JP2017058334A - Subsea exploration apparatus - Google Patents

Subsea exploration apparatus Download PDF

Info

Publication number
JP2017058334A
JP2017058334A JP2015185641A JP2015185641A JP2017058334A JP 2017058334 A JP2017058334 A JP 2017058334A JP 2015185641 A JP2015185641 A JP 2015185641A JP 2015185641 A JP2015185641 A JP 2015185641A JP 2017058334 A JP2017058334 A JP 2017058334A
Authority
JP
Japan
Prior art keywords
coil
transmission
compensation
current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015185641A
Other languages
Japanese (ja)
Other versions
JP6514078B2 (en
Inventor
斎藤 章
Akira Saito
章 斎藤
中山 圭子
Keiko Nakayama
圭子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2015185641A priority Critical patent/JP6514078B2/en
Publication of JP2017058334A publication Critical patent/JP2017058334A/en
Application granted granted Critical
Publication of JP6514078B2 publication Critical patent/JP6514078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a subsea exploration apparatus capable of accurately exploring for metallic mineral resources under seabed.SOLUTION: A subsea exploration apparatus 1 includes a transmission coil 10, a transmission current source 20 that supplies transmission current I1 to the transmission coil 10, a compensation coil 30 disposed to surround a metal element 100 exposed to a magnetic field from the transmission coil 10, and a compensation current source 40 that supplies compensation current I2 to the compensation coil 30 to reduce the magnetic field at the metal element 100.SELECTED DRAWING: Figure 3

Description

本発明は、海底探査装置に関する。   The present invention relates to a seafloor exploration device.

海底下に存在する金属鉱物資源(例えば、海底熱水鉱床など)の探査が盛んに行われている。例えば、特許文献1には、送信ループの周囲に電位測定用電極を配置して海底下の電磁探査を行う海底探査装置が開示されている。   Exploration of metal mineral resources (for example, submarine hydrothermal deposits, etc.) existing under the seabed is actively conducted. For example, Patent Document 1 discloses a seafloor exploration apparatus that performs electromagnetic exploration below the seabed by arranging potential measurement electrodes around a transmission loop.

特開2014−98669号公報JP 2014-98669 A

海底下の金属鉱物資源を電磁探査で探索する場合には、陸上とは異なり、低比抵抗の海水が媒質として存在する。そのため、送信コイルの近くに配置せざるを得ない、極めて低比抵抗な金属要素(潜水機(遠隔操作無人探査機(remotely operated vehicle;ROV)や自律型無人潜水機(autonomous underwater vehicle;AUV)など)や耐圧容器など)に生じる誘導電流に起因する磁場が大きなノイズ源となることが課題であった。   When searching for metal mineral resources under the seabed by electromagnetic exploration, unlike on land, low resistivity seawater exists as a medium. Therefore, extremely low resistivity metal elements (submersibles (remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs)) that must be placed close to the transmitter coil Etc.) and a magnetic field caused by an induced current generated in a pressure vessel, etc.) has been a problem.

本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様によれば、海底下の金属鉱物資源を精度よく探索できる海底探査装置を提供することができる。   The present invention has been made in view of the above problems, and according to some aspects of the present invention, it is possible to provide a seafloor exploration device that can accurately search for metal mineral resources under the seabed. .

本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following aspects or application examples.

[適用例1]
本適用例に係る海底探査装置は、
送信コイルと、
前記送信コイルに送信電流を供給する送信電流供給源と、
前記送信コイルからの磁場を受ける金属要素における磁場が小さくなるように磁場を発生させる補償コイルと、
前記補償コイルに補償電流を供給する補償電流供給源と、
を含む、海底探査装置である。
[Application Example 1]
The seafloor exploration device according to this application example
A transmission coil;
A transmission current supply source for supplying a transmission current to the transmission coil;
A compensation coil for generating a magnetic field such that the magnetic field in the metal element receiving the magnetic field from the transmission coil is reduced;
A compensation current supply source for supplying a compensation current to the compensation coil;
Is a seafloor exploration device.

本適用例によれば、補償コイルが生じる磁場によって、金属要素における磁場を小さくできるので、金属要素に発生する誘導電流を低減できる。したがって、金属要素の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。   According to this application example, the magnetic field generated by the compensation coil can reduce the magnetic field in the metal element, so that the induced current generated in the metal element can be reduced. Therefore, since the influence caused by the induced current of the metal element can be reduced, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

[適用例2]
上述の海底探査装置において、
前記補償コイルは、平面視で、前記金属要素を囲むように設けられていてもよい。
[Application Example 2]
In the above-mentioned seafloor exploration device,
The compensation coil may be provided so as to surround the metal element in a plan view.

本適用例によれば、簡易な構成で、金属要素の概ね全体にわたって磁場を小さくするこ
とができる。したがって、金属要素の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。
According to this application example, the magnetic field can be reduced over almost the entire metal element with a simple configuration. Therefore, since the influence caused by the induced current of the metal element can be reduced, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

[適用例3]
上述の海底探査装置において、
前記補償コイルは、平面視で、前記金属要素よりも小さくてもよい。
[Application Example 3]
In the above-mentioned seafloor exploration device,
The compensation coil may be smaller than the metal element in plan view.

本適用例によれば、小型の補償コイルで、金属要素の少なくとも一部に対して磁場を小さくすることができる。したがって、金属要素の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。   According to this application example, the magnetic field can be reduced with respect to at least a part of the metal element with a small compensation coil. Therefore, since the influence caused by the induced current of the metal element can be reduced, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

[適用例3]
上述の海底探査装置において、
前記補償電流供給源は、前記送信電流供給源が前記送信電流を遮断するタイミングと連動して、前記補償電流を遮断してもよい。
[Application Example 3]
In the above-mentioned seafloor exploration device,
The compensation current supply source may cut off the compensation current in conjunction with a timing at which the transmission current supply source cuts off the transmission current.

本適用例によれば、簡易な構成で金属要素に発生する1次誘導電流を低減できる。したがって、金属要素の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。   According to this application example, the primary induced current generated in the metal element can be reduced with a simple configuration. Therefore, since the influence caused by the induced current of the metal element can be reduced, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

[適用例4]
上述の海底探査装置において、
前記金属要素に取り付けられている補償用磁場センサーをさらに含み、
前記補償電流供給源は、前記補償用磁場センサーで検出される磁場が0に近づくように、前記補償コイルに前記補償電流を供給してもよい。
[Application Example 4]
In the above-mentioned seafloor exploration device,
Further comprising a compensating magnetic field sensor attached to the metal element;
The compensation current supply source may supply the compensation current to the compensation coil so that a magnetic field detected by the compensation magnetic field sensor approaches zero.

