JP2017061285A - Flapping flying body to which flight control of cicada is applied - Google Patents

Flapping flying body to which flight control of cicada is applied Download PDF

Info

Publication number
JP2017061285A
JP2017061285A JP2015203239A JP2015203239A JP2017061285A JP 2017061285 A JP2017061285 A JP 2017061285A JP 2015203239 A JP2015203239 A JP 2015203239A JP 2015203239 A JP2015203239 A JP 2015203239A JP 2017061285 A JP2017061285 A JP 2017061285A
Authority
JP
Japan
Prior art keywords
flapping
wing
shell
flight
chest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015203239A
Other languages
Japanese (ja)
Inventor
太一 矢口
Taichi Yaguchi
太一 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015203239A priority Critical patent/JP2017061285A/en
Publication of JP2017061285A publication Critical patent/JP2017061285A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sophisticated flight capability such as inversion of advancing direction in a flight distance significantly shorter than a conventional control method by fully utilizing a characteristic of a flapping wing.SOLUTION: The number of components can be significantly decreased by using an electromagnet and an elastic annular shell 80 for a driving method of flapping motion, and further by relating left and right wings to each other through a linkage. In four wings in total, among arranged front and rear and a pair of left and right wings, a rear end of a front quill and a front end of a rear quill are linked, and the front quill is driven while the rear quill is only controlled for braking, so that, flight motion such as rising, advancing, retreating, and revolving can be controlled.SELECTED DRAWING: Figure 1

Description

本発明は、発明者が第59回日本学生科学賞に投稿する研究テーマとしてセミが木の幹から離陸する様子をハイスピードカメラで撮影しその映像を詳細に分析しセミの飛行制御の仕組みを明らかにしたことから着想し羽ばたき型飛行体の飛行制御の方法を発明するものである。  The present invention is a research theme submitted by the inventor to the 59th Japan Student Science Award. A high-speed camera is used to capture the appearance of a cicada taking off from the trunk of a tree. Invented from the clarification, a method of flight control of a flapping flying vehicle is invented.

従来、飛行体の飛行制御は固定翼の場合、主翼や各尾翼に付属するより面積の小さな舵きり翼を操舵して飛行を制御していた。 またヘリコプターに代表される回転翼では、回転する翼の角度と回転軸の傾き、さらに後部に設けられたより小さな回転翼の迎角を調節して飛行を制御していた。 これらの方法では往復運動する羽ばたき翼の飛行制御をするのに適合しているとは言えなかった。  Conventionally, in the case of a fixed wing, flight control of a flying object has been performed by steering a smaller sized steering wing attached to the main wing or each tail wing. Moreover, in the rotary wing represented by the helicopter, the flight was controlled by adjusting the angle of the rotating wing and the inclination of the rotary shaft and the angle of attack of the smaller rotary wing provided at the rear. These methods are not suitable for flight control of flapping wings.

従来、羽ばたき翼の飛行制御では羽ばたき翼の付け根の回転軸をリンケージで制御することで羽ばたき翼の迎角を変化させ飛行制御を行なっていた。 この方法では、片方の翼だけ羽ばたきを止め一定の角度で静止させるなどが出来ないため羽ばたき翼の特色を活かすことができていなかった。  Conventionally, in flight control of a flapping wing, flight control is performed by changing the angle of attack of the flapping wing by controlling the rotation axis of the base of the flapping wing with a linkage. In this method, it is not possible to make use of the characteristics of the flapping wing because it is not possible to stop flapping only at one wing and stop it at a certain angle.

特開2013−103702号公報  JP2013-103702A 特開2012−180050号公報  JP 2012-180050 A 特開2012−140038号公報  JP 2012-140038 A 特開2009−292329号公報  JP 2009-292329 A 特開2009−90770号公報  JP 2009-90770 A 特開2009−67086号公報  JP 2009-67086 A

本発明は、上記問題点に鑑みてなされたものであり、はばたき翼の特性を十分に活かし従来の制御方法より極端に短い飛行距離で進行方向を反転させるなど高度な飛行能力を提供することを目的とするものである。  The present invention has been made in view of the above problems, and provides advanced flight capabilities such as reversing the traveling direction at a flight distance extremely shorter than the conventional control method by fully utilizing the characteristics of the flapping wing. It is the purpose.

