JP2017057837A - Steam turbine appliance and operational method of steam turbine appliance - Google Patents

Steam turbine appliance and operational method of steam turbine appliance Download PDF

Info

Publication number
JP2017057837A
JP2017057837A JP2015185608A JP2015185608A JP2017057837A JP 2017057837 A JP2017057837 A JP 2017057837A JP 2015185608 A JP2015185608 A JP 2015185608A JP 2015185608 A JP2015185608 A JP 2015185608A JP 2017057837 A JP2017057837 A JP 2017057837A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
control valve
turbine
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015185608A
Other languages
Japanese (ja)
Other versions
JP6603526B2 (en
Inventor
裕司 片山
Yuji Katayama
裕司 片山
進藤 蔵
Kura Shindo
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015185608A priority Critical patent/JP6603526B2/en
Publication of JP2017057837A publication Critical patent/JP2017057837A/en
Application granted granted Critical
Publication of JP6603526B2 publication Critical patent/JP6603526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a steam turbine capable of increasing the output by increasing the amount of steam flowing through the first stage of a high pressure turbine even when overload operation with rating output or more is performed when the frequency of an electric power system drops while since a steam regulating valve can be fully opened at the rating output and the loss in the steam regulating valve can be reduced, the efficiency at the rating output can be improved.SOLUTION: A steam turbine 100 comprises: a by-pass pipe 31 for branching the steam in the steam chest of the first stage in a plurality of stages of a high pressure turbine 10 into a flow to the downstream stage of the high pressure turbine and a flow to the outside of the high pressure turbine; a flow control valve 32 for controlling the amount of steam flowing through the by-pass pipe; and a control part that controls to fully open a steam regulating valve 8 with the flow control valve fully open at the rating output and to open the flow control valve while the steam regulating valve is being fully opened during the overload operation accompanying the frequency fluctuation at the rating output.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気タービン設備およびその運転方法に関する。 The present invention relates to a steam turbine facility and an operation method thereof.

火力発電プラントの蒸気タービン設備では、化石燃料を燃焼させて生ずる熱で蒸気を発生
させ、その蒸気を作動流体として蒸気タービンに供給し駆動させることにより、発電が行
われる。
In a steam turbine facility of a thermal power plant, steam is generated by heat generated by burning fossil fuel, and the steam is supplied to a steam turbine as a working fluid and driven to generate power.

一般的に蒸気タービン設備は、電力系統の電力需要が増加し系統周波数が降下した場合に
系統周波数を所定値に戻す対応ができるように、定格出力時は蒸気加減弁を全開にせず運
転している。つまり、定格出力時に蒸気加減弁は全開ではなく、電力需要が増加して系統
周波数が降下した場合に蒸気加減弁をさらに開けられるように裕度を持たせている。すな
わち、電力系統の電力需要が増加し系統周波数が降下すると、それに見合うように電力系
統と並列している蒸気タービンの出力が増加するような挙動となるため、その時蒸気加減
弁をさらに開弁し出力増加が可能なように待機していることを意味している。
Generally, steam turbine equipment is operated without fully opening the steam control valve at the rated output so that the system frequency can be returned to the specified value when the power demand of the power system increases and the system frequency drops. Yes. That is, the steam control valve is not fully opened at the rated output, but has a margin so that the steam control valve can be further opened when the power demand increases and the system frequency drops. In other words, if the power demand of the power system increases and the system frequency drops, the steam turbine output in parallel with the power system will behave accordingly, so the steam control valve will be opened further. It means that it is waiting so that the output can be increased.