本適用例によれば、金属要素に発生する誘導電流(1次誘導電流および2次誘導電流)を効果的に低減できる。したがって、金属要素の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。   According to this application example, the induced current (primary induced current and secondary induced current) generated in the metal element can be effectively reduced. Therefore, since the influence caused by the induced current of the metal element can be reduced, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

[適用例5]
上述の海底探査装置において、
受信コイルをさらに含み、
平面視で、前記金属要素を囲むように前記送信コイルが配置され、前記送信コイルと重なるように、または、前記送信コイルを囲むように、前記受信コイルが配置されていてもよい。
[Application Example 5]
In the above-mentioned seafloor exploration device,
A receiving coil;
In a plan view, the transmission coil may be disposed so as to surround the metal element, and the reception coil may be disposed so as to overlap with the transmission coil or surround the transmission coil.

金属要素の誘導電流に起因する磁束線のうち、受信コイルの内側で出入りする磁束線は、受信コイルでは検出されないのでノイズにはならない。本適用例によれば、平面視で、受信コイルが金属要素よりも大きいので、金属要素の誘導電流に起因する影響を低減できる。したがって、海底下の金属鉱物資源を精度よく探索できる海底探査装置を実現できる。   Of the magnetic flux lines resulting from the induced current of the metal element, the magnetic flux lines entering and exiting inside the receiving coil are not detected by the receiving coil and therefore do not become noise. According to this application example, since the receiving coil is larger than the metal element in plan view, it is possible to reduce the influence caused by the induced current of the metal element. Accordingly, it is possible to realize a seafloor exploration device that can accurately search for metal mineral resources under the seabed.

図1(A)および図1(B)は、従来の海底探査装置を説明するための模式図である。FIG. 1A and FIG. 1B are schematic diagrams for explaining a conventional seabed survey apparatus. 第1実施形態に係る海底探査装置1の機能ブロック図である。It is a functional block diagram of submarine exploration device 1 concerning a 1st embodiment. 図3(A)は、第1実施形態に係る海底探査装置1の配置を模式的に示す側面図、図3(B)は、第1実施形態に係る海底探査装置1の配置を模式的に示す平面図である。FIG. 3A is a side view schematically showing the arrangement of the seabed exploration device 1 according to the first embodiment, and FIG. 3B schematically shows the arrangement of the seabed exploration device 1 according to the first embodiment. FIG. 図4(A)は、第1実施形態の変形例に係る海底探査装置1aの配置を模式的に示す側面図、図4(B)は、第1実施形態の変形例に係る海底探査装置1aの配置を模式的に示す平面図である。FIG. 4A is a side view schematically showing the arrangement of the seabed exploration device 1a according to the modification of the first embodiment, and FIG. 4B is the seabed exploration device 1a according to the modification of the first embodiment. It is a top view which shows typically arrangement | positioning. 第1実施形態に係る海底探査装置1を用いた海底探査方法の一例を示すフローチャートである。It is a flowchart which shows an example of the seabed search method using the seabed search apparatus 1 which concerns on 1st Embodiment. 図6(A)は、送信電流I1のタイミングチャート、図6(B)は、補償電流I2のタイミングチャート、図6(C)は、送信コイル10に生じる逆起電力Pのタイミングチャート、図6(D)は、送信コイル10が生じる磁場Hのタイミングチャートである。6A is a timing chart of the transmission current I1, FIG. 6B is a timing chart of the compensation current I2, FIG. 6C is a timing chart of the counter electromotive force P generated in the transmission coil 10, and FIG. (D) is a timing chart of the magnetic field H generated by the transmission coil 10. 送信コイル10が発生させる誘導電流を説明するための模式図である。It is a schematic diagram for demonstrating the induced current which the transmission coil 10 generates. 受信磁場センサー52で検出される磁場の応答の一例を示すグラフである。5 is a graph showing an example of a response of a magnetic field detected by a reception magnetic field sensor 52. 第2実施形態に係る海底探査装置2の機能ブロック図である。It is a functional block diagram of the seabed exploration device 2 according to the second embodiment. 図10(A)は、第2実施形態に係る海底探査装置2の配置を模式的に示す側面図、図10(B)は、第2実施形態に係る海底探査装置2の配置を模式的に示す平面図である。FIG. 10A is a side view schematically showing the arrangement of the seabed exploration device 2 according to the second embodiment, and FIG. 10B schematically shows the arrangement of the seabed exploration device 2 according to the second embodiment. FIG. 第2実施形態に係る海底探査装置2を用いた海底探査方法の一例を示すフローチャートである。It is a flowchart which shows an example of the seabed exploration method using the seabed exploration apparatus 2 which concerns on 2nd Embodiment.

以下、本発明の好適な実施形態について図面を用いて詳細に説明する。用いる図面は説明の便宜上のものである。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The drawings used are for convenience of explanation. The embodiments described below do not unduly limit the contents of the present invention described in the claims. Also, not all of the configurations described below are essential constituent requirements of the present invention.

図1(A)および図1(B)は、従来の海底探査装置を説明するための模式図である。図1(A)は、海底探査装置を海底に設置して、遠隔操作無人探査機(remotely operated vehicle;ROV)から離して測定する設置型の海底探査装置を表している。図1(B)は、海底探査装置を遠隔操作無人探査機(remotely operated vehicle;ROV)に搭載して移動しながら測定する移動型の海底探査装置を表している。   FIG. 1A and FIG. 1B are schematic diagrams for explaining a conventional seabed survey apparatus. FIG. 1 (A) shows an installation-type submarine exploration device in which a submarine exploration device is installed on the seabed and measured away from a remotely operated vehicle (ROV). FIG. 1 (B) shows a mobile submarine exploration device that performs measurement while being mounted on a remotely operated vehicle (ROV).

図1(A)に示される例では、送信コイルの上方に金属製の耐圧容器が配置されている。耐圧容器には、送信コイルに送信電流を供給するための電源および回路、磁場を受信するための磁場センサー、磁場センサーからの出力に基づいて測定を行う測定回路などが収容されている。   In the example shown in FIG. 1A, a metal pressure vessel is arranged above the transmission coil. The pressure vessel contains a power supply and circuit for supplying a transmission current to the transmission coil, a magnetic field sensor for receiving a magnetic field, a measurement circuit for performing measurement based on an output from the magnetic field sensor, and the like.

図1(B)に示される例では、送信コイルの上方に金属製の耐圧容器と、金属製の遠隔操作無人探査機が配置されている。   In the example shown in FIG. 1B, a metal pressure vessel and a metal remote control unmanned explorer are disposed above the transmission coil.

図1(A)および図1(B)のいずれにおいても、送信コイルの近くに配置せざるを得ない、極めて低比抵抗な金属要素(潜水機(遠隔操作無人探査機(remotely operated vehicle;ROV)や自律型無人潜水機(autonomous underwater vehicle;AUV)など)や耐圧容器など)に生じる誘導電流に起因する磁場が、海底下に存在する金属鉱物資源(例えば、海底熱水鉱床など)の探査においては大きなノイズ源となる。   In both FIG. 1 (A) and FIG. 1 (B), an extremely low resistivity metal element (submersible (remotely operated vehicle; ROV ) And autonomous underwater vehicles (AUV), pressure vessels, etc.) to search for metal mineral resources (eg, submarine hydrothermal deposits) that exist beneath the seabed. Is a large noise source.

