JP2017060451A - Method and apparatus for sterilization testing - Google Patents

Method and apparatus for sterilization testing Download PDF

Info

Publication number
JP2017060451A
JP2017060451A JP2015188990A JP2015188990A JP2017060451A JP 2017060451 A JP2017060451 A JP 2017060451A JP 2015188990 A JP2015188990 A JP 2015188990A JP 2015188990 A JP2015188990 A JP 2015188990A JP 2017060451 A JP2017060451 A JP 2017060451A
Authority
JP
Japan
Prior art keywords
test
substrate
dilution
base material
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015188990A
Other languages
Japanese (ja)
Other versions
JP6555815B2 (en
Inventor
秀 石川
Hide Ishikawa
秀 石川
徹朗 初岡
Tetsuaki Hatsuoka
徹朗 初岡
麻衣 三井
Mai Mitsui
麻衣 三井
翔平 上野
Shohei Ueno
翔平 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2015188990A priority Critical patent/JP6555815B2/en
Publication of JP2017060451A publication Critical patent/JP2017060451A/en
Application granted granted Critical
Publication of JP6555815B2 publication Critical patent/JP6555815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a test method and apparatus capable of quantitatively evaluating the bactericidal effect of a bactericidal agent that fumigates within a facility.SOLUTION: The present invention provides a method for a bactericidal effect evaluation, the method comprising: dropping dilutions S0 to S7 of respective predetermined dilution series D0 to D 7 of microorganisms resistant to drying onto a substrate 11 and drying and attaching them thereon to provide a test substrate 10 having the initial bacteria number No; placing the test substrate 10 in a facility 1 that fumigates it with a f bactericidal agent M for a predetermined time, followed by incubation with addition of a culture medium C and a sterilization neutralizer E; and determining the number N of surviving bacteria from the microbial growth state at each dilution stage D0 to D7 on the test substrate 10 to evaluate a bactericidal effect. Preferably, the present invention provides a method for a bactericidal effect evaluation, the method comprising: repeating a plurality of times a cycle of dropping dilutions S0 to S7 of the respective dilution series D0 to D7 in rows onto a substrate 11 and drying and attaching them thereon to provide a test substrate 10; calculating the number of surviving bacteria by the MPN method from the number of positive (+) microbial growth in the row of each of the dilution series D0 to D7 on the test substrate 10 to which a culture medium C and a sterilization neutralizer M are added after being placed in a facility 1 to evaluate a bactericidal effect.SELECTED DRAWING: Figure 1

Description

本発明は殺菌試験方法及び装置に関し,とくに殺菌剤で燻蒸する施設内の殺菌効果を評価する試験方法及び装置に関する。   The present invention relates to a sterilization test method and apparatus, and more particularly to a test method and apparatus for evaluating the sterilization effect in a facility fumigated with a disinfectant.

衛生環境の維持が重要とされる病院,調剤薬局,医薬品製造工場,食品製造工場,実験動物等を用いる研究所等の建造物において,微生物濃度が管理されたクリーンルーム等の施設を設けることがある。このような施設は微生物による汚染が生じにくいように設計されているが,新規立ち上げ時,実験終了時,定期的な清掃時等に施設内を完全に殺菌することが求められ,例えばホルマリンガス(ホルムアルデヒドガス)等の殺菌剤を施設内に充満させて所要時間放置する燻蒸殺菌が実施されている(特許文献1参照)。ホルマリンガスは,一般細菌だけでなく,ウィルス,芽胞を作る微生物等をも死滅させる殺菌力を有しており,しかも細かな隙間や天井裏等にも進入して施設内の隅々まで殺菌できる利点を有している。   In facilities such as hospitals, dispensing pharmacies, pharmaceutical manufacturing factories, food manufacturing factories, research laboratories that use laboratory animals, etc. where maintaining a sanitary environment is important, facilities such as clean rooms with controlled microbial concentrations may be established. . Such facilities are designed so that they are less likely to be contaminated with microorganisms. However, it is required to completely sterilize the facilities at the time of new start-up, at the end of the experiment, at the time of periodic cleaning, etc. For example, formalin gas Fumigation sterilization in which a facility is filled with a bactericide such as (formaldehyde gas) and left for a required time is performed (see Patent Document 1). Formalin gas has a sterilizing power that kills not only general bacteria but also viruses, microbes that make spores, etc., and it can also be sterilized to every corner of the facility by entering small gaps and ceilings. Has advantages.

燻蒸殺菌では,例えば施設の外部に連通する開口を目張りしたうえで施設内に殺菌剤をガス状又はミスト(霧)状に導入して充満させ,施設内全体の微生物濃度が十分に低下する時間だけ放置する。燻蒸時間は施設内の隅々まで殺菌できるように設定するが(例えば24時間以上),必要に応じて所定菌数(例えば10〜10)の微生物の芽胞を保持させた基材(例えば濾紙等)と培地入りアンプルとを組み合わせたバイオインジケータ(BI)を用いて殺菌効果を確認することができる(非特許文献1参照)。すなわち,燻蒸前の施設内の殺菌剤が最も到達しにくい箇所にバイオインジケータを載置しておき,燻蒸後にバイオインジケータの基材を培地入りアンプルに浸漬して培養する。施設内の殺菌が完全であれば微生物が増殖しないのでバイオインジケータの培地の色調に変化はないが,殺菌が不完全であると微生物が増殖して培地の色調が変化するので,この色調の変化により施設内全体の殺菌が完全であったか否か(所定菌数の微生物が全滅したか否か)を確認できる。 In fumigation sterilization, for example, after opening an opening communicating with the outside of the facility, the sterilizing agent is introduced into the facility in the form of gas or mist (fog) and filled, and the microbial concentration in the entire facility is sufficiently reduced. Just leave it alone. The fumigation time is set so that it can be sterilized to every corner of the facility (for example, 24 hours or more), but if necessary, a base material (for example, 10 3 to 10 8 ) of microorganism spores retained (for example, The bactericidal effect can be confirmed using a bioindicator (BI) that combines a filter paper or the like and an ampoule with a medium (see Non-Patent Document 1). That is, the bioindicator is placed in a place where the disinfectant in the facility before fumigation is most difficult to reach, and after fumigation, the bioindicator base material is immersed in an ampoule containing a medium and cultured. If the sterilization in the facility is complete, the microorganisms will not grow, so the color of the bioindicator medium will not change, but if the sterilization is incomplete, the microorganisms will grow and the color of the medium will change. By this, it can be confirmed whether or not the entire sterilization in the facility has been completed (whether or not a predetermined number of microorganisms have been annihilated).

ただし,ホルマリンガスには毒性(皮膚に対する刺激性等)があり,最近は発がん性による規制対象にも指定されていることから(非特許文献2参照),取り扱い上の注意が必要であると共に燻蒸後の残留物等に対する対策が別途必要となっている。このため,燻蒸殺菌におけるホルマリンガスから代替殺菌剤への切り替えが進められおり,二酸化塩素ガスを用いる方法(非特許文献3参照),過酸化水素ガスを用いる方法,オゾンガスを用いる方法(非特許文献4参照),過酢酸水の希釈液をミスト状に噴霧する方法(非特許文献5参照),次亜塩素酸を用いる方法(非特許文献6参照),メタノールガスを用いる方法(非特許文献7)等が提案されている。   However, formalin gas is toxic (irritant to the skin, etc.) and has recently been designated as a regulated subject due to carcinogenicity (see Non-Patent Document 2), so it requires careful handling and fumigation. It is necessary to take measures against the remaining residue. For this reason, switching from formalin gas to alternative disinfectant in fumigation sterilization has been promoted, a method using chlorine dioxide gas (see Non-Patent Document 3), a method using hydrogen peroxide gas, a method using ozone gas (Non-Patent Document) 4), a method of spraying a diluted solution of peracetic acid water in a mist form (see Non-Patent Document 5), a method using hypochlorous acid (see Non-Patent Document 6), a method using methanol gas (Non-Patent Document 7) ) Etc. have been proposed.

特開2005−323809号公報JP-A-2005-323809

コスモ・バイオ株式会社「ACEtestバイオロジカルインジケータ(高圧蒸気滅菌用)仕様説明書」平成27年8月検索,インターネット<http://search.cosmobio.co.jp/cosmo_search_p/search_gate2/docs/FUK_/H3723.20140121.pdf>Cosmo Bio Co., Ltd. “ACEtest Biological Indicator (for high-pressure steam sterilization) specification manual” August 2015 search, Internet <http: // search. cosmobio. co. jp / cosmo_search_p / search_gate2 / docs / FUK_ / H372.2014140121. pdf> 厚生労働省「平成20年度化学物質による労働者の健康障害防止に係るリスク評価検討会報告書(医療現場におけるホルムアルデヒドについて)」平成20年11月,インターネット<http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei17/>Ministry of Health, Labor and Welfare “2008 Report of Risk Assessment Study Group on Prevention of Workers' Health Injuries Caused by Chemical Substances (About Formaldehyde at Medical Sites)” November 2008, Internet <http: // www. mhlw. go. jp / bunya / roudukijun / anzenisei17 /> イカリ消毒株式会社「二酸化塩素ガス発生装置Minidox−M Gas Generator」平成27年8月検索,インターネット<https://www.ikari.co.jp/service/pdf/microbe_nisankatanso.pdf>Ikari disinfection Co., Ltd. “Chlorine dioxide gas generator Minidox-M Gas Generator” August 2015 search, Internet <https: // www. ikari. co. jp / service / pdf / microbe_nisankatanso. pdf> 大成建設株式会社「無菌製造室燻蒸に対してもっと有効な方法を導入したい」平成27年8月検索,インターネット<http://librarytaisei.jp/slibrary/mono/medicine/fujiyakuhin/index_02.html>Taisei Corporation "I want to introduce a more effective method for aseptic manufacturing room fumigation" Search in August 2015, Internet <http: // librytaisei. jp / library / mono / medicine / fujiyakuhin / index_02. html> 小津産業株式会社「過酢酸系除菌剤 MINNCARE ACTRIL」平成27年8月検索,インターネット<http://www.ozu.co.jp/products/pdf/minncare_01.pdf>Ozu Sangyo Co., Ltd. “Peracetic acid disinfectant MINNCARE ACTIL” search in August 2015, Internet <http: // www. ozu. co. jp / products / pdf / mincare_01. pdf> 株式会社ピーステック「次亜塩素酸水ミクロテクト」平成27年8月検索,インターネット<http://peacetech−co.com/items/steri/index.html>Peace Tech Co., Ltd. “Hypochlorous acid Microtect” search in August 2015, Internet <http: // peacetech-co. com / items / steri / index. html> 株式会社ウイングターフ「MRGシステムの環境殺菌対応」平成27年8月検索,インターネット<http://www.wingturf.com/pdf/MRG1.pdf>Wing Turf Co., Ltd. “Environmental sterilization of MRG system” August 2015 search, Internet <http: // www. winturf. com / pdf / MRG1. pdf> 高野光男・横山理雄「食品の殺菌−その科学と技術」株式会社幸い書房,1998年6月25日発行,p63Mitsuo Takano / Rio Yokoyama "Food Disinfection-Science and Technology" fortunate bookstore, published on June 25, 1998, p63 Halvorson,H.O. and Ziegler,N.R.“Application of statistics to problems in bacteriology: I. A means of determining bacterial population by the dilution method”,Journal of Bacteriology Vol.25 No.2,1933年2月,pp101−121Halvorson, H.M. O. and Ziegler, N .; R. “Application of statistics to problems in bacteriology: I. A means of deterministic population by the distilling method”, Journal of Bactolol. 25 No. 2, February 1933, pp 101-121

しかし,上述した従来の燻蒸殺菌は,何れも施設内の微生物濃度を低下させるが,殺菌効果が定量的に評価されていない問題点がある。すなわち,従来のホルマリン燻蒸で用いるバイオインジケータは,保持する所定菌数の全滅というエンドポインのみで殺菌効果を評価するものであり,仮に燻蒸後に生存する微生物が1桁であったとしても増殖して培地の色調が変化すれば不完全な殺菌と評価せざるをえない。このため,従来方法は過剰な殺菌となりがちであり,燻蒸時間が増えると共に,燻蒸後の残留物も増え,建材劣化も進む結果を招いている。必要最小限の燻蒸時間で施設内を効率的に殺菌する観点から,殺菌効果を定量的に評価できる試験技術の開発が求められている。   However, the conventional fumigation sterilization described above reduces the microorganism concentration in the facility, but has a problem that the sterilization effect is not quantitatively evaluated. In other words, the conventional bioindicator used in formalin fumigation evaluates the bactericidal effect only by endotoin, which is the annihilation of the predetermined number of retained microorganisms, and even if the number of microorganisms surviving after fumigation is one digit, it grows. If the color of the medium changes, it must be evaluated as incomplete sterilization. For this reason, the conventional method tends to be excessively sterilized, and the fumigation time increases, the residue after fumigation also increases, and the building material deteriorates. From the viewpoint of efficiently sterilizing the inside of a facility with the minimum fumigation time, development of a test technique that can quantitatively evaluate the sterilization effect is required.

