JP2017060908A - Method for processing organic solid matter containing food residue - Google Patents

Method for processing organic solid matter containing food residue Download PDF

Info

Publication number
JP2017060908A
JP2017060908A JP2015186690A JP2015186690A JP2017060908A JP 2017060908 A JP2017060908 A JP 2017060908A JP 2015186690 A JP2015186690 A JP 2015186690A JP 2015186690 A JP2015186690 A JP 2015186690A JP 2017060908 A JP2017060908 A JP 2017060908A
Authority
JP
Japan
Prior art keywords
methane fermentation
methane
organic solid
concentration
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186690A
Other languages
Japanese (ja)
Inventor
長谷川 進
Susumu Hasegawa
進 長谷川
直子 徳田
Naoko Tokuda
直子 徳田
徹也 竹林
Tetsuya Takebayashi
徹也 竹林
憲明 塩田
Noriaki Shioda
憲明 塩田
水口 護
Mamoru Mizuguchi
護 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2015186690A priority Critical patent/JP2017060908A/en
Publication of JP2017060908A publication Critical patent/JP2017060908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide a processing method by which methane fermentation efficiency of an organic solid matter containing a food residue.SOLUTION: A methane fermentation processing method for an organic solid matter by which methane fermentation efficiency is enhanced. According to the method, when methane fermentation of an organic solid matter is performed in a methane fermentation tank, salts of P, Na, K and Mg are added, as a nutrient source of methanogen, to the organic solid matter, which contains a food residue in the methane fermentation tank and of which an ash concentration is less than 5% by mass, by a difference of (a concentration required for synthesis of methanogen body) - (a concentration contained in the organic solid matter), thereby performing methane fermentation.SELECTED DRAWING: Figure 3

Description

本発明は、有機性固形物をメタン発酵させる処理方法に関し、特に、食品残渣を含有する有機性固形物に対して、特定の無機栄養源を添加することにより、メタン発酵効率を高める処理方法に関する。   The present invention relates to a processing method for methane fermentation of an organic solid, and particularly relates to a processing method for increasing methane fermentation efficiency by adding a specific inorganic nutrient source to an organic solid containing a food residue. .

下水処理汚泥又は生ごみのような有機性固形物の処理方法として、環境負荷が小さく、エネルギー源となるメタンガスを回収し得るメタン発酵処理が広く用いられている。メタン発酵処理においては、メタン菌のような嫌気性微生物によって、効率良く有機性固形物を分解し、メタンガスを回収する必要がある。そのためには、メタン発酵槽内の発酵状態を最適に保持することが重要となる。   As a method for treating organic solids such as sewage treatment sludge or garbage, methane fermentation treatment that has a low environmental load and can recover methane gas as an energy source is widely used. In the methane fermentation treatment, it is necessary to efficiently decompose organic solids and recover methane gas by anaerobic microorganisms such as methane bacteria. For this purpose, it is important to optimally maintain the fermentation state in the methane fermenter.

メタン発酵槽内の発酵効率を向上させる方法としては、嫌気性微生物の栄養素であるニッケル、鉄又はコバルトのような微量金属元素を槽内に添加して、嫌気性微生物の増殖と活性向上を図ることが知られている。   As a method for improving the fermentation efficiency in the methane fermentation tank, a trace metal element such as nickel, iron or cobalt, which is an anaerobic microorganism nutrient, is added to the tank to improve the growth and activity of the anaerobic microorganism. It is known.

特許文献1は、有機性廃水をメタン発酵処理する際に、嫌気性微生物の増殖に必要な栄養元素であるニッケル、鉄、コバルトを有機性廃棄物のBOD濃度に対して所定量以上となるように適宜添加して、嫌気性微生物の増殖活性を向上させて、BOD負荷が高くなってもBOD除去率の低下を防止するメタン発酵処理方法を開示している。同様に、特許文献2は、有機性廃棄物の破砕物をメタン発酵処理する方法であって、メタン発酵処理時の破砕物中の全蒸発残留物濃度(TS濃度)が5%以上となる場合、鉄化合物、コバルト化合物及びニッケル化合物の少なくとも何れか一方を添加する方法を開示している。   In Patent Document 1, when organic wastewater is subjected to methane fermentation, nickel, iron, and cobalt, which are nutrient elements necessary for the growth of anaerobic microorganisms, are set to a predetermined amount or more with respect to the BOD concentration of organic waste. A methane fermentation treatment method is disclosed in which the growth activity of anaerobic microorganisms is improved as appropriate to prevent the decrease in the BOD removal rate even when the BOD load increases. Similarly, Patent Document 2 is a method for methane fermentation treatment of crushed organic waste, and the total evaporation residue concentration (TS concentration) in the crushed material during methane fermentation treatment is 5% or more. , A method of adding at least one of an iron compound, a cobalt compound, and a nickel compound is disclosed.