1.第1実施形態
図2は、第1実施形態に係る海底探査装置1の機能ブロック図である。図3(A)は、第1実施形態に係る海底探査装置1の配置を模式的に示す側面図、図3(B)は、第1実施形態に係る海底探査装置1の配置を模式的に示す平面図である。なお、図3(A)および図3(B)においては、各構成を指示する部材については省略している。
1. First Embodiment FIG. 2 is a functional block diagram of a seabed exploration device 1 according to a first embodiment. FIG. 3A is a side view schematically showing the arrangement of the seabed exploration device 1 according to the first embodiment, and FIG. 3B schematically shows the arrangement of the seabed exploration device 1 according to the first embodiment. FIG. In FIG. 3A and FIG. 3B, members that indicate each configuration are omitted.

本実施形態に係る海底探査装置1は、送信コイル10と、送信電流供給源20と、補償コイル30と、補償電流供給源40と、受信部50と、測定部60と、解析部70と、を含んで構成されている。   The seafloor exploration apparatus 1 according to this embodiment includes a transmission coil 10, a transmission current supply source 20, a compensation coil 30, a compensation current supply source 40, a reception unit 50, a measurement unit 60, an analysis unit 70, It is comprised including.

送信コイル10は、送信電流供給源20が出力する送信電流I1を流すコイルとして構成されている。送信コイル10を構成するケーブルは、絶縁膜で被覆されていてもよい。これによって、送信コイル10と海水とを絶縁した状態で海底下に誘導電流を流すことができる。図3(B)に示される例では、送信コイル10の巻き数は1回であるが、巻き数が複数回であってもよい。   The transmission coil 10 is configured as a coil through which the transmission current I1 output from the transmission current supply source 20 flows. The cable constituting the transmission coil 10 may be covered with an insulating film. As a result, it is possible to cause an induced current to flow under the seabed with the transmission coil 10 and seawater insulated. In the example shown in FIG. 3B, the number of turns of the transmission coil 10 is one, but the number of turns may be plural.

本実施形態において、送信コイル10のコイル面は、海底に対向して配置されていてもよい。コイル面と海底とが対向する配置は、コイル面の法線方向に海底が存在するような配置である。   In the present embodiment, the coil surface of the transmission coil 10 may be disposed to face the seabed. The arrangement where the coil surface and the seabed face each other is such that the seabed exists in the normal direction of the coil surface.

図3(A)に示される例では、送信コイル10は、金属要素100の下方側(探査対象となる海底に近い側)に配置されている。   In the example shown in FIG. 3A, the transmission coil 10 is disposed on the lower side of the metal element 100 (the side closer to the seabed to be searched).

金属要素100は、例えば、潜水機(遠隔操作無人探査機(remotely operated vehicle;ROV)や自律型無人潜水機(autonomous underwater vehicle;AUV)など)や耐圧容器などの、金属製の装置である。本実施形態においては、金属要素100としての耐圧容器に、送信電流供給源20、補償電流供給源40、測定部60および解析部70が収容されている。   The metal element 100 is a metal device such as a diving machine (remotely operated vehicle (ROV), autonomous underwater vehicle (AUV), etc.) or a pressure vessel. In the present embodiment, the transmission current supply source 20, the compensation current supply source 40, the measurement unit 60, and the analysis unit 70 are accommodated in a pressure resistant container as the metal element 100.

本実施形態によれば、送信コイル10が発生させる誘導電流が、海底下の深さ方向に広がるので、海底下の深い位置の電気的な性質を探査できる。   According to the present embodiment, since the induced current generated by the transmission coil 10 spreads in the depth direction below the seabed, the electrical property at a deep position below the seabed can be probed.

送信電流供給源20は、送信コイル10に送信電流を供給する。本実施形態においては、送信電流供給源20は、送信コイル10に送信電流I1を供給する状態と、送信電流I1を遮断する状態とを繰り返している。送信コイル10に送信電流I1を供給した後に送信電流I1を遮断することによって、送信コイル10の周りに誘導電流を発生させる。送信電流供給源20が出力する送信電流I1は、探査目的などに応じて、例えば、数十アンペア程度としてもよい。   The transmission current supply source 20 supplies a transmission current to the transmission coil 10. In the present embodiment, the transmission current supply source 20 repeats a state in which the transmission current I1 is supplied to the transmission coil 10 and a state in which the transmission current I1 is cut off. By supplying the transmission current I1 to the transmission coil 10 and then cutting off the transmission current I1, an induced current is generated around the transmission coil 10. The transmission current I1 output from the transmission current supply source 20 may be, for example, about several tens of amperes depending on the purpose of exploration.

補償コイル30は、送信コイル10からの磁場を受ける金属要素100における磁場が小さくなるように磁場を発生させる。補償コイル30は、例えば、送信コイル10が発生させる磁場と概ね逆向きの磁場を発生させてもよい。   The compensation coil 30 generates a magnetic field so that the magnetic field in the metal element 100 that receives the magnetic field from the transmission coil 10 becomes small. For example, the compensation coil 30 may generate a magnetic field substantially opposite to the magnetic field generated by the transmission coil 10.

補償電流供給源40は、補償コイル30に補償電流I2を供給する。例えば、本実施形態においては、補償電流供給源40は、送信電流I1と逆向きの補償電流I2を供給する。上述したように、本実施形態においては、送信電流供給源20は、送信コイル10に送信電流I1を供給する状態と、送信電流I1を遮断する状態とを繰り返しているので、この場合には、補償電流供給源40も、補償コイル30に補償電流I2を供給する状態と、補償電流I2を遮断する状態とを繰り返す。   The compensation current supply source 40 supplies a compensation current I2 to the compensation coil 30. For example, in the present embodiment, the compensation current supply source 40 supplies a compensation current I2 having a direction opposite to the transmission current I1. As described above, in the present embodiment, the transmission current supply source 20 repeats the state in which the transmission current I1 is supplied to the transmission coil 10 and the state in which the transmission current I1 is cut off. The compensation current supply source 40 also repeats the state of supplying the compensation current I2 to the compensation coil 30 and the state of cutting off the compensation current I2.

本実施形態によれば、補償コイル30が生じる磁場によって、金属要素100における磁場を小さくできるので、金属要素100に発生する誘導電流を低減できる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。   According to the present embodiment, since the magnetic field generated by the compensation coil 30 can reduce the magnetic field in the metal element 100, the induced current generated in the metal element 100 can be reduced. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 1 that can accurately search for metal mineral resources under the seabed.