また,施設内の殺菌効果を定量的に評価することは,上述したホルマリンガスの代替殺菌剤を用いる場合にも重要である。すなわち,これらはホルマリンガスに代えて代替殺菌剤を施設内に充填する方法であるが,燻蒸時間や燻蒸方法は必ずしもホルマリンガスと同じではない。施設内の隅々まで殺菌できる範囲内で過剰な殺菌とならないような燻蒸時間を殺菌剤毎に設定する必要があり,燻蒸時間の設計のために殺菌効果の定量的な評価が必要となる。また,ガス状ではなくミスト状に殺菌剤を噴霧する場合は,施設内における伝搬(隙間等への進入態様)や殺菌作用がホルマリンガスの場合と異なることも想定されるので,殺菌剤毎に適切な燻蒸方法を設計するためにも殺菌効果の定量的な評価が重要となる。   In addition, quantitative evaluation of the sterilizing effect in the facility is important even when the above-described alternative disinfectant of formalin gas is used. That is, these are methods of filling the facility with an alternative disinfectant instead of formalin gas, but the fumigation time and fumigation method are not necessarily the same as formalin gas. It is necessary to set a fumigation time for each disinfectant that does not cause excessive sterilization within the range that can be sterilized in every corner of the facility, and quantitative evaluation of the bactericidal effect is necessary for designing the fumigation time. In addition, when spraying the sterilizing agent in a mist rather than in a gaseous state, it is assumed that the propagation in the facility (the manner of entering the gap) and the sterilizing action are different from those of formalin gas. In order to design an appropriate fumigation method, quantitative evaluation of the bactericidal effect is important.

そこで本発明の目的は,施設内を燻蒸する殺菌剤の殺菌効果を定量的に評価できる試験方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide a test method and apparatus capable of quantitatively evaluating the bactericidal effect of a bactericide that is fumigated in a facility.

図1の実施例を参照するに,本発明による殺菌試験方法は,乾燥に耐える微生物の所定希釈系列D0〜D7の各希釈液S0〜S7をそれぞれ基材11上に滴下し且つ乾燥付着させて初発菌数Np(=N0〜N7)の検定基材10とし(図1(A)及び(B)参照),検定基材10(11+S0〜S7)を殺菌剤Mで燻蒸する施設1内に所定時間tだけ設置したのち培地C及び殺菌中和剤Eを添加して培養し(図1(C)及び(D)参照),検定基材10上の各希釈段階D0〜D7における微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを求めて殺菌効果を評価してなるものである(図1(E)及び(F)参照)。乾燥に耐える微生物は,例えば乾燥時に胞子が形成される微生物とすることができる。   Referring to the embodiment of FIG. 1, the sterilization test method according to the present invention drops each of the dilutions S0 to S7 of a predetermined dilution series D0 to D7 of a microorganism resistant to drying onto the base material 11 and attaches them to dryness. The test substrate 10 having the initial bacterial count Np (= N0 to N7) is used (see FIGS. 1A and 1B), and the test substrate 10 (11 + S0 to S7) is fumigated with the disinfectant M in the predetermined facility 1 After setting for time t, culture medium C and bactericidal neutralizing agent E are added and cultured (see FIGS. 1C and 1D). From the microbial growth state at each of the dilution stages D0 to D7 on the test substrate 10 The number of surviving bacteria Nt or the survival rate Nt / Np is obtained to evaluate the bactericidal effect (see FIGS. 1E and 1F). The microorganism that is resistant to drying can be, for example, a microorganism in which spores are formed during drying.

また図1の実施例を参照するに,本発明による殺菌試験装置は,乾燥に耐える微生物の所定希釈系列D0〜D7の各希釈液S0〜S7をそれぞれ基材11上に滴下し且つ乾燥付着させた初発菌数Np(=N0〜N7)の検定基材10(図1(B)参照),並びに検定基材10に添加する培地C及び殺菌中和剤E(図1(D)参照)を備えてなり,検定基材10を殺菌剤Mで燻蒸する施設1内に所定時間tだけ設置したのち培地C及び殺菌中和剤Eを添加して培養し(図1(C)及び(D)参照),検定基材10上の各希釈段階D0〜D7における微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを求めて殺菌効果を評価してなるものである(図1(E)及び(F)参照)。乾燥に耐える微生物は,例えば乾燥時に胞子が形成される微生物とすることができる。   Referring also to the embodiment of FIG. 1, the sterilization test apparatus according to the present invention drops each of the dilutions S0 to S7 of the predetermined dilution series D0 to D7 of microorganisms that can withstand drying onto the base material 11 and causes them to dry and adhere. The initial substrate number Np (= N0 to N7) of the test substrate 10 (see FIG. 1 (B)), and the medium C and bactericidal neutralizer E (see FIG. 1 (D)) added to the test substrate 10 It is provided, and after the test substrate 10 is fumigated with the fungicide M in the facility 1 for a predetermined time t, the medium C and the fungicide neutralizer E are added and cultured (FIGS. 1C and 1D). 1), the number of surviving bacteria Nt or the survival rate Nt / Np is determined from the microbial growth state at each of the dilution stages D0 to D7 on the test substrate 10, and the bactericidal effect is evaluated (FIG. 1 (E ) And (F)). The microorganism that is resistant to drying can be, for example, a microorganism in which spores are formed during drying.

好ましい実施例では,図2に示すように,基材12a上に希釈系列D0〜D7の各希釈液S0〜S7を列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材10(12a+S0〜S7)とし,施設1内設置後に培地C及び殺菌中和剤Mを添加した検定基材10上の各希釈段階D0〜D7における微生物増殖が陽性(+)の数からMPN法により生残菌数を求める。例えば,図3に示すように,基材12a上にD0〜D7の各希釈液S0〜S7を列状に滴下し且つN回(Nは6以上の整数)反復により行列状に付着させて検定基材10(12a+S0〜S7)とし,施設1内設置後に培地C及び殺菌中和剤Mを添加した検定基材10上の微生物増殖の陽性(+)及び陰性(−)を共に含む希釈段階における微生物増殖が陽性(+)の数P(N>P>0)から次式(1)により生残菌数Ntを求める。
生残菌数Nt=ln(N/(N−P)) ………………………………(1)
In a preferred embodiment, as shown in FIG. 2, each of the dilutions S0 to S7 of the dilution series D0 to D7 is dropped on the substrate 12a in a line and dried and adhered in a matrix by repeating a plurality of times. 10 (12a + S0 to S7), and the number of microorganisms in each dilution stage D0 to D7 on the test substrate 10 to which medium C and bactericidal neutralizer M were added after installation in the facility 1 was positive (+) by the MPN method. Determine the number of surviving bacteria. For example, as shown in FIG. 3, the dilutions S0 to S7 of D0 to D7 are dropped on the base material 12a in a row and attached in a matrix by repeating N times (N is an integer of 6 or more). In the dilution stage including both the positive (+) and negative (−) microorganism growth on the test base material 10 to which the base material 10 (12a + S0 to S7) is set and the medium C and the bactericidal neutralizing agent M are added after the installation in the facility 1 From the number P (N>P> 0) of positive (+) microbial growth, the number of surviving bacteria Nt is obtained by the following equation (1).
Number of surviving bacteria Nt = ln (N / (NP)) ………………………… (1)

更に好ましい実施例では,図4〜図6に示すように,培地C及び殺菌中和剤Eが装填された検定基材10の密封被覆材15を設け,施設1内設置後に検定基材10を被覆材15で密封すると同時に培地C及び殺菌中和剤Eを添加する。例えば,図5に示すように,基材11を行列状の窪みが形成された蓋材12b付きマイクロプレート12aとし,希釈系列D0〜D7の各希釈液S0〜S7を蓋材12b又はマイクロプレート12a上に列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材10((12b+S0〜S7)又は(12a+S0〜S7))とし,培地C及び殺菌中和剤Eをマイクロプレート12a又は蓋材12bに装填し,施設1内への設置後にマイクロプレート12aと蓋材12bとを密着させて培養する。   In a further preferred embodiment, as shown in FIGS. 4 to 6, a sealing covering material 15 for the test substrate 10 loaded with the medium C and the sterilizing neutralizer E is provided. The medium C and the bactericidal neutralizer E are added simultaneously with sealing with the covering material 15. For example, as shown in FIG. 5, the base material 11 is a microplate 12a with a lid 12b in which a matrix of depressions is formed, and the dilutions S0 to S7 of the dilution series D0 to D7 are used as the lid 12b or the microplate 12a. The test substrate 10 ((12b + S0 to S7) or (12a + S0 to S7)) was dropped on the substrate in a row and dried and adhered in a matrix by repeated multiple times, and the medium C and the bactericidal neutralizer E were added to the microplate 12a. Alternatively, it is loaded on the lid member 12b, and after being installed in the facility 1, the microplate 12a and the lid member 12b are brought into close contact and cultured.

本発明による殺菌試験方法及び装置は,乾燥に耐える微生物の所定希釈系列D0〜D7の各希釈液S0〜S7をそれぞれ基材11上に滴下し且つ乾燥付着させて初発菌数Np(=N0〜N7)の検定基材10とし,検定基材10を殺菌剤Mで燻蒸する施設1内に所定時間tだけ設置したのち培地C及び殺菌中和剤Eを添加して培養し,検定基材10上の各希釈段階D0〜D7における微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを求めて殺菌効果を評価するので,次の有利な効果を奏する。   In the sterilization test method and apparatus according to the present invention, each of the dilutions S0 to S7 of a predetermined dilution series D0 to D7 of a microorganism that is resistant to drying is dropped on the base material 11 and attached to the substrate 11 by dry adhesion. N7) is used as the test base material 10 and after the test base material 10 is fumigated with the bactericide M for a predetermined time t, the medium C and the bactericidal neutralizer E are added and cultured. Since the bactericidal effect is evaluated by obtaining the survival cell count Nt or the cell viability Nt / Np from the microorganism growth state in each of the above dilution stages D0 to D7, the following advantageous effects are obtained.

(イ)希釈系列D0〜D7を付着させた初発菌数Npの検定基材10の燻蒸殺菌後の微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを求めるので,その菌生存率Nt/Np又は死滅桁数(=log(Nt/Np))から殺菌効果を定量的に評価することができる。
(ロ)また,希釈系列D0〜D7を一列ではなく複数列(行列状)に付着させた検定基材10を用い,その燻蒸殺菌後の微生物増殖状態からMPN法によって生残菌数Ntを求めることにより,生残菌数Ntの検出精度を高め,殺菌効果の定量的な評価の精度向上を図ることができる。
(ハ)検定基材10は手のひら程度の小型なものとすることができ,殺菌剤Mで燻蒸する施設1内に複数の検定基材10を設置して所定時間おきに生残菌数Ntを連続的に検出することにより,殺菌剤M毎の最適な燻蒸時間を設計することができる。
(A) Since the survival cell count Nt or the cell viability Nt / Np is obtained from the microbial growth state after the fumigation sterilization of the test substrate 10 having the initial cell count Np to which the dilution series D0 to D7 are attached, the cell viability The bactericidal effect can be quantitatively evaluated from Nt / Np or the number of killed digits (= log (Nt / Np)).
(B) Further, the number Nt of surviving bacteria is obtained by the MPN method from the microorganism growth state after the fumigation sterilization using the test substrate 10 in which the dilution series D0 to D7 are attached in a plurality of rows (matrix) instead of one row. Thus, the detection accuracy of the survival cell count Nt can be increased, and the accuracy of quantitative evaluation of the bactericidal effect can be improved.
(C) The test substrate 10 can be as small as a palm, and a plurality of test substrates 10 are installed in the facility 1 fumigated with the bactericide M, and the number of surviving bacteria Nt is determined every predetermined time. By detecting continuously, the optimal fumigation time for every disinfectant M can be designed.