特許文献3は、有機性廃棄物の処理方法であって、嫌気性微生物の必須栄養素のうち、カリウム又はカルシウムの少なくとも一方をイオン化して供給し、嫌気性微生物の代謝機能を促進して、プロピオン酸のような中間生成物の蓄積を防止する処理方法を開示している。   Patent Document 3 is a method for treating organic waste, which comprises ionizing and supplying at least one of potassium or calcium among the essential nutrients of anaerobic microorganisms, promoting the metabolic function of anaerobic microorganisms, and propion. Disclosed are treatment methods that prevent the accumulation of intermediate products such as acids.

特開平3−165895号公報JP-A-3-165895 特開平11−28445号公報JP-A-11-28445 特開2006−218422号公報JP 2006-218422 A

食品残渣も有機物を多量に含有する有機性固形物であり、メタン発酵による処理対象となり得る。食品残渣は、灰分が少ないことが知られており、食品残渣を含有する有機性固形物をメタン発酵させる場合には、灰分を添加することが好ましいと予想される。   A food residue is also an organic solid containing a large amount of organic matter and can be treated by methane fermentation. It is known that food residues have low ash content, and it is expected that ash content is preferably added when an organic solid containing food residues is subjected to methane fermentation.

本発明者は、特許文献1〜3に開示されている発明のように、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、カリウム(K)又はカルシウム(Ca)の塩を単独又は混合して食品残渣に添加し、メタン発酵槽においてメタン発酵させた。ところが、これら金属元素を添加しても、メタン発酵の効率があまり向上しなかった。   As in the inventions disclosed in Patent Documents 1 to 3, the present inventor uses nickel (Ni), iron (Fe), cobalt (Co), potassium (K), or calcium (Ca) salts alone or in combination. Then, it was added to the food residue and methane-fermented in a methane fermenter. However, even when these metal elements were added, the efficiency of methane fermentation did not improve much.

本発明は、メタン発酵効率の高い、食品残渣を含有する有機性固形物のメタン発酵処理方法の提供を目的とする。   An object of this invention is to provide the methane fermentation processing method of the organic solid substance containing a food residue with high methane fermentation efficiency.

本発明者は、特許文献1〜3に開示されている5種類の金属元素を添加してもメタン発酵効率が向上しない原因について、鋭意検討を重ねた。その結果、食品残渣の場合には、リン(P)、ナトリウム(Na)、カリウム(K)及びマグネシウム(Mg)の4種類の元素が不足しており、これら元素を被処理物に添加しなければ、メタン菌の増殖及び活性化が図れないことが見出され、本発明者は、本発明を完成させるに至った。   This inventor repeated earnest examination about the cause which methane fermentation efficiency does not improve even if it adds five types of metal elements currently indicated by patent documents 1-3. As a result, in the case of food residues, there are four types of elements, phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), which must be added to the workpiece. Thus, it has been found that the growth and activation of methane bacteria cannot be achieved, and the present inventor has completed the present invention.