セミの翼には大きな面積を持つ前翅とそれよりも小さな面積の後翅から構成されており前翅と後翅は接する一辺が互いにカギ状をしておりそのリンケージによって角度を可変できる状態で同時に羽ばたいている。
前翅は大きな動力によって駆動され揚力と推力を発生させている。また後翅は駆動力を持たず従動しながら抵抗力を発揮して前翅の角度をリンケージを通じて操作している。 この仕組みを飛行体にも応用することでより高度な羽ばたき制御を可能にするものである。
ここに記したセミの飛行制御方法のうち前翅と後翅の役割については、先行研究事例がなく発明者が第59回日本学生科学賞に投稿するため研究したことで世界で初めて明らかにされたことである。
The cicada wing is composed of a large forehead and a smaller area of the rear wing, and the front and rear wings are keyed to each other so that the angle can be varied by the linkage, and the wings can be swung at the same time. .
The outpost is driven by great power to generate lift and thrust. In addition, the rear rod does not have a driving force and exerts a resistance force while being driven to operate the angle of the front rod through the linkage. By applying this mechanism to flying objects, more advanced flapping control is possible.
Of the semi-flight flight control methods described here, the role of the outpost and back end was revealed for the first time in the world as the inventor researched to submit to the 59th Japan Student Science Award without any previous research case. It is.

本発明によれば、駆動力を発生させる動力源と抵抗力を発生させる抵抗体の一対のみで飛行を制御することが可能である。 従来のように操舵するための動力源をいくつものギヤなどを介して制御することに比べれば格段に少ない部品点数と動力源で飛行を制御できる。 これは飛行体の重量を大幅に軽量化でき また飛行に必要な駆動力を軽減することができる。  According to the present invention, flight can be controlled only by a pair of a power source that generates a driving force and a resistor that generates a resistance force. Compared with the conventional case where the power source for steering is controlled via a number of gears, the flight can be controlled with a significantly smaller number of parts and the power source. This can greatly reduce the weight of the flying object and reduce the driving force required for flight.

本機構の斜視図  Perspective view of this mechanism 胸殻と後胸殻を接続する様子  Connecting the chest and rear chest 前翅と後翅をつなぐリンケージ  Linkage between front and back 駆動コイルの電流がOFFになり弾性環状体の弾性力で上向きに羽ばたいた様子  The drive coil's current is turned off, and it flutters upward with the elastic force of the elastic ring 駆動コイルが電流ONになり弾性環状体が電磁石の力で下向きに羽ばたいた様子  The drive coil is turned on and the elastic ring is flung downward by the force of the electromagnet 超小型位置決めリニアと後翅リンケージを示す図  Diagram showing ultra-small positioning linear and rear anchor linkage 後翅が制動されると前翅が傾きをもつことを示す連続図  Continuation diagram showing that when the rear heel is braked, the front heel has an inclination. 後翅が制動されると前翅が傾きをもつ動作図  Operation diagram with the front arm tilted when the rear arm is braked 左翼を固定している間も自由な右翼が羽ばたいている様子  While the left wing is fixed, the free right wing is flapping

以下、セミの飛行制御を応用した羽ばたき飛行体において前翅を胸殻に内蔵した電磁コイルによって駆動し羽ばたかせその前翅にリンケージされた後翅に接続した超小型位置決めリニア装置によって飛行を制御させる様子について、図1〜図9を参照して説明する。  Below, in the flapping aircraft applying semi flight control, the flight is controlled by the micro positioning linear device connected to the rear wing that is driven by the electromagnetic coil built in the chest shell and linked with the front wing. A description will be given with reference to FIGS.

図1には、カーボンファイバーなど十分な弾性を有する材料によって製造され毎秒数十回の変形にも追従しなおかつ所定のバネ定数を有する胸殻(80)の内側に電磁コイル(60)や鉄心(70)を備え胸殻の外側には、球状のジョイント(20)により接続された前翅(90)がある。また後胸殻(150)の外側に設置された線状のジョイント(30)により接続された後翅(100)が組み合わされた様子を前方斜視図として示したものである。また後方斜視図には、後胸殻(150)の内側に内蔵された超小型位置決めリニア(120,130)がリンケージ(110,111)を介して後翅(100,101)に接続されている様子を図示した。  FIG. 1 shows an electromagnetic coil (60) and iron core (60) inside a chest shell (80) that is made of a material having sufficient elasticity, such as carbon fiber, and that follows deformation several tens of times per second and has a predetermined spring constant. 70) and on the outside of the chest shell is a forehead (90) connected by a spherical joint (20). Moreover, a mode that the back collar (100) connected by the linear joint (30) installed in the outer side of a back breast shell (150) was combined is shown as a front perspective view. Also, in the rear perspective view, the ultra-small positioning linear (120, 130) built inside the rear chest shell (150) is connected to the rear heel (100, 101) via the linkage (110, 111). Is illustrated.

