JP2017059305A - Gas diffusion layer for fuel cell - Google Patents
Gas diffusion layer for fuel cell Download PDFInfo
- Publication number
- JP2017059305A JP2017059305A JP2015180456A JP2015180456A JP2017059305A JP 2017059305 A JP2017059305 A JP 2017059305A JP 2015180456 A JP2015180456 A JP 2015180456A JP 2015180456 A JP2015180456 A JP 2015180456A JP 2017059305 A JP2017059305 A JP 2017059305A
- Authority
- JP
- Japan
- Prior art keywords
- diffusion layer
- gas diffusion
- fuel cell
- hydrophobicity
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池で用いられるガス拡散層に関する。 The present invention relates to a gas diffusion layer used in a fuel cell.
近年、エネルギー効率および排出ガスの観点から燃料電池を用いた発電方法が注目されている。燃料電池には、固体高分子電解質型燃料電池(PEFC)、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)、固体酸化物型燃料電池(SOFC)、溶融炭酸塩型燃料電池(MCFC)など複数の方法が知られている。このうちPEFCは、低温作動と高出力密度という利点を有しており、可搬式のポータブル電源、ノートコンピューターなどのモバイル機器、自動車の動力用電源などへの適用が進められている。 In recent years, a power generation method using a fuel cell has attracted attention from the viewpoint of energy efficiency and exhaust gas. Fuel cells include solid polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), alkaline fuel cells (AFC), solid oxide fuel cells (SOFC), molten carbonate fuel cells ( A plurality of methods such as MCFC) are known. Among these, PEFC has the advantages of low-temperature operation and high output density, and is being applied to portable portable power supplies, mobile devices such as notebook computers, power supplies for automobiles, and the like.
PEFCは一般的にプロトン導電性の固体電解質膜の両面に、触媒または触媒を有した炭素材料を配置し、さらに酸化剤である気体酸素、水素等の気体燃料を供給するとともに電極としての機能を有したガス拡散層(GDL)が各々の触媒面に配置されている。 The PEFC generally has a catalyst or a carbon material having a catalyst on both sides of a proton conductive solid electrolyte membrane, and further supplies gaseous fuel such as gaseous oxygen or hydrogen as an oxidant and functions as an electrode. A gas diffusion layer (GDL) is provided on each catalyst surface.
PEFCにおいては、触媒/固体電解質/ガス(酸化剤または燃料)が接触する界面で電極反応が進行する。固体電解質は十分なプロトン伝導性を発現するため湿潤状態を維持することが必要である。したがってGDLには厚み方向への気体透過性(ガス供給)、保湿性(固体電解質の湿潤性維持)が必要であり、さらには正極で生じた水分を適度に排出し、閉塞を防止するための疎水性を有していることが求められる。 In PEFC, the electrode reaction proceeds at the interface where the catalyst / solid electrolyte / gas (oxidant or fuel) contacts. The solid electrolyte needs to be maintained in a wet state in order to exhibit sufficient proton conductivity. Therefore, GDL needs to have gas permeability (gas supply) and moisture retention (maintenance of solid electrolyte) in the thickness direction, and to properly drain the water generated in the positive electrode and prevent clogging. It is required to have hydrophobicity.
GDLは一般的に導電性を有する多孔質材料が用いられ、特に導電性や化学的な安定性の観点から炭素材料からなる不織布、織物などのシート状物が用いられる。これらの多孔質材料に疎水性を与えるために、ポリテトラフルオロエチレン(PTFE)ディスパージョンを多孔質材料に浸透させた後に熱分解により界面活性剤を除去するとともに溶融固着させる方法(特許文献1参照)などが知られている。しかしながら、高温での加熱処理が必要であり、また繊維間に水かき状の皮膜を形成するため、排水性やガス透過性に悪影響を与える。
また、溶液乾燥によるマイグレーションなどが生じるため均一な特性を得るには煩雑な工程を経る必要がある(特許文献2参照)。
In general, a porous material having conductivity is used for the GDL, and in particular, a sheet-like material such as a nonwoven fabric or a woven fabric made of a carbon material is used from the viewpoint of conductivity and chemical stability. In order to impart hydrophobicity to these porous materials, a method in which polytetrafluoroethylene (PTFE) dispersion is infiltrated into the porous material and then the surfactant is removed by thermal decomposition and melt-fixed (see Patent Document 1). ) Etc. are known. However, heat treatment at a high temperature is necessary, and a web-like film is formed between the fibers, which adversely affects drainage and gas permeability.
Moreover, since migration due to solution drying or the like occurs, it is necessary to go through complicated steps to obtain uniform characteristics (see Patent Document 2).