具体的に、本発明は、
食品残渣を含有する有機性固形物をメタン発酵槽内でメタン発酵させる有機性固形物の処理方法であって、
前記メタン発酵内で有機性固形物をメタン発酵させる際に、前記メタン発酵槽内の有機性固形物に、
(メタン菌体を合成するために必要な濃度)−(有機性固形物中に含有されている濃度)
の差だけ、リン、ナトリウム、カリウム及びマグネシウムの塩類をメタン菌の栄養源として添加することを特徴とする、有機性固形物の処理方法に関する。
Specifically, the present invention
A method for treating organic solids comprising subjecting organic solids containing food residues to methane fermentation in a methane fermentation tank,
When methane fermentation of organic solids in the methane fermentation, to the organic solids in the methane fermentation tank,
(Concentration required to synthesize methane cells)-(Concentration contained in organic solids)
It is related with the processing method of organic solid substance characterized by adding the salt of phosphorus, sodium, potassium, and magnesium as a nutrient source of methane bacteria only by the difference of this.

本発明者は、飲食店から排出される食品残渣について、メタン菌のような嫌気性微生物の栄養源のうち何が不足しているか分析した。その結果、食品残渣については、炭素(C)、窒素(N)、硫黄(S)カルシウム(Ca)及び鉄(Fe)は十分であったが、リン(P)、ナトリウム(Na)、カリウム(K)、及びマグネシウムの4種類の元素が不足しており、それがメタン発酵効率を低下させる原因となっていることが確認された。   The present inventor analyzed what is lacking among nutrient sources of anaerobic microorganisms such as methane bacteria for food residues discharged from restaurants. As a result, for food residues, carbon (C), nitrogen (N), sulfur (S) calcium (Ca) and iron (Fe) were sufficient, but phosphorus (P), sodium (Na), potassium ( It was confirmed that the four elements of K) and magnesium were deficient, which caused the methane fermentation efficiency to decrease.

本発明のメタン発酵処理方法は、近年メタン発酵処理への需要が高まってきたにも拘わらず、これまであまり着目されていなかった食品残渣を被処理対象とする場合に、確認された4元素を添加することにより、メタン発酵効率を高めることが可能である。   In the methane fermentation treatment method of the present invention, despite the recent increase in demand for methane fermentation treatment, when the food residue that has not been focused so far is to be treated, By adding it, it is possible to increase methane fermentation efficiency.

食品残渣を含有する有機性固形物の灰分濃度は、特に5質量%未満の場合に4元素が足りなくなる傾向があるとの理由から5質量%未満であることが好ましい。   The ash concentration of the organic solid containing the food residue is preferably less than 5% by mass because there is a tendency that the four elements tend to be insufficient particularly when it is less than 5% by mass.

本発明のメタン発酵処理方法は、4種類の元素を添加するという非常に簡易な手段によって、食品残渣を含有する有機性固形物のメタン発酵効率を向上させ得る。   The methane fermentation treatment method of the present invention can improve the methane fermentation efficiency of an organic solid containing a food residue by a very simple means of adding four kinds of elements.

本発明のメタン発酵処理方法を実施するためのメタン発酵設備の一例を示す。An example of the methane fermentation equipment for enforcing the methane fermentation processing method of the present invention is shown. 実施例及び比較例について、日付と被処理液(投入物)の関係をプロットしたグラフを示す。The graph which plotted the relationship between a date and a to-be-processed liquid (input) about an Example and a comparative example is shown. 実施例及び比較例について、負荷上昇と馴致期間との関係をプロットしたグラフを示す。About an Example and a comparative example, the graph which plotted the relationship between load increase and an acclimatization period is shown.

本発明の実施形態について、適宜図面を参照しながら説明する。本発明は、以下の記載に限定されない。   Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following description.

図1は、本発明のメタン発酵処理方法を実施するためのメタン発酵設備の一例を示す。食品残渣は、適宜水と混合された後、原料槽内で適宜ミキサーのような粉砕装置を用いて粉砕される。食品残渣を粉砕した後、水と混合してもよい。食品残渣によっては、破砕したり又は水と混合したりせずに、そのまま処理できる場合もある。さらに、下水汚泥のような他のメタン発酵対象物を添加してもよい。下水汚泥を混合すると、下水汚泥中に栄養源が含まれるため、追加栄養塩の添加が不要になる場合もある。   FIG. 1 shows an example of a methane fermentation facility for carrying out the methane fermentation treatment method of the present invention. The food residue is appropriately mixed with water and then pulverized in a raw material tank using a pulverizer such as a mixer. After grind | pulverizing a food residue, you may mix with water. Some food residues may be processed as they are without being crushed or mixed with water. Furthermore, other methane fermentation objects such as sewage sludge may be added. When sewage sludge is mixed, a nutrient source is contained in the sewage sludge, so that the addition of additional nutrient salt may be unnecessary.