(ニ)また,従来のバイオインジケータのようなエンドポインのみでの評価ではなく,施設内の複数位置の殺菌効果を定量的な菌生存率の分布として検出できるので,たとえばガス状殺菌剤Mとミスト状殺菌剤Mとの相違に応じた燻蒸方法を設計することも可能となる。
(ホ)検定基材10を密封する被覆材15に培地C及び殺菌中和剤Eを装填し,検定基材10を被覆材15で密封すると同時に培地C及び殺菌中和剤Eを添加することにより,検定基材10の各希釈系列D0〜D7に対する殺菌時間を揃えることができる。
(ヘ)また,検定基材10を被覆材15で自動的に密封するシステム等を組み合わせることにより,例えば強力な殺菌剤Mが充満していて人の立ち入りができないような施設においても,生残菌数Ntを精度よく検出することが可能となる。
(D) In addition, the evaluation of sterilization effect at multiple locations in the facility can be detected as a quantitative distribution of the survival rate of the bacteria, rather than the evaluation using only the end points as in the conventional bioindicator. It is also possible to design a fumigation method according to the difference from the mist-like fungicide M.
(E) The culture medium C and the bactericidal neutralizing agent E are loaded on the covering material 15 for sealing the test base material 10, and the medium C and the bactericidal neutralizing agent E are added at the same time that the test base material 10 is sealed with the coating material 15. Thus, the sterilization time for each dilution series D0 to D7 of the test substrate 10 can be made uniform.
(F) In addition, by combining a system that automatically seals the test substrate 10 with the covering material 15, for example, in a facility that is filled with a strong disinfectant M and cannot be accessed by humans, It becomes possible to detect the number Nt of bacteria with high accuracy.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は,本発明の殺菌試験装置の一実施例の説明図である。 は,本発明の殺菌試験装置の他の実施例の説明図である。 は,本発明の殺菌試験装置の更に他の実施例の説明図である。 は,検定基材の密封被覆材に培地及び殺菌中和剤を装填した本発明の殺菌試験装置の実施例の説明図である。 は,検定基材の密封被覆材に培地及び殺菌中和剤を装填した本発明の殺菌試験装置の他の実施例の説明図である。 は,検定基材の密封被覆材に培地及び殺菌中和剤を装填した本発明の殺菌試験装置の更に他の実施例の説明図である。 は,培養ユニット式検定基材を用いた本発明の殺菌試験装置の実施例の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
These are explanatory drawings of one Example of the sterilization test apparatus of this invention. These are explanatory drawings of the other Example of the sterilization test apparatus of this invention. These are explanatory drawings of other Example of the sterilization test apparatus of this invention. These are explanatory drawings of the Example of the bactericidal test apparatus of this invention which loaded the culture medium and the bactericidal neutralizer in the sealing coating material of the test | inspection base material. These are explanatory drawings of the other Example of the bactericidal test apparatus of this invention which loaded the culture medium and the bactericidal neutralizer in the sealing coating material of the test | inspection base material. These are explanatory drawings of other Example of the sterilization test apparatus of this invention which loaded the culture medium and the sterilization neutralizer in the sealing coating material of the test | inspection base material. These are explanatory drawings of the Example of the sterilization test apparatus of this invention using the culture | cultivation unit type | mold test | inspection base material.

図1は,殺菌剤Mで燻蒸する施設1の殺菌効果を,本発明の殺菌試験装置を用いて評価する実施例を示す。図示例の殺菌試験装置は,図1(B)に示すように微生物の所定希釈系列D0〜D7を基材11上に付着させた初発菌数Npの検定基材10と,図1(D)に示すように検定基材10に添加する培地C及び殺菌中和剤Eとを有している。図1(C)に示すように殺菌剤Mで燻蒸する施設1内に検定基材10を所定時間tだけ設置したのち培地C及び殺菌中和剤Eを添加し,図1(E)に示すように検定基材10の各希釈段階D0〜D7の微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを求めて施設1内の殺菌効果を評価する。   FIG. 1 shows an embodiment in which the sterilizing effect of the facility 1 fumigated with the sterilizing agent M is evaluated using the sterilization test apparatus of the present invention. As shown in FIG. 1 (B), the sterilization test apparatus of the illustrated example includes an assay base material 10 having an initial bacterial count Np in which a predetermined dilution series D0 to D7 of microorganisms is attached to the base material 11, and FIG. 1 (D). As shown in Fig. 5, the medium C and the bactericidal neutralizer E added to the test substrate 10 are included. As shown in FIG. 1 (C), after setting the test substrate 10 for a predetermined time t in the facility 1 fumigated with the bactericidal agent M, the medium C and the bactericidal neutralizing agent E are added and shown in FIG. 1 (E). Thus, the survival bacteria count Nt or the bacteria survival rate Nt / Np is obtained from the microorganism growth state of each dilution stage D0 to D7 of the test substrate 10, and the bactericidal effect in the facility 1 is evaluated.

図1(A)及び(B)は,検定基材10の作製方法を示している。先ず図1(A)に示すように,乾燥に耐える微生物を滅菌蒸留水10ミリリットに希釈して単位量当たり所定濃度の試料D0を作成し,7本の試験管にそれぞれ滅菌蒸留水を9ミリリットルずつ分注し,試料D0の1ミリリットルを滅菌蒸留水で10倍ずつ7段階に希釈して,8段階の希釈系列D0〜D7の希釈液S0〜S7を作成する。各希釈系列D1〜D7には,単位量当たり希釈系列D0の10−1〜10−7倍の微生物が含まれている。次いで図1(B)に示すように,希釈系列D0〜D7の各希釈液S0〜S7をそれぞれ基材11上にdミリリットルずつ(例えば0.005ミリ(5マイクロ)リットルずつ)滴下し,乾燥(例えば風乾)させて,初発菌数Npの微生物が付着した検定基材10を作製する。検定基材10(及び初発菌数Np)を構造又は特性から直接特定することはおよそ実際的ではなく,検定基材10は乾燥付着させる希釈系列D0〜D7によって特定できる。 1A and 1B show a method for producing the test substrate 10. First, as shown in FIG. 1 (A), a microorganism resistant to drying is diluted with 10 milliliters of sterilized distilled water to prepare a sample D0 having a predetermined concentration per unit amount, and 9 milliliters of sterilized distilled water is added to each of seven test tubes. Dispense one by one, and dilute 1 ml of sample D0 10 times with sterile distilled water into 7 stages to prepare diluted solutions S0 to S7 of 8-stage dilution series D0 to D7. Each dilution series D1-D7 contains 10 −1 to 10 −7 times as many microorganisms as the dilution series D0 per unit amount. Next, as shown in FIG. 1 (B), each of the dilutions S0 to S7 of the dilution series D0 to D7 is dropped on the substrate 11 by d milliliters (for example, 0.005 milliliters (5 microliters)) and dried. (For example, it is air-dried), and the test | inspection base material 10 to which the microbe of the initial bacterial count Np adhered is produced. It is not practical to specify the assay substrate 10 (and the initial bacterial count Np) directly from the structure or characteristics, and the assay substrate 10 can be identified by the dilution series D0 to D7 to be attached by drying.

本発明において初発菌数Npとは,希釈系列D0〜D7の各希釈液S0〜S7を滴下した段階で検定基材10に付着している微生物数を意味し,殺菌剤Mで燻蒸する施設1内に設置しなかった場合の本来の菌数のことを指す。図示例のように,8段階の希釈系列D0〜D7の希釈液S0〜S7を検定基材10に滴下したときは,各希釈液S0〜S7に含まれる異なる菌数N0〜N7の微生物が検定基材10に付着しており,各希釈段階の初発菌数NpはN0〜N7となる。施設内設置後の菌数計測では,何れかの希釈段階の微生物増殖状態から生残菌数Nt又は菌生存率Nt/Npを算出する。   In the present invention, the initial bacterial count Np means the number of microorganisms adhering to the test substrate 10 when the dilutions S0 to S7 of the dilution series D0 to D7 are dropped. It means the original number of bacteria when it is not installed inside. As shown in the example, when the dilutions S0 to S7 of the 8-stage dilution series D0 to D7 are dropped on the test substrate 10, microorganisms with different numbers N0 to N7 contained in each dilution S0 to S7 are tested. It adheres to the base material 10, and the initial bacterial count Np at each dilution stage is N0 to N7. In counting the number of bacteria after installation in the facility, the survival cell count Nt or the cell survival rate Nt / Np is calculated from the microbial growth state at any dilution stage.

乾燥に耐える微生物を用いる理由は,各希釈系列D0〜D7の微生物を水分が失われた状態で施設1内の空気中の殺菌剤Mと接触させ,検定基材10に含まれる水分による殺菌効果への影響を避けるため,基材11上に滴下した各希釈液S0〜S7を乾燥させて検定基材10とするからである。乾燥に耐える微生物は,例えば乾燥状態,飢餓状態等の環境ストレス時に胞子が形成される好気性細菌(例えばBacillus属,Geobacillus属,Alicyclobacillus属等),嫌気性細菌(例えばClostridium属等),真菌であるカビ類の胞子(例えばAspergillus属,Penicillium等),原虫・藻類等の胞子,シスト,休眠細胞等とすることができる。ただし,胞子を形成しなくても比較的短い時間の乾燥に耐えられる微生物を用いることは可能であり,微生物の乾燥菌体等が利用できる場合や細胞が完全に乾燥しない処理が可能である場合は,大腸菌(Escherichia coli NBRC3972)等を用いることもできる。   The reason for using microorganisms that can withstand drying is that the microorganisms of each of the dilution series D0 to D7 are brought into contact with the disinfectant M in the air in the facility 1 in a state where moisture has been lost. This is because the diluted solutions S0 to S7 dropped on the base material 11 are dried to obtain the test base material 10 in order to avoid the influence on the base material 11. Microorganisms resistant to drying are, for example, aerobic bacteria (for example, Bacillus genus, Geobacillus genus, Alicyclobacillus genus, etc.), anaerobic bacteria (for example, Clostridium genus, etc.), fungi in which spores are formed during environmental stress such as dryness and starvation. It may be a spores of certain fungi (for example, Aspergillus genus, Penicillium, etc.), spores of protozoa and algae, cysts, dormant cells, and the like. However, it is possible to use microorganisms that can withstand drying for a relatively short period of time without forming spores. When dry cells of microorganisms can be used, or when cells cannot be completely dried. E. coli (Escherichia coli NBRC3972) or the like can also be used.

また図示例では,基材11として8つの窪み(ウェル)が一列に形成された手のひら程度の小型な合成樹脂製プレートを用い,8段階の希釈系列D0〜D7の希釈液S0〜S7を一列に付着させて検定基材10としている。検定基材11から複数の希釈段階D0〜D7の微生物増殖状態を読み取ることで,その検定基材11の設置位置における生残菌数Ntを求めることができる。ただし,例えば図6(B)に示すように,各希釈系列D0〜D7の希釈液S0〜S7をそれぞれ別々の基材11に付着させて検定基材11としてもよい。この場合は,各希釈段階D0〜D7の検定基材10を1セットとして用い,各希釈段階D0〜D7の検定基材10の殺菌位置や殺菌時間にずれが生じないようにすることが必要である。なお,希釈系列の段階数は8段階未満又は8段階より多くしてもよい。   Further, in the illustrated example, a small synthetic resin plate of the size of a palm having eight depressions (wells) formed in a row as the substrate 11 is used, and the dilution solutions S0 to S7 of the eight-stage dilution series D0 to D7 are arranged in a row. The test substrate 10 is attached. By reading the microbial growth state of the plurality of dilution stages D0 to D7 from the test base material 11, the survival cell count Nt at the installation position of the test base material 11 can be obtained. However, for example, as shown in FIG. 6 (B), the dilution solutions S0 to S7 of the respective dilution series D0 to D7 may be attached to separate base materials 11 to form the test base material 11. In this case, it is necessary to use the test substrate 10 of each dilution stage D0 to D7 as a set so that the sterilization position and sterilization time of the test substrate 10 of each dilution stage D0 to D7 do not shift. is there. Note that the number of dilution series may be less than 8 or more than 8.