しかしながら、蒸気加減弁が全開ではない状態の運転では、蒸気加減弁での圧力損失が大
きく、定格出力時の効率が低下する問題がある。これを防ぐための手段として主蒸気管の
他に、過負荷弁が設けられたバイパス管を設置する方法がある。定格出力を超える「過負
荷運転」を行うときには、主蒸気管を流れる蒸気が蒸気加減弁を介して蒸気タービンの初
段に供給されると共に、その主蒸気管を流れる蒸気が蒸気加減弁をバイパスしてバイパス
管に流入し、過負荷弁を介して、蒸気タービンの中間段に供給される。(たとえば、特許
文献1参照)
However, in an operation in which the steam control valve is not fully opened, there is a problem that the pressure loss at the steam control valve is large and the efficiency at the rated output is lowered. As a means for preventing this, there is a method of installing a bypass pipe provided with an overload valve in addition to the main steam pipe. When performing “overload operation” exceeding the rated output, the steam flowing through the main steam pipe is supplied to the first stage of the steam turbine via the steam control valve, and the steam flowing through the main steam pipe bypasses the steam control valve. Then, it flows into the bypass pipe and is supplied to the intermediate stage of the steam turbine through the overload valve. (For example, see Patent Document 1)

特開2013−194720号公報JP 2013-194720 A

図4は、「過負荷運転」を行う従来の蒸気タービン設備の系統概略図である。 FIG. 4 is a system schematic diagram of a conventional steam turbine facility that performs “overload operation”.

蒸気タービン設備1は、主な機器として、ボイラ2、高圧タービン10、中圧タービン1
6、低圧タービン20、復水器24、発電機22を有する。高圧タービン10、中圧ター
ビン16、低圧タービン20はロータ23で連結され、ロータ23は発電機22と連結し
ている。
The steam turbine equipment 1 includes a boiler 2, a high-pressure turbine 10, and an intermediate-pressure turbine 1 as main equipment.
6. It has a low-pressure turbine 20, a condenser 24, and a generator 22. The high-pressure turbine 10, the intermediate-pressure turbine 16, and the low-pressure turbine 20 are connected by a rotor 23, and the rotor 23 is connected to a generator 22.

ボイラ2で発生した主蒸気は、主蒸気管4を流下して高圧タービン10の入口に導かれる
。高圧タービン10を駆動して排出された排気蒸気は、高圧タービン10から低温再熱管
12を流下してボイラ2の再熱器13に導かれ再加熱される。再熱器13で加熱された蒸
気は、高温再熱管14を流下して中圧タービン16に導かれ、中圧タービン16を駆動し
た後、主蒸気管18を流下して低圧タービン20に導かれる。低圧タービン20を駆動し
て排出された排気蒸気は、復水器24に導入されて冷却され、復水し、その後ボイラ2に
給水として再導入される。
The main steam generated in the boiler 2 flows down the main steam pipe 4 and is guided to the inlet of the high-pressure turbine 10. The exhaust steam discharged by driving the high-pressure turbine 10 flows down from the high-pressure turbine 10 through the low-temperature reheat pipe 12 and is guided to the reheater 13 of the boiler 2 to be reheated. The steam heated by the reheater 13 flows down the high-temperature reheat pipe 14 and is guided to the intermediate pressure turbine 16. After driving the intermediate pressure turbine 16, the steam flows down the main steam pipe 18 and is guided to the low pressure turbine 20. . The exhaust steam discharged by driving the low-pressure turbine 20 is introduced into the condenser 24, cooled, condensed, and then reintroduced into the boiler 2 as feed water.

