JP2017059448A - Positive electrode for magnesium air battery - Google Patents
Positive electrode for magnesium air battery Download PDFInfo
- Publication number
- JP2017059448A JP2017059448A JP2015184379A JP2015184379A JP2017059448A JP 2017059448 A JP2017059448 A JP 2017059448A JP 2015184379 A JP2015184379 A JP 2015184379A JP 2015184379 A JP2015184379 A JP 2015184379A JP 2017059448 A JP2017059448 A JP 2017059448A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- activated carbon
- carbon
- magnesium
- fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inert Electrodes (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、マグネシウム空気電池用正極に関する。 The present invention relates to a positive electrode for a magnesium air battery.
マグネシウムは、豊富な資源量、高エネルギー密度、安全性、環境負荷、リサイクル性といった観点から総合的に優れたエネルギー材料として注目を集めている。マグネシウム空気電池は、マグネシウムから電気エネルギーを取り出す手段として研究開発が進み実用化も進んでいる。しかしながら、マグネシウム空気電池は電流密度が低く、その結果小型電池では出力電流を高くすることが困難であり、電池の高出力化のためには電池の大きさが大きくなる。そのため、電池が比較的大きくても問題のない非常用電源や低電流でも駆動できるLED照明用電源等のアプリケーションに使用が限定されている。 Magnesium is attracting attention as an excellent energy material from the viewpoints of abundant resources, high energy density, safety, environmental impact, and recyclability. Magnesium-air batteries are being researched and developed as a means of extracting electrical energy from magnesium, and are being put to practical use. However, the current density of the magnesium-air battery is low, and as a result, it is difficult to increase the output current with a small battery, and the size of the battery is increased to increase the output of the battery. Therefore, the use is limited to applications such as an emergency power supply that does not cause a problem even if the battery is relatively large and an LED illumination power supply that can be driven even at a low current.
また、電池の高出力化のためには、下記(1),(2)の反応を促進することが必要になるが、現状では正極の反応が電流量を律速しており、いかに正極反応を活発化および安定化させるかが重要となる。
正極:O2+2H2O+4e− → 4OH− …(1)
負極:2Mg → 2Mg2++4e− …(2)
全体:2Mg+O2+2H2O → 2Mg(OH)2
Moreover, in order to increase the output of the battery, it is necessary to promote the reactions (1) and (2) below. However, at present, the reaction of the positive electrode determines the amount of current and It is important to activate and stabilize.
Positive electrode: O 2 + 2H 2 O + 4e − → 4OH − (1)
Negative electrode: 2Mg → 2Mg2 ++ 4e − (2)
Overall: 2Mg + O 2 + 2H 2 O → 2Mg (OH) 2
従来技術として下記特許文献1に、マグネシウム空気電池が開示されている。 このマグネシウム空気電池では、その正極にセルロース系繊維を炭素化した炭素化布帛が用いられており、マグネシウム板に、セパレータおよびこの炭素化布帛を巻き付けた構成にすることで、空気の取り込みを効果的に行い、反応体積をかせぐことで、上記の正極反応を安定化させている As a prior art, a magnesium air battery is disclosed in Patent Document 1 below. In this magnesium-air battery, a carbonized fabric in which cellulosic fibers are carbonized is used for the positive electrode. By taking a configuration in which a separator and this carbonized fabric are wound around a magnesium plate, air intake is effective. The above positive electrode reaction is stabilized by increasing the reaction volume.
また、下記特許文献2に開示されているマグネシウム空気電池では、その正極として、カーボンペーパーにカーボンおよび触媒金属を結着剤を介して塗付結着させたものが用いられており、上記の正極反応を活発化させている。 Further, in the magnesium air battery disclosed in the following Patent Document 2, as the positive electrode, carbon paper coated with carbon and a catalytic metal via a binder is used, and the above positive electrode The reaction is activated.