補償コイル30は、平面視で、送信コイル10からの磁場を受ける金属要素100を囲
むように設けられていてもよい。図3に示される例では、補償コイル30は、送信コイル10からの磁場を受ける金属要素100を囲むように設けられているが、金属要素100の上方または下方に設けられていてもよい。補償コイル30は、補償電流供給源40が出力する補償電流I2を流すコイルとして構成されている。補償コイル30を構成するケーブルは、絶縁膜で被覆されていてもよい。図3(B)に示される例では、補償コイル30の巻き数は1回であるが、巻き数が複数回であってもよい。また、補償コイル30は複数個であってもよい。また、本実施形態においては、補償コイル30は、補償コイル30のコイル面と送信コイル10のコイル面とが平行になるように設けられている。
The compensation coil 30 may be provided so as to surround the metal element 100 that receives the magnetic field from the transmission coil 10 in plan view. In the example shown in FIG. 3, the compensation coil 30 is provided so as to surround the metal element 100 that receives the magnetic field from the transmission coil 10, but may be provided above or below the metal element 100. The compensation coil 30 is configured as a coil through which the compensation current I2 output from the compensation current supply source 40 flows. The cable constituting the compensation coil 30 may be covered with an insulating film. In the example shown in FIG. 3B, the number of turns of the compensation coil 30 is one, but the number of turns may be plural. Further, the compensation coil 30 may be plural. In the present embodiment, the compensation coil 30 is provided so that the coil surface of the compensation coil 30 and the coil surface of the transmission coil 10 are parallel to each other.

本実施形態によれば、簡易な構成で、金属要素100の概ね全体にわたって磁場を小さくすることができる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。   According to the present embodiment, the magnetic field can be reduced over almost the entire metal element 100 with a simple configuration. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 1 that can accurately search for metal mineral resources under the seabed.

図4(A)は、第1実施形態の変形例に係る海底探査装置1aの配置を模式的に示す側面図、図4(B)は、第1実施形態の変形例に係る海底探査装置1aの配置を模式的に示す平面図である。補償コイル30は、図3に示される構成に限らず、例えば、平面視で、金属要素100よりも小さくてもよい。例えば、補償コイル30のコイル面の面積が、金属要素100を平面視した場合の面積よりも小さくてもよい。図4に示される例では、補償コイル30が金属要素100の上方に設けられているが、金属要素100の下方に設けられていてもよい。   FIG. 4A is a side view schematically showing the arrangement of the seabed exploration device 1a according to the modification of the first embodiment, and FIG. 4B is the seabed exploration device 1a according to the modification of the first embodiment. It is a top view which shows typically arrangement | positioning. The compensation coil 30 is not limited to the configuration shown in FIG. 3, and may be smaller than the metal element 100 in plan view, for example. For example, the area of the coil surface of the compensation coil 30 may be smaller than the area when the metal element 100 is viewed in plan. In the example shown in FIG. 4, the compensation coil 30 is provided above the metal element 100, but may be provided below the metal element 100.

本実施形態によれば、小型の補償コイル30で、金属要素100の少なくとも一部に対して磁場を小さくすることができる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。   According to the present embodiment, the magnetic field can be reduced with respect to at least a part of the metal element 100 with the small compensation coil 30. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 1 that can accurately search for metal mineral resources under the seabed.

本実施形態において、補償電流供給源40は、送信電流供給源20が送信電流I1を遮断するタイミングと連動して、補償電流I2を遮断してもよい。例えば、補償電流供給源40は、送信電流供給源20が送信電流I1を遮断するタイミングと同時に、補償電流I2を遮断してもよい。   In the present embodiment, the compensation current supply source 40 may cut off the compensation current I2 in conjunction with the timing at which the transmission current supply source 20 cuts off the transmission current I1. For example, the compensation current supply source 40 may cut off the compensation current I2 at the same time as the transmission current supply source 20 cuts off the transmission current I1.

本実施形態によれば、簡易な構成で金属要素100に発生する1次誘導電流を低減できる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。   According to this embodiment, the primary induced current generated in the metal element 100 can be reduced with a simple configuration. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 1 that can accurately search for metal mineral resources under the seabed.

受信部50は、磁場の変化量(時間微分)または磁場の大きさそのものを検出する。本実施形態においては、受信部50は、磁場の変化量(時間微分)を検出する受信コイル51を含んで構成されている。本実施形態においては、受信コイル51は、受信コイル51のコイル面と送信コイル10のコイル面とが平行になるように設けられている。図3(B)に示される例では、受信コイル51の巻き数は1回であるが、巻き数が複数回であってもよい。また、受信部50は、磁場の大きさそのものを検出する受信磁場センサー52を含んで構成されていてもよい。図3に示される例では、受信磁場センサー52は、受信コイル51のコイル面の中心近傍に設けられている。   The receiving unit 50 detects the amount of change (time differentiation) of the magnetic field or the magnitude of the magnetic field itself. In the present embodiment, the receiving unit 50 includes a receiving coil 51 that detects the amount of change (time differentiation) of the magnetic field. In the present embodiment, the reception coil 51 is provided so that the coil surface of the reception coil 51 and the coil surface of the transmission coil 10 are parallel to each other. In the example shown in FIG. 3B, the number of turns of the receiving coil 51 is one, but the number of turns may be plural. The receiving unit 50 may include a receiving magnetic field sensor 52 that detects the magnitude of the magnetic field itself. In the example shown in FIG. 3, the reception magnetic field sensor 52 is provided in the vicinity of the center of the coil surface of the reception coil 51.

図3(B)に示されるように、本実施形態においては、平面視で、金属要素100を囲むように送信コイル10が配置され、送信コイル10を囲むように受信コイル51が配置されている。なお、受信コイル51は、送信コイル10と重なるように配置されていてもよい。   As shown in FIG. 3B, in this embodiment, the transmission coil 10 is disposed so as to surround the metal element 100 and the reception coil 51 is disposed so as to surround the transmission coil 10 in plan view. . Note that the reception coil 51 may be disposed so as to overlap the transmission coil 10.

金属要素100の誘導電流に起因する磁束線のうち、受信コイル51の内側で出入りす
る磁束線は、受信コイル51では検出されないのでノイズにはならない。本実施形態によれば、平面視で、受信コイル51が金属要素100よりも大きいので、金属要素100の誘導電流に起因する影響を低減できる。したがって、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。
Of the magnetic flux lines resulting from the induced current of the metal element 100, the magnetic flux lines entering and exiting inside the receiving coil 51 are not detected by the receiving coil 51 and therefore do not cause noise. According to this embodiment, since the receiving coil 51 is larger than the metal element 100 in plan view, the influence caused by the induced current of the metal element 100 can be reduced. Therefore, it is possible to realize the seafloor exploration apparatus 1 that can accurately search for metal mineral resources under the seabed.