作製した検定基材10を施設1内の所要位置に設置したのち,図1(C)に示すように従来の燻蒸殺菌と同様に殺菌剤Mをガス状又はミスト状にして施設1内に充満させる。検定基材10の設置位置は,殺菌剤Mの最も到達しにくい箇所だけでなく,施設1内の複数の箇所とすることができる。従来のバイオインジケータのような所定菌数の全滅というエンドポインの検出と異なり,図1(B)検定基材10ではその設置位置の定量的な菌生存率が検出できるので,施設1内の複数位置に検定基材10を設置して各地点の菌生存率を検出することにより,施設1内における菌生存率の分布として殺菌効果を評価することができる。   After the prepared test substrate 10 is installed at a required position in the facility 1, as shown in FIG. 1 (C), the facility 1 is filled with the disinfectant M in the form of gas or mist as in the conventional fumigation sterilization. Let The installation position of the test substrate 10 can be a plurality of locations in the facility 1 as well as the location where the disinfectant M is hard to reach. Unlike the conventional detection of end point, which is the annihilation of a predetermined number of bacteria such as a bioindicator, the assay base material 10 in FIG. 1 (B) can detect the quantitative bacteria survival rate at the installation position. The bactericidal effect can be evaluated as the distribution of the bacterial survival rate in the facility 1 by installing the test substrate 10 at the position and detecting the bacterial survival rate at each point.

図1(D)は,施設1内に所定時間tだけ設置した検定基材10を施設1の外へ取り出し,培地C及び殺菌中和剤(殺菌反応停止剤)Eを添加して培養する処理を示している。培地Cは,微生物毎に適した培地を適宜選択できるが,一般的なブイヨン培地(NB培地)とすることもできる。また殺菌中和剤Eは,施設1内に設置した検定基材10には殺菌剤Mが満ち込まれており,殺菌剤Mを残したまま検定基材10を培養すると精確な生残菌数Ntが得られないから,残存する殺菌剤Mの影響を排除するためのものである。殺菌中和剤Eは,殺菌剤Mの種類に応じて適宜選択して使用することができる(表1参照)。なお,NB培地はペプトン(タンパク質)を含んでいるので,タンパク質が中和剤として機能するような殺菌剤Mについては,NB培地を培地C及び中和剤Eとして機能させることができる。   FIG. 1 (D) shows a treatment in which the test substrate 10 installed in the facility 1 for a predetermined time t is taken out of the facility 1 and added with the medium C and the bactericidal neutralizer (bactericidal reaction terminator) E and cultured. Is shown. As the medium C, a medium suitable for each microorganism can be appropriately selected, but a general bouillon medium (NB medium) can also be used. In addition, the sterilizing neutralizer E is filled with the sterilizing agent M in the test base material 10 installed in the facility 1, and if the test base material 10 is cultured while the sterilizing agent M is left, the number of accurate survival bacteria Since Nt cannot be obtained, the effect of the remaining fungicide M is eliminated. The sterilizing neutralizer E can be appropriately selected and used according to the type of the sterilizing agent M (see Table 1). In addition, since the NB medium contains peptone (protein), the NB medium can function as the medium C and the neutralizing agent E for the bactericidal agent M in which the protein functions as a neutralizing agent.

図1(E)は,培地Cを添加した検定基材10の培養結果の一例を表し,希釈段階D0〜D4(10〜10−4)では微生物の増殖が検出される(陽性である)ことを示し,希釈段階D5〜D7(10−5〜10−7)では微生物の増殖が検出されない(陰性である)ことを示している。希釈段階D4は初発菌数N4であり,希釈段階D5は初発菌数N5であることから,図1(E)の微生物増殖状態から燻蒸殺菌処理後の菌生存率Nt/Npは(1/N5)以上(1/N4)未満であると算出することができ,菌生存率Nt/Npにより施設1内の殺菌効果を定量的に評価することができる。 FIG. 1 (E) shows an example of the culture result of the assay substrate 10 to which the medium C is added, and the growth of microorganisms is detected (positive) at the dilution stages D0 to D4 (10 0 to 10 −4 ). This shows that the growth of microorganisms is not detected (negative) in the dilution stages D5 to D7 (10 −5 to 10 −7 ). Since the dilution stage D4 is the initial bacterial count N4 and the dilution stage D5 is the initial bacterial count N5, the survival rate Nt / Np after the fumigation sterilization treatment from the microbial growth state in FIG. 1 (E) is (1 / N5 ) Or more and less than (1 / N4), and the bactericidal effect in the facility 1 can be quantitatively evaluated by the bacteria survival rate Nt / Np.

図1(F)は,図1(E)に示す検定基材10の各希釈段階D0〜D7の微生物増殖状態から,施設1内の殺菌効果,すなわち微生物の菌生存率を算出する評価装置20の実施例を示す。評価装置20の一例は,入力装置21と出力装置22と記憶手段23とを有するコンピュータである。記憶手段23には,上述した微生物の初発菌数Np(=N0〜N7)等を記憶する。また図示例のコンピュータ20は,内蔵プログラムとして,検定基材10の微生物増殖状態から菌生存率を算出する生存率算出手段25と,算出した菌生存率を出力装置15へ適宜出力する出力手段26とを有している。   FIG. 1 (F) shows an evaluation apparatus 20 that calculates the bactericidal effect in the facility 1, that is, the survival rate of microorganisms, from the microbial growth state at each of the dilution stages D0 to D7 of the test substrate 10 shown in FIG. 1 (E). Examples of An example of the evaluation device 20 is a computer having an input device 21, an output device 22, and a storage unit 23. The storage means 23 stores the above-mentioned initial bacterial count Np (= N0 to N7) and the like. In addition, the computer 20 in the illustrated example has, as a built-in program, a survival rate calculation unit 25 that calculates the bacterial survival rate from the microorganism growth state of the test substrate 10 and an output unit 26 that appropriately outputs the calculated bacterial survival rate to the output device 15. And have.

図1(F)の評価装置20において,入力装置21を介して検定基材10の各希釈段階D0〜D7の微生物増殖状態(図1(E)の微生物増殖が検出された希釈段階)を生存率算出手段25に入力すると,生存率算出手段25が菌生存率Nt/Npを算出し,出力手段26を介して出力装置22に表示する。施設1内の複数位置に検定基材10を設置すると共に記憶手段23に各設置位置を記憶しておき,複数位置の検定基材10の微生物増殖状態を入力することにより,出力手段26によって施設1内の菌生存率の分布を出力装置22に図示することもできる。また,施設1内の各位置に複数の検定基材10を設置しておき,所定時間おきに検定基材10を取り出して微生物増殖状態を入力することにより,出力手段26によって施設1内の菌生存率の時間的な変化を評価することもできる。   In the evaluation apparatus 20 of FIG. 1 (F), the microorganism growth state (dilution stage in which the microorganism growth of FIG. 1 (E) is detected) of each dilution stage D0 to D7 of the test substrate 10 is survived via the input device 21. When input to the rate calculation means 25, the survival rate calculation means 25 calculates the bacteria survival rate Nt / Np and displays it on the output device 22 via the output means 26. By installing the test base material 10 at a plurality of positions in the facility 1 and storing each installation position in the storage means 23 and inputting the microbial growth state of the test base material 10 at the plurality of positions, the output means 26 sets the facility. The distribution of the survival rate of bacteria within 1 can also be illustrated on the output device 22. In addition, a plurality of test substrates 10 are installed at each position in the facility 1, and the test substrate 10 is taken out every predetermined time and the microbial growth state is input. Changes in survival over time can also be evaluated.

図2は,殺菌剤Mで燻蒸する施設1の殺菌効果を評価する本発明の殺菌試験装置の他の実施例を示す。図2の殺菌試験装置も,検定基材10(図2(B)参照)と培地C及び殺菌中和剤E(図2(D)参照)とで構成されているが,行列状の窪みが形成されたマイクロプレートを基材12aとして用い,8段階の希釈系列D0〜D7の各希釈液S0〜S7を列状に滴下すると共に複数回にわたって反復し,乾燥(例えば風乾)させることにより,検定基材10に希釈系列D0〜D7の希釈液S0〜S7を行列状に付着させている。   FIG. 2 shows another embodiment of the sterilization test apparatus of the present invention for evaluating the sterilization effect of the facility 1 fumigated with the sterilizing agent M. The sterilization test apparatus of FIG. 2 is also composed of the test substrate 10 (see FIG. 2 (B)), the medium C, and the sterilization neutralizer E (see FIG. 2 (D)). Using the formed microplate as a base material 12a, each dilution solution S0 to S7 of the eight-stage dilution series D0 to D7 is dropped in a line and repeated multiple times and dried (for example, air-dried), thereby performing an assay. Dilution solutions S0 to S7 of dilution series D0 to D7 are attached to the substrate 10 in a matrix.

上述したように,希釈系列D0〜D7を一列に付着させた図1(B)の検定基材10を用いて燻蒸殺菌後の菌生存率Nt/Npを検出できるが,死滅桁数を検出できる程度であり,検出精度を高めることは難しい。これに対して,試料の希釈系列を一列ではなくN回反復して培養し,N回反復された各々における各希釈段階の微生物増殖状態から試料中の生残数を求める最確法(MPN法)が開発されている(非特許文献8参照)。希釈を繰り返すと生菌数が0となる確率が出てくるが,ある希釈段階をN回反復したうちK個の生菌数が0となる確率は二項分布から計算される。MPN法は,十分に希薄な微生物懸濁液を,新鮮な培地に繰り返し植菌・培養した場合の増殖有無の確率から,植菌した微生物の数を推算する手法である。   As described above, the survival rate Nt / Np after fumigation sterilization can be detected using the assay substrate 10 of FIG. 1 (B) with the dilution series D0 to D7 attached in a row, but the number of dead digits can be detected. It is difficult to improve the detection accuracy. On the other hand, the most probable method (MPN method) for culturing the dilution series of the sample N times instead of in a single line, and determining the number of survival in the sample from the microbial growth state at each dilution stage in each of the N times of repetition Has been developed (see Non-Patent Document 8). When the dilution is repeated, the probability that the number of viable bacteria becomes 0 comes out, but the probability that the number of K viable bacteria becomes 0 after repeating a certain dilution stage N times is calculated from the binomial distribution. The MPN method is a method for estimating the number of inoculated microorganisms from the probability of the presence or absence of growth when a sufficiently dilute microorganism suspension is repeatedly inoculated and cultured in a fresh medium.

具体的には,反復数Nを3回とし,そのN回の全て又はほとんどで微生物の増殖があった最低の希釈段階における増殖検出個数K1と,その次の希釈(10倍希釈)段階における増殖検出個数K2と,更に次の希釈(100倍希釈)段階における増殖検出個数K3とをそれぞれ求め,その3つの数を並べたコード[K1,K2,K3]から原液中の生菌数を推定する。このコード[K1,K2,K3]からの推定値が最確数(MPN)と呼ばれ,予め表2のようなMPN表を作成しておけば,そのMPN表に照らしてコード[K1,K2,K3]を生残菌数Ntに換算することができる。反復数Nが3回の系ではMPN表は64通りとなるが,反復数を更に増やして精度を高めることができ,反復数Nが5回の系では216通りのMPN表となる。   Specifically, the number of repetitions N is set to 3 times, and the number K1 of growth detected at the lowest dilution stage in which all or most of the N times had grown microorganisms, and the growth at the next dilution (10-fold dilution) stage. The number of detected cells K2 and the number of detected proliferations K3 in the next dilution (100-fold dilution) stage are respectively obtained, and the number of viable bacteria in the stock solution is estimated from the code [K1, K2, K3] in which the three numbers are arranged. . The estimated value from this code [K1, K2, K3] is called the most probable number (MPN). If an MPN table as shown in Table 2 is prepared in advance, the code [K1, K2 is compared with the MPN table. , K3] can be converted into the survival cell count Nt. In the system with 3 iterations N, the number of MPN tables is 64. However, the number of iterations can be further increased to improve accuracy, and in the system with 5 iterations N, there are 216 MPN tables.