ボイラ2から高圧タービン10へ流れる主蒸気が通る主蒸気管4には、蒸気の流れ方向上
流側から下流側に向かって主蒸気止め弁6、蒸気加減弁8が設けられている。また、主蒸
気止め弁6と蒸気加減弁8との間でバイパス管26が主蒸気管4から分岐して設けられて
いる。主蒸気管4から分岐したバイパス管26は、高圧タービン10の中間段落に接続し
ており、主蒸気管4を流れる主蒸気の一部が高圧タービン10の上流側段落の一部をバイ
パスして中間段落から高圧タービン10に導入されるようになっている。バイパス管26
には弁(過負荷弁)28が設けられており、バイパス管26を流れるバイパス蒸気量を制
御する。この制御は、制御部50により行われる。
A main steam pipe 4 through which main steam flowing from the boiler 2 to the high-pressure turbine 10 passes is provided with a main steam stop valve 6 and a steam control valve 8 from the upstream side to the downstream side in the steam flow direction. Further, a bypass pipe 26 is branched from the main steam pipe 4 between the main steam stop valve 6 and the steam control valve 8. The bypass pipe 26 branched from the main steam pipe 4 is connected to an intermediate stage of the high-pressure turbine 10, and a part of the main steam flowing through the main steam pipe 4 bypasses a part of the upstream stage of the high-pressure turbine 10. It is introduced into the high-pressure turbine 10 from the middle stage. Bypass pipe 26
Is provided with a valve (overload valve) 28 for controlling the amount of bypass steam flowing through the bypass pipe 26. This control is performed by the control unit 50.

このような弁(過負荷弁)28を用いた従来の蒸気タービン設備では、主蒸気の一部を高
圧タービン10の中間段落から流入させるため、高圧タービン10初段落の蒸気室の圧力
が中間段落側から遡って上昇することになり、結果的に高圧タービン10の入口と中間段
落側との圧力差が不足するので、初段落のノズルと動翼を通過する蒸気量が減少して初段
落の出力が低下するという問題がある。
In the conventional steam turbine equipment using such a valve (overload valve) 28, since a part of the main steam flows from the middle stage of the high-pressure turbine 10, the pressure in the steam chamber in the first stage of the high-pressure turbine 10 is in the middle stage. As a result, the pressure difference between the inlet of the high-pressure turbine 10 and the intermediate stage is insufficient, and the amount of steam passing through the nozzle and the moving blades in the first stage is reduced. There is a problem that the output decreases.

そこで本発明は、高圧タービン10初段落の出力が低下するのを低減するとともに、定格
出力時の電力系統の周波数降下時に求められる定格出力以上の「過負荷運転」を可能とす
ることを目的とする。
Therefore, the present invention aims to reduce the output of the first paragraph of the high-pressure turbine 10 from decreasing and to enable “overload operation” exceeding the rated output required when the frequency of the power system at the rated output is lowered. To do.

上記課題を解決するために、本発明は、高圧タービンにおける複数段落のうちの初段落の
蒸気室の蒸気を、高圧タービンの下流段落への流れと、高圧タービンの外部への流れとに
分岐するためのバイパス管と、バイパス管を流れる蒸気の量を制御するための流量制御弁
と、定格出力時は蒸気加減弁を全開とするとともに流量制御弁を全閉とし、定格出力時の
周波数変動時に伴う過負荷運転時は、蒸気加減弁を全開のまま、流量制御弁を開弁するよ
うに制御する制御部とを備えた蒸気タービンを提供することにより上記目的を達成する。
In order to solve the above problems, the present invention branches the steam in the steam chamber of the first stage of the plurality of stages in the high-pressure turbine into a flow to the downstream stage of the high-pressure turbine and a flow to the outside of the high-pressure turbine. A bypass pipe, a flow control valve for controlling the amount of steam flowing through the bypass pipe, and at the rated output, the steam control valve is fully opened and the flow control valve is fully closed. During the overload operation, the above object is achieved by providing a steam turbine including a control unit that controls to open the flow rate control valve while keeping the steam control valve fully open.