測定部60は、受信コイル51で検出される磁場の経時的な変化に含まれる、送信電流I1の遮断後の過渡応答を測定する。特に、送信電流供給源20が送信コイル10に送信電流I1を供給した状態から送信電流I1を遮断した状態に切り換えた直後からその後の磁場の変化を経時的に測定することが好ましい。   The measurement unit 60 measures a transient response after the transmission current I1 is interrupted, which is included in the change over time of the magnetic field detected by the reception coil 51. In particular, it is preferable to measure the change in the magnetic field over time immediately after the transmission current supply source 20 switches from the state in which the transmission current I1 is supplied to the transmission coil 10 to the state in which the transmission current I1 is cut off.

本実施形態によれば、送信コイル10が発生させる誘導電流が海底下に流れるので、受信コイル51で検出される磁場の経時的な変化に含まれる、送信電流I1の遮断後の過渡応答を測定することによって、海底下の電気的な性質を探査できる。すなわち、本実施形態によれば、海底における時間領域の電磁探査を行うことができる。なお、海底探査装置1は、海底における周波数領域の電磁探査を行う場合にも適用できる。   According to the present embodiment, since the induced current generated by the transmission coil 10 flows below the seabed, the transient response after the interruption of the transmission current I1 included in the change over time of the magnetic field detected by the reception coil 51 is measured. By doing so, you can explore the electrical properties under the seabed. That is, according to the present embodiment, time domain electromagnetic exploration on the sea floor can be performed. The seabed exploration device 1 can also be applied when performing electromagnetic survey in the frequency domain on the seabed.

解析部70は、受信コイル51で検出される磁場の経時的な変化に含まれる、送信電流I1の遮断後の過渡応答に基づいて、海底下の比抵抗を算出する。後述されるように、海底下の比抵抗が小さいほど、誘導電流はゆっくり減衰するので、誘導電流に起因する磁場もゆっくり減衰する。したがって、本実施形態によれば、受信コイル51で検出される磁場の経時的な変化に含まれる、送信電流I1の遮断後の過渡応答に基づいて、海底下の比抵抗を算出できる。   The analysis unit 70 calculates the specific resistance under the seabed based on the transient response after the interruption of the transmission current I1 included in the change of the magnetic field detected by the reception coil 51 with time. As will be described later, the smaller the specific resistance under the seabed, the more slowly the induced current decays, so the magnetic field caused by the induced current also slowly decays. Therefore, according to the present embodiment, the specific resistance under the seabed can be calculated based on the transient response after the interruption of the transmission current I1 included in the temporal change of the magnetic field detected by the receiving coil 51.

制御部90は、送信電流供給源20、補償電流供給源40および測定部60を制御する。例えば、制御部90は、送信電流I1の遮断するタイミングを制御したり、送信電流I1の遮断するタイミングに合わせて補償電流供給源40および測定部60の動作を制御したりする。   The control unit 90 controls the transmission current supply source 20, the compensation current supply source 40, and the measurement unit 60. For example, the control unit 90 controls the timing at which the transmission current I1 is cut off, or controls the operation of the compensation current supply source 40 and the measurement unit 60 in accordance with the timing at which the transmission current I1 is cut off.

図5は、第1実施形態に係る海底探査装置1を用いた海底探査方法の一例を示すフローチャートである。   FIG. 5 is a flowchart showing an example of a seabed exploration method using the seabed exploration apparatus 1 according to the first embodiment.

図5に示される例では、まず、送信電流供給源20が送信コイル10に送信電流I1を供給し、補償電流供給源40が補償コイル30に補償電流I2を供給した後に、送信電流I1および補償電流I2を遮断する(ステップS100)。   In the example shown in FIG. 5, first, after the transmission current supply source 20 supplies the transmission current I1 to the transmission coil 10 and the compensation current supply source 40 supplies the compensation current I2 to the compensation coil 30, the transmission current I1 and the compensation current are supplied. The current I2 is cut off (step S100).

ステップS100では、送信コイル10に送信電流I1を供給した後に送信電流I1を遮断することによって、送信コイル10の周りに誘導電流を発生させる。   In step S <b> 100, an induced current is generated around the transmission coil 10 by cutting off the transmission current I <b> 1 after supplying the transmission current I <b> 1 to the transmission coil 10.

図6(A)は、送信電流I1のタイミングチャート、図6(B)は、補償電流I2のタイミングチャート、図6(C)は、送信コイル10に生じる逆起電力Pのタイミングチャート、図6(D)は、送信コイル10が生じる磁場Hのタイミングチャートである。図7は、送信コイル10が発生させる誘導電流を説明するための模式図である。図7において、送信電流I1が正である場合には、送信コイル10を矢印の向きに電流が流れるものとする。   6A is a timing chart of the transmission current I1, FIG. 6B is a timing chart of the compensation current I2, FIG. 6C is a timing chart of the counter electromotive force P generated in the transmission coil 10, and FIG. (D) is a timing chart of the magnetic field H generated by the transmission coil 10. FIG. 7 is a schematic diagram for explaining the induced current generated by the transmission coil 10. In FIG. 7, when the transmission current I1 is positive, the current flows through the transmission coil 10 in the direction of the arrow.

まず、図6(A)に示すように、送信電流供給源20から送信コイル10に正の送信電流I1を出力する。次にこの送信電流I1を急激に遮断する。これによって、図6(C)に示すように、電磁誘導の法則によって遮断前の同じ磁場を維持しようとする起電力Eが発生し、海底面に誘導電流が発生する。その後、送信電流供給源20から送信コイル10に負の送信電流I1を出力する。次にこの送信電流I1を急激に遮断する。かかる動作を
周期Tで繰り返す。
First, as shown in FIG. 6A, a positive transmission current I1 is output from the transmission current supply source 20 to the transmission coil 10. Next, the transmission current I1 is suddenly cut off. As a result, as shown in FIG. 6C, an electromotive force E is generated to maintain the same magnetic field before the interruption by the law of electromagnetic induction, and an induced current is generated on the sea bottom. Thereafter, a negative transmission current I1 is output from the transmission current supply source 20 to the transmission coil 10. Next, the transmission current I1 is suddenly cut off. Such an operation is repeated at a period T.

この海底面の誘導電流は、海底下の比抵抗に応じて減衰するが、この電流の変化を妨げるような新しい誘導電流が地中に生じる。このプロセスが繰り返され、あたかも誘導電流500が、誘導電流501、誘導電流502へと海底下深部に伝播していくような現象が発生する。   The induced current at the bottom of the sea is attenuated in accordance with the specific resistance below the sea floor, but a new induced current is generated in the ground to prevent the change of the current. This process is repeated, and a phenomenon occurs as if the induced current 500 propagates to the induced current 501 and the induced current 502 to the deep part under the seabed.