これらを解決するために、ヘキサメチルジシラザンで処理された疎水性シリカ粒子と樹脂混合物(特許文献3参照)を用いた撥水剤を塗布した後に常温にて乾燥することにより作成したGDLが開示されているが、非PTFE材料を用いていることと通気抵抗の上昇により、GDLとしての特性が悪化するという問題がある(非特許文献1参照)。 In order to solve these problems, a GDL prepared by applying a water repellent using a hydrophobic silica particle treated with hexamethyldisilazane and a resin mixture (see Patent Document 3) and then drying at room temperature is disclosed. However, there is a problem that the characteristics as GDL deteriorate due to the use of a non-PTFE material and an increase in ventilation resistance (see Non-Patent Document 1).
また、GDLの面方向において疎水化度を変化させたパターンを作成すること、厚み方向に対して疎水化度を変化させることにより、排水特性の向上が示唆されているが(特許文献4〜6参照)、厚みの薄いシート材料を複数枚積層したり、煩雑な製造工程が必要である。 Further, it has been suggested that drainage characteristics are improved by creating a pattern in which the degree of hydrophobicity is changed in the GDL plane direction and by changing the degree of hydrophobicity in the thickness direction (Patent Documents 4 to 6). See), a plurality of thin sheet materials are laminated, and a complicated manufacturing process is required.
一方、フッ素ガスを用いて、炭素繊維表面にフッ化炭素皮膜を作成し撥水性を付与する方法が開示されている。フッ素ガスは低沸点かつ拡散性が高いためシート全体を一様に絶縁化と疎水化がなされるため、黒鉛化した脆い繊維を混合して用いる必要がある(特許文献7参照)。 On the other hand, a method of providing a water repellency by creating a fluorocarbon film on a carbon fiber surface using fluorine gas is disclosed. Since fluorine gas has a low boiling point and high diffusibility, the entire sheet is uniformly insulated and hydrophobized, so it is necessary to mix and use graphitized brittle fibers (see Patent Document 7).
また、プラズマやスパッタにてPTFEを蒸着する方法も開示されているが(特許文献8参照)、拡散による回りこみが発生しないため、シート表面近傍が疎水化されるのみである。 Further, although a method of depositing PTFE by plasma or sputtering is also disclosed (see Patent Document 8), since wraparound due to diffusion does not occur, only the vicinity of the sheet surface is hydrophobized.
均一に疎水性を付与するために、フッ素系溶媒に可溶なフッ素化アクリレート樹脂を用いる方法も開示されているが(特許文献9参照)、加水分解や分子配向により疎水性の低下が生じやすい。 A method using a fluorinated acrylate resin that is soluble in a fluorinated solvent in order to uniformly impart hydrophobicity is also disclosed (see Patent Document 9), but the hydrophobicity is likely to decrease due to hydrolysis or molecular orientation. .
本発明は、新規な燃料電池用ガス拡散層およびその製造方法に関するものであり、基材構造を破壊することなく通気度の低下を抑制し、さらには厚み方向、面方向に対して疎水化度の異なる傾斜機能を有したガス拡散層およびその製造方法を提供することを課題とするものである。 The present invention relates to a novel gas diffusion layer for a fuel cell and a method for producing the same, and suppresses a decrease in air permeability without destroying a base material structure. Further, the present invention relates to a degree of hydrophobicity in the thickness direction and the surface direction. It is an object of the present invention to provide a gas diffusion layer having different gradient functions and a method for manufacturing the same.
本発明者は、上記課題を解決するため鋭意研究した結果、遂に本発明を完成するに到った。すなわち、本発明は以下の通りである。
1.導電性材料からなる多孔質体に融点320℃以下のPTFEを担持させた燃料電池用ガス拡散層。
2.ガス拡散層の厚み方向に対して疎水化度が変化する上記1に記載の燃料電池用ガス拡散層。
3.ガス拡散層の面方向に対して疎水化度が変化する上記1に記載の燃料電池用ガス拡散層。
4.蒸着法によりPTFEが担持されている上記1〜3のいずれかに記載の燃料電池用ガス拡散層。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A gas diffusion layer for a fuel cell in which PTFE having a melting point of 320 ° C. or lower is supported on a porous body made of a conductive material.
2. 2. The fuel cell gas diffusion layer according to 1 above, wherein the degree of hydrophobicity varies with respect to the thickness direction of the gas diffusion layer.
3. 2. The fuel cell gas diffusion layer according to 1 above, wherein the degree of hydrophobicity changes with respect to the surface direction of the gas diffusion layer.
4). 4. The gas diffusion layer for a fuel cell according to any one of 1 to 3, wherein PTFE is supported by a vapor deposition method.
本発明により良好な通気性と疎水性を有し、かつ排水特性に優れた燃料電池用ガス拡散層を得ることができる。 According to the present invention, it is possible to obtain a gas diffusion layer for a fuel cell having good air permeability and hydrophobicity and excellent drainage characteristics.