しかしながら、上記特許文献1に開示された技術では、炭素化布帛が撥水性を有するために、水の供給が不十分のため、上記の正極反応は不活発で電流密度が稼げないという課題があった。また、特許文献2に開示された技術では、正極材料の表面が電解液に覆われるという所謂フラッディング現象により、空気の正極表面への導入が阻害され、急激に正極反応が減退し、出力電流が低下するという課題を有していた。 However, the technique disclosed in Patent Document 1 has a problem that the positive electrode reaction is inactive and the current density cannot be increased because the carbonized fabric has water repellency, so that the supply of water is insufficient. It was. Further, in the technique disclosed in Patent Document 2, the so-called flooding phenomenon that the surface of the positive electrode material is covered with the electrolyte prevents the introduction of air to the positive electrode surface, the positive electrode reaction rapidly decreases, and the output current is reduced. It had the problem of decreasing.
本発明は、上記に鑑みてなされたものであって、正極反応を促進し、電流密度を上げること、且つフラッディング現象を抑圧することで、高出力および出力安定性を有するマグネシウム空気電池を提供することを目的とする。 The present invention has been made in view of the above, and provides a magnesium-air battery having high output and output stability by promoting the positive electrode reaction, increasing the current density, and suppressing the flooding phenomenon. For the purpose.
上述した課題を解決し、目的を達成するために、本発明のマグネシウム空気電池用正極は、撥水性の炭素繊維で構成された布帛の一方の面および前記面から所定の深さまで、活性炭素が担持されており、前記活性炭素は結着剤により前記炭素繊維に結着されていることを特徴とする In order to solve the above-described problems and achieve the object, the positive electrode for a magnesium-air battery of the present invention has activated carbon containing one surface of a fabric composed of water-repellent carbon fibers and a predetermined depth from the surface. And the activated carbon is bound to the carbon fiber by a binder.
本発明にかかるマグネシウム空気電池用正極は、空気の正極への導入を促進し、且つ正極の表面が電解液に覆われる、所謂フラッディング現象を抑制することで、電流密度を上げるとともに、長時間にわたって安定な出力を実現することができる、という効果を奏する。 The positive electrode for magnesium-air battery according to the present invention promotes the introduction of air into the positive electrode and suppresses the so-called flooding phenomenon in which the surface of the positive electrode is covered with the electrolyte, thereby increasing the current density and extending over a long period of time. There is an effect that a stable output can be realized.
以下に、本発明にかかるマグネシウム空気電池用正極の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Below, the example of the positive electrode for magnesium air batteries concerning the present invention is described in detail based on a drawing. Note that the present invention is not limited to the embodiments.
(実施例1)
図1は本実施例のマグネシウム空気電池用正極の断面図を示している。 本実施例のマグネシウム空気電池用正極は炭素化布帛1と炭素化布帛1に担持された活性炭2で構成される。活性炭2は炭素化布帛1の一方の面に接して面上に担持されている厚さがd1の活性炭塗付層4を形成し、また炭素化布帛内に炭素化布帛1の当該面から厚さd2の深さまで担持され、炭素化布帛内活性炭担持層5を構成している。 炭素化布帛1は炭素繊維3が捩れ重なって構成されている。炭素化布帛1としてはセルロース系繊維の糸からなる原料繊維布帛を加熱炭素化して製造した炭素化繊維布帛である、新日本テックス社製のわし炭を用いた。 また、活性炭2としてはグラファイトとカーボンブラックを混合したものを用いた。 グラファイトとカーボンラックを乾燥混合したものを結着剤のPVDF(ポリフッ化ビ二リデン)を溶かしたNMP溶剤に分散させ、ペーストを作製し、炭素化布帛1の第一の面に塗付し、乾燥・プレス加工し作製した。 ペーストの粘度や塗付条件を調整することにより、活性炭塗付層4の厚みd1や、炭素布帛内活性炭担持層5の厚みd2を所定の厚みに調整した。
Example 1
FIG. 1 shows a cross-sectional view of a positive electrode for a magnesium-air battery of this example. The positive electrode for the magnesium-air battery of this example is composed of a carbonized fabric 1 and activated carbon 2 supported on the carbonized fabric 1. The activated carbon 2 is in contact with one surface of the carbonized fabric 1 to form an activated carbon coating layer 4 having a thickness d1 supported on the surface, and the carbonized fabric 1 has a thickness from the surface of the carbonized fabric 1. It is supported to a depth of d2 and constitutes an activated carbon supporting layer 5 in the carbonized fabric. The carbonized fabric 1 is formed by twisting and overlapping carbon fibers 3. As the carbonized fabric 1, sardine charcoal manufactured by Shin Nippon Tex Co., Ltd., which is a carbonized fiber fabric produced by heating and carbonizing a raw fiber fabric made of cellulosic fibers, was used. Further, as the activated carbon 2, a mixture of graphite and carbon black was used. A dry mixture of graphite and carbon rack is dispersed in an NMP solvent in which PVDF (polyvinylidene fluoride) as a binder is dissolved, a paste is prepared, and applied to the first surface of the carbonized fabric 1. It was produced by drying and pressing. By adjusting the viscosity and application conditions of the paste, the thickness d1 of the activated carbon application layer 4 and the thickness d2 of the activated carbon supporting layer 5 in the carbon fabric were adjusted to a predetermined thickness.