図2には、胸殻(80)の駆動による変形が後胸殻(150)に伝わらないよう橋梁状接続(140)を介して胸殻(80)と後胸殻(150)を接続している状態を示す。  In FIG. 2, the chest (80) and the rear chest shell (150) are connected via a bridge-like connection (140) so that deformation due to the drive of the chest shell (80) is not transmitted to the rear chest shell (150). Indicates the state.

図3には、前翅(90)が後翅(100)と線状のジョイント(10)を介して接続されて なおかつ前翅(90)の支点(20)は球状であって後翅(100)の支点(30)は線上である様子を示した。  In FIG. 3, the front heel (90) is connected to the rear heel (100) via a linear joint (10), and the fulcrum (20) of the front heel (90) is spherical, and the fulcrum ( 30) shows the state on the line.

図4は、胸殻(80)に内蔵された電磁石は電磁コイル(60)と鉄心(70)が電流が流れない状態で作用しておらず胸殻(80)の弾性力によって縦方向に開いた状態であるから長さ不変のロッド(50)にリンケージ(40、41)を介して接続されている前翅(90、91)は上向きに羽ばたいている状態を示した。  FIG. 4 shows that the electromagnet built in the breast shell (80) does not act in a state where the current does not flow through the electromagnetic coil (60) and the iron core (70) and opens in the vertical direction by the elastic force of the breast shell (80). In this state, the forehead (90, 91) connected to the rod (50) of invariable length via the linkage (40, 41) fluttered upward.

図5は、胸殻(80)に内蔵された電磁石が電磁コイル(60)と鉄心(70)に電流が流れた状態で作用して胸殻(80)の弾性力に逆らって胸殻が縦方向に押しつぶされた状態であるから右側前翅(90)の球状支点(20)と左側前翅(91)の球状支点(21)の距離は図4の状態よりも大きくなる。よって長さ不変のロッド(50)にリンケージ(40、41)を介して接続されている前翅(90、91)は下向きに傾いている状態を示した。  FIG. 5 shows that the electromagnet built in the chest shell (80) acts in a state where a current flows through the electromagnetic coil (60) and the iron core (70), and the chest shell is vertically opposed to the elastic force of the chest shell (80). The distance between the spherical fulcrum (20) of the right front heel (90) and the spherical fulcrum (21) of the left heel (91) is larger than in the state of FIG. Therefore, the forehead (90, 91) connected to the rod (50) of the invariable length via the linkage (40, 41) is inclined downward.

図6には、後胸殻に内蔵された超小型位置決めリニア(120、130)がリンケージ(110、111)を介して後翅(100、101)を制御する機構を図示した。  FIG. 6 illustrates a mechanism in which the ultra-small positioning linear (120, 130) built in the rear chest shell controls the dorsum (100, 101) via the linkage (110, 111).

図7には、前翅(90)が矢印(180)の方向に駆動される際に後翅(100)の動きを矢印(190)のように小さく抑制することで前翅(90)よりも後翅(100)の動きが遅れて互いを接続する線上のジョイント(10)を作用点として前翅(90)の球状ジョイント(20)を支点とする旋回が軸(170)を中心に矢印(160)の方向に発生する様子を図示した。  In FIG. 7, when the front heel (90) is driven in the direction of the arrow (180), the movement of the rear heel (100) is restrained to be smaller as indicated by the arrow (190), thereby making the rear heel (100) more than the front heel (90). ) With the joint (10) on the line connecting with each other being delayed, and turning with the spherical joint (20) of the forehead (90) as a fulcrum in the direction of the arrow (160) about the axis (170) The state of occurrence is illustrated.

図8には、図7で解説した後翅(100)の運動を抑制したため旋回(160)が発生する「A」と後翅(100)を抑制していないので前翅(90)に旋回(160)が発生しない「B」の差異を図示した。  FIG. 8 shows “A” in which the turning (160) occurs because the movement of the hindlimb (100) described in FIG. 7 is suppressed, and the hindlimb (100) is not suppressed. The difference of “B” that does not occur is illustrated.