本発明によれば、電力系統の周波数降下時には高圧タービン初段落蒸気室からの蒸気を、
流量制御弁を用いて初段落以降に供給することで、高圧タービンの初段落の通過蒸気量を
増加させ、高圧タービン初段落の出力を増加させる。これにより、定格出力時に蒸気加減
弁を全開にでき、蒸気加減弁での損失低減が可能となるため、定格出力時の効率向上につ
ながるとともに、電力系統の周波数降下時に定格出力以上の過負荷運転を行う場合でも、
高圧タービンの初段落の通過蒸気量を増加させることにより出力を増加させることも可能
となる。
According to the present invention, when the frequency of the power system drops, the steam from the first stage steam chamber of the high-pressure turbine is
By supplying the flow control valve after the first stage, the amount of steam passing through the first stage of the high-pressure turbine is increased, and the output of the first stage of the high-pressure turbine is increased. As a result, the steam control valve can be fully opened at the rated output, and the loss at the steam control valve can be reduced, leading to improved efficiency at the rated output and overload operation exceeding the rated output when the frequency of the power system drops. Even if you do
It is also possible to increase the output by increasing the passing steam amount in the first stage of the high-pressure turbine.

本発明の実施形態を以下に図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態について以下に説明する。図1は、本発明の第1の実施形態に係
る蒸気タービン設備の系統概略図である。従来の蒸気タービン設備の系統概略図に示され
た同一機器には同一符号を付しており、これら同一機器においては説明を省略し、相違す
る部分について説明を記載する。
(First embodiment)
A first embodiment of the present invention will be described below. FIG. 1 is a system schematic diagram of a steam turbine facility according to a first embodiment of the present invention. The same reference numerals are given to the same devices shown in the system schematic diagram of the conventional steam turbine equipment, and the descriptions of the same devices will be omitted and different portions will be described.

ボイラ2から高圧タービン10へ流れる主蒸気が通る主蒸気管4には、蒸気の流れ方向上
流側から下流側に向かって主蒸気止め弁6、蒸気加減弁8が設けられている。蒸気加減弁
8からの主蒸気管4は、高圧タービン10の入口、すなわち高圧タービン初段へと接続さ
れ、高圧タービン10では仕事をした後、低温再熱管12側に流下する。
A main steam pipe 4 through which main steam flowing from the boiler 2 to the high-pressure turbine 10 passes is provided with a main steam stop valve 6 and a steam control valve 8 from the upstream side to the downstream side in the steam flow direction. The main steam pipe 4 from the steam control valve 8 is connected to the inlet of the high-pressure turbine 10, that is, the first stage of the high-pressure turbine. After working in the high-pressure turbine 10, the main steam pipe 4 flows down to the low-temperature reheat pipe 12 side.

一方、高圧タービン10の内部では初段落の蒸気室から外部へ排出するために、バイパス
管31により高圧タービン10の抽気口30と中圧タービン16の入口部28とを接続し
ており、バイパス管31の途中に流量制御弁32を備えている。なお、図1に示す本発明
の第1の実施形態では、図4に示す従来系統の主蒸気管4から分岐するバイパス管26や
弁28は存在しない。
On the other hand, in order to discharge from the steam chamber in the first stage to the outside inside the high-pressure turbine 10, the extraction port 30 of the high-pressure turbine 10 and the inlet portion 28 of the intermediate-pressure turbine 16 are connected by a bypass pipe 31. A flow control valve 32 is provided in the middle of 31. In the first embodiment of the present invention shown in FIG. 1, there is no bypass pipe 26 or valve 28 branched from the main steam pipe 4 of the conventional system shown in FIG.

第1の実施形態における流量制御弁32は、高圧タービン10初段落の蒸気室からバイパ
ス管31を介して接続された中圧タービン入口部28へ供給される蒸気量を制御するよう
に構成されている。なお、ここでバイパス管31の接続先は中圧タービン入口部28とし
ているが、高圧タービン初段落の蒸気室より下流であれば、高圧タービンや中圧タービン
および低圧タービンの任意段落に供給しても良い。蒸気加減弁8および流量制御弁32の
開度調整は制御部40により行われる。
The flow control valve 32 in the first embodiment is configured to control the amount of steam supplied from the steam chamber in the first stage of the high-pressure turbine 10 to the intermediate-pressure turbine inlet 28 connected via the bypass pipe 31. Yes. The bypass pipe 31 is connected to the intermediate pressure turbine inlet 28 here, but if it is downstream from the steam chamber of the first stage of the high pressure turbine, it is supplied to any stage of the high pressure turbine, the intermediate pressure turbine, and the low pressure turbine. Also good. The opening degree adjustment of the steam control valve 8 and the flow rate control valve 32 is performed by the control unit 40.