原料槽内の被処理液は、固形物濃度等がメタン発酵に適した状態になるように調整された後、メタン発酵槽へと移送される。4種類の元素を添加するのは、食品残渣を原料槽へ投入する際でもよく、メタン発酵槽へ被処理液を投入する際でもよい。   The liquid to be treated in the raw material tank is transferred to the methane fermentation tank after the solids concentration and the like are adjusted to a state suitable for methane fermentation. The four kinds of elements may be added when the food residue is charged into the raw material tank or when the liquid to be treated is charged into the methane fermentation tank.

本発明を適用する被処理液は、好ましくは原料として灰分濃度が5質量%未満(乾燥質量ベース)の有機性固形分である。ここで、灰分とは物質を燃やしたあとに残る不燃物性の鉱物質をいい、灰分濃度が5%質量未満とは、乾燥した有機性固形物の質量と、これを燃焼させた後に残存する灰の質量によって求めることができる。灰分濃度が5質量%未満の場合には、嫌気性微生物の栄養源となる4元素が足りないことが多いため、本発明を好適に適用できる。   The liquid to be treated to which the present invention is applied is preferably an organic solid having an ash concentration of less than 5% by mass (dry mass basis) as a raw material. Here, ash is a non-combustible mineral that remains after burning the substance, and an ash concentration of less than 5% by mass means the mass of the dried organic solid and the ash remaining after burning it. It can be determined by the mass of When the ash concentration is less than 5% by mass, the present invention can be suitably applied because there are often insufficient four elements as nutrient sources for anaerobic microorganisms.

添加される4種類の元素は、金属元素については、水溶性の金属塩として添加されることが好ましい。リンについては、水溶性のリン酸塩として添加されることが好ましい。   The four kinds of elements to be added are preferably added as water-soluble metal salts with respect to metal elements. Phosphorus is preferably added as a water-soluble phosphate.

<厨芥固形物の組成分析>
飲食店から廃棄される厨芥固形物について、炭素(C)、窒素(N)、リン(P)、硫黄(S)、カリウム(K)、ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)及び鉄(Fe)の9種類の元素の含有率を分析した。炭素は燃焼酸化赤外線分析法、窒素は紫外線吸光光度法、リンは吸光光度法、硫黄はヨウ素滴定法、カリウム及びナトリウムはフレーム原子吸光法、カルシウム、マグネシウム及び鉄はICP発光分光分析法によって、それぞれ分析した。
<Composition analysis of solid matter>
About solid waste discarded from restaurants, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) And the content of 9 kinds of elements of iron (Fe) was analyzed. Carbon for combustion oxidation infrared analysis, nitrogen for ultraviolet absorption spectrometry, phosphorus for absorptiometry, sulfur for iodine titration, potassium and sodium for flame atomic absorption, calcium, magnesium and iron for ICP emission spectrometry, respectively analyzed.

表1は、厨芥固形物の分析結果を示す。表1において、mg/kg欄は「各元素の含有濃度」、相対比欄は「固形物中の炭素量の10質量%が菌体となると仮定した際に、当該炭素濃度(mg/kg)を100とした場合の炭素に対する相対比」、メタン菌の組成欄は「メタン菌を構成する元素の相対比であって炭素濃度(mg/kg)を100とした場合の相対比」、過不足欄は「メタン菌の組成比で相対比を割った値」であり、数値が1以上であれば元素が足りていることを、数値が1未満であれば元素が足りないことを意味する。   Table 1 shows the analysis results of the soot solid. In Table 1, the mg / kg column is “Concentration of each element”, and the relative ratio column is “When 10% by mass of the carbon content in the solid is assumed to be cells, the carbon concentration (mg / kg) "Relative ratio with respect to carbon when 100 is set", the composition column of methane bacteria is "relative ratio of elements constituting methane bacteria with carbon concentration (mg / kg) set to 100", excess and deficiency The column is “value obtained by dividing the relative ratio by the composition ratio of methane bacteria”. If the numerical value is 1 or more, it means that the element is sufficient, and if the numerical value is less than 1, it means that the element is insufficient.