図9には、後胸殻(150)に内蔵された左側の後翅(101)に接続された超小型位置決めリニア(130)が摺動を固定したため左側前翅(91)の運動も固定された様子を図示した。 この状態でも胸殻(80)は電磁石駆動体(55)によって駆動されているので前翅のリンケージ(40)と左右の前翅をリンケージでつなぐロッド(50)を介して右側の前翅(90)と右側の後翅(100)は羽ばたき運動を行なうことを図示した。  In FIG. 9, the movement of the left forehead (91) is also fixed because the microminiature positioning linear (130) connected to the left hind heel (101) built in the rear chest (150) fixes the sliding. Is illustrated. Even in this state, since the breast shell (80) is driven by the electromagnet drive (55), the right forehead (90) and the right side through the rod (50) connecting the forehead linkage (40) and the left and right foreheads with the linkage. The rear wing (100) illustrated performing a flapping motion.

10…前翅と後翅の線状のジョイント
20…右側の前翅と胸殻の球状のジョイント
21…左側の前翅と胸殻の球状のジョイント
30…後翅と胸殻の線状のジョイント
40…右側前翅のリンケージ
41…左側前翅のリンケージ
50…左右の前翅をリンケージで繋ぐロッド
55…電磁石駆動体 60と70で構成される
60…胸殻の底部に固定された電磁コイル
70…胸殻の天井部に固定された鉄心
80…弾性を持つ環状の胸殻
90…右側の前翅
91…左側の前翅
100…右側の後翅
101…左側の後翅
110…右側の後翅のリンケージ
111…左側の後翅のリンケージ
120…超小型の位置決めリニア 右側の後翅に接続
130…超小型の位置決めリニア 左側の後翅に接続
140…胸殻の振動と変形を後胸殻に伝わらないよう延長する橋梁状接続
150…後胸殻
160…前翅が迎角をもつ回転方向
170…前翅が迎角をもつ中心軸
180…前翅が羽ばたく振り上げ方向の運動
190…後翅が羽ばたく振り上げ方向の運動
200…右翼が羽ばたく動作
10 ... Linear joint of the forehead and backboard 20 ... Spherical joint of the right side forehead and chest shell 21 ... Spherical joint of the left side of the chest and chest wall 30 ... Linear joint 40 of the back and chest shell ... Linkage 41 ... Left frontal linkage 50 ... Rod 55 connecting left and right foreheads with linkage ... Electromagnetic drive unit 60 and 70 60: Electromagnetic coil fixed to the bottom of the breast shell 70 ... Fixed to the chest top Iron core 80 ... Elastic annular chest 90 ... Right forehead 91 ... Left forehead 100 ... Right forehead 101 ... Left forehead 110 ... Right foreside linkage 111 ... Left forehead linkage 120 ... Ultra-compact Positioning linear: Connected to the right hind limb 130 ... Ultra-small positioning linear Connected to the left hind limb 140: Bridge-like connection that extends the vibration and deformation of the chest shell so that it is not transmitted to the rear chest shell 50 ... Komunekara 160 ... forewing rotational direction 170 ... forewing center axis 180 ... forewing is fly swing up direction of movement 190 ... back wing is flapping swing up direction of movement 200 ... right wing flapping operation with angle of attack with the angle of attack

Claims (2)

羽ばたき翼をもった超小型飛行体を成立させるため部品点数を少なく出来るよう弾性のある胸殻(80)を電磁コイル(60)と鉄心(70)からなる電磁石駆動体のような動力源をもって胸殻(80)を一方向に縮めて変形させ正方向に羽ばたかせ、電磁石駆動体(55)を作用させないときは、胸殻(80)の弾性力によって変形を復元する力で逆方向に羽ばたく運動をさせる羽ばたき駆動機構。An elastic chest shell (80) is formed with a power source such as an electromagnetic drive unit composed of an electromagnetic coil (60) and an iron core (70) so that the number of parts can be reduced in order to establish a micro air vehicle with flapping wings. When the shell (80) is shrunk and deformed in one direction and flapped in the forward direction and the electromagnet drive (55) is not applied, the movement of flapping in the reverse direction with the force of restoring the deformation by the elastic force of the chest shell (80) Flapping drive mechanism 図3のように前翅にリンケージされた後翅の運動を制御することで、前翅の迎角や前翅の羽ばたき運動を操る羽ばたき機構。A flapping mechanism that controls the front angle of attack and the flapping motion of the front wing by controlling the movement of the rear wing linked to the front wing as shown in FIG.
JP2015203239A 2015-09-25 2015-09-25 Flapping flying body to which flight control of cicada is applied Pending JP2017061285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203239A JP2017061285A (en) 2015-09-25 2015-09-25 Flapping flying body to which flight control of cicada is applied

