JP2017058615A - Developer carrier - Google Patents

Developer carrier Download PDF

Info

Publication number
JP2017058615A
JP2017058615A JP2015185478A JP2015185478A JP2017058615A JP 2017058615 A JP2017058615 A JP 2017058615A JP 2015185478 A JP2015185478 A JP 2015185478A JP 2015185478 A JP2015185478 A JP 2015185478A JP 2017058615 A JP2017058615 A JP 2017058615A
Authority
JP
Japan
Prior art keywords
particles
surface layer
developer
developer carrier
binder resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015185478A
Other languages
Japanese (ja)
Inventor
尚彦 土田
Naohiko Tsuchida
尚彦 土田
明石 恭尚
Yasuhisa Akashi
恭尚 明石
裕樹 渡辺
Hiroki Watanabe
裕樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015185478A priority Critical patent/JP2017058615A/en
Publication of JP2017058615A publication Critical patent/JP2017058615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a developer carrier which suppresses chipping of a surface of a developer carrier and can obtain adequate image quality performance even when printing under various environments for a long period of time.SOLUTION: There is provided a developer carrier used in a developing device which visualizes an electrostatic latent image on an electrostatic latent image carrier by developing with a developer carried and conveyed by the developer carrier and has a base and a surface layer on the base, where the surface layer contains a binder resin, conductive fine particles, particles (a) having new Mohs hardness of 10 or more, a number average diameter of less than 2.0 μm and an average circularity of 0.90 or less, and particles (b) having a number average diameter of 2.0 μm or more and a Young's modulus of 100 GPa or more and an average circularity of 0.90 or more, and imparts irregularity to the surface layer, where there exist a plurality of projections derived from the particles (b) on the surface of the surface layer, the particles (b) have the surface covered with the binder resin and are contained in the surface layer in a state of not being exposed on the surface of the surface layer, and the particles (a) are contained in the binder resin which covers the surface of the particles (b) and are contained in the binder resin which exists in a valley portion between the plurality of projections of the surface of the surface layer.SELECTED DRAWING: Figure 1

Description

本発明は、電子写真装置などに備わる、静電潜像を現像剤により可視像化する現像装置に好適に用いることのできる、現像剤担持体に関する。   The present invention relates to a developer carrying member that can be suitably used in a developing device provided in an electrophotographic apparatus or the like that visualizes an electrostatic latent image with a developer.

近年、電子写真画像は様々な環境で長期に使用される場合においても、高画質化、高耐久化が求められている。そのためには、現像剤であるトナーに、長期に渡って高く均一な帯電性能を保持させることが重要である。また、グラファイトの如き導電性微粒子を含む塗料の塗膜を乾燥させて形成してなる樹脂層を表面層として備えた現像剤担持体が好ましく用いられている。   In recent years, electrophotographic images are required to have high image quality and high durability even when used for a long time in various environments. For that purpose, it is important to maintain a high and uniform charging performance for a long time in the toner as a developer. Further, a developer carrier having a resin layer formed by drying a paint film containing conductive fine particles such as graphite as a surface layer is preferably used.

最近では、現像剤担持体上のトナーを薄層に制御することで、トナーに高く均一な帯電量を持たせ、高画質化を図る技術が知られている。これは、現像剤担持体上のトナーの量を減らすことで、現像剤担持体とトナーとの接触回数を増やし、トナーを効率良く摩擦帯電させる技術である。しかし、現像剤担持体上のトナーを薄層にするためには、現像剤担持体上に搬送されるトナーの量を従来以上に強く制御し規制する必要がある。その際、現像剤担持体と規制部の間でスペーサー粒子として働くトナーの量が減るため、現像剤担持体表面にかかる圧力が増加し、長期の使用で現像剤担持体の表面が削れるという現象が起きることがあった。このような現象は、トナーの流動性が低下し現像剤担持体上のトナーが薄層になりやすい高温高湿環境化にて長期間使用した場合に起こりやすい。加えて、図2に示すように、現像剤担持体表面に弾性のある規制ブレードを当接させることで、トナーの搬送量を規制するような現像方法では、低温環境でも長期の使用で現像剤担持体の表面が削れる可能性がある。これは、低温環境によって規制ブレードの弾性が低下し、現像剤担持体表面への負荷が増大することが原因である。   Recently, there is known a technique for improving the image quality by controlling the toner on the developer carrying member to a thin layer so that the toner has a high and uniform charge amount. This is a technique for efficiently triboelectrically charging a toner by reducing the amount of toner on the developer carrying member, thereby increasing the number of times of contact between the developer carrying member and the toner. However, in order to make the toner on the developer carrier thin, it is necessary to control and regulate the amount of toner conveyed onto the developer carrier more strongly than in the past. At that time, the amount of toner acting as spacer particles between the developer carrier and the regulating portion is reduced, so that the pressure applied to the surface of the developer carrier increases, and the surface of the developer carrier is scraped over a long period of use. Sometimes happened. Such a phenomenon is likely to occur when used for a long period of time in a high-temperature and high-humidity environment where the fluidity of the toner is reduced and the toner on the developer carrier tends to be a thin layer. In addition, as shown in FIG. 2, in a developing method that regulates the amount of toner transported by bringing an elastic regulating blade into contact with the surface of the developer carrying member, the developer can be used for a long time even in a low temperature environment. The surface of the carrier may be scraped. This is because the elasticity of the regulating blade decreases due to the low temperature environment, and the load on the surface of the developer carrying member increases.

これらの問題を解決する為に、特許文献1では、モース硬度が6以上の粒子を含有した樹脂層を現像剤担持体表面に形成することで強度を向上させ、現像担持体表面の削れを抑制している。   In order to solve these problems, Patent Document 1 improves the strength by forming a resin layer containing particles having a Mohs hardness of 6 or more on the surface of the developer carrier, and suppresses the development carrier surface from being scraped. doing.

また、特許文献2では、モース硬度が6以上の粒子を含有した樹脂層を現像剤担持体表面に形成することで強度を向上させ、かつ高硬度のグラファイトを含有させることで、現像担持体表面の削れを抑制している。   Further, in Patent Document 2, the surface of the development carrier is improved by forming a resin layer containing particles having a Mohs hardness of 6 or more on the surface of the developer carrier, and by containing high-hardness graphite. Scraping of the is suppressed.

特許第4280604号公報Japanese Patent No. 4280604 特許第4298471号公報Japanese Patent No. 4298471

特許文献1に記載されるように現像剤担持体表面の強度を強化させた場合、現像剤担持体表面上に存在する凸部に応力が集中する可能性がある。長期の印刷で凸部に繰り返し応力が集中した場合、凸部の樹脂層が剥がれてしまい、現像性の低下を引き起こす場合がある。このような結着樹脂の剥がれは、現像剤担持体表面で局所的に発生する為、特にドット画像の如き微細な画像の画質が悪化することがある。   When the strength of the surface of the developer carrying member is strengthened as described in Patent Document 1, stress may concentrate on the convex portions existing on the surface of the developer carrying member. When stress is repeatedly concentrated on the convex part by long-term printing, the resin layer of the convex part may be peeled off, and the developability may be deteriorated. Such peeling of the binder resin locally occurs on the surface of the developer carrying member, so that the image quality of a fine image such as a dot image may be deteriorated.

特許文献2においても、長期の印刷で凸部に繰り返し応力が集中した場合の、凸部に密着した結着樹脂が剥がれる可能性については言及されていない。   Also in Patent Document 2, there is no mention of the possibility that the binder resin adhered to the convex portion is peeled off when stress is repeatedly concentrated on the convex portion by long-term printing.

今後、従来よりもさらに長期の印刷を可能にすることが求められている状況を鑑みると、様々な環境下でより一層長期の印刷を行っても、現像担持体表面の削れを抑制し、かつ安定した画像性能を得るための技術については、改善の余地があるのが現状である。   In the future, in view of the situation where it is required to enable printing for a longer period of time than before, even if printing is performed for a longer period of time in various environments, the surface of the development carrier is suppressed, and At present, there is room for improvement in technology for obtaining stable image performance.

上記状況を鑑みた本発明の目的は、様々な環境下において、長期に亘る印刷をした場合でも、現像剤担持体表面の削れを抑制し、かつ、終始良好な画質性能を得ることができる現像剤担持体を提供することにある。   In view of the above situation, the object of the present invention is to develop that can suppress the surface of the developer carrying member and can obtain good image quality performance from beginning to end even when printing is performed for a long time in various environments. The object is to provide an agent carrier.

本発明によれば、
静電潜像担持体上に形成された静電潜像を、現像剤担持体に担持搬送された現像剤により現像し可視像化する現像装置に用いられる現像剤担持体であって、
基体および該基体上に設けられた表面層を有し、
該表面層は、
結着樹脂、
導電性微粒子、
新モース硬度が10以上であり、個数平均径が2.0μm未満であり、かつ平均円形度が0.90以下である粒子a、および
個数平均径が2.0μm以上、ヤング率が100GPa以上であり、さらに平均円形度が0.90以上である該表面層に凹凸を付与させるための粒子b
を含有し、
該表面層の表面には、該粒子bに由来する凸部が複数存在しており、
該表面層中において、該粒子bは、その表面が該結着樹脂で被覆され、該表面層の表面に非露出の状態で該表面層に含有されており、該粒子aは、該粒子bの表面を被覆している結着樹脂中に含まれていると共に、該表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれている
ことを特徴とする現像剤担持体が提供される。
According to the present invention,
A developer carrier used in a developing device that develops and visualizes an electrostatic latent image formed on an electrostatic latent image carrier with a developer carried on the developer carrier,
A substrate and a surface layer provided on the substrate;
The surface layer is
Binder resin,
Conductive fine particles,
A new Mohs hardness of 10 or more, a number average diameter of less than 2.0 μm and an average circularity of 0.90 or less, and a number average diameter of 2.0 μm or more, Young's modulus of 100 GPa or more And particles b for imparting irregularities to the surface layer having an average circularity of 0.90 or more
Containing
On the surface of the surface layer, there are a plurality of convex portions derived from the particles b,
In the surface layer, the particle b is coated with the binder resin and is contained in the surface layer in a state of being not exposed to the surface of the surface layer. In addition to being contained in the binder resin covering the surface of the surface layer, it is also contained in the binder resin present in the valleys between the plurality of convex portions on the surface of the surface layer. A developer carrier is provided.