Figure 2017060908
Figure 2017060908

なお、菌体が形成される際に必要な栄養塩の量は、例えば、「廃水処理のための嫌気性バイオテクノロジー」松井三郎、高橋正信監訳(技報堂出版)のp.260「表9-4メタン生成最近の元素組成」(表2)を元に計算し得る。   The amount of nutrients required for the formation of bacterial cells is, for example, “anaerobic biotechnology for wastewater treatment” by Saburo Matsui, translated by Masanobu Takahashi (Gihodo Publishing) p.260 “Table 9-4 It can be calculated on the basis of “the recent elemental composition of methane production” (Table 2).

Figure 2017060908
Figure 2017060908

例えば、必要な栄養塩としてのカリウム(K)の添加量は、式1によって求めることができる。
式1: K=(投入される有機物量(COD)(kg/d))×(菌体合成率(%)/100)×(菌体含有量)
ここで、装置内に投入される有機物量が145kg/d、菌体の合成率が10%と仮定すると、
上記式及び表1より、
K= 145kg/d × 10/100 × 50,000mg/kg = 725g/d
薬剤としてK2PO4を利用する場合、Kの原子量31.9、K2PO4の式量174.2より
145 × 174.2 / (39.1×2) = 323kg/d となる。
For example, the amount of potassium (K) added as a necessary nutrient salt can be obtained by Equation 1.
Formula 1: K = (Amount of organic substance (COD) (kg / d)) × (Bacteria synthesis rate (%) / 100) × (Bacteria content)
Here, assuming that the amount of organic matter charged into the device is 145 kg / d and the cell synthesis rate is 10%,
From the above formula and Table 1,
K = 145kg / d x 10/100 x 50,000mg / kg = 725g / d
When using K 2 PO 4 as a drug, the atomic weight of K is 31.9, and the formula weight of K 2 PO 4 is 174.2
145 × 174.2 / (39.1 × 2) = 323kg / d.

表1より、厨芥固形物は、メタン菌の組成と比較すると、炭素(C)以外の8元素のうち、リン(P)、カリウム(K)、ナトリウム(Na)、及びマグネシウム(Mg)の4種類が不足していることが確認された。   From Table 1, when compared with the composition of methane bacteria, the solid material is 4 of phosphorus (P), potassium (K), sodium (Na), and magnesium (Mg) among 8 elements other than carbon (C). It was confirmed that there was a shortage of types.

[実施例]
食品製造工場の食品残渣を処理する高温メタン発酵槽から種汚泥を採取した。有効容量8Lのジャーテスターに種汚泥8Lを投入し、メタン菌の栄養塩として、MgCl2が90mg/L、KClが 370mg/L、Na2HPO4が560mg/Lとなるように、ジャーテスター内の投入物に添加した。リン(P)、カリウム(K)、ナトリウム(Na)、及びマグネシウム(Mg)の投入量は、上述したとおり(投入される厨芥固形物中の濃度(mg/kg))×(菌体合成率(%))×(菌体含有率(%))という計算式に基づいて決定される。栄養塩を添加した後、53℃に加温し、攪拌速度120rpmで攪拌した。そこに、飲食店から排出される厨芥固形物(VS濃度約7質量%)を投入して、メタン発酵させた。
[Example]
Seed sludge was collected from a high-temperature methane fermenter that processed food residues in food manufacturing plants. The seed sludge 8L was poured into a jar tester effective capacity 8L, as nutrients methane bacteria, as MgCl 2 is 90 mg / L, KCl is 370mg / L, Na 2 HPO 4 is 560 mg / L, jar tester To the charge. The input amount of phosphorus (P), potassium (K), sodium (Na), and magnesium (Mg) is as described above (concentration in the solid material to be added (mg / kg)) x (bacteria synthesis rate) (%)) × (bacterial cell content rate (%)). After adding the nutrient salt, the mixture was heated to 53 ° C. and stirred at a stirring speed of 120 rpm. The solid waste (VS concentration about 7 mass%) discharged | emitted from a restaurant was thrown into it, and was methane-fermented.