図2は本実施例のマグネシウム空気電池用正極の断面の電子顕微鏡写真である。(a)は断面の全体図で、炭素化布帛1内には、炭素繊維3が捩れ重なっている。(b)は断面をさらに拡大したものである。炭素化布帛1を構成する炭素繊維3は5〜15ミクロン程度の太さで、捩れ重なっており、炭素繊維3間には空間が存在する。(c)および(d)はさらに活性炭が担持されている部分を拡大したものである。(c)では炭素繊維間に比較的大きな炭素の凝集体が存在し、炭素繊維に結着されている。この比較的おおきな凝集体は、その形状からグラファイトが核になっているものと推定される。 また、(d)では、炭素繊維の表面に、50nm程度の大きさの活性炭の一次粒子および、一次粒子が数個〜数十個程度集まった小さな凝集体が結着している。 FIG. 2 is an electron micrograph of a cross section of the positive electrode for the magnesium-air battery of this example. (A) is an overall view of a cross section, and carbon fibers 3 are twisted and overlapped in the carbonized fabric 1. (B) is a cross-sectional view further enlarged. The carbon fibers 3 constituting the carbonized fabric 1 have a thickness of about 5 to 15 microns and are twisted and overlapped, and there is a space between the carbon fibers 3. (C) and (d) are enlarged views of the portion where the activated carbon is supported. In (c), relatively large aggregates of carbon exist between the carbon fibers and are bound to the carbon fibers. This relatively large aggregate is presumed to have graphite as a nucleus from its shape. In (d), primary particles of activated carbon having a size of about 50 nm and small aggregates in which several to several tens of primary particles are collected are bound to the surface of the carbon fiber.