本発明によれば、様々な環境下において、長期に亘る印刷をした場合でも、現像剤担持体表面の削れを抑制し、かつ、終始良好な画質性能を得ることができる現像剤担持体が提供される。   According to the present invention, there is provided a developer carrier capable of suppressing the abrasion of the surface of the developer carrier and obtaining good image quality performance from beginning to end even when printing is performed for a long time under various environments. Is done.

本発明における現像剤担持体の表面層を模式的に示す断面図である。2 is a cross-sectional view schematically showing a surface layer of a developer carrier in the present invention. FIG. 現像剤担持体を備える現像装置の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of a developing device provided with a developing agent carrier. 現像剤担持体を備える現像装置の別の例を説明するための模式図である。It is a schematic diagram for demonstrating another example of a developing device provided with a developing agent carrier.

以下、本発明を詳細に説明する。
本発明は、静電潜像担持体上に形成された静電潜像を、現像剤担持体に担持搬送された現像剤により現像し可視像化する現像装置に用いられる現像剤担持体に関する。
Hereinafter, the present invention will be described in detail.
The present invention relates to a developer carrier used in a developing device that develops an electrostatic latent image formed on an electrostatic latent image carrier with a developer carried on the developer carrier and visualizes the latent image. .

本発明に係る現像剤担持体は、基体と、基体上に形成された表面層とを有する。表面層は、結着樹脂と、導電性微粒子と、粒子aと、粒子bとを含む。粒子aは、新モース硬度が10以上であり、個数平均径が2.0μm未満であり、かつ平均円形度が0.90以下の粒子である。粒子bは、ヤング率が100GPa以上、個数平均径が2.0μm以上であり、さらに平均円形度が0.90以上の粒子である。粒子bは、表面層に凹凸を付与させるための粒子である。表面層の表面には、粒子bに由来する凸部が複数存在している。表面層中において、粒子bは、その表面が結着樹脂で被覆され、表面層の表面に非露出の状態で表面層に含有されている。また、粒子aは、粒子bの表面を被覆している結着樹脂中に含まれていると共に、表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれている。   The developer carrier according to the present invention has a base and a surface layer formed on the base. The surface layer includes a binder resin, conductive fine particles, particles a, and particles b. The particles a are particles having a New Mohs hardness of 10 or more, a number average diameter of less than 2.0 μm, and an average circularity of 0.90 or less. The particles b are particles having a Young's modulus of 100 GPa or more, a number average diameter of 2.0 μm or more, and an average circularity of 0.90 or more. The particle b is a particle for imparting irregularities to the surface layer. A plurality of convex portions derived from the particles b exist on the surface of the surface layer. In the surface layer, the particles b are coated with a binder resin on the surface, and are contained in the surface layer in a state where they are not exposed on the surface of the surface layer. Further, the particle a is included in the binder resin covering the surface of the particle b, and is also included in the binder resin present in the valley portion between the plurality of convex portions on the surface of the surface layer. It is.

まず、粒子aについて述べる。粒子aは、現像剤担持体表面の削れに対する耐久性を向上させる目的で含有させている。そのため、材料の傷つきやすさ、すなわち削れやすさの指標である新モース硬度が10以上、好ましくは12以上であることを特徴としている。新モース硬度とは、滑石を1、ダイヤモンドを15とし、標準となる鉱物と試料を相互に引き合わせ、傷つく方が軟らかく、硬度が小であるとする定性的な方法によって決められた値である。本発明で粒子aには、新モース硬度が10以上と大きい、すなわち削れにくい材料を選択している。そのため、粒子aを結着樹脂に含有させることで現像剤担持体表面の耐摩耗性が向上し、長期に亘る印刷をした場合でも、現像剤担持体表面の削れを抑制できる。新モース硬度が10未満の場合、現像剤担持体表面の耐摩耗性が十分ではないため、長期の印刷による現像剤担持体表面の削れが顕著となりやすい。   First, the particle a will be described. The particles a are contained for the purpose of improving the durability against abrasion of the surface of the developer carrying member. Therefore, the new Mohs hardness, which is an index of the fragility of the material, that is, the ease of scraping, is 10 or more, preferably 12 or more. The new Mohs hardness is a value determined by a qualitative method in which the talc is 1 and the diamond is 15 and the standard mineral and sample are drawn together and the damage is soft and the hardness is low. . In the present invention, a material having a new Mohs hardness as large as 10 or more, that is, a material that is difficult to scrape is selected for the particles a. Therefore, by including the particles a in the binder resin, the wear resistance of the surface of the developer carrier is improved, and even when printing is performed for a long time, the surface of the developer carrier can be suppressed. When the new Mohs hardness is less than 10, the abrasion resistance of the surface of the developer carrier is not sufficient, so that the surface of the developer carrier due to long-term printing tends to be noticeable.

本発明で粒子aとして用いることのできるものの例として、酸化アルミニウム、酸化ジルコニウムなどの酸化物;窒化ホウ素、窒化アルミニウム、窒化チタンなどの窒化物;炭化ケイ素、炭化チタン、炭化ホウ素などの炭化物;ホウ化ケイ素、ホウ化ジルコニウムなどのホウ化物;ケイ化ジルコニウムなどのケイ化物、等が挙げられ、これらのうち1種、または必要に応じて2種以上を用いることができる。   Examples of what can be used as the particles a in the present invention include oxides such as aluminum oxide and zirconium oxide; nitrides such as boron nitride, aluminum nitride and titanium nitride; carbides such as silicon carbide, titanium carbide and boron carbide; Examples thereof include borides such as silicon halide and zirconium boride; silicides such as zirconium silicide, and the like. Among these, one kind, or two or more kinds as required can be used.

本発明で使用される粒子aは個数平均径が2.0μm未満であり、好ましくは1.5μm以下である。粒子aの個数平均径が2.0μm未満であると、現像剤担持体の表面層における粒子aの分散性が良好となるため、充分な耐摩耗性を得ることができる。その結果、長期に亘る印刷で、現像剤担持体表面の削れを抑制できる。   The particles a used in the present invention have a number average diameter of less than 2.0 μm, preferably 1.5 μm or less. When the number average diameter of the particles a is less than 2.0 μm, the dispersibility of the particles a in the surface layer of the developer carrying member becomes good, so that sufficient wear resistance can be obtained. As a result, scraping of the surface of the developer carrying member can be suppressed by printing for a long time.

また、本発明の粒子aは平均円形度が0.90以下である。平均円形度が0.90以下であると、粒子aが現像担持体表面を効率よく覆うことができるため、耐摩耗性が向上し、現像剤担持体表面の削れを抑制できる。   Further, the particles a of the present invention have an average circularity of 0.90 or less. When the average circularity is 0.90 or less, the particles a can efficiently cover the surface of the developer carrier, so that the wear resistance is improved and the developer carrier surface can be prevented from being scraped.

上述した粒子aを含有させることで、耐摩耗性に優れた現像剤担持体表面を得ることができるが、それだけでは長期の印刷でも現像剤担持体表面の削れを抑制し、かつ、良好な画質性能を持つ現像剤担持体を得ることはできない。単純に粒子aを含有させただけでは、現像剤担持体表面の削れに対する強度は向上するが、現像剤担持体表面の凸部に応力が集中するため、長期の印刷によって、凸部に密着していた結着樹脂が剥がれる可能性がある。結着樹脂が剥がれると、凸部を形成する粒子が現像剤担持体表面に露出するため、現像剤担持体表面の組成が一様ではなくなる。その結果、現像剤担持体が持つトナーへの帯電付与性能に局所的な違いが生じるため、トナーの帯電が均一でなくなり、特にドット画像などの微細な画像の画質が悪化する問題が起きやすくなる。   By containing the particles a described above, a developer carrying surface excellent in abrasion resistance can be obtained, but it alone suppresses the abrasion of the developer carrying surface even during long-term printing, and has good image quality. A developer carrier having performance cannot be obtained. Simply containing particles a improves the strength against abrasion of the surface of the developer carrying member, but stress concentrates on the protruding portion of the surface of the developer carrying member, so that it adheres to the protruding portion by long-term printing. There is a possibility that the binder resin that had been peeled off. When the binder resin is peeled off, the particles forming the convex portions are exposed on the surface of the developer carrying member, so that the composition on the surface of the developer carrying member is not uniform. As a result, there is a local difference in the charge imparting performance to the toner of the developer carrying member, so that the toner is not uniformly charged, and in particular, a problem that the image quality of a fine image such as a dot image deteriorates easily occurs. .

長期の印刷でも現像剤担持体表面の削れを抑制し、かつ、良好な画質性能を持つ現像剤担持体を得るためには、現像剤担持体表面の凸部に繰り返し応力が集中しても凸部を被覆している結着樹脂が剥がれないことが重要である。結着樹脂の剥がれを抑制するためには、現像剤担持体表面の凹凸を付与させる粒子を適正に選択することが必要である。   In order to obtain a developer carrier having excellent image quality performance while suppressing the abrasion of the developer carrier surface even during long-term printing, even if stress is repeatedly concentrated on the convex portion of the developer carrier surface, It is important that the binder resin covering the part does not peel off. In order to suppress the peeling of the binder resin, it is necessary to appropriately select particles that give the developer carrier surface irregularities.

本発明者らが鋭意検討した結果、長期の印刷によって凸部を被覆している結着樹脂の剥がれる理由は、凸部に繰り返し応力が集中することで、凸部内部の粒子が何度も弾性変形し、結着樹脂と粒子の密着性が低下するためであることを見極めた。そこで、本発明者らは、物質の弾性変形しやすさを示すヤング率に着目し、弾性変形しにくい、すなわちヤング率の大きい粒子を凸部を形成する粒子として選択することで、樹脂の剥がれを抑制できることを見出した。   As a result of intensive studies by the present inventors, the reason why the binder resin covering the convex portion is peeled off by long-term printing is that stress is concentrated repeatedly on the convex portion, so that the particles inside the convex portion are elastic many times. It was determined that the deformation was caused and the adhesion between the binder resin and the particles was lowered. Therefore, the present inventors focused on the Young's modulus indicating the ease of elastic deformation of the substance, and selected the particles that are difficult to elastically deform, that is, the particles having a large Young's modulus, as the particles that form the protrusions, thereby removing the resin It was found that can be suppressed.