次に図2aと図2bを用いて蒸気加減弁8および流量制御弁32の特性について説明する
。図2aは蒸気加減弁8および流量制御弁32の弁開度特性図であり、縦軸は弁開度、横
軸は負荷(出力)を示し増加から減少までの全行程を記載している。
Next, the characteristics of the steam control valve 8 and the flow control valve 32 will be described with reference to FIGS. 2a and 2b. FIG. 2A is a valve opening characteristic diagram of the steam control valve 8 and the flow rate control valve 32, where the vertical axis indicates the valve opening, and the horizontal axis indicates the load (output) and describes the entire stroke from increase to decrease.

蒸気タービンの負荷が0%の時、蒸気加減弁8および流量制御弁32の弁開度は全閉であ
る。蒸気加減弁8は、制御部40からの開度指令信号に基づいて負荷上昇とともに開弁す
る。記号Cから記号Eまでの期間は、負荷が100%のため制御部40からの開度指令信
号は全開信号が入力されており、蒸気加減弁8は全開を保持したままとなっている。
When the load of the steam turbine is 0%, the valve openings of the steam control valve 8 and the flow control valve 32 are fully closed. The steam control valve 8 opens as the load increases based on the opening command signal from the control unit 40. During the period from symbol C to symbol E, since the load is 100%, the fully open signal is input as the opening command signal from the control unit 40, and the steam control valve 8 remains fully open.

ここで、従来の蒸気タービンは、100%負荷の状態において、電力系統の電力需要が増
加し系統周波数が降下すると(以下これを周波数変動という)、蒸気加減弁8をさらに開
けられるように裕度を持たせるため、100%負荷のときでも蒸気加減弁8の弁開度は途
中開(全開ではない状態)としていた。このため、蒸気加減弁8における圧力損失が大き
い問題があったが、第1の実施形態では負荷が100%の時に全開として運用するため圧
力損失は従来に比べ減少し効率向上を計っている。
Here, the conventional steam turbine has a margin so that the steam control valve 8 can be further opened when the power demand of the power system increases and the system frequency decreases (hereinafter referred to as frequency fluctuation) in a state of 100% load. Therefore, even when the load is 100%, the valve opening degree of the steam control valve 8 is halfway open (not fully open). For this reason, there is a problem that the pressure loss in the steam control valve 8 is large. However, in the first embodiment, the operation is performed when the load is 100%, so that the pressure loss is reduced compared to the conventional case, and the efficiency is improved.

図2aの記号Cから記号Eまでの期間は、負荷100%時(定格出力時)の際の周波数変
動時に備え連続して負荷増加を行うために流量制御弁32を開弁する行程を示している。
すなわち、負荷100%時(定格出力時)の際に周波数変動が発生した場合、制御部40
からの開度指令信号に基づいて、負荷100%の時に全閉であった流量制御弁32を任意
弁開度(任意全開)まで開弁することができるため、負荷100%時(定格出力時)の周
波数変動に対応することが出来る。更に、蒸気タービンの負荷は100%(定格出力)か
ら+α%まで増加することから、100%(定格出力)以上の過負荷運転を行うことが出
来る。
The period from symbol C to symbol E in FIG. 2a shows the process of opening the flow rate control valve 32 in order to continuously increase the load in case of frequency fluctuation at the time of 100% load (at the time of rated output). Yes.
That is, when frequency fluctuation occurs at the time of 100% load (at the time of rated output), the control unit 40
Since the flow control valve 32 that was fully closed when the load is 100% can be opened to an arbitrary valve opening (arbitrary fully open) based on the opening command signal from ) Frequency fluctuations. Furthermore, since the load of the steam turbine increases from 100% (rated output) to + α%, an overload operation of 100% (rated output) or more can be performed.