図3は本実施例のマグネシウム空気電池用正極を用いて作製したマグネシウム空気電池セルの電流電圧特性を示したものである。作製したマグネシウム空気電池セルは、負極のマグネシウムに厚さが0.3mm、大きさが1.5cm x 1.5cmのAZ31のマグネシウム板を用いた。 セパレータとして、厚さ約0.1mmのセルロース系不織布を、集電板には厚さ0.05mmの銅箔を用いた。電解液として、10%のNaCl水溶液を用いた。 図3の電流電圧特性は、作製したマグネシウム電池セルに電解液を0.1g滴下した時の特性を示したものである。 比較のために、正極に炭素化布帛1のみを使用したものと、市販されている従来の活性炭を不織布に担持したものを示す。 図からわかるように、本発明のマグネシウム電池用正極を用いたセルでは、内部抵抗(図中でグラフの傾きΔV/ΔI)が従来の活性炭を不織布に担持した正極を用いて作製したセルや炭素化布のみの正極を用いて作製した電池セルに較べ、大幅に低減できていることがわかる。これらの従来のものに較べ、内部抵抗はおよそ1/3〜1/4に低減されている。なお、グラフを直線近似して得られた内部抵抗は、本発明が8.4Ω、炭素化布帛のみのものが、24.6Ω、市販されている従来の活性炭を不織布に担持したものが36.9Ωであった。また、直線近似式のY切片を開放電圧と定義した場合の、開放電圧はそれぞれ、1.30V、1.31V、1.04Vであった。 FIG. 3 shows the current-voltage characteristics of a magnesium-air battery cell fabricated using the positive electrode for a magnesium-air battery of this example. In the produced magnesium-air battery cell, a magnesium plate of AZ31 having a thickness of 0.3 mm and a size of 1.5 cm × 1.5 cm was used for the negative electrode magnesium. A cellulose-based nonwoven fabric having a thickness of about 0.1 mm was used as a separator, and a copper foil having a thickness of 0.05 mm was used as a current collector plate. As the electrolytic solution, a 10% NaCl aqueous solution was used. The current-voltage characteristics in FIG. 3 show the characteristics when 0.1 g of electrolyte is dropped on the produced magnesium battery cell. For comparison, one using only the carbonized fabric 1 for the positive electrode and one using a commercially available conventional activated carbon supported on a nonwoven fabric are shown. As can be seen, in the cell using the magnesium battery positive electrode of the present invention, the internal resistance (inclination ΔV / ΔI of the graph in the figure) is a cell or carbon produced using a positive electrode in which a conventional activated carbon is supported on a nonwoven fabric. It can be seen that the battery cell can be greatly reduced as compared with the battery cell produced using the positive electrode made only of chemical cloth. Compared with these conventional ones, the internal resistance is reduced to about 1/3 to 1/4. The internal resistance obtained by approximating the graph linearly was 8.4Ω for the present invention, 24.6Ω for the carbonized fabric only, and 36.9Ω for the conventional activated carbon supported on the nonwoven fabric. It was. In addition, when the Y-intercept of the linear approximation formula was defined as an open circuit voltage, the open circuit voltages were 1.30V, 1.31V, and 1.04V, respectively.
図4は本実施例のマグネシウム空気用正極を用いて作製したマグネシウム空気電池セルの放電特性を示したものである。比較のために、従来の活性炭担持不織布を正極に用いた放電特性も同様に示している。この放電特性は、電解液を作製した電池セルに0.2g注入し、電圧および放電エネルギーの経時変化をプロットしたものである。左図の電圧の経時変化からわかるように、従来の活性炭担持不織布を正極に用いた電池セルでは、電解液注入開始した直後に約1.2Vから0.7Vに急激に電圧が低下する現象が起きている。これは、正極の表面が電解液で覆われてしまうことで、酸素の侵入が阻害され正極反応が緩慢になる現象、所謂フラッディング現象と呼ばれているものである。一方、本発明のマグネシウム空気電池用正極を用いて作製した電池セルでは、フラッディング現象は起きておらず、電解液注入後約1.2Vに立ち上がってからは、時間経過とともに漸減していく。また、放電時間も、従来の活性炭担持不織布を正極に用いた電池セルよりも長時間であり、0.8V以上をキープできている時間は約9時間であり、従来の約1.5倍となっている。放電エネルギーについては、右のグラフに示したように、約60mWhと、従来の約2倍の値が得られている。 FIG. 4 shows the discharge characteristics of a magnesium-air battery cell manufactured using the positive electrode for magnesium air of this example. For comparison, the discharge characteristics using a conventional activated carbon-supported nonwoven fabric for the positive electrode are also shown. This discharge characteristic is obtained by injecting 0.2 g into the battery cell in which the electrolytic solution was prepared, and plotting changes with time in voltage and discharge energy. As can be seen from the time-dependent change in voltage in the left figure, in a battery cell using a conventional activated carbon-supported nonwoven fabric for the positive electrode, there is a phenomenon that the voltage suddenly drops from about 1.2 V to 0.7 V immediately after the start of electrolyte injection. stay up. This is called a so-called flooding phenomenon, in which the surface of the positive electrode is covered with an electrolytic solution, so that the penetration of oxygen is inhibited and the positive electrode reaction becomes slow. On the other hand, in the battery cell produced using the positive electrode for magnesium-air battery of the present invention, the flooding phenomenon does not occur and gradually rises with time after rising to about 1.2 V after the electrolyte injection. In addition, the discharge time is longer than that of a battery cell using a conventional activated carbon-supported nonwoven fabric for the positive electrode, and the time during which 0.8 V or more can be maintained is about 9 hours, which is about 1.5 times that of the conventional battery cell. ing. As shown in the graph on the right, the discharge energy is about 60 mWh, which is about twice the conventional value.