本発明で使用する粒子bは、現像剤担持体表面に凹凸を付与させるための凸部の粒子として使用するものであり、ヤング率が100GPa以上、好ましくは200GPa以上である。ヤング率が100GPa以上であると、印刷時にかかる応力によって生じる粒子bの弾性変形が抑制され、粒子bと結着樹脂との密着性を維持することができるため、凸部の結着樹脂が剥がれにくくなる。その結果、長期に亘る印刷でも現像剤担持体が持つトナーへの帯電付与性能が均一に保たれ、ドット画像などの微細な画質性能が終始良好となる。   The particles b used in the present invention are used as convex particles for imparting irregularities to the surface of the developer carrying member, and have a Young's modulus of 100 GPa or more, preferably 200 GPa or more. When the Young's modulus is 100 GPa or more, the elastic deformation of the particles b caused by the stress applied during printing is suppressed, and the adhesion between the particles b and the binder resin can be maintained, so that the binder resin at the convex portion is peeled off. It becomes difficult. As a result, even when printing for a long period of time, the charge imparting performance to the toner of the developer carrier is kept uniform, and fine image quality performance such as a dot image becomes good from beginning to end.

粒子bとして使用できるものの例として、酸化アルミニウム、酸化チタンなどの酸化物;鉄、銅、タングステン、チタン、モリブデンなどの金属;窒化ケイ素、窒化ホウ素などの窒化物;炭化ケイ素、炭化ホウ素等の炭化物等が挙げられ、これらのうち1種、または必要に応じて2種以上を用いることができる。   Examples of what can be used as the particles b include oxides such as aluminum oxide and titanium oxide; metals such as iron, copper, tungsten, titanium and molybdenum; nitrides such as silicon nitride and boron nitride; carbides such as silicon carbide and boron carbide Etc., and one of these can be used, or two or more can be used as necessary.

粒子bは個数平均径が2.0μm以上である。2.0μm以上であると、現像剤担持体表面の凹凸の大きさを制御しやすく、現像剤担持体に適正なトナー搬送能力を持たせることができる。その結果、高温高湿環境のようなトナーの流動性が低下する環境下で印刷した場合でも、現像担持体上のトナー搬送量が適正量を維持できるため、高い画像濃度を得ることができる。   Particles b have a number average diameter of 2.0 μm or more. When the thickness is 2.0 μm or more, the size of the irregularities on the surface of the developer carrying member can be easily controlled, and the developer carrying member can have an appropriate toner conveying capability. As a result, even when printing is performed in an environment where the fluidity of the toner is lowered, such as a high-temperature and high-humidity environment, the toner conveyance amount on the developing carrier can be maintained at an appropriate amount, so that a high image density can be obtained.

さらに、粒子bは平均円形度が0.90以上である。平均円形度が0.90以上の球形粒子であれば、粒子bの長辺、短辺の差が小さいため、現像剤担持体表面に均一な凹凸を付与でき、安定したトナー搬送性能を持つ現像剤担持体を得ることができる。その結果、高温高湿環境のようなトナーの流動性が低下する環境下で印刷した場合に、現像担持体上のトナー搬送量が適正量となり、高い画像濃度を得ることができる。   Further, the particles b have an average circularity of 0.90 or more. If the spherical particles have an average circularity of 0.90 or more, the difference between the long side and the short side of the particles b is small, so that the surface of the developer carrying member can be provided with uniform irregularities and development with stable toner transport performance. An agent carrier can be obtained. As a result, when printing is performed in an environment where the fluidity of the toner is lowered, such as a high temperature and high humidity environment, the amount of toner transported on the developing carrier becomes an appropriate amount, and a high image density can be obtained.

また、図1に示すように、現像剤担持体表面層中において、粒子b(2)は、その表面が結着樹脂(4)で被覆され、表面層の表面に非露出の状態で表面層に含有されている。また、粒子a(1)は、粒子bの表面を被覆している結着樹脂中に含まれていると共に、表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれていることが重要である。現像担持体表面に粒子bが露出していると、現像剤担持体表面の組成が一様ではなくなるため、現像剤担持体が持つトナーへの帯電付与性能に局所的な違いが生じる。その結果、現像担持体が持つトナーへの帯電付与性能が均一でなくなり、特にドット画像などの微細な画像の画質が悪化する問題が起きやすくなる。   Further, as shown in FIG. 1, in the surface layer of the developer carrier, the surface of the particle b (2) is coated with the binder resin (4) and is not exposed on the surface of the surface layer. It is contained in. In addition, the particles a (1) are contained in the binder resin covering the surface of the particles b, and in the binder resin present in the valleys between the plurality of convex portions on the surface of the surface layer. It is important that it is also included. When the particles b are exposed on the surface of the developer carrying member, the composition of the surface of the developer carrying member becomes non-uniform, so that a local difference occurs in the charge imparting performance to the toner of the developer carrying member. As a result, the charge-carrying performance to the toner of the developing carrier is not uniform, and a problem that the image quality of a fine image such as a dot image is deteriorated easily occurs.

粒子bの表面が結着樹脂で被覆され、現像剤担持体表面に露出させないためには、粒子bの個数平均径が粒子aの個数平均径の5倍以上であることが好ましい。粒子aに対する粒子bの粒径の比(粒子bの径/粒子aの径)が5以上であると、粒子aを含む結着樹脂層が粒子bを内包しやすくなるため、粒子bが現像剤担持体表面に露出するのを防ぐことができる。   In order not to expose the surface of the particle b with the binder resin and expose it to the surface of the developer carrying member, the number average diameter of the particle b is preferably 5 times or more than the number average diameter of the particle a. When the ratio of the particle size of the particle b to the particle a (particle b diameter / particle a diameter) is 5 or more, the binder resin layer containing the particles a easily includes the particles b. Exposure to the surface of the agent carrier can be prevented.

また、粒子aは現像剤担持体表面の凹部および凸部に関わらず、全体に均一に分散していることが望ましい。粒子aが均一に存在することで、現像剤担持体表面の耐摩耗性が均一になるため部分的な削れを抑制できる。その結果、ドット画像などの微細な画像の画質が悪化する現象が起きにくくなる。   Further, it is desirable that the particles a are uniformly dispersed throughout the surface regardless of the concave and convex portions on the surface of the developer carrying member. Since the particles a are uniformly present, the wear resistance of the surface of the developer carrying member becomes uniform, so that partial abrasion can be suppressed. As a result, a phenomenon that the image quality of a fine image such as a dot image is deteriorated hardly occurs.

次に、本発明に用いられる結着樹脂としては、一般に公知の樹脂、特には現像剤担持体の分野で公知の樹脂、が使用可能である。   Next, as the binder resin used in the present invention, generally known resins, in particular, resins known in the field of developer carriers can be used.

例えば、フェノール系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、フッ素系樹脂、スチレン系樹脂、ビニル系樹脂、セルロース系樹脂、メラミン系樹脂、尿素系樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、アクリル樹脂などが挙げられる。機械的強度を考慮すると熱あるいは光硬化性の樹脂がより好ましいが、十分な機械的強度を有するものであれば、熱可塑性樹脂も適用可能である。   For example, phenol resin, epoxy resin, polyamide resin, polyester resin, polycarbonate resin, polyolefin resin, silicone resin, fluorine resin, styrene resin, vinyl resin, cellulose resin, melamine resin, Examples include urea resins, polyurethane resins, polyimide resins, and acrylic resins. Considering the mechanical strength, a heat or photo-curing resin is more preferable, but a thermoplastic resin can also be applied as long as it has sufficient mechanical strength.

現像剤担持体の表面層の表面粗さは、JIS B0601−2001に規定の算術平均粗さ(Ra)で0.30μm以上、2.50μm以下の範囲にあることが好ましい。0.30μm以上であれば、現像剤を十分に搬送させることが容易となり、トナー不足による画像濃度薄やトナーコート不均一化に伴う画像不良の発生を抑制することが容易である。また、2.50μm以下であれば、トナーの摩擦帯電付与を均一にすることが容易なため摩擦帯電不足による画像濃度薄の発生を容易に抑制できる。   The surface roughness of the surface layer of the developer carrying member is preferably in the range of 0.30 μm or more and 2.50 μm or less in arithmetic average roughness (Ra) defined in JIS B0601-2001. If the thickness is 0.30 μm or more, it is easy to sufficiently transport the developer, and it is easy to suppress the occurrence of image defects due to image density thinning due to lack of toner and uneven toner coating. Moreover, if it is 2.50 μm or less, it is easy to make the toner imparted with frictional charge easily, so that it is possible to easily suppress the occurrence of thin image density due to insufficient frictional charging.

表面層の膜厚は、現像方式および粒子bの個数平均径によって好適な膜厚は異なるものの、5.0μm以上、30.0μm以下の範囲にあることが好ましい。膜厚が5.0μm以上であれば、表面層が基体表面全体を隙間なく覆うことが容易なため、部分的に基体が露出することがなく、現像剤に均一に摩擦帯電を付与することが容易となる。また、膜厚が30.0μm以下であれば、表面粗さの制御を安定して行いやすい。また、粒子bの個数平均径の値よりも膜厚が厚いことが、粒子bを内包しやすいという観点から好ましい。   The film thickness of the surface layer is preferably in the range of 5.0 μm or more and 30.0 μm or less, although the preferred film thickness varies depending on the development method and the number average diameter of the particles b. If the film thickness is 5.0 μm or more, the surface layer can easily cover the entire surface of the substrate without any gaps, so that the substrate is not partially exposed, and the developer can be uniformly charged with friction. It becomes easy. In addition, when the film thickness is 30.0 μm or less, it is easy to stably control the surface roughness. Further, it is preferable that the film thickness is larger than the value of the number average diameter of the particles b from the viewpoint that the particles b are easily included.