[比較例]
栄養塩として4種類の無機塩を添加しないこと以外、すべて実施例と同じ条件で操作した。
[Comparative example]
All operations were performed under the same conditions as in the Examples, except that four kinds of inorganic salts were not added as nutrient salts.

メタン発酵で負荷を上昇させた場合、負荷上昇に見合うだけのメタン菌(嫌気性微生物)が増殖するまでメタン発酵が不十分となり、中間代謝物であるVFA(揮発性脂肪酸)が蓄積する。メタン菌が増殖すると、中間代謝物であるVFAも分解されるため、発酵液中のVFA濃度は減少する。   When the load is increased by methane fermentation, methane fermentation becomes insufficient until methane bacteria (anaerobic microorganisms) that can meet the load increase grow, and VFA (volatile fatty acid) that is an intermediate metabolite accumulates. When Methane grows, VFA, an intermediate metabolite, is also degraded, and the VFA concentration in the fermentation solution decreases.

図2は、実施例及び比較例について、日付と被処理液(投入物)の関係をプロットしたグラフを示す。白いプロットが比較例(No.1及びNo.2の2回)、黒いプロットが実施例(No.1〜No.3の3回)である。まず、比較例を先に実行したが、比較例の場合には、被処理液中のVFA濃度は上昇し続けた。一方、実施例の場合には、約10日間でVFA濃度が減少し始めた。   FIG. 2 is a graph plotting the relationship between the date and the liquid to be treated (input) for the examples and comparative examples. White plots are comparative examples (No. 1 and No. 2 twice), and black plots are examples (No. 1 to No. 3 three times). First, the comparative example was executed first, but in the case of the comparative example, the VFA concentration in the liquid to be treated continued to increase. On the other hand, in the case of the example, the VFA concentration began to decrease in about 10 days.

図3は、実施例及び比較例について、負荷上昇(平均値)と馴致期間との関係をプロットしたグラフを示す。ここで、馴致期間とは、負荷上昇によりVFA濃度が上昇してから減少するまでの期間を意味する。   FIG. 3: shows the graph which plotted the relationship between load increase (average value) and an acclimatization period about an Example and a comparative example. Here, the acclimatization period means a period from when the VFA concentration increases due to an increase in load until it decreases.

栄養塩を添加した実施例の場合は、負荷を上昇させてVFAが一時的に上昇しても、メタン菌が増殖する結果、2週間程度で馴致し得ることが確認された。一方、栄養塩を添加しない比較例の場合には、メタン菌の増殖が負荷の上昇に追いつかず、馴致することができず、VFA濃度が上昇し続けた。   In the case of the example in which the nutrient salt was added, it was confirmed that even if the load was increased and the VFA temporarily increased, as a result of the growth of methane bacteria, it could be acclimatized in about 2 weeks. On the other hand, in the case of the comparative example to which no nutrient salt was added, the growth of methane bacteria could not catch up with the increase in load and could not be adapted, and the VFA concentration continued to rise.

本発明においては、厨芥固形物(食品残渣)に活性汚泥槽から得られた余剰汚泥等を添加し、メタン発酵槽でメタン発酵を行ってもよい。この場合、余剰汚泥中にリン(P)、カリウム(K)、ナトリウム(Na)、及びマグネシウム(Mg)が含有されている場合があるため、栄養塩として添加すべき無機塩類等の量を節減することが可能となる。   In the present invention, excess sludge obtained from the activated sludge tank may be added to the solid waste (food residue), and methane fermentation may be performed in the methane fermentation tank. In this case, excess sludge may contain phosphorus (P), potassium (K), sodium (Na), and magnesium (Mg), so the amount of inorganic salts that should be added as nutrients is reduced. It becomes possible to do.

本発明の有機性固形物の処理方法は、廃棄物処理、廃水処理又はエネルギー等の技術分野において有用である。   The organic solid treatment method of the present invention is useful in technical fields such as waste treatment, wastewater treatment, and energy.