本発明の導電性材料からなる多孔質体は、GDLとしての特性を与えるために導電性で化学的な安定性を有する材料を通気性ある構造体として用いることを特徴とする。所望の特性が得られるものであれば特に制限されないが、化学的な安定性と通気性、粒状炭素、繊維状炭素およびその複合物などが好ましく用いることができる。 The porous body made of the conductive material of the present invention is characterized in that a conductive and chemically stable material is used as a breathable structure in order to give characteristics as a GDL. Although it will not restrict | limit especially if a desired characteristic is acquired, Chemical stability and air permeability, granular carbon, fibrous carbon, its composite etc. can be used preferably.
粒状炭素としては、各種カーボンブラック、フラーレン、カーボンナノチューブなどの粉末から得られる成形物、ピッチ焼結物などが例示され、充填物もしくは更に結着剤を用いることで塗布、シート化して用いられる。また、繊維状炭素としてはポリアクリロニトリル系、ピッチ系、レーヨン系などの炭素繊維を好ましく用いることが可能であり、漉紙、織物、編物、不織布などの手法によりシート化して用いられる。 Examples of the granular carbon include molded products obtained from powders such as various carbon blacks, fullerenes, and carbon nanotubes, pitch sintered products, and the like, and they are used by being applied and formed into a sheet by using a filler or a binder. As the fibrous carbon, polyacrylonitrile-based, pitch-based, rayon-based, etc. carbon fibers can be preferably used, and they are used in the form of a sheet by techniques such as paperboard, woven fabric, knitted fabric, and non-woven fabric.
上記のシート化物は必要に応じて、フェノール樹脂等の易炭素化材料をバインダーとして用い、焼成等による炭素化工程によって形状安定化と、構成材料の連結による導電性向上を図ることができる。 If necessary, the above-mentioned sheeted material can be obtained by using an easily carbonized material such as a phenol resin as a binder, stabilizing the shape by a carbonization step by firing or the like, and improving the conductivity by connecting the constituent materials.
本発明においては、上記の手法により得られた導電性材料からなる多孔質体の少なくとも一部に融点80℃以上320℃以下のPTFEが担持されてなることを特徴とする。PTFEの融点は好ましくは100℃以上315℃以下であり、より好ましくは120℃以上310℃以下であり、さらに好ましくは150℃以上305℃以下である。この範囲であれば分子量に分布を有しても良いし、単一構造の分子であっても好ましく用いることができる。 The present invention is characterized in that PTFE having a melting point of 80 ° C. or higher and 320 ° C. or lower is supported on at least a part of the porous body made of the conductive material obtained by the above method. The melting point of PTFE is preferably 100 ° C. or higher and 315 ° C. or lower, more preferably 120 ° C. or higher and 310 ° C. or lower, and further preferably 150 ° C. or higher and 305 ° C. or lower. Within this range, the molecular weight may have a distribution, and even a single structure molecule can be preferably used.
本発明に用いられるポリテトラフルオロエチレン(PTFE)は、熱分解温度となる320℃以下に融点を有しており、融点以上の温度においては明確な揮発蒸散性が確認される。たとえば、大気中(1気圧)における融点に関し、n−C10F22からなる場合には融点36℃、n−C12F26からなる場合には融点76℃、n−C14F30からなる場合には融点103℃、n−C16F34からなる場合には融点125℃、n−C20F42からなる場合には融点167℃、n−C31F64からなる場合には融点219℃を有している。
また、市販混合物として、セントラル硝子株式会社製低分子量PTFEセフラルルーブVにおいては、融点範囲として100〜290℃(ピーク温度270℃)を有しており、融解が開始される温度以上で加熱することにより蒸着源として用いることが可能である。
The polytetrafluoroethylene (PTFE) used in the present invention has a melting point of 320 ° C. or lower, which is a thermal decomposition temperature, and clear volatilization is confirmed at a temperature of the melting point or higher. For example relates melting in the atmosphere (1 atm), if made of n-C 10 F 22 had a melting point of 36 ° C., a melting point 76 ° C. in the case consisting of n-C 12 F 26, consisting of n-C 14 F 30 In the case of n-C 16 F 34, melting point 125 ° C., in the case of n-C 20 F 42, melting point 167 ° C., in the case of n-C 31 F 64, melting point 219 It has ℃.
In addition, as a commercially available mixture, Central Glass Co., Ltd. low molecular weight PTFE Cephalal Lube V has a melting point range of 100 to 290 ° C. (peak temperature 270 ° C.), and is heated above the temperature at which melting starts. It can be used as a deposition source.