本発明に係る現像剤担持体の表面層を得る方法としては、表面層を形成する成分を溶媒中に分散混合して塗料化し、現像剤担持体の基体上に塗布することが好ましい。各成分の分散混合には、ボールミル、サンドミル、アトライター、ビーズミル、の如き公知のメディア分散装置や、衝突型微粒化法や薄膜旋回法を利用した公知のメディアレス分散装置が好適に利用可能である。また分散した塗料の塗工方法としては、ディッピング法、スプレー法、ロールコート法、静電塗布法の如き公知の方法が適用可能である。   As a method for obtaining the surface layer of the developer carrying member according to the present invention, it is preferable to disperse and mix the components forming the surface layer in a solvent to form a paint and apply it onto the substrate of the developer carrying member. For dispersing and mixing each component, a known media dispersing device such as a ball mill, a sand mill, an attritor, or a bead mill, or a known medialess dispersing device using a collision type atomization method or a thin film swirling method can be suitably used. is there. As a coating method for the dispersed paint, known methods such as a dipping method, a spray method, a roll coating method, and an electrostatic coating method can be applied.

本発明に係る現像剤担持体は、導電性微粒子を表面層中に含有している。この際に使用される導電性微粒子としては、現像剤担持体の分野で公知の材料を適宜選ぶことができ、例えば以下のものが挙げられる。アルミニウム、銅、ニッケル、銀の如き金属の微粉末;酸化アンチモン、酸化インジウム、酸化スズ、酸化チタン、酸化亜鉛、酸化モリブデン、チタン酸カリウムの如き導電性金属酸化物;結晶性グラファイト;各種カーボンファイバー;ファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、チャネルブラックの如き導電性カーボンブラック;金属繊維。また、これらを同時に使用してもよい。   The developer carrier according to the present invention contains conductive fine particles in the surface layer. As the conductive fine particles used in this case, a known material can be appropriately selected in the field of the developer carrier, and examples thereof include the following. Fine powders of metals such as aluminum, copper, nickel and silver; conductive metal oxides such as antimony oxide, indium oxide, tin oxide, titanium oxide, zinc oxide, molybdenum oxide and potassium titanate; crystalline graphite; various carbon fibers Conductive carbon black such as furnace black, lamp black, thermal black, acetylene black, channel black; metal fiber. These may be used simultaneously.

導電性微粒子については、表面層の体積抵抗値を所望の値にするために適宜選ぶことが出来るが、これらのうち、分散性及び電気伝導性に優れることから、特にカーボンブラック、グラファイトが好ましい。   The conductive fine particles can be appropriately selected in order to make the volume resistivity of the surface layer a desired value. Among these, carbon black and graphite are particularly preferable because they are excellent in dispersibility and electrical conductivity.

このうち、導電性カーボンブラック、とりわけ導電性のアモルファスカーボンは、特に電気伝導性に優れ、高分子材料に充填して導電性を付与し、その添加量をコントロールするだけで、ある程度任意の導電度を得ることができるため好適に用いることができる。また塗料にした場合のチキソ性効果により分散安定性・塗工安定性も良好となる。   Of these, conductive carbon black, especially conductive amorphous carbon, is particularly excellent in electrical conductivity. It can be filled to a certain degree of conductivity by simply filling the polymer material with conductivity and controlling the amount added. Can be suitably used. In addition, the dispersion stability and coating stability are also improved due to the thixotropic effect of the paint.

また、結晶性グラファイトは、導電性に優れることに加え、表面層に添加することにより表面潤滑性が増し、表面層の耐トナー汚染性が向上する。   In addition to being excellent in electrical conductivity, crystalline graphite increases surface lubricity by adding it to the surface layer and improves toner contamination resistance of the surface layer.

導電性微粒子の添加量は、その粒径によっても異なるが、結着樹脂100質量部に対して1質量部以上、100質量部以下の範囲とすることが好ましい。1質量部以上であれば樹脂層の低抵抗化と高潤滑性を向上することが可能となり、100質量部以下であると、表面層の強度(耐摩耗性)を大きく低下させることなく、抵抗値を好適に下げることが可能となる。   Although the addition amount of electroconductive fine particles changes also with the particle sizes, it is preferable to set it as the range of 1 to 100 mass parts with respect to 100 mass parts of binder resin. If it is 1 part by mass or more, it becomes possible to reduce the resistance and high lubricity of the resin layer, and if it is 100 parts by mass or less, the resistance (resistance to wear) of the surface layer is not greatly reduced. The value can be suitably reduced.

また、導電性粒子の体積平均粒径は、分散安定性の観点から10nm以上、樹脂組成物の抵抗均一性の観点から20μm以下が好ましい。   In addition, the volume average particle diameter of the conductive particles is preferably 10 nm or more from the viewpoint of dispersion stability and 20 μm or less from the viewpoint of resistance uniformity of the resin composition.

本発明の現像剤担持体に形成される表面層の体積抵抗値としては、1×10−1Ω・cm以上、1×10Ω・cm以下であることが好ましく、1×10−1Ω・cm以上、1×10Ω・cm以下であることがより好ましい。体積抵抗値が1×10−1Ω・cm以上、1×10Ω・cm以下であれば、現像剤への帯電付与を適正に行うことが容易である。 The volume resistance value of the surface layer formed on the developer carrier of the present invention is preferably 1 × 10 −1 Ω · cm or more and 1 × 10 5 Ω · cm or less, preferably 1 × 10 −1 Ω. More preferably, it is cm or more and 1 × 10 3 Ω · cm or less. When the volume resistance value is 1 × 10 −1 Ω · cm or more and 1 × 10 5 Ω · cm or less, it is easy to appropriately charge the developer.

次に、本発明の現像剤担持体を用いた現像方法を実現する現像装置の一例を図に沿って具体的に説明する。図2に、本発明の現像剤担持体を用いた現像方法を実現するための現像装置の一例の模式図を示す。ただし、本発明では、基体、表面層の基体上の配置、および現像剤担持体の形状については、現像剤担持体として公知の形態を適宜採用可能である。   Next, an example of a developing device that realizes a developing method using the developer carrying member of the present invention will be specifically described with reference to the drawings. FIG. 2 shows a schematic diagram of an example of a developing device for realizing a developing method using the developer carrying member of the present invention. However, in the present invention, as the substrate, the arrangement of the surface layer on the substrate, and the shape of the developer carrier, a known form as the developer carrier can be appropriately employed.

本発明の現像剤担持体を用いて現像を行う場合、図2に示される如く、弾性規制ブレードを使用し、この弾性規制ブレード616を現像スリーブに対して、現像剤を介して接触あるいは圧接させて用いる系を用いることが好ましい。図2において,公知のプロセスにより形成された静電潜像を担持する静電潜像担持体、例えば、感光ドラム601は、矢印B方向に回転する。現像スリーブ608は、現像容器603に供給された磁性トナー粒子を有する一成分系磁性現像剤を担持して、矢印A方向に回転することによって、現像スリーブ608と感光ドラム601とが対向している現像領域Dに現像剤を搬送する。図2に示すように、回転自在に保持された現像剤担持体610においては、現像スリーブ608内に,現像剤を現像スリーブ608上に磁気的に吸引且つ保持する為に,磁石(マグネットローラ)609が配置されている。現像スリーブ608は、基体としての金属円筒管606上に被覆された樹脂層(表面層)607を有する。現像スリーブには、電源613により、現像バイアス電圧が印加される。現像容器は、第一室614、第二室615に分割されており、第一室614に存在する磁性現像剤は、撹拌搬送部材605により現像容器603及び仕切り部材604により形成される隙間を通過して第二室615に送られる。磁性現像剤はマグネットローラ609による磁力の作用により現像スリーブ608上に担持される。第二室615中には現像剤が滞留するのを防止するための撹拌部材611が設けられている。現像剤は、磁性トナー相互間及び現像スリーブ608上の樹脂層607との摩擦により、感光ドラム601上の静電潜像を現像することが可能な摩擦帯電電荷を得る。図2においては、現像スリーブ608上の現像剤の層厚を規制する現像剤層厚規制部材616として弾性部材からなる弾性規制ブレードを用いている。弾性部材からなる弾性規制ブレードの例としては、ウレタンゴム、シリコーンゴムの如きゴム弾性を有する材料、又はリン青銅、ステンレス鋼の如き金属弾性を有する材料の弾性板からなるものが挙げられる。この弾性規制ブレード616を現像スリーブ608に対して、トナーを介して接触又は圧接させて用いても良く、本発明においては特にこの形態を有する系において、摩擦帯電付与能の面で格段の効果を得ることができる。   When developing using the developer carrying member of the present invention, as shown in FIG. 2, an elastic regulating blade is used, and this elastic regulating blade 616 is brought into contact with or pressed against the developing sleeve via the developer. It is preferable to use the system used. In FIG. 2, an electrostatic latent image carrier, for example, a photosensitive drum 601 that carries an electrostatic latent image formed by a known process, rotates in the direction of arrow B. The developing sleeve 608 carries a one-component magnetic developer having magnetic toner particles supplied to the developing container 603 and rotates in the direction of arrow A so that the developing sleeve 608 and the photosensitive drum 601 face each other. The developer is transported to the development area D. As shown in FIG. 2, in the developer carrier 610 held rotatably, a magnet (magnet roller) is provided in the developing sleeve 608 to magnetically attract and hold the developer on the developing sleeve 608. 609 is arranged. The developing sleeve 608 has a resin layer (surface layer) 607 coated on a metal cylindrical tube 606 as a base. A developing bias voltage is applied to the developing sleeve by a power source 613. The developing container is divided into a first chamber 614 and a second chamber 615, and the magnetic developer existing in the first chamber 614 passes through a gap formed by the developing container 603 and the partition member 604 by the stirring and conveying member 605. And sent to the second chamber 615. The magnetic developer is carried on the developing sleeve 608 by the action of magnetic force by the magnet roller 609. A stirring member 611 is provided in the second chamber 615 to prevent the developer from staying. The developer obtains a triboelectric charge capable of developing the electrostatic latent image on the photosensitive drum 601 by friction between the magnetic toners and the resin layer 607 on the developing sleeve 608. In FIG. 2, an elastic regulating blade made of an elastic member is used as the developer layer thickness regulating member 616 that regulates the layer thickness of the developer on the developing sleeve 608. Examples of the elastic regulating blade made of an elastic member include those made of an elastic plate made of a material having rubber elasticity such as urethane rubber or silicone rubber, or a material having metal elasticity such as phosphor bronze or stainless steel. The elastic regulating blade 616 may be used in contact with or pressed against the developing sleeve 608 via toner. In the present invention, particularly in a system having this form, a remarkable effect can be obtained in terms of triboelectric charge imparting ability. Can be obtained.