これらの誘導電流は、電流経路地層の比抵抗に応じて減衰する。このため、海底近傍に配置された受信コイル51を用い、誘導電流の減衰を磁場の時間変化として図6(D)に示すように検出し、海底下の比抵抗を知ることができる。例えば、地下が高比抵抗の場合は、誘導電流は急速に減衰していくが、低比抵抗の場合はゆっくり減衰する。   These induced currents attenuate according to the specific resistance of the current path formation. For this reason, it is possible to detect the attenuation of the induced current as a time change of the magnetic field as shown in FIG. 6D by using the receiving coil 51 arranged in the vicinity of the seabed and know the specific resistance under the seabed. For example, when the underground has a high resistivity, the induced current decays rapidly, but when the underground has a low resistivity, it slowly decays.

図5に戻り、ステップS100の後に、送信電流I1の遮断後の磁場の過渡応答を測定する(ステップS102)。これによって、海底下の電気的な性質を探査できる。   Returning to FIG. 5, after step S100, the transient response of the magnetic field after the transmission current I1 is cut off is measured (step S102). This enables exploration of electrical properties beneath the seabed.

ステップS102の後に、送信電流I1の遮断後の磁場の過渡応答に基づいて、海底下の比抵抗を算出する(ステップS104)。上述したように、海底下の比抵抗が小さいほど誘導電流はゆっくり減衰するので、誘導電流に起因する磁場もゆっくり減衰する。したがって、送信電流I1の遮断後の磁場の過渡応答に基づいて、海底下の比抵抗を算出できる。   After step S102, the specific resistance under the seabed is calculated based on the transient response of the magnetic field after the transmission current I1 is cut off (step S104). As described above, the smaller the specific resistance under the seabed, the slower the induced current decays, so the magnetic field caused by the induced current also slowly decays. Therefore, the specific resistance under the seabed can be calculated based on the transient response of the magnetic field after the transmission current I1 is cut off.

図7においては海底下の誘導電流について説明したが、同様の原理で海水および金属要素100にも誘導電流が生じる。金属要素100は、比抵抗が小さいので、同様に比抵抗が小さい海底下の金属鉱物資源を探索する場合には大きなノイズとなる。   Although the induced current under the seabed has been described with reference to FIG. 7, induced current is also generated in the seawater and the metal element 100 based on the same principle. Since the metal element 100 has a small specific resistance, it similarly becomes a large noise when searching for a metal mineral resource under the seabed having a small specific resistance.

図6(B)に示されるように、本実施形態においては、送信電流I1と逆向きの補償電流I2が補償コイル30に供給されている。これによって、金属要素における磁場が小さくなる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できる。   As shown in FIG. 6B, in this embodiment, a compensation current I2 having a direction opposite to the transmission current I1 is supplied to the compensation coil 30. This reduces the magnetic field in the metal element. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 1 that can accurately search for metal mineral resources under the seabed.

図8は、受信磁場センサー52で検出される磁場の応答の一例を示すグラフである。図8の横軸は送信電流I1を遮断した後の経過時間(線形目盛り)、縦軸は磁場の応答(対数目盛り)を表す。   FIG. 8 is a graph showing an example of a magnetic field response detected by the reception magnetic field sensor 52. The horizontal axis in FIG. 8 represents the elapsed time after the transmission current I1 is cut off (linear scale), and the vertical axis represents the magnetic field response (logarithmic scale).

図8において、データ1001は、海水のみの場合(金属要素100および補償コイル30が存在しない場合)におけるシミュレーション結果、データ1002は、金属要素100が存在して補償コイル30が存在しない場合におけるシミュレーション結果、データ1003は、金属要素100および補償コイル30が存在する場合におけるシミュレーション結果を示している。   In FIG. 8, data 1001 is a simulation result in the case of seawater only (when the metal element 100 and the compensation coil 30 are not present), and data 1002 is a simulation result when the metal element 100 is present and the compensation coil 30 is not present. The data 1003 shows the simulation result when the metal element 100 and the compensation coil 30 exist.

図8に示されるように、データ1002は、データ1001に比べて磁場がゆっくり減衰している。これは、金属要素100に誘導電流が生じることに起因する。一方、データ1003では、金属要素100に生じる誘導電流の影響が低減され、データ1001に近づいている。   As shown in FIG. 8, the data 1002 has the magnetic field attenuated more slowly than the data 1001. This is because an induced current is generated in the metal element 100. On the other hand, in the data 1003, the influence of the induced current generated in the metal element 100 is reduced and approaches the data 1001.

このように、海底探査装置1が補償コイル30を備えることによって、金属要素100に生じる誘導電流に起因する影響を低減でき、海底下の金属鉱物資源を精度よく探索できる海底探査装置1を実現できることが明らかとなった。   In this way, by providing the submarine exploration device 1 with the compensation coil 30, it is possible to reduce the influence caused by the induced current generated in the metal element 100, and to realize the submarine exploration device 1 that can accurately search for metal mineral resources under the seabed. Became clear.

2.第2実施形態
図9は、第2実施形態に係る海底探査装置2の機能ブロック図である。図10(A)は、第2実施形態に係る海底探査装置2の配置を模式的に示す側面図、図10(B)は、第2実施形態に係る海底探査装置2の配置を模式的に示す平面図である。なお、図10(A)および図10(B)においては、各構成を指示する部材については省略している。また、第1実施形態に係る海底探査装置1と同様の構成には同一の符号を付し、詳細な説明を省略する。
2. Second Embodiment FIG. 9 is a functional block diagram of a seafloor exploration device 2 according to a second embodiment. FIG. 10A is a side view schematically showing the arrangement of the seabed exploration device 2 according to the second embodiment, and FIG. 10B schematically shows the arrangement of the seabed exploration device 2 according to the second embodiment. FIG. In FIG. 10A and FIG. 10B, members that indicate each configuration are omitted. Moreover, the same code | symbol is attached | subjected to the structure similar to the seabed exploration apparatus 1 which concerns on 1st Embodiment, and detailed description is abbreviate | omitted.

本実施形態に係る海底探査装置2は、補償用磁場センサー80を含んで構成されている。補償用磁場センサー80は、金属要素100の近傍に取り付けられている。図10(A)および図10(B)に示される例では、補償用磁場センサー80は、金属要素100の中央に取り付けられている。また、補償用磁場センサー80は、平面視で、送信コイル10のコイル面の中心近傍に取り付けられている。   The seafloor exploration device 2 according to the present embodiment includes a compensation magnetic field sensor 80. The compensation magnetic field sensor 80 is attached in the vicinity of the metal element 100. In the example shown in FIGS. 10A and 10B, the compensation magnetic field sensor 80 is attached to the center of the metal element 100. The compensation magnetic field sensor 80 is attached near the center of the coil surface of the transmission coil 10 in plan view.

補償電流供給源40は、補償用磁場センサー80で検出される磁場が0に近づくように、補償コイル30に補償電流I2を供給する。本実施形態においては、送信電流供給源20が送信コイル10に送信電流I1を供給しているか否かにかかわらず、補償電流供給源40は、補償用磁場センサー80で検出される磁場が0に近づくように、補償コイル30に補償電流I2を供給する。   The compensation current supply source 40 supplies the compensation current I2 to the compensation coil 30 so that the magnetic field detected by the compensation magnetic field sensor 80 approaches zero. In the present embodiment, the compensation current supply source 40 sets the magnetic field detected by the compensation magnetic field sensor 80 to 0 regardless of whether or not the transmission current supply source 20 supplies the transmission coil I1 with the transmission current I1. A compensation current I2 is supplied to the compensation coil 30 so as to approach.