図2bは蒸気加減弁8の通過蒸気の流量特性図であり、縦軸は高圧タービンの初段落(第
1段落)を流れる流量、すなわち蒸気加減弁8を流れる流量を示し、横軸は図2aと同様
に負荷(出力)の全行程を記載している。
FIG. 2b is a flow rate characteristic diagram of the passing steam of the steam control valve 8. The vertical axis indicates the flow rate flowing through the first stage (first stage) of the high-pressure turbine, that is, the flow rate flowing through the steam control valve 8. The entire process of load (output) is described as well.

図2bの記号Aから記号Cまでの期間、および記号Eから記号Gまでの期間は、蒸気加減
弁8単独による流量制御の範囲を示している。記号Cから記号Eまでの期間は、蒸気加減
弁8が全開を保持した状態で、図2aに示す流量制御弁32の開度特性図のように開弁す
ることにより、蒸気加減弁8を通過する流量が100%(定格流量)から+α%まで増加
する。
The period from the symbol A to the symbol C and the period from the symbol E to the symbol G in FIG. 2b indicate the range of flow rate control by the steam control valve 8 alone. During the period from symbol C to symbol E, when the steam control valve 8 is kept fully open, the steam control valve 8 is opened by opening as shown in the opening characteristic diagram of the flow control valve 32 shown in FIG. Flow rate increases from 100% (rated flow rate) to + α%.

次に、図2aと図2bを用いて蒸気加減弁8および流量制御弁32の作用について説明す
る。負荷が100%の記号Cにおいて、電力系統の電力需要が増加し系統周波数が降下す
ると、蒸気加減弁8が全開を保持しながら、流量制御弁32は制御部40からの開度指令
信号に基づいて開弁するように動作する。
Next, the operation of the steam control valve 8 and the flow control valve 32 will be described with reference to FIGS. 2a and 2b. When the power demand of the power system increases and the system frequency decreases at the symbol C where the load is 100%, the flow control valve 32 is based on the opening command signal from the control unit 40 while the steam control valve 8 is kept fully open. And operate to open.

流量制御弁32が開くと、流量制御弁32の開度に従って蒸気圧力の高い高圧タービン1
0初段落の蒸気室から蒸気圧力の低い中圧タービン16の入口部に蒸気が供給されるため
、高圧タービン10初段落の蒸気室の蒸気量が減少し結果的に蒸気室の圧力が低下するこ
とになる。
When the flow control valve 32 opens, the high-pressure turbine 1 having a high steam pressure according to the opening degree of the flow control valve 32.
Since steam is supplied from the steam chamber of the first stage 0 to the inlet portion of the intermediate pressure turbine 16 having a low steam pressure, the amount of steam in the steam chamber of the first stage of the high-pressure turbine 10 is reduced, resulting in a decrease in the pressure of the steam chamber. It will be.

すなわち、高圧タービン10に供給される主蒸気管4の主蒸気圧力は一定であって、高圧
タービン10初段落の蒸気室圧力が低下することにより、高圧タービン10の入口と蒸気
室との圧力差が増加するので、高圧タービンの初段落(第1段落)のノズルと動翼を通過
する蒸気量は増加して初段落の出力が増加することになる。
That is, the main steam pressure of the main steam pipe 4 supplied to the high-pressure turbine 10 is constant, and the pressure difference between the inlet of the high-pressure turbine 10 and the steam chamber is reduced by reducing the steam chamber pressure in the first stage of the high-pressure turbine 10. Therefore, the amount of steam passing through the nozzle and rotor blade in the first stage (first stage) of the high-pressure turbine increases and the output in the first stage increases.