これは、以下の理由による。弾性規制ブレードを接触又は圧接させるタイプの現像装置では、トナーコート層は強い規制を受けながら現像スリーブ608上に現像剤の薄層を形成することができる。なお、現像スリーブ608に対する弾性規制ブレード616の当接圧力は、線圧5g/cm以上、50g/cm以下(4.9N/m以上、49N/m以下)であることが好ましい。当接圧力が上記範囲内であると、現像剤の規制を安定化させ、現像剤担持体上に担持される現像剤量及び摩擦帯電量の適正化を図ることが容易である。また、現像剤の規制が弱くなり、カブリや現像剤もれの如き現象が発生することも容易に防止できる。また、トナーへのダメージを抑制し、現像剤劣化やスリーブ及び弾性規制ブレードへの融着の如き現象が起きることを容易に防止できる。   This is due to the following reason. In a developing device that contacts or presses an elastic regulating blade, a thin layer of developer can be formed on the developing sleeve 608 while the toner coat layer is subjected to strong regulation. The contact pressure of the elastic regulating blade 616 against the developing sleeve 608 is preferably a linear pressure of 5 g / cm or more and 50 g / cm or less (4.9 N / m or more and 49 N / m or less). When the contact pressure is within the above range, it is easy to stabilize the regulation of the developer and optimize the amount of developer and the amount of triboelectric charge carried on the developer carrying member. Further, the regulation of the developer becomes weak, and it is possible to easily prevent a phenomenon such as fogging or developer leakage. In addition, it is possible to suppress damage to the toner and easily prevent phenomena such as developer deterioration and fusion to the sleeve and the elastic regulation blade.

図2においては、現像スリーブ608上の現像剤の層厚を規制する現像剤層厚規制部材として、弾性規制ブレードを使用する例を示した。弾性規制ブレードは、ウレタンゴム、シリコーンゴムの如きゴム弾性を有する材料、あるいはリン青銅、ステンレス鋼の如き金属弾性を有する材料の弾性板からなることができる。しかし、弾性規制ブレードに替えて、図3に示される如く、現像スリーブから離間されて配置された磁性ブレード602を使用してもよい。なお、図3には現像剤供給部材(スクリューなど)612を示したが、これは現像剤補給容器(不図示)から現像容器603内に現像剤(トナー)を補給する部材である。   FIG. 2 shows an example in which an elastic regulating blade is used as a developer layer thickness regulating member that regulates the layer thickness of the developer on the developing sleeve 608. The elastic regulation blade can be made of an elastic plate made of a material having rubber elasticity such as urethane rubber or silicone rubber, or a material having metal elasticity such as phosphor bronze or stainless steel. However, in place of the elastic regulating blade, as shown in FIG. 3, a magnetic blade 602 disposed away from the developing sleeve may be used. FIG. 3 shows a developer supply member (such as a screw) 612, which is a member for supplying developer (toner) into the developer container 603 from a developer supply container (not shown).

図2及び図3はあくまでも本発明の現像剤担持体を使用可能な現像装置を模式的に例示したものである。前記した層厚規制部材以外にも、例えば現像容器603(ホッパー)の形状、攪拌翼605、611の有無、磁極の配置、供給部材612の形状、補給容器の有無に様々な形態があることは言うまでもない。   2 and 3 schematically illustrate a developing device that can use the developer carrying member of the present invention. In addition to the layer thickness regulating member described above, there are various forms such as the shape of the developing container 603 (hopper), the presence / absence of the stirring blades 605 and 611, the arrangement of the magnetic poles, the shape of the supply member 612, and the presence / absence of the supply container. Needless to say.

次に、以下に本発明に関わる物性の測定方法について述べる。実施例において以下の測定方法を採用した。   Next, a method for measuring physical properties according to the present invention will be described. The following measurement methods were employed in the examples.

(1)粒子aおよび粒子bの個数平均径の測定
粒子aおよび粒子bの個数平均径は、「走査型電子顕微鏡S−4800」(商品名、(株)日立ハイテクノロジーズ製)により観察・測定した。それぞれの粒子の個数平均径は、電子顕微鏡写真から300個の粒子の縦横2辺の長さを測定し、2辺の長さの平均(合計600個の長さの算術平均)を個数平均径として算出した。
(1) Measurement of number average diameter of particle a and particle b The number average diameter of particle a and particle b is observed and measured by “Scanning Electron Microscope S-4800” (trade name, manufactured by Hitachi High-Technologies Corporation). did. The number average diameter of each particle was measured by measuring the length of two horizontal and vertical sides of 300 particles from an electron micrograph, and calculating the average of the lengths of the two sides (arithmetic average of 600 total lengths). Calculated as

なお、現像剤担持体表面層内に存在する粒子の個数平均粒径を求める場合は、現像剤担持体表面層の断面を切り出し、断面に存在する300個の粒子の縦横2辺の長さを測定し、2辺の長さの平均から得ることができる。   When obtaining the number average particle diameter of the particles present in the developer carrier surface layer, the cross section of the developer carrier surface layer is cut out, and the lengths of two vertical and horizontal sides of 300 particles present in the cross section are determined. It can be measured and obtained from the average of the lengths of the two sides.

(2)現像剤担持体表面の算術平均粗さ(Ra)の測定
現像剤担持体表面の算術平均粗さ(Ra)の測定には、JIS−B0601(2001)の表面粗さに基づき、表面粗さ測定装置「SURFCOM 1500DX」(商品名、株式会社東京精密製)を用いた。測定条件は、カットオフ0.8mm、評価長さ8mm、送り速度0.6mm/sとした。測定位置は、現像剤担持体の中央位置と塗工両端部との中間の位置の計3箇所、更に90°現像剤担持体を回転した後同様に3箇所、更に90°現像剤担持体を回転した後同様に3箇所、計9点について各々測定し、その平均値をとった。
(2) Measurement of the arithmetic average roughness (Ra) of the developer carrier surface The measurement of the arithmetic average roughness (Ra) of the developer carrier surface is based on the surface roughness of JIS-B0601 (2001). A roughness measuring device “SURFCOM 1500DX” (trade name, manufactured by Tokyo Seimitsu Co., Ltd.) was used. The measurement conditions were a cutoff of 0.8 mm, an evaluation length of 8 mm, and a feed rate of 0.6 mm / s. The measurement positions are a total of three positions, the middle position between the developer carrier and the both ends of the coating. Further, after rotating the 90 ° developer carrier, the same three locations, and further 90 ° developer carrier. After the rotation, the measurement was similarly performed at three points, a total of nine points, and the average value was taken.

(3)粒子aおよび粒子bの平均円形度の測定
粒子aおよび粒子bの平均円形度は、フロー式粒子像分析装置「FPIA−3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定した。
(3) Measurement of average circularity of particle a and particle b The average circularity of particle a and particle b is measured and analyzed during calibration by a flow particle image analyzer “FPIA-3000” (manufactured by Sysmex Corporation). Measured under conditions.

具体的な測定方法は、以下の通りである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(商品名。和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。なお、コンタミノンNは、非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液である。更に測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃乃至40℃となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(例えば商品名:「VS−150」(ヴェルヴォクリーア社製))を用いる。超音波洗浄器分散器の水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。   A specific measurement method is as follows. First, about 20 ml of ion-exchanged water from which impure solids are removed in advance is put in a glass container. About 0.2 ml of a diluted solution obtained by diluting “Contaminone N” (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) with ion-exchanged water about 3 times by mass as a dispersant is added thereto. Contaminone N is a 10% by weight aqueous solution of a neutral detergent for pH 7 precision measuring instrument cleaning comprising a nonionic surfactant, an anionic surfactant and an organic builder. Further, about 0.02 g of a measurement sample is added, and dispersion treatment is performed for 2 minutes using an ultrasonic disperser to obtain a dispersion for measurement. At that time, the dispersion is appropriately cooled so that the temperature of the dispersion becomes 10 ° C. to 40 ° C. As the ultrasonic disperser, a desktop ultrasonic cleaner disperser (for example, trade name: “VS-150” (manufactured by Vervo Creer)) having an oscillation frequency of 50 kHz and an electric output of 150 W is used. A predetermined amount of ion-exchanged water is placed in the water tank of the ultrasonic cleaner / disperser, and about 2 ml of the contamination N is added to the water tank.

測定には、対物レンズとして「LUCPLFLN」(商品名。オリンパス製。倍率20倍、開口数0.40)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE−900A」(商品名。シスメックス社製)を使用した。前記手順に従い調製した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて2000個のトナーを計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.977μm以上、39.54μm未満に限定し、測定試料の平均円形度を求めた。   For the measurement, the flow type particle image analyzer equipped with “LUCPLFLN” (trade name, manufactured by Olympus, magnification 20 ×, numerical aperture 0.40) as an objective lens is used, and the particle sheath “PSE-900A” is used as the sheath liquid. (Trade name, manufactured by Sysmex Corporation). The dispersion prepared in accordance with the above procedure is introduced into the flow type particle image analyzer, and 2000 toners are measured in the HPF measurement mode and in the total count mode. Then, the binarization threshold at the time of particle analysis was set to 85%, the analysis particle diameter was limited to a circle equivalent diameter of 1.977 μm or more and less than 39.54 μm, and the average circularity of the measurement sample was obtained.

測定にあたっては、測定開始前に標準ラテックス粒子を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。標準ラテックス粒子として例えばDuke Scientific社製の商品名「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5100A」をイオン交換水で希釈して用いる。   In measurement, automatic focus adjustment is performed using standard latex particles before the measurement is started. Thereafter, it is preferable to perform focus adjustment every two hours from the start of measurement. As the standard latex particles, for example, “RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5100A” manufactured by Duke Scientific is diluted with ion-exchanged water and used.

なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.977μm以上39.54μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。   In the examples of the present application, a flow-type particle image analyzer that has been issued a calibration certificate issued by Sysmex Corporation, which has been calibrated by Sysmex Corporation, was used. The measurement was performed under the measurement and analysis conditions when the calibration certificate was received, except that the analysis particle diameter was limited to a circle equivalent diameter of 1.977 μm or more and less than 39.54 μm.

なお、現像剤担持体表面層に存在する粒子は、約200℃に昇温させたN−メチルピロリドンによって表面層を溶解させ、抽出した。   The particles present on the surface layer of the developer carrying member were extracted by dissolving the surface layer with N-methylpyrrolidone heated to about 200 ° C.

(4)粒子bのヤング率測定
粒子bのヤング率は、弾性率測定に関するJIS規格に基づいて行った。金属材料についてはJIS Z 2280(金属材料のヤング率)、酸化物に関してはJIS R 1602(セラミックの室温の弾性定数)に基づいて測定した。
(4) Measurement of Young's modulus of particle b The Young's modulus of particle b was measured based on the JIS standard for elastic modulus measurement. For metal materials, measurement was performed based on JIS Z 2280 (Young's modulus of metal materials), and for oxides based on JIS R 1602 (elastic constant at room temperature of ceramics).

(5)現像剤担持体の表面層(樹脂層)の体積抵抗測定
100μmの厚さのポリエチレンテレフタレート(PET)シート上に、現像剤担持体上の表面層を形成する塗工液と同じ塗工液を用い、20μmの樹脂層を形成し、抵抗率計ロレスタAP(商品名。三菱化学社製)にて4端子プローブを用いて体積抵抗値を測定した。測定環境は、温度20℃以上、25℃以下、湿度50%RH(相対湿度)以上、60%RH以下で実施した。
(5) Volume resistance measurement of surface layer (resin layer) of developer carrier The same coating as the coating liquid for forming the surface layer on developer carrier on a polyethylene terephthalate (PET) sheet having a thickness of 100 μm A 20 μm resin layer was formed using the solution, and the volume resistance value was measured with a resistivity meter Loresta AP (trade name, manufactured by Mitsubishi Chemical Corporation) using a 4-terminal probe. The measurement environment was a temperature of 20 ° C. or more and 25 ° C. or less, a humidity of 50% RH (relative humidity) or more and 60% RH or less.

(6)現像剤担持体表面層の膜厚および削れ量測定
レーザー測長器(KEYENCE社製。商品名:コントローラLS−5500、センサーヘッドLS5040T)で表面層形成前後の現像剤担持体の外径を測定した。その前後の測定値より、30点の平均値をとって現像剤担持体表面層の膜厚(μm)を算出した。現像剤担持体表面層の削れ量は、同様の装置を用いて、耐久前後の現像剤担持体の外径を測定し、その前後の測定値より、30点の平均値をとって現像剤担持体表面層の削れ量(μm)を算出した。
(6) Measurement of film thickness and scraping amount of developer carrier surface layer External diameter of developer carrier before and after surface layer formation by laser length measuring device (manufactured by KEYENCE, trade name: controller LS-5500, sensor head LS5040T) Was measured. From the measured values before and after that, the average value of 30 points was taken to calculate the film thickness (μm) of the developer carrier surface layer. The amount of scraping of the developer carrier surface layer was measured by measuring the outer diameter of the developer carrier before and after the endurance using the same device, and taking the average value of 30 points from the measured values before and after that. The scraping amount (μm) of the body surface layer was calculated.

(7)トナーの重量平均粒径(D4)の測定
電解質溶液100ml以上、150ml以下に界面活性剤(アルキルベンゼンスルホン酸塩)を0.1〜5ml添加し、これに測定試料を2〜20mg添加する。試料を懸濁した電解液を超音波分散器で1から3分間分散処理して、コールターカウンターマルチサイザーにより100μmアパチャーを用いて体積を基準として0.3から40μmの粒度分布を測定した。この条件で測定した測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)を算出した。
(7) Measurement of weight average particle diameter (D4) of toner 0.1 to 5 ml of a surfactant (alkylbenzene sulfonate) is added to 100 ml or more and 150 ml or less of an electrolyte solution, and 2 to 20 mg of a measurement sample is added thereto. . The electrolytic solution in which the sample was suspended was dispersed for 1 to 3 minutes with an ultrasonic disperser, and a particle size distribution of 0.3 to 40 μm was measured with a Coulter counter multisizer using a 100 μm aperture as a reference. The measurement data measured under these conditions was analyzed with the dedicated software attached to the apparatus, and the weight average particle diameter (D4) was calculated.

(8)粒子bの被覆状態の観察
粒子bの被覆状態は、「走査型電子顕微鏡S−4800」(商品名、(株)日立ハイテクノロジーズ製)により観察できる。現像剤担持体表面の凸部を100点観察し、粒子bが表面層(結着樹脂)に被覆されているか確認し、80点以上が被覆されている場合を、被覆されていると定義した。
(8) Observation of Covering State of Particles b The covering state of the particles b can be observed with “Scanning Electron Microscope S-4800” (trade name, manufactured by Hitachi High-Technologies Corporation). 100 points on the surface of the developer carrying member are observed to confirm whether the particle b is covered with the surface layer (binder resin), and the case where 80 points or more are covered is defined as being covered. .

(9)粒子aの存在状態の観察
粒子aの存在状態は、現像剤担持体を切断し、切断面を「走査型電子顕微鏡S−4800」(商品名、(株)日立ハイテクノロジーズ製)によって観察することで確認した。
(9) Observation of presence state of particle a The presence state of the particle a is obtained by cutting the developer carrier and cutting the cut surface with a “scanning electron microscope S-4800” (trade name, manufactured by Hitachi High-Technologies Corporation). This was confirmed by observation.

以上本発明の基本的な構成と特徴について述べたが、以下実施例にもとづいて具体的に本発明について説明する。しかしながら、本発明は何らこれに限定されるものではない。なお、以下の配合における部、%は、特にことわらない限り、それぞれ質量部、質量%を示す。   Although the basic configuration and features of the present invention have been described above, the present invention will be specifically described below based on examples. However, the present invention is not limited to this. In addition, unless otherwise indicated, the part and% in the following mixing | blending show a mass part and mass%, respectively.

<粒子a>
本実施例、比較例で用いた粒子aを表1に示す。各粒子は、必要であれば篩や分級機を用いて所望の個数平均径を得た。
<Particle a>
Table 1 shows the particles a used in Examples and Comparative Examples. Each particle obtained a desired number average diameter using a sieve or a classifier if necessary.

<粒子b>
本実施例、比較例で用いた粒子bを表2に示す。各粒子は、必要であれば篩や分級機を用いて所望の個数平均径を得た。
<Particle b>
Table 2 shows the particles b used in the examples and comparative examples. Each particle obtained a desired number average diameter using a sieve or a classifier if necessary.

<導電性微粒子1>
導電性微粒子1として、トーカブラック#5500(商品名、東海カーボン社製)を用いた。
<Conductive fine particles 1>
As the conductive fine particles 1, Toka Black # 5500 (trade name, manufactured by Tokai Carbon Co., Ltd.) was used.

<導電性微粒子2>
コークスとタールピッチの混合物を用い、この混合物をタールピッチの軟化点以上の温度で練り込み、押し出し成型し、窒素雰囲気下において1000℃で一次焼成を行って炭化させた。続いて、コールタールピッチを含浸させた後、窒素雰囲気下において2800℃で二次焼成を行い、更に粉砕および分級することで、個数平均径2.9μmの導電性微粒子2を得た。
<Conductive fine particles 2>
Using a mixture of coke and tar pitch, this mixture was kneaded at a temperature equal to or higher than the softening point of tar pitch, extruded, and subjected to primary firing at 1000 ° C. in a nitrogen atmosphere to be carbonized. Subsequently, after impregnating with coal tar pitch, secondary firing was performed at 2800 ° C. in a nitrogen atmosphere, and further pulverization and classification were performed to obtain conductive fine particles 2 having a number average diameter of 2.9 μm.

次に、本実施例および比較例に使用した現像剤担持体について説明する。   Next, the developer carrier used in the examples and comparative examples will be described.

<現像剤担持体1の作製>
以下の材料にメタノールを加え固形分を40%に調整し、これをサンドミル(直径1mmのガラスビーズをメディア粒子として使用)で2時間分散した。
・結着樹脂:J325CA(商品名、DIC社製):100部
・導電性微粒子1 : 60部
・導電性微粒子2 : 6部
・粒子a:a−1 : 20部
・粒子b:b−1 : 10部。
<Preparation of developer carrier 1>
Methanol was added to the following materials to adjust the solid content to 40%, and this was dispersed in a sand mill (using glass beads having a diameter of 1 mm as media particles) for 2 hours.
-Binder resin: J325CA (trade name, manufactured by DIC Corporation): 100 parts-Conductive fine particles 1: 60 parts-Conductive fine particles 2: 6 parts-Particle a: a-1: 20 parts-Particle b: b-1 : 10 parts.

篩を用いてガラスビーズを分離したあと、固形分濃度が30%になるようにメタノールを添加して、現像剤担持体1用の塗料を得た。   After separating the glass beads using a sieve, methanol was added so that the solid content concentration was 30% to obtain a coating material for the developer carrier 1.

得られた塗料を、基体にスプレー塗布することで現像剤担持体1を得た。詳細は、基体として、上下端部にマスキングを施した外径20.0mmφ(直径)、算術平均粗さRa0.2μmの研削加工したアルミニウム製円筒管を準備した。この基体を垂直に立てて、一定速度で回転させ、前記塗料1を、スプレーガンを一定速度で下降させながら塗布した。続いて、熱風乾燥炉中で190℃、30分間加熱して塗布層を乾燥し硬化して基体上に樹脂層を形成し現像剤担持体1を作製した。現像剤担持体1の体積抵抗、算術平均粗さRaおよび表面層の膜厚を測定したところ、それぞれ0.5888Ω・cm、1.35μmおよび15.7μmであった。   The obtained coating material was spray-coated on a substrate to obtain a developer carrier 1. Specifically, a cylindrical aluminum tube having an outer diameter of 20.0 mmφ (diameter) and an arithmetic average roughness Ra of 0.2 μm with masking on the upper and lower ends was prepared as a base. The substrate was erected vertically and rotated at a constant speed, and the paint 1 was applied while lowering the spray gun at a constant speed. Subsequently, the coating layer was dried and cured by heating at 190 ° C. for 30 minutes in a hot air drying oven to form a resin layer on the substrate, thereby producing a developer carrier 1. The volume resistance, arithmetic average roughness Ra, and film thickness of the surface layer of the developer carrier 1 were measured and found to be 0.5888 Ω · cm, 1.35 μm, and 15.7 μm, respectively.