図2(A)及び(B)は,8つの窪み(ウェル)が3列に形成されたマイクロプレートを基材12aとして用い,8段階の希釈系列D0〜D7の希釈液S0〜S7を行列状(3×8)に付着させて検定基材10を作製する方法を示す。先ず,図1の場合と同様に乾燥に耐える微生物の希釈系列D0〜D7の希釈液S0〜S7を作成する。次いで,各希釈液S0〜S7を基材12a上の各ウェルにdミリリットルずつ(例えば5マイクロリットルずつ)列状に滴下すると共に3回にわたって反復し,更に乾燥(例えば風乾)させて検定基材10(12a+S0〜S7)を作製する。ただし,反復回数は3回に限らず,例えば5回又はそれ以上の反復回数が付着できるマイクロプレートを用いることができる。   2 (A) and 2 (B) use a microplate in which eight depressions (wells) are formed in three rows as a base material 12a, and use dilution liquids S0 to S7 of an eight-stage dilution series D0 to D7 in a matrix. A method for producing the test substrate 10 by attaching to (3 × 8) is shown. First, as in the case of FIG. 1, dilution liquids S0 to S7 of a dilution series D0 to D7 of microorganisms that can withstand drying are prepared. Next, each of the dilutions S0 to S7 is dropped into each well on the substrate 12a in the form of d milliliters (for example, 5 microliters) in a row, repeated three times, and further dried (for example, air-dried) to be assayed substrate. 10 (12a + S0 to S7) is produced. However, the number of repetitions is not limited to three, and for example, a microplate to which five or more repetitions can be attached can be used.

図2(C)に示すように作製した検定基材10を殺菌剤Mで燻蒸する施設1内に所定時間tだけ設置したのち,図2(D)に示すように検定基材10の各ウェルに培地C及び殺菌中和剤Eを添加して培養する。図2(E)は,培地Cを添加した検定基材10の培養結果の一例を表しており,3回反復の全てで微生物の増殖が検出された(陽性であった)最低の希釈段階D3の増殖検出個数K1(=3)と,次の希釈段階D4の増殖検出個数K2(=2)と,更に次の希釈段階D5の増殖検出個数K3(=0)とからコード[3,2,0]が求まることを示している。表2を参照すると,このコードに対応するMPNは0.93であることから,コード中央部の希釈段階D4の生残菌数Nt(=0.93)を求めることができ,希釈段階D4の初発菌数Np=N4から菌生存率Nt(=0.93/N4)を算出することができる。   After the test substrate 10 produced as shown in FIG. 2 (C) is placed in the facility 1 where the fumigant M is fumigated for a predetermined time t, each well of the test substrate 10 as shown in FIG. 2 (D). Medium C and bactericidal neutralizer E are added to the culture medium. FIG. 2 (E) shows an example of the culture result of the assay substrate 10 to which the medium C has been added. The lowest dilution stage D3 in which microbial growth was detected in all three repetitions (positive). The code [3, 2] is calculated from the number K1 (= 3) of growth detection, the number K2 (= 2) of growth detection in the next dilution stage D4, and the number K3 (= 0) of growth detection in the next dilution stage D5. 0] is obtained. Referring to Table 2, since the MPN corresponding to this code is 0.93, the survival cell count Nt (= 0.93) of the dilution stage D4 at the center of the code can be obtained. The bacterial survival rate Nt (= 0.93 / N4) can be calculated from the initial bacterial count Np = N4.

図2(F)は,図2(E)で求めたコード[K1,K2,K3]から,施設1内の殺菌効果として定量的な菌生存率を算出する評価装置20の実施例を示す。図2の評価装置20もコンピュータで構成されており,記憶手段23には微生物の初発菌数Npと共に表2のようなMPN表Tが記憶されている。また,内蔵プログラムとして,生存率算出手段25及び出力手段26に加えて,検定基材10の微生物増殖状態から生残菌数Ntを算出する生残菌数算出手段24を有している。入力装置21から評価装置20にコード[K1,K2,K3]を入力すると,生残菌数算出手段24が上述したようにコード[K1,K2,K3]とMPN表Tとから生残菌数Ntを算出し,生存率算出手段25が菌生存率Nt/Npを算出し,出力手段26を介して出力装置22に表示する。図2のように,希釈系列D0〜D7を一列ではなく複数列(行列状)に付着させた検定基材10を用い,MPN法によって生残菌数を求めることにより,菌生存率の検出精度を高めることができ,図1の場合と比較して施設1内の殺菌効果の定量的な評価の精度向上を図ることができる。   FIG. 2 (F) shows an embodiment of the evaluation device 20 that calculates a quantitative bacterial survival rate as a bactericidal effect in the facility 1 from the codes [K1, K2, K3] obtained in FIG. 2 (E). The evaluation device 20 of FIG. 2 is also configured by a computer, and the MPN table T as shown in Table 2 is stored in the storage unit 23 together with the initial number of microorganisms Np. Further, as a built-in program, in addition to the survival rate calculation means 25 and the output means 26, there is a survival bacteria count calculation means 24 for calculating the survival bacteria count Nt from the microorganism growth state of the test substrate 10. When the code [K1, K2, K3] is input from the input device 21 to the evaluation device 20, the survival cell count calculation means 24 calculates the survival cell count from the code [K1, K2, K3] and the MPN table T as described above. Nt is calculated, and the survival rate calculation means 25 calculates the bacteria survival rate Nt / Np and displays it on the output device 22 via the output means 26. As shown in FIG. 2, by using the assay base material 10 in which the dilution series D0 to D7 are attached in a plurality of rows (matrix) instead of one row, the number of surviving bacteria is obtained by the MPN method, thereby detecting the survival rate of the bacteria. The accuracy of quantitative evaluation of the sterilizing effect in the facility 1 can be improved as compared with the case of FIG.

好ましく,図3に示すようにMPN法の反復数Nを6回以上とし,希釈系列D0〜D7の各希釈液S0〜S7を列状に滴下し且つ6回以上反復することにより行列状に付着させて検定基材10を作製する。図2のような反復数Nが3回の場合と比較して,反復数Nを6回以上とすることにより菌生存率の検出精度を更に高めることができる。ただし,反復数Nが6回以上の系のMPN表は極めて大きく,作成も不可能ではないが煩雑である。これに対し,MPN表を必要としないMPN法として,微生物の増殖が陽性(+)及び陰性(−)を共に含む希釈段階の状態から次式(1)により生残菌数Ntを求める方法が開発されている(非特許文献9参照)。式(1)において,Nは反復数を表し,Pは反復数Nのうち微生物の増殖が陽性(+)の数(N>P>0)を表す。
生残菌数Nt=ln(N/(N−P)) ………………………………(1)
Preferably, as shown in FIG. 3, the number of iterations N of the MPN method is set to 6 times or more, and each dilution solution S0 to S7 of the dilution series D0 to D7 is dropped in a line shape and adhered in a matrix form by repeating 6 times or more. Thus, the test substrate 10 is produced. Compared with the case where the number of iterations N is 3 as shown in FIG. 2, the detection accuracy of the bacteria survival rate can be further increased by making the number of iterations N 6 or more. However, the MPN table of the system having the number of iterations N of 6 or more is very large, and although it is not impossible to create, it is complicated. On the other hand, as an MPN method that does not require an MPN table, there is a method for obtaining the survival cell count Nt by the following equation (1) from the state of the dilution stage in which the growth of microorganisms includes both positive (+) and negative (−). It has been developed (see Non-Patent Document 9). In formula (1), N represents the number of repetitions, and P represents the number of positive (+) microorganism growth (N>P> 0) among the number of repetitions N.
Number of surviving bacteria Nt = ln (N / (NP)) ………………………… (1)

図3(A)は,8つの窪み(ウェル)が6列に形成されたマイクロプレートを基材12aとして用い,図2(A)及び(B)と同様に,8段階の希釈系列D0〜D7の希釈液S0〜S7を行列状(6×8)に付着させて作製した反復数N=6の検定基材10を示す。作製した検定基材10を殺菌剤Mで燻蒸する施設1内に所定時間tだけ設置したのち,各ウェルに培地C及び殺菌中和剤Eを添加して培養する。図3(B)は,培地Cを添加した検定基材10の培養結果の一例を表し,希釈段階D4が微生物増殖の陽性(+)及び陰性(−)を共に含んでいることを示している。希釈段階D4において反復数N=6のうち微生物増殖が陽性(+)の数は1であるから,(1)式により希釈段階D4の生残菌数Nt(=ln(6/(6−1))≒0.182)を求めることができ,希釈段階D4の初発菌数Np=N4から菌生存率Nt(=0.182/N4)を算出することができる。   In FIG. 3A, a microplate in which eight depressions (wells) are formed in six rows is used as the base material 12a, and, as in FIGS. 2A and 2B, an eight-stage dilution series D0 to D7. The test substrate 10 with the number of repetitions N = 6 produced by attaching the dilution solutions S0 to S7 in a matrix (6 × 8) is shown. After the prepared test substrate 10 is placed in the facility 1 where the fungicide M is fumigated for a predetermined time t, the medium C and the bactericidal neutralizer E are added to each well and cultured. FIG. 3 (B) shows an example of the culture result of the assay substrate 10 to which the medium C is added, and shows that the dilution stage D4 includes both positive (+) and negative (−) microorganism growth. . In the dilution stage D4, the number of positive (+) microorganism growth is 1 among the number of repetitions N = 6. Therefore, the number of surviving bacteria Nt (= ln (6 / (6-1) in the dilution stage D4 according to the equation (1). )) ≈0.182), and the bacterial survival rate Nt (= 0.182 / N4) can be calculated from the initial bacterial count Np = N4 at the dilution stage D4.

図3(C)は,図3(A)の検定基材10を燻蒸殺菌処理せずに培養した結果の一例を示す。検定基材10の初発菌数Npは,上述したように検定基材10の作製時の希釈系列D0〜D7から計算できるが,実験中の不可抗力等を考慮して,図3(B)のような殺菌未処理の検定基材10を培養して確認することができる。具体的には,図示例において希釈段階D6が微生物増殖の陽性(+)及び陰性(−)を共に含んでおり,希釈段階D6では反復数N=6のうち微生物増殖が陽性(+)の数は2であるから,(1)式により希釈段階D6の生残菌数N(=ln(6/(6−2))≒0.405)を求めることができ,そこから希釈段階D4の初発菌数Np(=0.405×10)を算出することができる。従って,図3(B)に示す殺菌処理後の検定基材10と図3(C)に示す殺菌未処理の検定基材10とを同時に培養することにより,菌生存率Nt(=0.182/0.405×10)を求めて殺菌効果を評価することができる。 FIG. 3 (C) shows an example of the result of culturing the test substrate 10 of FIG. 3 (A) without fumigation sterilization treatment. The initial bacterial count Np of the test substrate 10 can be calculated from the dilution series D0 to D7 when the test substrate 10 is produced as described above, but as shown in FIG. 3 (B) in consideration of force majeure during the experiment. It can be confirmed by culturing a non-sterilized untreated assay substrate 10. Specifically, in the illustrated example, the dilution stage D6 includes both positive (+) and negative (−) microorganism growth, and in the dilution stage D6, the number of microbial growth positive (+) out of the number of repetitions N = 6. Therefore, the survival cell count N (= ln (6 / (6-2)) ≈0.405) at the dilution stage D6 can be obtained from the equation (1). The number of bacteria Np (= 0.405 × 10 3 ) can be calculated. Accordingly, by simultaneously culturing the test substrate 10 after sterilization treatment shown in FIG. 3B and the test substrate 10 not treated with sterilization shown in FIG. 3C, the survival rate Nt (= 0.182) /0.405×10 3 ) can be obtained to evaluate the bactericidal effect.