金属要素100には、送信コイル10に流れる送信電流I1に直接的に起因する誘導電流(1次誘導電流)のみならず、1次誘導電流に比べて小さいものの、誘導電流500などに起因する誘導電流(2次誘導電流)も流れる。本実施形態によれば、金属要素100に発生する誘導電流(1次誘導電流および2次誘導電流)を効果的に低減できる。したがって、金属要素100の誘導電流に起因する影響を低減できるので、海底下の金属鉱物資源を精度よく探索できる海底探査装置2を実現できる。   In the metal element 100, not only the induced current (primary induced current) directly caused by the transmission current I1 flowing through the transmission coil 10, but also the induced current 500 caused by the induced current 500 is smaller than the primary induced current. A current (secondary induced current) also flows. According to this embodiment, the induced current (primary induced current and secondary induced current) generated in the metal element 100 can be effectively reduced. Therefore, since the influence resulting from the induced current of the metal element 100 can be reduced, it is possible to realize the seafloor exploration device 2 that can accurately search for the metal mineral resources under the seabed.

図11は、第2実施形態に係る海底探査装置2を用いた海底探査方法の一例を示すフローチャートである。図5と同様の工程には同一の符号を付し、詳細な説明を省略する。   FIG. 11 is a flowchart showing an example of a seabed exploration method using the seabed exploration device 2 according to the second embodiment. Steps similar to those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

図11に示される例では、まず、送信電流供給源20が送信コイル10に送信電流I1を供給し、補償電流供給源40が補償コイル30に補償電流I2を供給した後に、送信電流I1を遮断する(ステップS200)。ステップS200において、補償電流I2については遮断する制御を格別に行うことはせず、後のステップを通じて、補償電流供給源40は、補償用磁場センサー80で検出される磁場が0に近づくように、補償コイル30に補償電流I2を供給する。   In the example shown in FIG. 11, first, the transmission current supply source 20 supplies the transmission coil I1 with the transmission current I1, the compensation current supply source 40 supplies the compensation coil 30 with the compensation current I2, and then the transmission current I1 is cut off. (Step S200). In step S200, the compensation current I2 is not specifically controlled to be cut off. Through the subsequent steps, the compensation current supply source 40 allows the magnetic field detected by the compensation magnetic field sensor 80 to approach zero. A compensation current I2 is supplied to the compensation coil 30.

ステップS200では、送信コイル10に送信電流I1を供給した後に送信電流I1を遮断することによって、送信コイル10の周りに誘導電流を発生させる。誘導電流の発生原理については、図7を用いて説明したとおりである。   In step S <b> 200, an induction current is generated around the transmission coil 10 by cutting off the transmission current I <b> 1 after supplying the transmission current I <b> 1 to the transmission coil 10. The generation principle of the induced current is as described with reference to FIG.

ステップS200の後に、送信電流I1の遮断後の磁場の過渡応答を測定する(ステップS102)。これによって、海底下の電気的な性質を探査できる。   After step S200, the transient response of the magnetic field after the transmission current I1 is cut off is measured (step S102). This enables exploration of electrical properties beneath the seabed.

ステップS102の後に、送信電流I1の遮断後の磁場の過渡応答に基づいて、海底下の比抵抗を算出する(ステップS104)。上述したように、海底下の比抵抗が小さいほど誘導電流はゆっくり減衰するので、誘導電流に起因する磁場もゆっくり減衰する。したがって、送信電流I1の遮断後の磁場の過渡応答に基づいて、海底下の比抵抗を算出できる。   After step S102, the specific resistance under the seabed is calculated based on the transient response of the magnetic field after the transmission current I1 is cut off (step S104). As described above, the smaller the specific resistance under the seabed, the slower the induced current decays, so the magnetic field caused by the induced current also slowly decays. Therefore, the specific resistance under the seabed can be calculated based on the transient response of the magnetic field after the transmission current I1 is cut off.

本実施形態に係る海底探査装置2は、上述の効果に加えて、第1実施形態に係る海底探
査装置1と同様の理由により、同様の効果を奏する。
The seabed exploration device 2 according to the present embodiment has the same effect for the same reason as the seabed exploration device 1 according to the first embodiment, in addition to the above-described effects.

以上、本実施形態あるいは変形例について説明したが、本発明はこれら本実施形態あるいは変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。   As mentioned above, although this embodiment or the modification was demonstrated, this invention is not limited to these this embodiment or a modification, It is possible to implement in a various aspect in the range which does not deviate from the summary.

本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。   The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. In addition, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

1,1a,2…海底探査装置、10…送信コイル、20…送信電流供給源、30…補償コイル、40…補償電流供給源、50…受信部、51…受信コイル、52…受信磁場センサー、60…測定部、70…解析部、80…補償用磁場センサー、90…制御部、100…金属要素、500,501,502…誘導電流、1001,1002,1003…データ DESCRIPTION OF SYMBOLS 1, 1a, 2 ... Submarine exploration device, 10 ... Transmission coil, 20 ... Transmission current supply source, 30 ... Compensation coil, 40 ... Compensation current supply source, 50 ... Reception part, 51 ... Reception coil, 52 ... Reception magnetic field sensor, 60 ... Measurement unit, 70 ... Analysis unit, 80 ... Compensation magnetic field sensor, 90 ... Control unit, 100 ... Metal element, 500,501,502 ... Inductive current, 1001,1002,1003 ... Data

Claims (6)