図5は本実施例の原理を説明する図であり、炭素化布帛1の第一の面の近傍を模式的に表したものである。 炭素化布帛1は細い炭素繊維3が捩れて形成されており、炭素繊維3表面にはマイクロポーラスが形成されている。 また、炭素化布帛1の一方の面には活性炭素2が高密度で担持されており、また炭素化布帛1内部には活性炭2が炭素繊維3の隙間に炭素繊維3と結着して担持されている。 なお、図では示されていないが、活性炭素2を担持する際には結着剤のPVDFを含んだペーストを塗付しており、活性炭素2間や活性炭素2と炭素繊維3の間は結着剤が存在し、それぞれを結着させている。 また、炭素化布帛1内に担持されている活性炭素2は炭素化布帛1の第一の面から深い位置になればなるほど、その担持密度が減少していくように担持されている。 FIG. 5 is a diagram for explaining the principle of this embodiment, and schematically shows the vicinity of the first surface of the carbonized fabric 1. The carbonized fabric 1 is formed by twisting thin carbon fibers 3, and microporous is formed on the surface of the carbon fibers 3. In addition, activated carbon 2 is supported at a high density on one surface of the carbonized fabric 1, and activated carbon 2 is supported in the carbonized fabric 1 by binding the carbon fibers 3 in the gaps between the carbon fibers 3. Has been. Although not shown in the figure, when the activated carbon 2 is supported, a paste containing PVDF as a binder is applied, and between the activated carbon 2 and between the activated carbon 2 and the carbon fiber 3 is applied. There are binders that bind each other. In addition, the activated carbon 2 supported in the carbonized fabric 1 is supported so that its supporting density decreases as the position becomes deeper from the first surface of the carbonized fabric 1.
マグネシウム空気電池では、正極と負極に挟まれたセパレータに電解液を浸透させて発電反応が起きる。 図5で示されたように、炭素化布帛1の活性炭素2が担持されている面から(図で上から)電解液6が供給される。 図では、炭素化布帛1に担持された活性炭2の表面が電解液6で覆われている状態になっており、このような状態では、発電反応は活発におこらない。ところが、炭素化布帛1の内部では、図のように炭素化布帛1の炭素繊維3に形成されたマイクロポーラスにより、表面が撥水性になっており、フラッディング現象が起こらない。一方、炭素化布帛1内に担持された活性炭3は、比較的おおきな凝集体となって炭素繊維3間に担持されており、この凝集体には比較的大きな径のマクロポーラスが存在し、これらのマクロポーラスは電解液を保持することができる。このため、炭素化布帛1内では図のように、電解液がこの比較的おおきな凝集体上に局在しながら、保持されることになる。さらに、炭素繊維3上には一次粒子と、一次粒子が数個〜数十個集まった比較的小さな凝集体が結着している。これらの一次粒子と比較的小さな凝集体にも比較的大きな凝集体の保持する電解液から、電解液が供給・保持される。この結果、図の拡大部分で示したように、炭素繊維3を介して電子が供給され、炭素繊維3の隙間を縫って酸素が供給され、比較的おおきな凝集体に保持された電解液の水が供給可能な、三相共存界面がひろく存在することになる。 即ち、正極:O2+2H2O+4e− → 4OH− が活発に起き、電流密度が高くなり、且つ、フラッディング現象も炭素化布帛1の炭素繊維3のもつ撥水性により防止することができる。 In a magnesium-air battery, a power generation reaction occurs when an electrolyte is infiltrated into a separator sandwiched between a positive electrode and a negative electrode. As shown in FIG. 5, the electrolytic solution 6 is supplied from the surface of the carbonized fabric 1 on which the activated carbon 2 is supported (from the top in the figure). In the figure, the surface of the activated carbon 2 supported on the carbonized fabric 1 is covered with the electrolytic solution 6. In such a state, the power generation reaction does not occur actively. However, inside the carbonized fabric 1, the surface is water-repellent due to the microporous formed on the carbon fibers 3 of the carbonized fabric 1 as shown in the figure, and no flooding phenomenon occurs. On the other