さらに、流量制御弁32が開弁して中圧タービン16の入口部に供給された蒸気により、
中圧タービン16から下流段落を流れる蒸気量が増加するため、これら下流段落での出力
が増加することになる。このように、第1の実施形態においては流量制御弁32を開弁す
ることにより、高圧タービン10および中圧タービン16、低圧タービン20のそれぞれ
の増加した出力が合算されるため、出力増加に寄与する効果は大きい。
Further, the flow control valve 32 is opened and the steam supplied to the inlet of the intermediate pressure turbine 16
Since the amount of steam flowing from the intermediate pressure turbine 16 in the downstream paragraphs increases, the output in these downstream paragraphs increases. Thus, in the first embodiment, by opening the flow control valve 32, the increased outputs of the high-pressure turbine 10, the intermediate-pressure turbine 16, and the low-pressure turbine 20 are added together, which contributes to an increase in output. The effect to do is great.

なお、従来の実施形態における弁28を用いた場合には、高圧タービン10初段落をバイ
パスしたので顕著な効果が得られなかったが、第1の実施形態においては高圧タービン1
0初段落に流れる蒸気量を増加させたため、断熱熱落差を大きく取れるので蒸気タービン
設備100の有効仕事を増加させることが可能になった。
Note that when the valve 28 in the conventional embodiment is used, the first paragraph of the high-pressure turbine 10 is bypassed, and thus a remarkable effect cannot be obtained. However, in the first embodiment, the high-pressure turbine 1
Since the amount of steam flowing in the first stage 0 is increased, a large adiabatic heat drop can be obtained, so that the effective work of the steam turbine equipment 100 can be increased.

また、高圧タービン10初段落に流れる蒸気量が増加することから、蒸気加減弁8を通過
する流量も増加するので自ずと圧力損失も増加することになるが、蒸気加減弁8はすでに
全開となって蒸気を絞る状況にないため、その増加量はわずかであり高圧タービン10の
断熱熱落差に影響を与えるほどではない。
Further, since the amount of steam flowing in the first stage of the high-pressure turbine 10 increases, the flow rate passing through the steam control valve 8 also increases, so the pressure loss naturally increases, but the steam control valve 8 has already been fully opened. Since the steam is not squeezed, the amount of increase is small and does not affect the adiabatic heat drop of the high-pressure turbine 10.

(第2の実施形態)
本発明の第2の実施形態について以下に説明する。図3は、本発明の第2の実施形態に係
る蒸気タービン設備の系統概略図である。第2の実施形態は、バイパス系統の接続先を複
数有していることが特徴である。すなわち、高圧タービン10の初段落の蒸気室に設けら
れる排出口30に接続されるバイパス管31には、分岐バイパス管33、34が分岐して
いる点が新規な構造である。
(Second Embodiment)
A second embodiment of the present invention will be described below. FIG. 3 is a system schematic diagram of the steam turbine facility according to the second embodiment of the present invention. The second embodiment is characterized by having a plurality of connection destinations of the bypass system. That is, the bypass pipe 31 connected to the discharge port 30 provided in the steam chamber in the first stage of the high-pressure turbine 10 has a novel structure in which the branch bypass pipes 33 and 34 are branched.

一方の分岐バイパス管33は中圧タービン16の入口部と接続しており、分岐バイパス管
33の途中に流量制御弁32を備えている。他方の分岐バイパス管34は低圧タービン2
0の入口部と接続しており、分岐バイパス管34の途中に流量制御弁35を備えている。
One branch bypass pipe 33 is connected to the inlet of the intermediate pressure turbine 16, and a flow control valve 32 is provided in the middle of the branch bypass pipe 33. The other branch bypass pipe 34 is connected to the low pressure turbine 2.
A flow control valve 35 is provided in the middle of the branch bypass pipe 34.