例えば図2(F)の評価装置20において,記憶手段23にMPN表Tに代えて反復数N=6を記憶しておき,図3(B)のような殺菌処理後の検定基材10の希釈段階D4における微生物増殖陽性(+)の数Pを入力装置21から評価装置20へ入力することにより,生残菌数算出手段24が(1)式により生残菌数Ntを算出し,生存率算出手段25が菌生存率Nt/Npを算出することができる。また,図3(C)のような殺菌未処理の検定基材10の希釈段階D6における微生物増殖陽性(+)の数Pを入力装置21から評価装置20へ入力することにより,生存率算出手段25が希釈段階D4の初発菌数Npを算出して菌生存率Nt/Npを算出することもできる。   For example, in the evaluation apparatus 20 of FIG. 2 (F), the number of iterations N = 6 is stored in the storage means 23 instead of the MPN table T, and the test substrate 10 after the sterilization treatment as shown in FIG. By inputting the number P of microbial growth positive (+) at the dilution stage D4 from the input device 21 to the evaluation device 20, the survival cell count calculation means 24 calculates the survival cell count Nt by the equation (1), and the survival The rate calculating means 25 can calculate the bacteria survival rate Nt / Np. Further, by inputting the number P of microbial growth positive (+) at the dilution stage D6 of the sterilization-untreated test substrate 10 as shown in FIG. 3C from the input device 21 to the evaluation device 20, the survival rate calculating means 25 can also calculate the bacterial viability Nt / Np by calculating the initial bacterial count Np at the dilution stage D4.

こうして,本発明の目的である「施設内を燻蒸する殺菌剤の殺菌効果を定量的に評価できる試験方法及び装置」の提供を達成することができる。   Thus, it is possible to achieve the “test method and apparatus capable of quantitatively evaluating the bactericidal effect of a bactericide that is fumigated in a facility”, which is an object of the present invention.

図4は,検定基材10を密封する被覆材15を設け,その被覆材15に培地C及び殺菌中和剤Eを装填し,検定基材10を被覆材15で密封することにより検定基材10に培地C及び殺菌中和剤Eを添加する実施例を示す。図1〜図3の実施例では,施設1内に設置した検定基材10を所定時間tの経過後に外部へ取り出して培地C及び殺菌中和剤Eを添加しており,検定基材10の各希釈系列D0〜D7に対する培地C及び殺菌中和剤Eの添加タイミングに多少のずれを生じるおそれがあった。図4のように,検定基材10を密封する被覆材15に培地C及び殺菌中和剤Eを装填することにより,検定基材10を被覆材15で密封すると同時に各希釈系列D0〜D7に培地C及び殺菌中和剤Eを添加することが可能となり,添加タイミングのずれによる生残菌数Ntの検出誤差を避けることができる。   In FIG. 4, a coating material 15 for sealing the test substrate 10 is provided, the culture material C and the sterilizing neutralizer E are loaded on the coating material 15, and the test substrate 10 is sealed with the coating material 15. 10 shows an example in which medium C and bactericidal neutralizer E are added. 1 to 3, the test substrate 10 installed in the facility 1 is taken out after a lapse of a predetermined time t, and the medium C and the bactericidal neutralizer E are added. There was a possibility that some deviation was caused in the addition timing of the medium C and the bactericidal neutralizing agent E for each of the dilution series D0 to D7. As shown in FIG. 4, the medium 15 and the bactericidal neutralizing agent E are loaded into the covering material 15 that seals the test base material 10, so that the test base material 10 is sealed with the covering material 15 and at the same time the dilution series D0 to D7. The medium C and the bactericidal neutralizing agent E can be added, and the detection error of the survival cell count Nt due to the shift in the addition timing can be avoided.

図4(A)は8つの窪み(ウェル)が一列に形成された合成樹脂製プレート11を用いて作製した検定基材10を示し,図4(B)はその検定基材10を密封する同型シート状の被覆材15を示す。図示例の被覆材15は,片側表面に培地C及び殺菌中和剤Eが塗布された被覆材シート15aと,その培地C及び殺菌中和剤Eの表面に剥離可能に張り付ける汚染防止フィルム15bとにより構成されている。例えば図4(A)の検定基材10を施設1内に所定時間tだけ設置したのち,図4(B)の被覆材シート15aの表面から汚染防止フィルム15bを剥離し,図4(C)に示すように被覆材シート15aの培地塗布面を検定基材10に押し当てて被覆する。   FIG. 4A shows an assay substrate 10 produced using a synthetic resin plate 11 in which eight depressions (wells) are formed in a row, and FIG. 4B shows the same type for sealing the assay substrate 10. The sheet-like coating material 15 is shown. The coating material 15 in the illustrated example includes a coating material sheet 15a having a medium C and a bactericidal neutralizing agent E applied on one side surface, and a pollution prevention film 15b that is detachably attached to the surface of the medium C and the bactericidal neutralizing agent E. It is comprised by. For example, after the test substrate 10 of FIG. 4 (A) is installed in the facility 1 for a predetermined time t, the contamination prevention film 15b is peeled off from the surface of the coating material sheet 15a of FIG. 4 (B), and FIG. As shown in FIG. 2, the medium application surface of the coating material sheet 15a is pressed against the test substrate 10 to be coated.

図4のように検定基材10を被覆材15で密封する方法によれば,施設1内に設置した検定基材10を外部へ取り出す手間を省き,所定時間tの経過時に被覆材15を持った作業員が施設1内に入って培地C及び殺菌中和剤Eを簡単に添加することができる。また,図4(D)の示すような基材密閉システム30を施設1内に設置しておけば,例えば強力な殺菌剤Mが充満していて人の立ち入りができないような施設1においても,所定時間tの経過時点において検定基材10を被覆材15で自動的に密封して培地C及び殺菌中和剤Eを添加することもできる。   According to the method of sealing the verification base material 10 with the covering material 15 as shown in FIG. 4, the trouble of taking out the verification base material 10 installed in the facility 1 to the outside is saved, and the covering material 15 is held when a predetermined time t has elapsed. A worker who has entered the facility 1 can easily add the medium C and the sterilizing neutralizer E. In addition, if a base material sealing system 30 as shown in FIG. 4D is installed in the facility 1, for example, in the facility 1 where a strong disinfectant M is filled and a person cannot enter, It is also possible to automatically seal the test substrate 10 with the covering material 15 at the time when the predetermined time t elapses and add the medium C and the bactericidal neutralizer E.

図4(D)の基材密閉システム30は,検定基材10を載置する環状ベルトを所定時間tの経過時に駆動する基材搬送ローラ31と,その検定基材10と対向するように被覆材15を搬送する被覆材搬送ローラ32と,その被覆材15から汚染防止フィルム15bを剥離するフィルム剥離ローラ33とを有するベルトコンベア装置により構成されている。環状ベルト上に載置された検定基材10は,所定時間tまではそのまま燻蒸殺菌される。所定時間tの経過時に基材搬送ローラ31と被覆材搬送ローラ32とフィルム剥離ローラ33とが同時に駆動され,フィルム剥離ローラ33によって被覆材15から汚染防止フィルム15bを剥離し,被覆材搬送ローラ32によって被覆材シート15aの培地塗布面を環状ベルト上の検定基材10に押し当てて被覆する。   The substrate sealing system 30 shown in FIG. 4 (D) is coated so that the annular belt on which the test substrate 10 is placed is driven when a predetermined time t has passed, and the test substrate 10 is opposed to the substrate transport roller 31. The belt conveyor apparatus includes a covering material conveying roller 32 that conveys the material 15 and a film peeling roller 33 that peels the contamination prevention film 15b from the covering material 15. The test substrate 10 placed on the annular belt is fumigated as it is until a predetermined time t. When the predetermined time t has elapsed, the base material transport roller 31, the coating material transport roller 32, and the film peeling roller 33 are simultaneously driven. The film peeling roller 33 peels the contamination prevention film 15 b from the coating material 15, and the coating material transport roller 32. As a result, the medium-coated surface of the coating material sheet 15a is pressed against the test substrate 10 on the annular belt for coating.

図5は,行列状の窪みが形成された蓋材12b付きマイクロプレート12aを用い,所定希釈系列D0〜D7の各希釈液S0〜S7をその蓋材12b上に行列状に付着させて検定基材10(12b+S0〜S7)を形成し,培地C及び殺菌中和剤Eをマイクロプレート12aに装填し,燻蒸殺菌後に蓋材12bとマイクロプレート12aとを密着させて培養する実施例を示す。この実施例では,マイクロプレート12aが,検定基材10である蓋材12bを密封する被覆材15として機能し,図4の場合と同様に,検定基材10を被覆材15で密封することにより検定基材10に培地C及び殺菌中和剤Eを添加することができる。   FIG. 5 shows an example in which a microplate 12a with a lid member 12b in which a matrix of depressions is formed and each dilution S0 to S7 of a predetermined dilution series D0 to D7 is attached in a matrix on the lid member 12b. An example is shown in which the material 10 (12b + S0 to S7) is formed, the medium C and the sterilizing neutralizing agent E are loaded on the microplate 12a, and the lid material 12b and the microplate 12a are brought into close contact after the fumigation sterilization. In this embodiment, the microplate 12a functions as a covering material 15 that seals the lid member 12b that is the test base material 10, and by sealing the test base material 10 with the cover material 15 as in the case of FIG. Medium C and bactericidal neutralizer E can be added to the assay substrate 10.

図5(A)は,マイクロプレート12aの蓋材12b上に,図2(B)の場合と同様に8段階の希釈系列D0〜D7の希釈液S0〜S7を行列状(3×8)に付着させて作製した検定基材10を示す。また図5(B)は,マイクロプレート12aの行列状(3×8)のウェルにそれぞれ培地C及び殺菌中和剤Eを装填して作製した被覆材15を示す。例えば図5(A)の検定基材(蓋材)10を施設1内に所定時間tだけ設置したのち,図5(C)に示すように被覆材(マイクロプレート)15を被せて検定基材10を密封することにより,検定基材10の各希釈系列D0〜D7に培地C及び殺菌中和剤Eを同時に添加する。   FIG. 5A shows a matrix (3 × 8) of dilute solutions S0 to S7 of the 8-stage dilution series D0 to D7 on the lid 12b of the microplate 12a, as in FIG. 2B. 1 shows an assay substrate 10 made by adhering. FIG. 5 (B) shows the coating material 15 produced by loading the medium C and the bactericidal neutralizing agent E into the matrix (3 × 8) wells of the microplate 12a. For example, after the test base material (lid material) 10 of FIG. 5 (A) is installed in the facility 1 for a predetermined time t, the test base material is covered with a covering material (microplate) 15 as shown in FIG. 5 (C). By sealing 10, the medium C and the bactericidal neutralizing agent E are simultaneously added to each dilution series D0 to D7 of the test substrate 10.

図5のように平板な蓋材12b上に希釈液S0〜S7を付着させて検定基材10とすることにより,図2のように窪み(ウェル)の中に希釈液S0〜S7を付着させて検定基材10とした場合に比して,検定基材10を施設1内に設置して燻蒸殺菌処理する際に,微生物を殺菌剤Mに均等に接触させることができる。すなわち,例えば殺菌剤Mがミスト状である場合に,窪み(ウェル)中に付着させた微生物はミストと均等に接触しないおそれがあるのに対し,平板な蓋材12b上に付着させた微生物であればミストと均等に接触させることができる。このため,図5のように平滑な検定基材10を用いることにより,殺菌効果の評価精度の向上が期待できる。ただし,例えば殺菌剤Mがガス状である場合は,マイクロプレート12aと蓋材12bとを交換し,マイクロプレート12aから検定基材10を作製し,蓋材12bから培地C及び殺菌中和剤Eの装填された被覆材15を作製することも可能である(図6の実施例3を参照)。   As shown in FIG. 5, the diluents S0 to S7 are attached on the flat lid member 12b to form the test substrate 10, so that the diluents S0 to S7 are attached to the depressions (wells) as shown in FIG. Compared with the case where the test substrate 10 is used, the microorganism can be brought into contact with the bactericide M evenly when the test substrate 10 is installed in the facility 1 and fumigated. That is, for example, when the disinfectant M is in the form of mist, the microorganisms attached in the well (well) may not contact the mist evenly, whereas the microorganisms attached on the flat lid 12b If there is, it can be evenly contacted with the mist. For this reason, the improvement of the sterilization effect evaluation accuracy can be expected by using the smooth test substrate 10 as shown in FIG. However, for example, when the bactericidal agent M is gaseous, the microplate 12a and the lid member 12b are exchanged, the test substrate 10 is produced from the microplate 12a, and the medium C and the bactericidal neutralizer E are produced from the lid member 12b. It is also possible to produce a coating material 15 loaded with (see Example 3 in FIG. 6).