hand, the activated carbon 3 supported in the carbonized fabric 1 becomes a relatively large aggregate and is supported between the carbon fibers 3, and the aggregate has a macroporous having a relatively large diameter. The macroporous layer can hold an electrolyte solution. For this reason, in the carbonized fabric 1, as shown in the figure, the electrolytic solution is retained while being localized on the relatively large aggregate. Further, primary particles and relatively small aggregates in which several to several tens of primary particles are collected are bound on the carbon fiber 3. These primary particles and relatively small aggregates are also supplied and retained from the electrolyte retained by the relatively large aggregates. As a result, as shown in the enlarged portion of the figure, electrons are supplied through the carbon fibers 3, and oxygen is supplied by sewing the gaps between the carbon fibers 3, so that the water of the electrolytic solution held in a relatively large aggregate is retained. There will be a three-phase coexistence interface that can be supplied. That is, the positive electrode: O 2 + 2H 2 O + 4e − → 4OH − is actively generated, the current density is increased, and the flooding phenomenon can be prevented by the water repellency of the carbon fibers 3 of the carbonized fabric 1.
本実施例では撥水性の炭素繊維はセルロース系繊維の糸からなる原料繊維布帛を加熱炭素化したものであるため、フッ素処理等を施した撥水性炭素繊維よりも気体吸着性に優れており、また電気伝導性も高いために、より正極反応が活発になる。また、従来のフッ素処理等を施した撥水性炭素繊維で構成された不織布ではバインダーにより繊維間が結着しており、活性炭素を担持してもその接触電気抵抗は高くなり、電池性能を劣化させるが、本実施例ではそのようなことはない。また、活性炭としてグラファイトとカーボンブラックを用いることにより、比較的おおきな凝集体と、ちいさな凝集体、一次粒子がうまくバランスしており、電解液の保持される部位が、多く点在し且つ繋がった状態を作り出すことで、三相共存界面の面積が多くなり、また電子の通路、水酸化イオンの通路も確保され、正極反応が活発に起こることになる。 In this example, the water-repellent carbon fiber is obtained by heating carbonization of a raw fiber fabric made of cellulosic fiber yarns, and thus has better gas adsorbability than water-repellent carbon fiber subjected to fluorine treatment, etc. In addition, since the electrical conductivity is high, the positive electrode reaction becomes more active. In addition, the conventional non-woven fabric composed of water-repellent carbon fibers treated with fluorine treatment, etc., the fibers are bound by the binder, and even if activated carbon is carried, the contact electrical resistance is increased and the battery performance is deteriorated. However, this is not the case in this embodiment. In addition, by using graphite and carbon black as activated carbon, relatively large aggregates, small aggregates, and primary particles are well balanced, and many sites where electrolyte solution is held are scattered and connected. As a result, the area of the three-phase coexistence interface is increased, the passage of electrons and the passage of hydroxide ions are secured, and the positive electrode reaction occurs actively.
