
KR101983599B1 (en) 2017-07-04 2019-05-29 한국과학기술연구원 Virtual simulation method and electronic device for cathode
WO2020129477A1 (en) * 2018-12-18 2020-06-25 パナソニックIpマネジメント株式会社 Battery state estimation device, battery state estimation method, and battery system
WO2020129478A1 (en) * 2018-12-18 2020-06-25 パナソニックIpマネジメント株式会社 Battery state estimation device, battery state estimation method, and battery system
CN113228345A (en) * 2018-12-18 2021-08-06 松下知识产权经营株式会社 Battery state estimation device, battery state estimation method, and battery system
JPWO2020129477A1 (en) * 2018-12-18 2021-11-04 パナソニックIpマネジメント株式会社 Battery status estimation device, battery status estimation method, and battery system
JPWO2020129478A1 (en) * 2018-12-18 2021-11-04 パナソニックIpマネジメント株式会社 Battery status estimation device, battery status estimation method, and battery system
CN113228345B (en) * 2018-12-18 2024-07-19 松下知识产权经营株式会社 Battery state estimating device, battery state estimating method, and battery system
JP2023525751A (en) * 2020-09-22 2023-06-19 エルジー エナジー ソリューション リミテッド BATTERY DEVICE AND BATTERY STATE ESTIMATION METHOD
JP7473250B2 (en) 2020-09-22 2024-04-23 エルジー エナジー ソリューション リミテッド Battery device and battery state estimation method

Similar Documents

Publication Publication Date Title
Li et al. A capacity model based on charging process for state of health estimation of lithium ion batteries
Liu et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries
Xiong et al. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application
Jafari et al. Deterministic models of Li-ion battery aging: It is a matter of scale
Zou et al. A framework for simplification of PDE-based lithium-ion battery models
Weng et al. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking
JP6738433B2 (en) Battery management system with multiple observers
Zheng et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model
Fotouhi et al. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur
EP3644079B1 (en) Apparatus and method for testing performance of battery cell
Ouyang et al. Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination
Rechkemmer et al. Empirical Li-ion aging model derived from single particle model
Wu et al. Characterization of a commercial size cylindrical Li-ion cell with a reference electrode
CN109716152A (en) Method and apparatus for estimating the voltage of battery
JP2012154665A (en) Simulation device of secondary battery
Couto et al. SOC and SOH estimation for Li-ion batteries based on an equivalent hydraulic model. Part I: SOC and surface concentration estimation
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
JP2017062191A (en) Battery simulation apparatus
Gering Novel method for evaluation and prediction of capacity loss metrics in li-ion electrochemical cells
Montaru et al. Calendar ageing model of Li-ion battery combining physics-based and empirical approaches
Yin et al. Implementing intermittent current interruption into Li-ion cell modelling for improved battery diagnostics
De Hoog et al. A combined thermo-electric resistance degradation model for nickel manganese cobalt oxide based lithium-ion cells
KR20190046410A (en) Method of measuring state of battery and apparatus thereof
Sung et al. Electrochemical battery model and its parameter estimator for use in a battery management system of plug-in hybrid electric vehicles
Lim et al. Efficient Electrochemical State of Health Model for Lithium Ion Batteries under Storage Conditions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200108