Claims (2)

食品残渣を含有する有機性固形物をメタン発酵槽内でメタン発酵させる有機性固形物の処理方法であって、
前記メタン発酵内で有機性固形物をメタン発酵させる際に、前記メタン発酵槽内の有機性固形物に、
(メタン菌体を合成するために必要な濃度)−(有機性固形物中に含有されている濃度)
の差だけ、リン、ナトリウム、カリウム及びマグネシウムの塩類をメタン菌の栄養源として添加することを特徴とする、有機性固形物の処理方法。
A method for treating organic solids comprising subjecting organic solids containing food residues to methane fermentation in a methane fermentation tank,
When methane fermentation of organic solids in the methane fermentation, to the organic solids in the methane fermentation tank,
(Concentration required to synthesize methane cells)-(Concentration contained in organic solids)
A method for treating an organic solid, characterized by adding phosphorus, sodium, potassium, and magnesium salts as nutrient sources for methane bacteria, as much as the difference.
食品残渣を含有する有機性固形物の灰分濃度が5質量%未満であることを特徴とする、請求項1に記載の有機性固形物の処理方法。   The method for treating an organic solid according to claim 1, wherein the ash concentration of the organic solid containing a food residue is less than 5% by mass.
JP2015186690A 2015-09-24 2015-09-24 Method for processing organic solid matter containing food residue Pending JP2017060908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186690A JP2017060908A (en) 2015-09-24 2015-09-24 Method for processing organic solid matter containing food residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186690A JP2017060908A (en) 2015-09-24 2015-09-24 Method for processing organic solid matter containing food residue

Publications (1)

Publication Number Publication Date
JP2017060908A true JP2017060908A (en) 2017-03-30

Family

ID=58428599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186690A Pending JP2017060908A (en) 2015-09-24 2015-09-24 Method for processing organic solid matter containing food residue

Country Status (1)

Country Link
JP (1) JP2017060908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011185A (en) * 2018-07-17 2020-01-23 徳永 毅 Methane fermentation apparatus and methane fermentation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011185A (en) * 2018-07-17 2020-01-23 徳永 毅 Methane fermentation apparatus and methane fermentation method
JP7111536B2 (en) 2018-07-17 2022-08-02 俊則 亀岡 Methane fermentation apparatus and methane fermentation method

Similar Documents

Publication Publication Date Title
Bohutskyi et al. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater
Yuvaraj et al. Centrality of cattle solid wastes in vermicomposting technology–A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability
Günther et al. Overview of recent advances in phosphorus recovery for fertilizer production
Belete et al. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth
CN106006819B (en) Method for dephosphorizing phosphorus wastewater and producing slow-release carbon-based phosphate fertilizer
Sinha et al. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms
Mohee et al. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes
Hock et al. Physicochemical changes in windrow co-composting process of oil palm mesocarp fiber and palm oil mill effluent anaerobic sludge
NL2026659B1 (en) Plant growth medium based on residue from high temperature thermal oxidation of oily solid wase
Chozhavendhan et al. Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: A review
Kwon et al. Development of vermicast from sludge and powdered oyster shell
CN102285740A (en) Non-waste treatment method for garbage leachate
Xiao et al. Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation
Mucha et al. Re-use of digestate and recovery techniques
Bouhia et al. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives
Xue et al. The current phosphate recycling situation in China and Germany: a comparative review
JP2017060908A (en) Method for processing organic solid matter containing food residue
Singh et al. Vermidegradation for faster remediation of chemical sludge and spent carbon generated by soft drink industries
KR20130123799A (en) Method for treating organic waste matter
Varma et al. Effects ofWaste Lime Sludge on Nitrogen Dynamics and Stability ofMixed Organic waste UsingRotary DrumComposter
Taylor et al. Recovery of methane and adding value to the digestate of biomass produced by high rate algal ponds or waste activated sludge, used to treat brewery effluent
Wei et al. Bioleaching of heavy metals from pig manure with indigenous sulfur-oxidizing bacteria: effects of sulfur concentration
Urbanowska et al. Analysis of the pre-treatment efficiency of digestate liquid fraction from a municipal waste biogas plant
Kashkovsky et al. Complex technology for processing some organоmineral waste
CN103483024A (en) Method used for preparing organic fertilizer from city domestic sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008