送信コイルと、
前記送信コイルに送信電流を供給する送信電流供給源と、
前記送信コイルからの磁場を受ける金属要素における磁場が小さくなるように磁場を発生させる補償コイルと、
前記補償コイルに補償電流を供給する補償電流供給源と、
を含む、海底探査装置。
A transmission coil;
A transmission current supply source for supplying a transmission current to the transmission coil;
A compensation coil for generating a magnetic field such that the magnetic field in the metal element receiving the magnetic field from the transmission coil is reduced;
A compensation current supply source for supplying a compensation current to the compensation coil;
Submarine exploration equipment including
請求項1に記載の海底探査装置において、
前記補償コイルは、平面視で、前記金属要素を囲むように設けられている、海底探査装置。
In the seafloor exploration device according to claim 1,
The compensation coil is a seafloor exploration device provided to surround the metal element in plan view.
請求項1に記載の海底探査装置において、
前記補償コイルは、平面視で、前記金属要素よりも小さい、海底探査装置。
In the seafloor exploration device according to claim 1,
The compensation coil is smaller than the metal element in plan view.
請求項1ないし3のいずれか1項に記載の海底探査装置において、
前記補償電流供給源は、前記送信電流供給源が前記送信電流を遮断するタイミングと連動して、前記補償電流を遮断する、海底探査装置。
In the seafloor exploration device according to any one of claims 1 to 3,
The submarine exploration device, wherein the compensation current supply source cuts off the compensation current in conjunction with a timing at which the transmission current supply source cuts off the transmission current.
請求項1ないし3のいずれか1項に記載の海底探査装置において、
前記金属要素に取り付けられている補償用磁場センサーをさらに含み、
前記補償電流供給源は、前記補償用磁場センサーで検出される磁場が0に近づくように、前記補償コイルに前記補償電流を供給する、海底探査装置。
In the seafloor exploration device according to any one of claims 1 to 3,
Further comprising a compensating magnetic field sensor attached to the metal element;
The compensation current supply source supplies the compensation current to the compensation coil so that the magnetic field detected by the compensation magnetic field sensor approaches zero.
請求項1ないし5のいずれか1項に記載の海底探査装置において、
受信コイルをさらに含み、
平面視で、前記金属要素を囲むように前記送信コイルが配置され、前記送信コイルと重なるように、または、前記送信コイルを囲むように、前記受信コイルが配置されている、海底探査装置。
In the seabed exploration device according to any one of claims 1 to 5,
A receiving coil;
The seafloor exploration device, wherein the transmission coil is disposed so as to surround the metal element in a plan view and overlaps with the transmission coil, or the reception coil is disposed so as to surround the transmission coil.
JP2015185641A 2015-09-18 2015-09-18 Submarine exploration equipment Active JP6514078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185641A JP6514078B2 (en) 2015-09-18 2015-09-18 Submarine exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185641A JP6514078B2 (en) 2015-09-18 2015-09-18 Submarine exploration equipment

Publications (2)

Publication Number Publication Date
JP2017058334A true JP2017058334A (en) 2017-03-23
JP6514078B2 JP6514078B2 (en) 2019-05-15

Family

ID=58391458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185641A Active JP6514078B2 (en) 2015-09-18 2015-09-18 Submarine exploration equipment

Country Status (1)

Country Link
JP (1) JP6514078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884718A (en) * 2019-01-29 2019-06-14 吉林大学 A kind of magnetic resonance spy water installations and method that dead time is effectively reduced
CN111025405A (en) * 2019-12-26 2020-04-17 中国科学院电工研究所 Submarine substrate magnetic characteristic in-situ detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151586A (en) * 1984-08-22 1986-03-14 Shimadzu Corp Detecting device for buried body
JPH0493688A (en) * 1990-08-03 1992-03-26 Nippon Butsuri Tanko Kk Metal detector
US20040260174A1 (en) * 2001-10-17 2004-12-23 Keene Mark N Metal detection apparatus
JP2005530135A (en) * 2002-06-11 2005-10-06 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Submarine geological survey method and system using vertical electric field measurements
JP2007139498A (en) * 2005-11-16 2007-06-07 General Environmental Technos Co Ltd Instrument of measuring specific resistance
JP2014098669A (en) * 2012-11-15 2014-05-29 Waseda Univ Submarine prospecting device and submarine prospecting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151586A (en) * 1984-08-22 1986-03-14 Shimadzu Corp Detecting device for buried body
JPH0493688A (en) * 1990-08-03 1992-03-26 Nippon Butsuri Tanko Kk Metal detector
US20040260174A1 (en) * 2001-10-17 2004-12-23 Keene Mark N Metal detection apparatus
JP2005530135A (en) * 2002-06-11 2005-10-06 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Submarine geological survey method and system using vertical electric field measurements
JP2007139498A (en) * 2005-11-16 2007-06-07 General Environmental Technos Co Ltd Instrument of measuring specific resistance
JP2014098669A (en) * 2012-11-15 2014-05-29 Waseda Univ Submarine prospecting device and submarine prospecting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中山 圭子 他: "ROVなどを用いた時間領域EM法", 物理探査, vol. 第64巻,第4号, JPN6019001032, 2011, pages 255 - 266 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884718A (en) * 2019-01-29 2019-06-14 吉林大学 A kind of magnetic resonance spy water installations and method that dead time is effectively reduced
CN109884718B (en) * 2019-01-29 2021-04-13 吉林大学 Magnetic resonance water detection device and method capable of effectively reducing dead time
CN111025405A (en) * 2019-12-26 2020-04-17 中国科学院电工研究所 Submarine substrate magnetic characteristic in-situ detection device
CN111025405B (en) * 2019-12-26 2022-02-11 中国科学院电工研究所 Submarine substrate magnetic characteristic in-situ detection device

Also Published As

Publication number Publication date
JP6514078B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
AU2003297846B2 (en) System and method for hydrocarbon reservoir monitoring using controlled-source electromagnetic fields
JP4996615B2 (en) Hydrocarbon reservoir mapping method and apparatus for implementing the method
JP5571549B2 (en) Geophysical method and geophysical system
CN109416410B (en) Submarine resource detection system, transmission device, reception device, signal processing method, electrical detection method, electromagnetic detection method, and program
EA019198B1 (en) Method for estimating and removing air wave response in marine electromagnetic surveying
Zhang et al. Advances in marine intelligent electromagnetic detection system, technology, and applications: A review
WO2018207899A1 (en) Power transmitting device
JP2017058334A (en) Subsea exploration apparatus
AU2012217065B2 (en) Detection system of geological formations
EA017857B1 (en) Method for measuring the electromagnetic response of formations below the bottom of a body of water
RU2612726C2 (en) Device for marine electric exploration of oil and gas fields and its implementation
KR101446065B1 (en) Source generator for marine seismic exploring
US20140191760A1 (en) Method and apparatus for suppression of the airwave in subsea exploration
JP2017044510A (en) Position survey method for submarine cable and position survey method for submarine pipe
JP5952172B2 (en) Submarine exploration device and submarine exploration method
GB2533124A (en) Underwater detection
Hashmi et al. Efficient HED antenna design for exploring scaled offshore oil reservoir
RU2657128C2 (en) Method of a complex system for the search and exploration of hydrocarbon deposits by seismic and electromagnetic methods in the shelf area
Holmes Past, present, and future of underwater sensor arrays to measure the electromagnetic field signatures of naval vessels
JP6084821B2 (en) Towed electric field detector
Ingerov Multifunction seabed EM receivers for coastal shelf and transition zones exploration
Şimşek Finite element method based simulations of low frequency magnetic field in seawater
Chen et al. A new method for locating positions of single-core cables in three-phase submarine power circuits based on phase difference data
Asakawa et al. New marine seismic survey techniques for seafloor massive sulphide (SMS) exploration
Yahya et al. Electromagnetic Response Studies of the Antenna for Deep Water Deep Target CSEM Environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R150 Certificate of patent or registration of utility model

Ref document number: 6514078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250