(実施例2)
図6は本発明の第2の実施例の断面図である。実施例1に対して、不織布7がさらに、炭素化布帛1の面上に担持された活性炭上に接着されている。 図では示されていないが、この不織布には、カーボンナノチューブが担持されている。カーボンナノチューブは白金に代わる触媒として、その高い触媒活性がみられ、マグネシウム空気電池においても正極反応の活性化が期待できる。 作製方法は、いたって簡単であり、実施例1における作製の過程で、炭素化布帛1に活性炭素2と結着剤のペーストを塗付する工程後にカーボンナノチューブを担持させた不織布を、貼り付け、乾燥させるだけである。
(Example 2)
FIG. 6 is a cross-sectional view of a second embodiment of the present invention. In contrast to Example 1, the nonwoven fabric 7 is further bonded onto the activated carbon supported on the surface of the carbonized fabric 1. Although not shown in the figure, this non-woven fabric carries carbon nanotubes. Carbon nanotubes have high catalytic activity as a catalyst instead of platinum, and activation of the positive electrode reaction can be expected even in a magnesium air battery. The production method is quite simple, and in the production process in Example 1, a non-woven fabric carrying carbon nanotubes was applied after the step of applying activated carbon 2 and a binder paste to carbonized fabric 1. Just dry.
図7は実施例2で作製したマグネシウム空気電池用正極を用いて作製したマグネシウム空気電池セルの電流電圧特性である。図からわかるように、実施例1のものに較べ、電池の電圧が大きくなっている。これは、カーボンナノチューブの触媒効果により、開放電圧が上昇したことによると考えられる。また、不織布7で炭素化布帛面上に担持された活性炭素を完全に覆ってしまう構成となっているため、担持された炭素粉が欠落する所謂「粉落ち」が起きないという効果も発揮できる。このことは、結着剤の活性炭素に対する重量比を減らすことができるため、結着剤による電池性能の劣化を抑制することができる。本実施例では、活性炭素と結着剤の重量比を97:3とした。 FIG. 7 shows current-voltage characteristics of a magnesium-air battery cell produced using the positive electrode for a magnesium-air battery produced in Example 2. As can be seen from the figure, the voltage of the battery is higher than that of Example 1. This is thought to be due to the increase in open-circuit voltage due to the catalytic effect of carbon nanotubes. Further, since the activated carbon supported on the carbonized fabric surface by the nonwoven fabric 7 is completely covered, the so-called “powder-off” in which the supported carbon powder is missing can also be exhibited. . This can reduce the weight ratio of the binder to the activated carbon, and thus can suppress the deterioration of battery performance due to the binder. In this example, the weight ratio of activated carbon to binder was 97: 3.
なお、本実施例では活性炭素としてグラファイトとカーボンブラックを混錬したものをもちいたが、これに限られるものではなく、ケッチェンブラック、カーボンナノチューブ、アセチレンブラック、グラファイト、フラーレンなどの活性炭素を単独、あるいは組み合わせて用いても良い。なお、本実施例では、炭素化布帛1の面および炭素化布帛1内に活性炭素2に担持したが、炭素化布帛1内だけに活性炭素2を担持しても良い。また、活性炭2の担持層は所定の深さd2までとしたが、全体に担持しても良い。また、本実施例では、製造の容易さから炭素化布帛の一方の面から活性炭素2を担持したが、両方の面から担持してもよい。高出力のために、炭素化布帛1を厚く設計した場合は、両面かから活性炭素2を担持したほうがよいことが想定される。 In this embodiment, graphite and carbon black kneaded were used as the active carbon, but the present invention is not limited to this, and active carbon such as ketjen black, carbon nanotube, acetylene black, graphite, fullerene and the like is used alone. Or they may be used in combination. In this embodiment, activated carbon 2 is supported on the surface of carbonized fabric 1 and in carbonized fabric 1, but activated carbon 2 may be supported only in carbonized fabric 1. Moreover, although the support layer of the activated carbon 2 is set to a predetermined depth d2, it may be supported on the whole. In this embodiment, activated carbon 2 is supported from one side of the carbonized fabric for ease of production, but it may be supported from both sides. When the carbonized fabric 1 is designed to be thick for high output, it is assumed that the activated carbon 2 should be supported from both sides.