上記融点を有するポリテトラフルオロエチレンを用いる理由としては、(1)エステル結合、アミド結合など加水分解性を有する官能基を持たないため耐酸化性や耐加水分解性に優れること、(2)実用可能な温度範囲で沸点を有しており、常圧、減圧、真空条件下で加熱することによりPVD処理が可能なこと、(3)一般的な高分子量ポリテトラフルオロエチレン(表面張力値:17.5mN/m)に比して本発明で用いられる低融点ポリテトラフルオロエチレン(表面張力値13〜17.5mN/m)は結晶形やCF3基末端密度により表面張力が小さく撥水効果が高いこと、(4)付着成分の分子量や構造制御が困難できないプラズマ処理およびフッ素ガス処理(炭化フッ素化)と異なりPFOAやPFOS規制の観点から有利であること、(5)結晶性を有しているため分子配向の変化による撥水性変化が抑制されること、などを例示することができる。 The reason for using polytetrafluoroethylene having the above melting point is that (1) it does not have a hydrolyzable functional group such as an ester bond or an amide bond, and is excellent in oxidation resistance and hydrolysis resistance, and (2) practical use It has a boiling point within the possible temperature range, and can be PVD treated by heating under normal pressure, reduced pressure, and vacuum conditions. (3) General high molecular weight polytetrafluoroethylene (surface tension value: 17 The low melting point polytetrafluoroethylene (surface tension value: 13 to 17.5 mN / m) used in the present invention has a small surface tension and a water-repellent effect depending on the crystal form and the density of the CF 3 group terminal. (4) It is advantageous from the viewpoint of PFOA and PFOS regulations, unlike the plasma treatment and fluorine gas treatment (fluorinated fluorination), in which the molecular weight and structure control of adhering components are difficult It, (5) the water repellency change due to the change in molecular orientation since it has a crystallinity can be suppressed, and the like can be exemplified.
上記PTFEは、使用時には固体としての安定性を発現し、加熱時には液体および気体としての特性を有し物理気相蒸着(PVD)法の素材として好ましく用いることができる。これらは熱分解温度以下で加熱を行うことにより、PTFEの構造を保持することができるため、分子量や構造の面で不定形なフッ素重合体の生じるプラズマ処理や高分子量PTFEを原料とした高温での熱分解蒸着法に対し、PRTR法およびストックホルム条約対応という面で有利な特徴である。 The PTFE exhibits stability as a solid when used, and has properties as a liquid and a gas when heated, and can be preferably used as a material for physical vapor deposition (PVD). Since these can maintain the structure of PTFE by heating at a temperature lower than the thermal decomposition temperature, plasma processing that produces an amorphous fluoropolymer in terms of molecular weight and structure and high temperature using high molecular weight PTFE as a raw material. This is an advantageous feature in terms of compliance with the PRTR method and the Stockholm Convention.
上記特性を利用した本発明に好ましく用いられる加工法としては(1)所定のPTFEを担体に散布し、融点以上熱分解温度以下の温度で加熱蒸散させ冷却再付着させる方法、(2)所定のPTFEを融点以上熱分解温度以下の温度で加熱蒸散させ担体表面で凝縮固化、必要に応じてPTFEの融点以上で熱処理を行うことで固定化する方法、(3)所定のPTFEを融点以上熱分解温度以下の温度で加熱蒸散させ、炭素材料の存在下で加圧することで析出させる方法、(4)PTFEの凝縮液滴または固体を通気により付着させる方法、など加熱蒸散性を利用して、拡散層内の一部または全体に付着させてなる方法が挙げられる。 As a processing method preferably used in the present invention utilizing the above characteristics, (1) a method in which predetermined PTFE is sprayed on a carrier, heat-evaporated at a temperature not lower than the melting point and not higher than the thermal decomposition temperature, and cooled and reattached, (2) predetermined A method in which PTFE is heated and evaporated at a temperature not lower than the melting point and not higher than the pyrolysis temperature, and condensed and solidified on the surface of the carrier, and if necessary, heat treatment is performed at a temperature higher than the melting point of PTFE. Diffusion using heat transpiration such as heat evaporation at a temperature below the temperature and precipitation by pressurization in the presence of a carbon material, (4) condensation of PTFE droplets or solids by aeration, etc. The method of making it adhere to part or all in a layer is mentioned.
蒸着加工の手法としては、各種熱源によりテトラフルオロエチレンを加熱することで蒸気を発生させ、より低温に保持した担体表面に液滴または結晶として析出させる方法が用いられる。かかる手法は、加工面全体を一度に処理するバッチ法であっても、担体または反応槽を移動させることで、担体の異なる加工面を連続的に処理する方法のいずれであっても好ましく用いられる。 As a method of vapor deposition processing, a method is used in which vapor is generated by heating tetrafluoroethylene with various heat sources and deposited as droplets or crystals on the surface of the carrier held at a lower temperature. Such a method is preferably used for either a batch method in which the entire processed surface is processed at once or a method in which different processed surfaces of the support are continuously processed by moving the support or the reaction vessel. .