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203239A JP2017061285A (en) 2015-09-25 2015-09-25 Flapping flying body to which flight control of cicada is applied

Publications (1)

Publication Number Publication Date
JP2017061285A true JP2017061285A (en) 2017-03-30

Family

ID=58428944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203239A Pending JP2017061285A (en) 2015-09-25 2015-09-25 Flapping flying body to which flight control of cicada is applied

Country Status (1)

Country Link
JP (1) JP2017061285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108820206A (en) * 2018-05-08 2018-11-16 南京航空航天大学 A kind of flapping wing aircraft that flake type wing area is variable
CN109398697A (en) * 2018-10-09 2019-03-01 南京航空航天大学 A kind of independent type electric Magnetic driving reciprocating mechanism of adaptive micro- torsion
CN110091988A (en) * 2019-05-20 2019-08-06 浙江大学 Imitative butterfly micro flapping wing air vehicle
CN110143277A (en) * 2018-02-12 2019-08-20 唐鹏 A kind of magnetic field array flapping wing driving device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143277A (en) * 2018-02-12 2019-08-20 唐鹏 A kind of magnetic field array flapping wing driving device
CN110143277B (en) * 2018-02-12 2024-01-30 唐鹏 Magnetic field array flapping wing driving device
CN108820206A (en) * 2018-05-08 2018-11-16 南京航空航天大学 A kind of flapping wing aircraft that flake type wing area is variable
CN109398697A (en) * 2018-10-09 2019-03-01 南京航空航天大学 A kind of independent type electric Magnetic driving reciprocating mechanism of adaptive micro- torsion
CN109398697B (en) * 2018-10-09 2021-05-11 南京航空航天大学 Self-adaptive micro-torsion independent electromagnetic drive reciprocating mechanism
CN110091988A (en) * 2019-05-20 2019-08-06 浙江大学 Imitative butterfly micro flapping wing air vehicle
CN110091988B (en) * 2019-05-20 2024-01-05 浙江大学 Butterfly-like miniature flapping-wing aircraft

Similar Documents

Publication Publication Date Title
US10322796B2 (en) Multi-rotor flying object
JP2017061285A (en) Flapping flying body to which flight control of cicada is applied
CN107264796B (en) Propeller component at least two propeller blades
CN208828097U (en) Pulling force generates rotor assemblies
US8528855B2 (en) Magnus and transverse flow hybrid rotor
CN204197292U (en) A kind of Multi-axis aircraft
CN106114851A (en) Many rotary wind types unmanned flight's body
AU2007231617A1 (en) System for controlling flight direction
NL2016130B1 (en) Multiple pairs of flapping wings for attitude control.
CN110171568A (en) One kind can hover flapping wing aircraft
JP6620365B2 (en) helicopter
CN105480414B (en) A kind of coaxial dual-rotor helicopter movement and helicopter
CN208036606U (en) A kind of imitative dragonfly flapping wing aircraft of multiple degrees of freedom
CN108058825A (en) It is a kind of can front and rear swipe flapping wing aircraft device
JP3879771B1 (en) Flapping airplane
CN105857598A (en) Wing-flapping micro aerial vehicle structure
KR20160010711A (en) multicopter
KR20060110241A (en) Dragonfly-type ornithopter with two pairs of wing
KR200336766Y1 (en) Driving mechanism of ornithopter
JP2006232169A (en) Floated moving device and its turning method
JP2012218474A (en) Hummingbird type flapping flight robot
KR200434323Y1 (en) Dragonfly-type ornithopter with two pairs of wing
KR20050006374A (en) Actuating Apparatus Using Piezoelectric Actuator and Air Vehicle Using It
JP2007050841A (en) Small rotary wing aircraft
JP6744833B2 (en) Flapping airplane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414