図6は,蓋材付き検定基材10を用い,その蓋材に培地C及び殺菌中和剤Eを装填し,燻蒸殺菌後に蓋材を閉めて密着させて培養する実施例を示す。この実施例では,検定基材10の蓋材が被覆材15として機能し,図4及び図5の場合と同様に,検定基材10を被覆材15で密封することにより検定基材10に培地C及び殺菌中和剤Eを添加することができる。図6(A)は複数の窪み(ウェル)が一列に形成された合成樹脂製プレート11を用いて作製した蓋材15付き検定基材10を示し,図6(B)はそれぞれ1つの窪み(ウェル)が形成された合成樹脂製プレート11を用いて形成した蓋材15付き検定基材10を示す。図6(B)のように各希釈段階D0〜D7を個別の検定基材10とする場合は,例えば図6(C)に示すように各希釈段階D0〜D7の検定基材10を1セットとして用い,各希釈段階D0〜D7の検定基材10の殺菌位置や殺菌時間にずれが生じないようにすることができる。   FIG. 6 shows an embodiment in which an assay base material 10 with a lid is used, the culture medium C and the sterilizing neutralizer E are loaded on the lid, and the lid is closed and closely adhered after fumigation sterilization. In this embodiment, the lid of the test base material 10 functions as the coating material 15, and the test base material 10 is sealed with the coating material 15 in the same manner as in FIGS. C and bactericidal neutralizer E can be added. FIG. 6 (A) shows an assay substrate 10 with a lid 15 made using a synthetic resin plate 11 in which a plurality of depressions (wells) are formed in a row, and FIG. 6 (B) shows one depression ( The test base material 10 with the lid | cover material 15 formed using the synthetic resin plate 11 in which the well) was formed is shown. When each of the dilution stages D0 to D7 is an individual test substrate 10 as shown in FIG. 6 (B), for example, one set of the test substrate 10 of each dilution stage D0 to D7 is shown in FIG. 6 (C). Can be used so that there is no deviation in the sterilization position and sterilization time of the test substrate 10 in each of the dilution stages D0 to D7.

図6(C)の基材密閉システム30は,検定基材10を載置する環状ベルトを所定時間tの経過時に駆動する基材搬送ローラ31と,コンベアベルト上で搬送される検定基材10の蓋材15を閉めて密着させる多角ローラ34とを有するベルトコンベア装置により構成されている。環状ベルト上に載置された検定基材10は,所定時間tまでは蓋材15を開放したまま燻蒸殺菌され,所定時間tの経過時に基材搬送ローラ31が駆動されて移動し,その移動経路上の多角ローラ34に蓋材15が当接して閉まることにより検定基材10を被覆する。図6(C)のように被覆材15を被せて検定基材10を密封することにより,検定基材10の各希釈系列D0〜D7に培地C及び殺菌中和剤Eを同時に添加することができる。なお,図5(C)の基材密閉システム30は,図6(B)のように各希釈段階D0〜D7を個別に付着させた検定基材10だけでなく,図6(A)のように各希釈段階D0〜D7を一列に付着させた検定基材10についても適用可能である。   The base material sealing system 30 in FIG. 6C includes a base material transport roller 31 that drives an annular belt on which the test base material 10 is placed when a predetermined time t has elapsed, and a test base material 10 that is transported on the conveyor belt. It is comprised by the belt conveyor apparatus which has the polygon roller 34 which closes and close | closes the cover material 15 of this. The verification base material 10 placed on the annular belt is sterilized by fumigation with the lid 15 open until a predetermined time t, and the base material transport roller 31 is driven and moved when the predetermined time t elapses. The test substrate 10 is covered by the lid member 15 coming into contact with and closing the polygonal roller 34 on the path. As shown in FIG. 6 (C), covering the covering material 15 and sealing the test base material 10, the medium C and the bactericidal neutralizing agent E can be simultaneously added to each dilution series D0 to D7 of the test base material 10. it can. Note that the substrate sealing system 30 in FIG. 5C is not limited to the assay substrate 10 in which the dilution stages D0 to D7 are individually attached as shown in FIG. 6B, but also as shown in FIG. 6A. It is also applicable to the assay substrate 10 in which the dilution stages D0 to D7 are attached in a row.

図7は,粒状の検定基材10を用い,その検定基材10を収納する筒状容器41に培地C及び殺菌中和剤Eを内蔵させた培養ユニット式基材40の実施例を示す。図7(A)は,粒状基材13に希釈系列D0〜D7の各希釈液S0〜S7を付着させて検定基材10を作製する処理を示す。作製した粒状の検定基材10は,図7(B)に示すような筒状容器41に収納する。筒状容器41には深さ方向中間部位に隔膜43が張設されており,筒状容器41の内側は隔膜43によって開口側の領域と底壁42側の領域とに仕切られている。底壁42の側領には培地C及び殺菌中和剤Eを装填し,開口側の領域に粒状の検定基材10を収納する。例えば,図5(B)に示すようなマイクロプレート12aの複数の窪み(ウェル)をそれぞれ図7(B)のような筒状容器41に差替え,各ウェルに培地C及び殺菌中和剤Eが内蔵された培養ユニット式基材40とすることができる。   FIG. 7 shows an embodiment of a culture unit type base material 40 in which a granular test base material 10 is used and a medium C and a bactericidal neutralizing agent E are incorporated in a cylindrical container 41 that houses the test base material 10. FIG. 7 (A) shows a process for producing the test substrate 10 by attaching the dilutions S0 to S7 of the dilution series D0 to D7 to the granular substrate 13. The produced granular test | inspection base material 10 is accommodated in the cylindrical container 41 as shown in FIG.7 (B). A diaphragm 43 is stretched in the intermediate portion in the depth direction of the cylindrical container 41, and the inside of the cylindrical container 41 is partitioned by the diaphragm 43 into a region on the opening side and a region on the bottom wall 42 side. A medium C and a sterilizing neutralizing agent E are loaded in the side region of the bottom wall 42, and the granular test substrate 10 is stored in the region on the opening side. For example, the plurality of depressions (wells) of the microplate 12a as shown in FIG. 5B are replaced with cylindrical containers 41 as shown in FIG. 7B, respectively, and the medium C and the bactericidal neutralizing agent E are placed in each well. It can be set as the culture | cultivation unit type base material 40 incorporated.

図7(C)は,筒状容器41に密着して被せる蓋材44を示す。図示例の蓋材44は,筒状容器41に被せたときに内側へ突出するニードル45が取り付けられており,図7(D)に示すように蓋材44の閉鎖時にニードル45が容器41の隔膜43を突き破ることにより,底壁42側に内蔵された培地C及び殺菌中和剤Eを開口側へ浸透させることができる。ニードル45には,培地C及び殺菌中和剤Eの浸透を促進する浸透促進溝46を設けることが望ましい。また蓋材44には,ニードル45が隔膜43を突き破ったときに培地C及び殺菌中和剤Eが飛散しないように,ニードル45の周囲を覆う飛散防止スカート47を設けることが望ましい。例えば,図5(A)に示すようなマイクロプレートの蓋材12bの窪み対向位置にそれぞれニードル34及びスカート47を取り付けて,培養ユニット式基材40の蓋材44とすることができる。   FIG. 7C shows a lid member 44 that is closely attached to the cylindrical container 41. The lid member 44 in the illustrated example is provided with a needle 45 that protrudes inward when covered with the cylindrical container 41. When the lid member 44 is closed as shown in FIG. By breaking through the diaphragm 43, the medium C and the bactericidal neutralizing agent E built in the bottom wall 42 can be permeated to the opening side. The needle 45 is preferably provided with a permeation promoting groove 46 that promotes permeation of the medium C and the bactericidal neutralizer E. The lid member 44 is preferably provided with a scatter prevention skirt 47 that covers the periphery of the needle 45 so that the medium C and the sterilizing neutralizer E do not scatter when the needle 45 breaks through the diaphragm 43. For example, the needle 34 and the skirt 47 can be attached to the positions opposite to the recesses of the microplate lid member 12b as shown in FIG.

図7の培養ユニット式基材40は,所定時間tまでは蓋材44を開放したまま筒状容器(例えばマイクロプレートのウェル)41に収納された検定基材10を燻蒸殺菌し,所定時間tの経過時に蓋材(例えばマイクロプレートの蓋材)44を閉鎖して検定基材10を密封する。その蓋材44の閉鎖と同時に,蓋材44のニードル45が容器41の隔膜43を突き破ることにより,培地C及び殺菌中和剤Eを浸透させて検定基材10に添加することができる。   The culture unit type base material 40 of FIG. 7 is sterilized by fumigation of the test base material 10 stored in a cylindrical container (for example, a well of a microplate) 41 with the lid material 44 open until a predetermined time t, and the predetermined time t At the time of elapse of time, the cover material (for example, the cover material of the microplate) 44 is closed to seal the test substrate 10. Simultaneously with closing of the lid member 44, the needle 45 of the lid member 44 breaks through the diaphragm 43 of the container 41, so that the medium C and the sterilizing neutralizer E can be permeated and added to the assay substrate 10.

1…殺菌施設
10…検定基材 11…基材
12a…基材(マイクロプレート) 12b…基材(マイクロプレートの蓋材)
13…基材(粒状基材) 15…被覆材
15a…被覆材シート 15b…汚染防止フィルム
15c…ヒンジ
20…評価装置(コンピュータ) 21…入力装置
22…出力装置 23…記憶手段
24…生残菌数算出手段 25…菌生存率算出手段
26…出力手段
30…基材密閉システム 31…基材搬送ローラ
32…被覆材搬送ローラ 33…フィルム剥離ローラ
34…多角ローラ
40…培養ユニット式基材 41…筒状容器
42…底壁 43…隔膜
44…蓋材 45…ニードル
46…浸透促進溝 47…飛散防止スカート
C…培地 E…中和剤
D…希釈系列 M…殺菌剤
N…反復数 Np…初発菌数
Nt…生残菌数 P…陽性の数
S…希釈液 T…MPN表
DESCRIPTION OF SYMBOLS 1 ... Sterilization facility 10 ... Test | inspection base material 11 ... Base material 12a ... Base material (microplate) 12b ... Base material (cover material of a microplate)
DESCRIPTION OF SYMBOLS 13 ... Base material (granular base material) 15 ... Coating material 15a ... Coating material sheet 15b ... Antifouling film 15c ... Hinge 20 ... Evaluation apparatus (computer) 21 ... Input device 22 ... Output device 23 ... Storage means 24 ... Surviving bacteria Number calculation means 25 ... fungus survival rate calculation means 26 ... output means 30 ... base material sealing system 31 ... base material transport roller 32 ... coating material transport roller 33 ... film peeling roller 34 ... polygon roller 40 ... culture unit type base material 41 ... Cylindrical container 42 ... Bottom wall 43 ... Diaphragm 44 ... Lid 45 ... Needle 46 ... Permeation promoting groove 47 ... Anti-scattering skirt C ... Medium E ... Neutralizing agent D ... Dilution series M ... Disinfectant N ... Repeat number Np ... First Number of bacteria Nt ... Surviving bacteria number P ... Positive number S ... Diluent T ... MPN table

Claims (12)