本発明における蒸着加工は加圧、常圧、減圧、真空状態およびそのスイング、大気中および不活性ガスいずれの雰囲気においても好ましく実施する事ができる。
減圧または真空状態とすることで、蒸散速度の向上および蒸散温度の低減が可能であり、加圧により蒸散物の析出を促進することができる。また、真空または不活性雰囲気とすることでポリテトラフルオロエチレンや担体の酸化を抑制することが可能であるが、本発明は熱分解温度以下で低温処理が可能であるためコスト面で大気雰囲気を用いることも可能である。
The vapor deposition processing in the present invention can be preferably carried out in any of pressurized, normal pressure, reduced pressure, vacuum state and its swing, atmosphere and inert gas atmosphere.
By setting it to a reduced pressure or vacuum state, it is possible to improve the transpiration rate and reduce the transpiration temperature, and it is possible to promote precipitation of transpiration by pressurization. In addition, it is possible to suppress the oxidation of polytetrafluoroethylene and the carrier by setting a vacuum or an inert atmosphere. It is also possible to use it.
本発明においては、ポリテトラフルオロエチレンの担持条件の調整により目的に応じて好ましい付着状態を得ることができる。とりわけ、繊維層などの多孔質構造体の場合には真空度が高い場合には、分子の平均自由工程が大きくポリテトラフルオロエチレンは蒸散側の担体表面に偏在し、低真空または常圧、加圧条件の場合には回り込みによる均一性向上が可能となる。付着面を調整するために、同一担体において圧力のスイングや加工面(表裏)を変えた処理なども好ましい方法である。 In the present invention, a preferable adhesion state can be obtained depending on the purpose by adjusting the polytetrafluoroethylene loading conditions. In particular, in the case of a porous structure such as a fiber layer, when the degree of vacuum is high, the mean free process of the molecules is large, and polytetrafluoroethylene is unevenly distributed on the surface of the carrier on the evaporation side. In the case of pressure conditions, uniformity can be improved by wraparound. In order to adjust the adhesion surface, a process in which the pressure swing or the processing surface (front and back) is changed in the same carrier is also a preferable method.
本発明においては、蒸着加工時または蒸着加工後に担体が好ましくは60℃以上290℃以下、より好ましくは70℃以上250℃以下、さらに好ましくは80℃以上200℃以下に処理されてなる。かかる処理により担体との接着性向上、低分子量物の除去による耐久安定性向上や遊離されるVOC成分が低減されるためである。具体的には蒸着加工時には蒸着槽温度、担体の冷却、加熱により調整することが可能であり、加工後には加熱による方法が用いられる。 In the present invention, the carrier is preferably treated at 60 ° C. or higher and 290 ° C. or lower, more preferably 70 ° C. or higher and 250 ° C. or lower, and further preferably 80 ° C. or higher and 200 ° C. or lower, during or after vapor deposition. This is because such treatment improves adhesion with the carrier, improves durability stability by removing low molecular weight substances, and reduces VOC components that are released. Specifically, it can be adjusted by vapor deposition tank temperature, carrier cooling, and heating during vapor deposition, and a heating method is used after the processing.
本発明においてはPTFEは蒸気の状態で付着させた後冷却固化させても良いし、凝集させた液体や固体粒子として付着させることも好ましい。微細な凹凸構造とすることで疎水性を向上させるとともに、炭素表面を露出させることで良好な導電性を維持することができる。 In the present invention, PTFE may be deposited in a vapor state and then cooled and solidified, or it is preferably adhered as an aggregated liquid or solid particle. While having a fine concavo-convex structure, the hydrophobicity can be improved, and good conductivity can be maintained by exposing the carbon surface.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
(融点)
融点はJIS K 7121に準拠して測定しており、具体的には、試料5mgを測定用密閉パンに入れ、昇温速度10℃/minの条件で、TAインスツルメント社製示差走査熱量計を用い、気密性を有した密閉パンに測定されたピーク温度を、再結晶ピークの存在確認により融点とした。
(Melting point)
The melting point was measured in accordance with JIS K 7121. Specifically, 5 mg of a sample was put in a measurement closed pan, and a differential scanning calorimeter manufactured by TA Instruments was used under the condition of a heating rate of 10 ° C./min. The peak temperature measured on a hermetic pan with airtightness was determined as the melting point by confirming the presence of a recrystallization peak.