また、粒子bは、その表面が結着樹脂で被覆され、表面層の表面に非露出の状態で該表面層に含有されていることを確認した。さらに、粒子aは、粒子bの表面を被覆している結着樹脂中に含まれていると共に、表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれていること、を確認した。   Further, it was confirmed that the surface of the particle b was covered with a binder resin and contained in the surface layer in an unexposed state on the surface of the surface layer. Further, the particles a are included in the binder resin covering the surface of the particles b, and also included in the binder resin present in the valleys between the plurality of convex portions on the surface of the surface layer. Confirmed.

<現像剤担持体2〜11および16〜23の作製>
前記現像剤担持体1から粒子a、bの種類及び添加量と結着樹脂、導電性微粒子の添加量を変更した以外は、前記現像剤担持体1と同様の方法で、現像剤担持体2〜11および16〜23の作製を行った。各現像剤担持体の処方および物性を表3に示す。
<Preparation of developer carriers 2-11 and 16-23>
The developer carrier 2 is the same as the developer carrier 1 except that the types and addition amounts of the particles a and b and the addition amount of the binder resin and conductive fine particles are changed from the developer carrier 1. -11 and 16-23 were produced. Table 3 shows the formulation and physical properties of each developer carrier.

<現像剤担持体12〜15および25〜27の作製>
基体を外径24.5mmφのアルミニウム製円筒管に変更し、粒子a、bの種類及び添加量と結着樹脂、導電性微粒子の添加量を変更した以外は、前記現像剤担持体1と同様の方法で、現像剤担持体12〜15および25〜27の作製を行った。各現像剤担持体の処方および物性を表3に示す。
<Preparation of Developer Carriers 12-15 and 25-27>
The same as the developer carrier 1 except that the base is changed to an aluminum cylindrical tube having an outer diameter of 24.5 mmφ, and the types and addition amounts of the particles a and b and the addition amount of the binder resin and conductive fine particles are changed. In this manner, developer carriers 12 to 15 and 25 to 27 were prepared. Table 3 shows the formulation and physical properties of each developer carrier.

粒子aおよび粒子bの存在状態を確認したところ、現像剤担持体24は粒子bが露出している状態であった。これは、表面層の膜厚よりも粒子bの粒径が大きいことに起因する。それ以外の現像剤担持体は、粒子bが結着樹脂で被覆され、表面層の表面に非露出の状態で該表面層に含有されていることを確認した。また、粒子aを添加した現像剤担持体については、粒子aの存在状態について観察し、粒子bの表面を被覆している結着樹脂中に含まれていると共に、表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれていることを確認した。   When the presence state of the particles a and the particles b was confirmed, the developer carrying member 24 was in a state where the particles b were exposed. This is because the particle size of the particle b is larger than the film thickness of the surface layer. It was confirmed that the other developer-carrying members were covered with the binder resin and contained in the surface layer in a state where the particles b were not exposed on the surface layer. In addition, for the developer carrier to which the particles a are added, the presence state of the particles a is observed and contained in the binder resin covering the surface of the particles b, and a plurality of surfaces on the surface of the surface layer are included. It was confirmed that it was also included in the binder resin present in the valleys between the convex portions.

現像剤であるトナーは、以下のようにして製造した。   The toner as the developer was produced as follows.

<トナーの製造例>
スチレン−アクリル系樹脂 :100質量部
マグネタイト : 90質量部
炭化水素系ワックス(融点105℃): 2質量部
電荷制御剤(アゾ系鉄錯体) : 2質量部。
<Example of toner production>
Styrene-acrylic resin: 100 parts by mass Magnetite: 90 parts by mass Hydrocarbon wax (melting point 105 ° C.): 2 parts by mass Charge control agent (azo type iron complex): 2 parts by mass.

上記材料をヘンシェルミキサーで前混合した後、二軸混練押し出し機によって、溶融混練した。得られた混練物を冷却し、ハンマーミルで粗粉砕した後、ジェットミルで粉砕し、得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級し、重量平均粒径(D4)6.8μmの負摩擦帯電性のトナー粒子を得た。流動性付与剤として、疎水性シリカ微粉末を1.0質量部とチタン酸ストロンチウムを3.0質量部を外添混合し、目開き150μmのメッシュで篩い、トナーを得た。   The above materials were premixed with a Henschel mixer and then melt kneaded with a biaxial kneading extruder. The obtained kneaded product is cooled, coarsely pulverized with a hammer mill, then pulverized with a jet mill, and the resulting finely pulverized powder is classified using a multi-division classifier utilizing the Coanda effect to obtain a weight average particle size ( D4) 6.8 μm negative triboelectrically chargeable toner particles were obtained. As a fluidity-imparting agent, 1.0 part by mass of hydrophobic silica fine powder and 3.0 parts by mass of strontium titanate were externally added and mixed, and sieved with a mesh having a mesh size of 150 μm to obtain a toner.

(実施例1)
現像剤担持体1を用いて、図1に示した構成を有したキヤノン製複写機(商品名:image RUNNER ADVANCE 2320)に組み込み、プロセススピードが230mm/secとなるように改造し、評価を行った。複写環境は、評価によって異なり、高温高湿(H/H)環境(30℃、85%RH)および低温低湿(L/L)環境(15℃、10%RH)の環境で行った。
Example 1
Using developer carrier 1, it was incorporated into a Canon copier (trade name: image RUNNER ADVANCE 2320) having the configuration shown in FIG. 1 and modified so that the process speed was 230 mm / sec and evaluated. It was. The copying environment varied depending on the evaluation, and was performed in a high temperature and high humidity (H / H) environment (30 ° C., 85% RH) and a low temperature and low humidity (L / L) environment (15 ° C., 10% RH).

上記各環境下で、印字比率1%のテキストチャートを用いて2枚間欠モードにて、初期及び20万枚印刷(耐久)後の画像評価を行った。各評価試験の手法は後に詳述するが、要約すると次のとおりである。
評価1:H/H環境の耐久(1%テキストチャート、20万枚、2枚間欠)前後に、H/H環境でコピー(5.5%テストチャート)してベタ丸の画像濃度を評価。
評価2:L/L環境の耐久後に現像剤担持体表面の削れ量を評価。
評価3:H/H環境の耐久前後に、H/H環境で5%FFH画像を10枚プリントした後にH/H環境でドットFFH画像をプリントしてガサツキ指数を評価。
つまり、評価1および3では耐久を含めて全ての印刷をH/H環境で行い、評価2では耐久を含めて全ての印刷をL/L環境で行った。
In each of the above environments, image evaluation was performed initially and after printing 200,000 sheets (durability) in a two-sheet intermittent mode using a text chart with a printing ratio of 1%. The method of each evaluation test will be described in detail later, but is summarized as follows.
Evaluation 1: Before and after endurance in the H / H environment (1% text chart, 200,000 sheets, 2 sheets intermittent), the image density of the solid circle was evaluated by copying in the H / H environment (5.5% test chart).
Evaluation 2: The amount of abrasion on the surface of the developer carrying member was evaluated after endurance in the L / L environment.
Evaluation 3: Before and after endurance in the H / H environment, 10 5% FFH images were printed in the H / H environment, and then the dot FFH images were printed in the H / H environment to evaluate the roughness index.
That is, in evaluations 1 and 3, all printing including durability was performed in the H / H environment, and in evaluation 2, all printing including durability was performed in the L / L environment.

<1>画像濃度
画像比率5.5%のテストチャートを画像出力して得られたコピー上のφ5mmベタ丸部のコピー画像濃度を、反射濃度計「RD918」(商品名、マクベス社製)により反射濃度測定を行い、その10点の平均値を画像濃度とし、以下の基準で評価した。
<1> Image Density Copy image density of a 5 mm solid round part on a copy obtained by outputting a test chart with an image ratio of 5.5% is reflected by a reflection densitometer “RD918” (trade name, manufactured by Macbeth). The reflection density was measured, and the average value of the 10 points was used as the image density, and evaluation was performed according to the following criteria.

複写環境は、評価によって異なり、高温高湿環境H/H(30℃、85%RH)の環境で行った。
ランクA(とても良い):画像濃度1.40以上
ランクB(良い):画像濃度1.35以上1.40未満
ランクC(普通):画像濃度1.25以上1.35未満
ランクD(実用下限):画像濃度1.20以上1.25未満
ランクE(実用不可):画像濃度1.20未満。
The copying environment varied depending on the evaluation, and was performed in an environment of high temperature and high humidity H / H (30 ° C., 85% RH).
Rank A (very good): Image density 1.40 or more Rank B (good): Image density 1.35 or more and less than 1.40 Rank C (normal): Image density 1.25 or more and less than 1.35 Rank D (practical lower limit) ): Image density of 1.20 or more and less than 1.25 Rank E (unusable): Image density of less than 1.20.

<2>現像剤担持体表面の削れ量
現像剤担持体表面の削れ量は、低温低湿環境L/L(15℃、10%RH)の印刷環境で評価した。初期および耐久後の削れ量を以下の基準で評価した。
ランクA(とても良い):削れ量2.0μm未満
ランクB(良い):削れ量2.0μm以上4.0μm未満
ランクC(普通):削れ量4.0μm以上6.0μm未満
ランクD(実用下限):削れ量6.0μm以上8.0μm未満
ランクE(実用不可):削れ量8.0μm以上。
<2> Abrasion amount on the surface of the developer carrier The amount of abrasion on the surface of the developer carrier was evaluated in a printing environment of a low temperature and low humidity environment L / L (15 ° C., 10% RH). The amount of scraping after initial and after durability was evaluated according to the following criteria.
Rank A (very good): Shave amount less than 2.0 μm Rank B (good): Shave amount from 2.0 μm to less than 4.0 μm Rank C (normal): Shave amount from 4.0 μm to less than 6.0 μm Rank D (practical lower limit) ): Abrasion amount 6.0 μm or more and less than 8.0 μm Rank E (unusable): Abrasion amount 8.0 μm or more.