乾燥に耐える微生物の所定希釈系列の各希釈液をそれぞれ基材上に滴下し且つ乾燥付着させて初発菌数の検定基材とし,前記検定基材を殺菌剤で燻蒸する施設内に所定時間設置したのち培地及び殺菌中和剤を添加して培養し,前記検定基材上の各希釈段階における微生物増殖状態から生残菌数又は菌生存率を求めて殺菌効果を評価してなる殺菌試験方法。 Each dilution of a predetermined dilution series of microorganisms that can withstand drying is dropped onto the base material and dried to adhere to the test base material for the initial bacterial count. The test base material is placed in a facility that is fumigated with a bactericide for a predetermined time. And then culturing with the addition of a culture medium and a sterilizing neutralizer, and determining the number of surviving bacteria or viability from the microbial growth state at each dilution stage on the test substrate, and evaluating the sterilization effect. . 請求項1の方法において,前記乾燥に耐える微生物を,乾燥時に胞子が形成される微生物としてなる殺菌試験方法。 2. The sterilization test method according to claim 1, wherein the microorganism that is resistant to drying is a microorganism in which spores are formed during drying. 請求項1又は2の方法において,前記基材上に前記希釈系列の各希釈液を列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材とし,前記施設内設置後に培地及び殺菌中和剤を添加した検定基材上の各希釈段階における微生物増殖が陽性の数からMPN法により生残菌数を求めてなる殺菌試験方法。 3. The method according to claim 1 or 2, wherein each dilution solution of the dilution series is dropped in a row on the substrate and dried and adhered in a matrix by repeating a plurality of times to form an assay substrate, and the medium after installation in the facility And a sterilization test method in which the number of surviving bacteria is determined by the MPN method from the number of positive microbial growth at each dilution stage on the test substrate to which a sterilizing neutralizer is added. 請求項3の方法において,前記基材上に前記希釈系列の各希釈液を列状に滴下し且つN回(Nは6以上の整数)反復により行列状に付着させて検定基材とし,前記施設内設置後に培地及び殺菌中和剤を添加した検定基材上の微生物増殖の陽性及び陰性を共に含む希釈段階における微生物増殖が陽性の数Pから次式により生残菌数を求めてなる殺菌試験方法。
生残菌数=ln(N/(N−P))
The method according to claim 3, wherein each dilution of the dilution series is dropped on the substrate in a row and attached in a matrix by repeating N times (N is an integer of 6 or more) to form an assay substrate, Sterilization by obtaining the number of surviving bacteria from the number P of positive microbial growth at the dilution stage including both positive and negative of microbial growth on the test substrate to which medium and bactericidal neutralizer are added after installation in the facility by the following formula Test method.
Number of surviving bacteria = ln (N / (N−P))
請求項1から4の何れかの方法において,前記検定基材を密封する被覆材に前記培地及び殺菌中和剤を装填し,前記施設内設置後の検定基材を前記被覆材で密封すると同時に培地及び殺菌中和剤を添加してなる殺菌試験方法。 5. The method according to claim 1, wherein the covering material for sealing the test base material is loaded with the culture medium and the bactericidal neutralizing agent, and the test base material after installation in the facility is sealed with the covering material. A sterilization test method comprising adding a culture medium and a sterilization neutralizer. 請求項5の方法において,前記基材を行列状の窪みが形成された蓋材付きマイクロプレートとし,前記希釈系列の各希釈液を蓋材又はマイクロプレート上に列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材とし,前記培地及び殺菌中和剤をマイクロプレート又は蓋材に装填し,前記施設内設置後にマイクロプレートと蓋材とを密着させて培養してなる殺菌試験方法。 6. The method according to claim 5, wherein the base material is a microplate with a lid member in which a matrix of depressions is formed, and each dilution liquid in the dilution series is dropped in a row on the lid member or microplate and repeated a plurality of times. Sterilized by drying and adhering in a matrix form as a test substrate, loading the medium and bactericidal neutralizer on a microplate or lid, and incubating the microplate and lid after intimately installing in the facility Test method. 乾燥に耐える微生物の所定希釈系列の各希釈液をそれぞれ基材上に滴下し且つ乾燥付着させた初発菌数の検定基材,並びに前記検定基材に添加する培地及び殺菌中和剤を備えてなり,前記検定基材を殺菌剤で燻蒸する施設内に所定時間設置したのち前記培地及び殺菌中和剤を添加して培養し,前記検定基材上の各希釈段階における微生物増殖状態から生残菌数又は菌生存率を求めて殺菌効果を評価してなる殺菌試験装置。 A test substrate of the initial number of bacteria that has been dripped onto the substrate and each diluted solution of a predetermined dilution series of microorganisms resistant to drying is attached to the substrate, and a medium and a bactericidal neutralizing agent to be added to the test substrate. After the test substrate is fumigated with a bactericidal agent for a predetermined time, the medium and a bactericidal neutralizing agent are added and cultured. A sterilization test device that evaluates the sterilization effect by determining the number of bacteria or the survival rate of bacteria. 請求項7の装置において,前記乾燥に耐える微生物を,乾燥時に胞子が形成される微生物としてなる殺菌試験装置。 8. The sterilization test apparatus according to claim 7, wherein the microorganism that is resistant to drying is a microorganism in which spores are formed during drying. 請求項7又は8の装置において,前記基材上に前記希釈系列の各希釈液を列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材とし,前記施設内設置後に培地及び殺菌中和剤を添加した検定基材上の各希釈段階における微生物増殖が陽性の数からMPN法により生残菌数を求めてなる殺菌試験装置。 9. The apparatus according to claim 7 or 8, wherein each dilution solution of the dilution series is dropped in a row on the substrate and dried and attached in a matrix by repeating a plurality of times to form an assay substrate, and the medium after installation in the facility. And a sterilization test apparatus for determining the number of surviving bacteria by the MPN method from the number of positive microbial growth at each dilution stage on the test substrate to which a sterilizing neutralizer is added. 請求項9の装置において,前記基材上に前記希釈系列の各希釈液を列状に滴下し且つN回(Nは6以上の整数)反復により行列状に付着させて検定基材とし,前記施設内設置後に培地及び殺菌中和剤を添加した検定基材上の微生物増殖の陽性及び陰性を共に含む希釈段階における微生物増殖が陽性の数Pから次式により生残菌数を求めてなる殺菌試験装置。
生残菌数=ln(N/(N−P))
The apparatus according to claim 9, wherein the dilution series of the dilution series is dropped on the base material in a row and attached in a matrix by repeating N times (N is an integer of 6 or more) to form a test base material, Sterilization by obtaining the number of surviving bacteria from the number P of positive microbial growth at the dilution stage including both positive and negative of microbial growth on the test substrate to which medium and bactericidal neutralizer are added after installation in the facility by the following formula Test equipment.
Number of surviving bacteria = ln (N / (N−P))
請求項7から10の何れかの装置において,前記培地及び殺菌中和剤が装填された前記検定基材の密封被覆材を設け,前記施設内設置後の検定基材を前記被覆材で密封すると同時に培地及び殺菌中和剤を添加してなる殺菌試験装置。 The apparatus according to any one of claims 7 to 10, wherein a sealing covering material for the test base material loaded with the culture medium and a bactericidal neutralizing agent is provided, and the test base material after installation in the facility is sealed with the covering material. At the same time, a sterilization test device to which a culture medium and a sterilization neutralizer are added. 請求項11の装置において,前記基材を行列状の窪みが形成された蓋材付きマイクロプレートとし,前記希釈系列の各希釈液を蓋材又はマイクロプレート上に列状に滴下し且つ複数回反復により行列状に乾燥付着させて検定基材とし,前記培地及び殺菌中和剤をマイクロプレート又は蓋材に装填し,前記施設内設置後にマイクロプレートと蓋材とを密着させて培養してなる殺菌試験装置。 12. The apparatus according to claim 11, wherein the base material is a microplate with a lid member formed with a matrix of depressions, and the dilutions of the dilution series are dropped in a row on the lid member or microplate and repeated a plurality of times. Sterilized by drying and adhering in a matrix form as a test substrate, loading the medium and bactericidal neutralizer on a microplate or lid, and incubating the microplate and lid after intimately installing in the facility Test equipment.
JP2015188990A 2015-09-25 2015-09-25 Sterilization test method and apparatus Active JP6555815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015188990A JP6555815B2 (en) 2015-09-25 2015-09-25 Sterilization test method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188990A JP6555815B2 (en) 2015-09-25 2015-09-25 Sterilization test method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019127184A Division JP6737559B2 (en) 2019-07-08 2019-07-08 Sterilization test method and device

Publications (2)

Publication Number Publication Date
JP2017060451A true JP2017060451A (en) 2017-03-30
JP6555815B2 JP6555815B2 (en) 2019-08-07

Family

ID=58428593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188990A Active JP6555815B2 (en) 2015-09-25 2015-09-25 Sterilization test method and apparatus

Country Status (1)

Country Link
JP (1) JP6555815B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201466A (en) * 1997-01-21 1998-08-04 Showa Yakuhin Kako Kk Biological indicator
US5856118A (en) * 1998-01-20 1999-01-05 Dalmasso; Joseph P. Biological indicator and method
JPH11510051A (en) * 1995-07-28 1999-09-07 ミネソタ マイニング アンド マニュファクチャリング カンパニー Multi-zone sterilization indicator
JP2001512031A (en) * 1997-08-01 2001-08-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Methods and instruments for detecting and counting microorganisms
JP2002537827A (en) * 1999-03-09 2002-11-12 スリーエム イノベイティブ プロパティズ カンパニー Disk assay device with inoculation pad and method of use
WO2003022689A1 (en) * 2001-09-05 2003-03-20 Dai Nippon Printing Co., Ltd. Article sterilizing method and sterilizing device
WO2007148410A1 (en) * 2006-06-21 2007-12-27 Toyo Seikan Kaisya, Ltd. Bactericide and method of sterilization in aseptic filling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510051A (en) * 1995-07-28 1999-09-07 ミネソタ マイニング アンド マニュファクチャリング カンパニー Multi-zone sterilization indicator
JPH10201466A (en) * 1997-01-21 1998-08-04 Showa Yakuhin Kako Kk Biological indicator
JP2001512031A (en) * 1997-08-01 2001-08-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Methods and instruments for detecting and counting microorganisms
US5856118A (en) * 1998-01-20 1999-01-05 Dalmasso; Joseph P. Biological indicator and method
JP2002537827A (en) * 1999-03-09 2002-11-12 スリーエム イノベイティブ プロパティズ カンパニー Disk assay device with inoculation pad and method of use
WO2003022689A1 (en) * 2001-09-05 2003-03-20 Dai Nippon Printing Co., Ltd. Article sterilizing method and sterilizing device
WO2007148410A1 (en) * 2006-06-21 2007-12-27 Toyo Seikan Kaisya, Ltd. Bactericide and method of sterilization in aseptic filling

Also Published As

Publication number Publication date
JP6555815B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
Malone et al. Approaches to biofilm-associated infections: the need for standardized and relevant biofilm methods for clinical applications
Parker et al. Ruggedness and reproducibility of the MBEC biofilm disinfectant efficacy test
D’Accolti et al. Fighting AMR in the healthcare environment: microbiome-based sanitation approaches and monitoring tools
Luppens et al. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants
Waldner et al. From exit to entry: long-term survival and transmission of Salmonella
Sella et al. Bacillus atrophaeus: main characteristics and biotechnological applications–a review
US20180015193A1 (en) Biological sterilization indicator with sterilant resistance modulator
Møretrø et al. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments
Rastogi et al. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores
Lowe et al. Impact of chlorine dioxide gas sterilization on nosocomial organism viability in a hospital room
Humphreys Testing standards for sporicides
Günther et al. Comparative testing of disinfectant efficacy on planktonic bacteria and bacterial biofilms using a new assay based on kinetic analysis of metabolic activity
Jabłońska-Trypuć et al. Inanimate surfaces as a source of hospital infections caused by fungi, bacteria and viruses with particular emphasis on SARS-CoV-2
Naka et al. Effectiveness of slightly acidic electrolyzed water on bacteria reduction: in vitro and spray evaluation
Totaro et al. Role of hydrogen peroxide vapor (HPV) for the disinfection of hospital surfaces contaminated by multiresistant bacteria
Goeres et al. Development, standardization, and validation of a biofilm efficacy test: The single tube method
Eissa et al. Bacterial vs. fungal spore resistance to peroxygen biocide on inanimate surfaces
Michelini et al. UltraViolet SANitizing system for sterilization of ambulances fleets and for real-time monitoring of their sterilization level
Gradel et al. Monitoring the efficacy of steam and formaldehyde treatment of naturally Salmonella‐infected layer houses
Augustyn et al. Inactivation of spores and vegetative forms of Clostridioides difficile by chemical biocides: mechanisms of biocidal activity, methods of evaluation, and environmental aspects
JP6555815B2 (en) Sterilization test method and apparatus
JP6737559B2 (en) Sterilization test method and device
JP4775397B2 (en) Microbe measurement system
BR112020000500A2 (en) method to detect and differentiate bacterial spores from vegetative cells and other microorganisms in a sample.
Lompo et al. Bacterial Contamination of Antiseptics, Disinfectants and Hand Hygiene Products in Healthcare Facilities in High-Income Countries: A Scoping Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6555815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250