(JIS K 6768ぬれ張力試験液での疎水性試験法)
JIS K 6768に定められた配合にて表面張力78〜25mN/mの範囲にて2mN/m間隔でぬれ張力試験液を調製した。微生物試験用マイクロピペッターにてサンプル表面に数値の大きな液滴から50μLずつ静置し10秒後の浸透度合いを観察した。吸収されない最も表面張力の小さな試験液の表面張力をJIS K 6768ぬれ張力試験液での疎水性の指標として用いた。
(Hydrophobicity test method with JIS K 6768 wetting tension test solution)
Wet tension test solutions were prepared at intervals of 2 mN / m in the range of surface tension of 78 to 25 mN / m with the formulation specified in JIS K 6768. The micropipetter for microbiological test was allowed to stand on the sample surface from each large droplet of 50 μL, and the degree of penetration after 10 seconds was observed. The surface tension of the test liquid with the smallest surface tension that was not absorbed was used as an index of hydrophobicity in the JIS K 6768 wetting tension test liquid.
(通気性試験法)
フラジール型通気度試験機を用い、圧力損失145Paにおける通風量を通気度として用いた。
(Breathability test method)
Using a Frazier type air permeability tester, the air flow rate at a pressure loss of 145 Pa was used as the air permeability.
(厚み試験法)
荷重7g/cm2における数値を厚みとして用いた。
(Thickness test method)
A numerical value at a load of 7 g / cm 2 was used as the thickness.
[原料シートの調整]
2デシテックスのポリアクリロニトリル(PAN)耐炎化繊維フェルトを窒素雰囲気下1000℃にて熱処理を行うことで炭素化(黒鉛化)を行った。得られたフェルト状物は目付150g/m2、厚み0.75mmであった。通気度に関しては40cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、54mN/mの試験液は浸透しなかったが52mN/mの試験液は浸透が生じた。
[Adjustment of raw material sheet]
Carbonization (graphitization) was performed by heat-treating 2 decitex polyacrylonitrile (PAN) flameproof fiber felt in a nitrogen atmosphere at 1000 ° C. The obtained felt-like material had a basis weight of 150 g / m 2 and a thickness of 0.75 mm. The air permeability was 40 cm 3 / (cm 2 · s). When a wetting tension test solution according to JIS K 6768 was dropped, the 54 mN / m test solution did not penetrate but the 52 mN / m test solution penetrated.
[実施例1]
原料シートを170℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部を250℃に加熱した熱板を設置し、大気下にてAlfa Aesar社製L16828(n−C20F42:融点164℃)ポリテトラフルオロエチレンをそれぞれ金属性ボート上から蒸散させたのち槽内を冷却することで3g/m2の担持量の加工シートを得た。得られたシートは、厚み0.75mm、通気度は40cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、表裏とも25mN/mの試験液に対する発液性を有していた。
[Example 1]
The raw material sheet was affixed to a constant temperature plate maintained at 170 ° C., and placed on the ceiling of a cylindrical ceramic reaction vessel. A hot plate whose bottom was heated to 250 ° C. was installed, and after the L16828 (nC 20 F 42 : melting point 164 ° C.) polytetrafluoroethylene made by Alfa Aesar was evaporated from the top of the metal boat in the atmosphere, the tank By cooling the inside, a processed sheet having a carrying amount of 3 g / m 2 was obtained. The obtained sheet had a thickness of 0.75 mm and an air permeability of 40 cm 3 / (cm 2 · s). When a wetting tension test solution based on JIS K 6768 was added dropwise, both the front and back surfaces had liquid-releasing properties with respect to a test solution of 25 mN / m.
[実施例2]
原料シートを2枚積層し30℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部を250℃に加熱した熱板を設置し、Alfa Aesar社製L16828(n−C20F42:融点164℃)ポリテトラフルオロエチレンをそれぞれ金属性ボート上から蒸散させ槽内冷却前に試料を取り出し、5g/m2の担持量の加工シートを得た。得られたシートは、各々の厚みは0.75mm、通気度は40cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、冷却面に近い側から38/31/30/25mNの試験液に対する撥液性を有していた。
[Example 2]
Two raw material sheets were laminated and pasted on a thermostat kept at 30 ° C., and placed on the reaction vessel ceiling made of cylindrical ceramic. A hot plate whose bottom was heated to 250 ° C. was installed, and L16828 (n-C 20 F 42 : melting point 164 ° C.) made by Alfa Aesar was transpired from the top of the metallic boat to prepare a sample before cooling in the tank. Taking out, a processed sheet having a loading amount of 5 g / m 2 was obtained. Each of the obtained sheets had a thickness of 0.75 mm and an air permeability of 40 cm 3 / (cm 2 · s). When a wetting tension test solution based on JIS K 6768 was dropped, it had liquid repellency with respect to a test solution of 38/31/30/25 mN from the side close to the cooling surface.