1 炭素化布帛
2 活性炭
3 炭素繊維
4 活性炭塗付層
5 炭素化布帛内活性炭素担持層
6 電解液
7 不織布
DESCRIPTION OF SYMBOLS 1 Carbonized fabric 2 Activated carbon 3 Carbon fiber 4 Activated carbon coating layer 5 Activated carbon support layer in carbonized fabric 6 Electrolyte 7 Nonwoven fabric
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015184379A JP2017059448A (en) | 2015-09-17 | 2015-09-17 | Positive electrode for magnesium air battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015184379A JP2017059448A (en) | 2015-09-17 | 2015-09-17 | Positive electrode for magnesium air battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017059448A true JP2017059448A (en) | 2017-03-23 |
Family
ID=58390141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015184379A Pending JP2017059448A (en) | 2015-09-17 | 2015-09-17 | Positive electrode for magnesium air battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017059448A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019117746A (en) * | 2017-12-27 | 2019-07-18 | 学校法人立命館 | Electrode for power generation device, and power generation device |
CN115881990A (en) * | 2023-01-04 | 2023-03-31 | 彭昭团 | Porous fiber material for battery electrode |
-
2015
- 2015-09-17 JP JP2015184379A patent/JP2017059448A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019117746A (en) * | 2017-12-27 | 2019-07-18 | 学校法人立命館 | Electrode for power generation device, and power generation device |
JP7051082B2 (en) | 2017-12-27 | 2022-04-11 | 学校法人立命館 | Electrodes for power generation equipment and power generation equipment |
CN115881990A (en) * | 2023-01-04 | 2023-03-31 | 彭昭团 | Porous fiber material for battery electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery | |
Gueon et al. | Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes | |
Yuan et al. | Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution | |
JP3608053B2 (en) | Battery catalyst composition, gas diffusion layer, and fuel cell including these | |
JP5269919B2 (en) | Catalyst composition for fuel cell and use thereof | |
JP5320579B2 (en) | Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material | |
CN103620828B (en) | Battery having electrode structure including metal fiber and preparation method of electrode structure | |
Lv et al. | Enhanced electrochemical activity of carbon felt for V2+/V3+ redox reaction via combining KOH-etched pretreatment with uniform deposition of Bi nanoparticles | |
Liu et al. | Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery | |
US20090142647A1 (en) | Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell | |
CN110993961B (en) | Core-shell type nine-cobalt octasulfide nanoparticle composite nitrogen-sulfur co-doped carbon nanofiber composite material and preparation method and application thereof | |
CN105489392B (en) | A kind of graphene pole piece and preparation method thereof | |
KR101664235B1 (en) | Nano fiber composite supported catalyst and method comprising the same | |
CN103824701A (en) | Active graphene composite electrode material | |
Manjunatha et al. | Facile carbon cloth activation strategy to boost oxygen reduction reaction performance for flexible zinc‐air battery application | |
KR102613534B1 (en) | Method for manufacturing electrode for vanadium redox flow battery and vanadium redox flow battery including the electrode obtained thereby | |
JP3960973B2 (en) | Battery catalyst composition, gas diffusion layer, and fuel cell including these | |
WO2010117134A3 (en) | Composition for producing positive electrode for electricity storage device, positive electrode for electricity storage device made with said composition, and electricity storage device comprising same | |
Zhang et al. | CeO2C2 Nanoparticles with Oxygen‐Enriched Vacancies In‐site Self‐embedded in Fe, N Co‐doped Carbon Nanofibers as Efficient Oxygen Reduction Catalyst for Zn‐Air Battery | |
JP2016167365A (en) | Magnesium metal battery, interchangeable battery and power supply device | |
JP4781016B2 (en) | Manufacturing method of gas diffusion electrode for fuel cell | |
JP2017059448A (en) | Positive electrode for magnesium air battery | |
Hyun et al. | The influence of porous Co/CeO1. 88-nitrogen-doped carbon nanorods on the specific capacity of Li-O2 batteries | |
JP5464136B2 (en) | Method for producing gas diffusion electrode substrate | |
KR101845786B1 (en) | Producing method for electrode of a fuel cell and its electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210112 |