<3>ドット画像の画質評価 GN1
高温高湿環境H/H(30℃、85%RH)の環境で、画像比率5%のFFH画像を10枚プリントした。その後、1画素を1ドットで形成するドット画像(FFH画像)を作成した。紙上の1ドットあたりの面積が、20000μm以上25000μm以下となるように、レーザービームのスポット径を調整した。デジタルマイクロスコープVHX−500(商品名:レンズワイドレンジズームレンズVH−Z100・キーエンス社製)を用い、ドット1000個の面積を測定した。ドット面積の個数平均(S)とドット面積の標準偏差(σ)を算出し、ガサツキ指数を下記式により算出し、以下の評価基準で評価した。
<3> Image quality evaluation of dot images GN1
Ten FFH images with an image ratio of 5% were printed in an environment of high temperature and high humidity H / H (30 ° C., 85% RH). Thereafter, a dot image (FFH image) in which one pixel is formed by one dot was created. The spot diameter of the laser beam was adjusted so that the area per dot on the paper was 20000 μm 2 or more and 25000 μm 2 or less. The area of 1000 dots was measured using a digital microscope VHX-500 (trade name: lens wide range zoom lens VH-Z100, manufactured by Keyence Corporation). The number average (S) of dot areas and the standard deviation (σ) of dot areas were calculated, the roughness index was calculated according to the following formula, and evaluated according to the following evaluation criteria.

ガサツキ指数(I)=σ/S×100
(評価基準)
A(非常に良い):Iが1.0未満
B(良い) :Iが1.0以上2.0未満
C(普通) :Iが2.0以上3.0未満
D(実用下限) :Iが3.0以上4.0未満
E(実用不可) :Iが4.0以上。
Gastling index (I) = σ / S × 100
(Evaluation criteria)
A (very good): I is less than 1.0 B (good): I is 1.0 or more and less than 2.0 C (normal): I is 2.0 or more and less than 3.0 D (practical lower limit): I Is 3.0 or more and less than 4.0 E (unusable): I is 4.0 or more.

なお、FFH画像とは、256階調を16進数で表示した値であり、00Hを1階調目(白地部)、FFHを256階調目(ベタ部)とした。
実施例1の試験結果を表4に示す。なお表4において、上記評価1(画像濃度)の結果は「耐久H/H」と示した欄、評価2(現像剤担持体表面の削れ量)は「削れL/L」と示した欄、評価3(ドット画像の画質評価 GN1)の結果は「GN1」と示した欄に記載した。
The FFH image is a value in which 256 gradations are displayed in hexadecimal. 00H is the first gradation (white background part), and FFH is the 256th gradation (solid part).
The test results of Example 1 are shown in Table 4. In Table 4, the result of the evaluation 1 (image density) is a column indicated as “durability H / H”, and the evaluation 2 (the amount of abrasion on the surface of the developer carrying member) is indicated as a column indicated as “scrap L / L”. The result of evaluation 3 (dot image quality evaluation GN1) is shown in the column labeled “GN1”.

(実施例2から11及び比較例1から9)
評価に用いる現像剤担持体を表4に示すように変えて、実施例1と同様に、実施例2から11及び比較例1から9の評価を行った。試験結果を表4に示す。
(Examples 2 to 11 and Comparative Examples 1 to 9)
The developer carrying member used for evaluation was changed as shown in Table 4, and evaluations of Examples 2 to 11 and Comparative Examples 1 to 9 were performed in the same manner as in Example 1. The test results are shown in Table 4.

(実施例12から15および比較例10から12)
評価に使用する装置を、図3に示した構成を有したキヤノン製複写機(商品名:image RUNNER ADVANCE6275)に変えて、プロセススピードが400mm/secとなるように改造し、画像評価(耐久)の枚数を200万枚に変更した。また評価に用いる現像剤担持体を表4に示すように変更した。それ以外は、実施例1で行った評価と同様に、実施例12から15および比較例10から12の評価を行った。評価結果を表4に示す。
(Examples 12 to 15 and Comparative Examples 10 to 12)
The equipment used for the evaluation was changed to a Canon copier (product name: image RUNNER ADVANCE 6275) having the configuration shown in FIG. 3, and the process speed was changed to 400 mm / sec to evaluate the image (durability). Was changed to 2 million. Further, the developer carrier used for evaluation was changed as shown in Table 4. Otherwise, the evaluations of Examples 12 to 15 and Comparative Examples 10 to 12 were performed in the same manner as the evaluation performed in Example 1. The evaluation results are shown in Table 4.

1 粒子a
2 粒子b
3 導電性微粒子
4 結着樹脂
1 Particle a
2 particles b
3 Conductive fine particles 4 Binder resin

Figure 2017058615
Figure 2017058615

Figure 2017058615
Figure 2017058615

Figure 2017058615
Figure 2017058615

Figure 2017058615
Figure 2017058615

Claims (2)

静電潜像担持体上に形成された静電潜像を、現像剤担持体に担持搬送された現像剤により現像し可視像化する現像装置に用いられる現像剤担持体であって、
基体および該基体上に設けられた表面層を有し、
該表面層は、
結着樹脂、
導電性微粒子、
新モース硬度が10以上であり、個数平均径が2.0μm未満であり、かつ平均円形度が0.90以下である粒子a、および
個数平均径が2.0μm以上、ヤング率が100GPa以上であり、さらに平均円形度が0.90以上である該表面層に凹凸を付与させるための粒子b
を含み、
該表面層の表面には、該粒子bに由来する凸部が複数存在しており、
該表面層中において、該粒子bは、その表面が該結着樹脂で被覆され、該表面層の表面に非露出の状態で該表面層に含有されており、該粒子aは、該粒子bの表面を被覆している結着樹脂中に含まれていると共に、該表面層の表面の複数の凸部の間の谷部に存在する結着樹脂中にも含まれている
ことを特徴とする現像剤担持体。
A developer carrier used in a developing device that develops and visualizes an electrostatic latent image formed on an electrostatic latent image carrier with a developer carried on the developer carrier,
A substrate and a surface layer provided on the substrate;
The surface layer is
Binder resin,
Conductive fine particles,
A new Mohs hardness of 10 or more, a number average diameter of less than 2.0 μm and an average circularity of 0.90 or less, and a number average diameter of 2.0 μm or more, Young's modulus of 100 GPa or more And particles b for imparting irregularities to the surface layer having an average circularity of 0.90 or more
Including
On the surface of the surface layer, there are a plurality of convex portions derived from the particles b,
In the surface layer, the particle b is coated with the binder resin and is contained in the surface layer in a state of being not exposed to the surface of the surface layer. In addition to being contained in the binder resin covering the surface of the surface layer, it is also contained in the binder resin present in the valleys between the plurality of convex portions on the surface of the surface layer. A developer carrier.
粒子bの個数平均径が、粒子aの個数平均径の5倍以上である、請求項1記載の現像剤担持体。   The developer carrying member according to claim 1, wherein the number average diameter of the particles b is 5 times or more than the number average diameter of the particles a.
JP2015185478A 2015-09-18 2015-09-18 Developer carrier Pending JP2017058615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185478A JP2017058615A (en) 2015-09-18 2015-09-18 Developer carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185478A JP2017058615A (en) 2015-09-18 2015-09-18 Developer carrier

Publications (1)

Publication Number Publication Date
JP2017058615A true JP2017058615A (en) 2017-03-23

Family

ID=58391565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185478A Pending JP2017058615A (en) 2015-09-18 2015-09-18 Developer carrier

Country Status (1)

Country Link
JP (1) JP2017058615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160303A (en) * 2019-03-27 2020-10-01 住友理工株式会社 Development roller for electrophotographic device and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160303A (en) * 2019-03-27 2020-10-01 住友理工株式会社 Development roller for electrophotographic device and manufacturing method therefor
WO2020195449A1 (en) * 2019-03-27 2020-10-01 住友理工株式会社 Developing roll for electrophotographic device and method for manufacturing developing roll for electrophotographic device
JP7146682B2 (en) 2019-03-27 2022-10-04 住友理工株式会社 Developing roll for electrophotographic equipment and method for producing developing roll for electrophotographic equipment

Similar Documents

Publication Publication Date Title
US8546051B2 (en) Developer bearing member and process for producing same, development apparatus and development method
JP4448174B2 (en) Developer carrier and developing device
CN102687083B (en) Developer carrying member and developing assembly
JP2007025599A (en) Developing device
JPH08240981A (en) Developer carrying body, developing device, image forming device and process cartridge
JP2017058615A (en) Developer carrier
JP2011232644A (en) Image formation method
JP2016114849A (en) Developer carrier, manufacturing method therefor, and developing device
JP4458356B2 (en) Developer carrier and developing device
JP4250486B2 (en) Development method
JP2007147733A (en) Developer carrier
JP4324014B2 (en) Developer carrier and developing method using the same
JP2003345095A (en) Production method of electrophotographic member and electrophotographic member produced by the method
JP3302271B2 (en) Developer carrier and developing device using the same
JP5089479B2 (en) Developing apparatus and developing method
JP4366048B2 (en) Method for producing electrophotographic member and electrophotographic member produced by the method
JP2003107820A (en) Electrophotographic member production method and electrophotographic member produced by the method
JP5349896B2 (en) Developer carrying member, developing device using the same, and electrophotographic image forming apparatus
JP3138406B2 (en) Developer carrier and developing device using the same
JP5464874B2 (en) Developer carrier and developing device
JP2004184897A (en) Method of manufacturing electrophotographic member and electrophotographic member manufactured by the same
JP2017058614A (en) Developer carrier and developing device
JP2000003091A (en) Developer carrying body for developing, developing device using that, image forming method and device unit
JPH112955A (en) Developer carrier and developing device using it
JP2003021958A (en) Manufacturing method for electrophotographic member and electrophotographic member manufactured by the same method