[実施例3]
100℃〜290℃の範囲に融点を持つポリテトラフルオロエチレン(セントラル硝子株式会社製 セフラルルーブV)を用いた他は実施例2と同様の処理を行った結果、6g/m2の担持量の加工シートを得た。各々の厚みは0.75mm、通気度は40cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、冷却面に近い側から32/28/27/25mNの試験液に対する撥液性を有していた。
[Example 3]
As a result of carrying out the same treatment as in Example 2 except that polytetrafluoroethylene having a melting point in the range of 100 ° C. to 290 ° C. (cefural lube V manufactured by Central Glass Co., Ltd.) was used, processing with a supported amount of 6 g / m 2 was performed. A sheet was obtained. Each thickness was 0.75 mm, and the air permeability was 40 cm 3 / (cm 2 · s). When a wetting tension test solution according to JIS K 6768 was added dropwise, it exhibited liquid repellency with respect to a test solution of 32/28/27/25 mN from the side close to the cooling surface.
[実施例4]
原料シートを30℃に保った恒温板に張り付け、槽内側に1辺2cmの市松模様状に切り欠きを有したスクリーンを原料シートと接触配置した。積層物を円筒セラミック製の反応容器天井に設置し、底部を250℃に加熱した熱板を設置し、Alfa Aesar社製L16828(n−C20F42:融点164℃)ポリテトラフルオロエチレンをそれぞれ金属性ボート上から蒸散させ、槽内冷却前に試料を取り出し2.0g/m2の担持量の加工シートを得た。得られたシートは厚み0.75mm、通気度は40cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、槽内側の切り欠き部分は25mN/mの試験液に対する撥液性を有している一方で、被覆部分は無加工同様の54mN/mであった。
[Example 4]
The raw material sheet was affixed to a thermostat kept at 30 ° C., and a screen having notches in a checkered pattern with a side of 2 cm on the inside of the tank was placed in contact with the raw material sheet. The laminate was placed on the reaction vessel ceiling made of cylindrical ceramic, a hot plate heated at 250 ° C. was installed at the bottom, and L16828 (n-C 20 F 42 : melting point 164 ° C.) polytetrafluoroethylene manufactured by Alfa Aesar Co., respectively. A sample was taken out from the metallic boat and cooled before cooling in the tank to obtain a processed sheet having a loading amount of 2.0 g / m 2 . The obtained sheet had a thickness of 0.75 mm and an air permeability of 40 cm 3 / (cm 2 · s). When a wetting tension test solution according to JIS K 6768 was dropped, the notched portion inside the tank had liquid repellency with respect to the test solution of 25 mN / m, while the coated portion was 54 mN / m, which was the same as unprocessed. Met.
[比較例1]
原料シートに対し、ダイキン工業株式会社製ポリフロンD−210C水希釈物を吸収させマングルにて絞りを加えた後に風乾を行い、3g/m2の担持量の加工シートを得た。得られた厚みは0.55mm、通気度は28cm3/(cm2・s)であった。JIS K 6768に準拠した濡れ張力試験液を滴下したところ、76mN/mの水が浸透した。
[Comparative Example 1]
The raw material sheet was absorbed with water diluted by Polyflon D-210C manufactured by Daikin Industries, Ltd., and was squeezed with a mangle and then air-dried to obtain a processed sheet having a loading amount of 3 g / m 2 . The thickness obtained was 0.55 mm, and the air permeability was 28 cm 3 / (cm 2 · s). When a wetting tension test solution based on JIS K 6768 was dropped, 76 mN / m of water penetrated.
実施例1〜4と比較例1より、本発明においては界面活性剤を含まないPTFEを担持することが可能であり加工直後より高い疎水性を示す。また気相にて加工を行うことによりシートの潰れや破損、通気抵抗の増加を抑制することができる。 From Examples 1 to 4 and Comparative Example 1, in the present invention, PTFE that does not contain a surfactant can be supported, and the hydrophobicity is higher than that immediately after processing. Further, by performing processing in the gas phase, it is possible to suppress the crushing and breakage of the sheet and the increase in the airflow resistance.
実施例1と実施例2および3の比較より、加工時にシート内に熱傾斜を与えることで、厚み方向に疎水化度を変化させたGDLを得ることができる。 From the comparison between Example 1 and Examples 2 and 3, GDL with the degree of hydrophobicity changed in the thickness direction can be obtained by applying a thermal gradient in the sheet during processing.
実施例2と実施例3の比較より、分子量分布の広い材料を用い、さらには加工時に熱傾斜を与えることで、厚み方向に疎水化度を変化させ、さらにはPTFEの浸透性を高めることができる。 From the comparison between Example 2 and Example 3, it is possible to change the degree of hydrophobicity in the thickness direction and to increase the permeability of PTFE by using a material having a wide molecular weight distribution and further imparting a thermal gradient during processing. it can.
実施例4より、蒸着面を一部被覆することで疎水部とより親水部を作り分けることが可能であり、GDL利用時にはガス透過路と排水路を容易に得ることができる From Example 4, it is possible to create a hydrophobic part and a more hydrophilic part by partially covering the vapor deposition surface, and a gas permeation path and a drainage path can be easily obtained when using GDL.
基材構造を破壊することなく良好な通気性と疎水性を与え、かつ厚み方向や面方向に対する疎水化度を変化させた燃料電池用ガス拡散層を容易に得ることができ産業界への寄与大である。 Contributing to the industry by providing a gas diffusion layer for fuel cells that gives good air permeability and hydrophobicity without destroying the base material structure, and has changed the degree of hydrophobicity in the thickness direction and surface direction. It ’s big.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015180456A JP2017059305A (en) | 2015-09-14 | 2015-09-14 | Gas diffusion layer for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015180456A JP2017059305A (en) | 2015-09-14 | 2015-09-14 | Gas diffusion layer for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017059305A true JP2017059305A (en) | 2017-03-23 |
Family
ID=58391007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015180456A Pending JP2017059305A (en) | 2015-09-14 | 2015-09-14 | Gas diffusion layer for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017059305A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022119217A1 (en) * | 2020-12-04 | 2022-06-09 | 주식회사 엘지에너지솔루션 | Electrode for secondadry battery, secondary battery comprising same, and electrode manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270053A (en) * | 1997-03-27 | 1998-10-09 | Toyota Central Res & Dev Lab Inc | Manufacture of electrode for gas reaction or generation based battery |
WO2001017047A1 (en) * | 1999-08-27 | 2001-03-08 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte type fuel cell |
JP2002025575A (en) * | 2000-07-03 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Fuel cell |
JP2006134886A (en) * | 2004-11-03 | 2006-05-25 | Samsung Sdi Co Ltd | Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same |
JP2013166859A (en) * | 2012-02-15 | 2013-08-29 | Three M Innovative Properties Co | Fluoropolymer composition |
-
2015
- 2015-09-14 JP JP2015180456A patent/JP2017059305A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270053A (en) * | 1997-03-27 | 1998-10-09 | Toyota Central Res & Dev Lab Inc | Manufacture of electrode for gas reaction or generation based battery |
WO2001017047A1 (en) * | 1999-08-27 | 2001-03-08 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte type fuel cell |
JP2002025575A (en) * | 2000-07-03 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Fuel cell |
JP2006134886A (en) * | 2004-11-03 | 2006-05-25 | Samsung Sdi Co Ltd | Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same |
JP2013166859A (en) * | 2012-02-15 | 2013-08-29 | Three M Innovative Properties Co | Fluoropolymer composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022119217A1 (en) * | 2020-12-04 | 2022-06-09 | 주식회사 엘지에너지솔루션 | Electrode for secondadry battery, secondary battery comprising same, and electrode manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chun et al. | Determination of the pore size distribution of micro porous layer in PEMFC using pore forming agents under various drying conditions | |
US7063913B2 (en) | Diffusion media with microporous layer | |
CN100592557C (en) | Fuel cells with hydrophobic diffusion medium | |
US20110256336A1 (en) | Composite carbon and manufacturing method therefor | |
EP3113264B1 (en) | Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with the same | |
Duan et al. | Fabrication of a carbon nanofiber sheet as a micro-porous layer for proton exchange membrane fuel cells | |
CA2962722C (en) | Carbon sheet, gas diffusion electrode substrate and fuel cell | |
US10424795B2 (en) | Gas diffusion substrate | |
WO2016060043A1 (en) | Carbon sheet, gas diffusion electrode base material, and fuel cell | |
JP5195286B2 (en) | Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell | |
CA2939196A1 (en) | Gas diffusion electrode substrate | |
WO2019049934A1 (en) | Gas diffusion layer base material for fuel cells, gas diffusion layer for fuel cells, and fuel cell | |
JP2008300195A (en) | Manufacturing method of diffusion layer for fuel cell, and manufacturing method of fuel cell | |
WO2021200215A1 (en) | Method for producing gas diffusion electrode substrate | |
TW202125885A (en) | Carbon fiber sheet and method for producing same | |
US11621426B2 (en) | Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery | |
JP2017059305A (en) | Gas diffusion layer for fuel cell | |
CA2997688C (en) | Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell | |
CN117063315A (en) | Electrode base material and method for producing same | |
CA2980461C (en) | Gas-diffusion electrode substrate comprising an electrode substrate and a microporous layer disposed thereon and method for manufacturing same | |
Chen et al. | Influences of gas diffusion layers with pitch-based carbon coated in polymer electrolyte membrane fuel cell | |
US11710831B2 (en) | Gas diffusion electrode base material and production method therefor, and solid polymer fuel cell | |
CN116438687A (en) | Gas diffusion electrode base material product and solid polymer fuel cell | |
JP2009187736A (en) | Method of manufacturing diffusion layer forming member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190925 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200303 |