これら流量制御弁32と流量制御弁35は、図2aの記号Cから記号Eまでの期間に同時
に開弁させて高圧タービンの初段落(第1段落)を流れる流量、すなわち蒸気加減弁8を
流れる流量を増加させるように動作させると、その作用効果は第1の実施形態と同じとな
る。
The flow rate control valve 32 and the flow rate control valve 35 are simultaneously opened during the period from the symbol C to the symbol E in FIG. 2A and flow through the first paragraph (first paragraph) of the high-pressure turbine, that is, through the steam control valve 8. When operated to increase the flow rate, the effect is the same as in the first embodiment.

なお、流量制御弁32と流量制御弁35の開弁方法は前述の2弁同時のみならず順番に開
弁する方法に改善しても良い。また、バイパス管31にのみ流量制御弁32を1弁のみ備
え、分岐バイパス管33を介して中圧タービン16の入口部と接続し、また分岐バイパス
管34を介して低圧タービン20の入口部と接続するように構成を変更してもその効果や
作用は同一である。
Note that the method of opening the flow rate control valve 32 and the flow rate control valve 35 may be improved not only to the above-described two-valve simultaneous operation but also to the sequential opening method. Further, only one flow rate control valve 32 is provided in the bypass pipe 31, connected to the inlet portion of the intermediate pressure turbine 16 through the branch bypass pipe 33, and connected to the inlet portion of the low pressure turbine 20 through the branch bypass pipe 34. Even if the configuration is changed so as to be connected, the effect and action are the same.

本発明の実施形態を説明してきたが、定格出力時およびそれ以上の負荷帯において蒸気加
減弁を全開にすることを条件に、周波数変動時の対応が可能で、かつ定格出力以上の「過
負荷運転」が可能であれば、バイパス系統の蒸気排出口を、高圧タービンの初段落の蒸気
室に限定することはない。高圧タービンの初段落より更に下流段落であってよいことは説
明するまでも無い。
Although the embodiment of the present invention has been described, it is possible to cope with frequency fluctuations on the condition that the steam control valve is fully opened in the load zone at the rated output and above, and the “overload” exceeding the rated output is possible. If “operation” is possible, the steam outlet of the bypass system is not limited to the steam chamber in the first stage of the high-pressure turbine. Needless to say, it may be a downstream paragraph from the first paragraph of the high-pressure turbine.

本発明の第1の実施形態に関わる蒸気タービン設備の系統概略図The system schematic of the steam turbine equipment in connection with the 1st Embodiment of this invention 本発明の第1の実施形態に係る蒸気加減弁と流量制御弁の発電機負荷に対する弁開度特性図The valve opening characteristic diagram with respect to the generator load of the steam control valve and the flow control valve according to the first embodiment of the present invention 本発明の第1の実施形態に係る蒸気加減弁の通過蒸気流量特性図Passing steam flow rate characteristic diagram of the steam control valve according to the first embodiment of the present invention 本発明の第2の実施形態に係る蒸気タービン設備の系統概略図System schematic diagram of steam turbine equipment according to a second embodiment of the present invention 従来の蒸気タービン設備を示す系統概略図System schematic showing conventional steam turbine equipment

2 ボイラ
4 主蒸気管
6 主蒸気止め弁
8 蒸気加減弁
10 高圧タービン
12 低温再熱管
13 再熱器
14 高温再熱管
16 中圧タービン
18 主蒸気管
20 低圧タービン
22 発電機
24 復水器
30 排出口
31 バイパス管
32 流量制御弁
33 分岐バイパス管
34 分岐バイパス管
35 流量制御弁
100 蒸気タービン設備
2 Boiler 4 Main Steam Pipe 6 Main Steam Stop Valve 8 Steam Control Valve 10 High Pressure Turbine 12 Low Temperature Reheat Pipe 13 Reheater 14 High Temperature Reheat Pipe 16 Medium Pressure Turbine 18 Main Steam Pipe 20 Low Pressure Turbine 22 Generator 24 Condenser 30 Drain Outlet 31 Bypass pipe 32 Flow control valve 33 Branch bypass pipe 34 Branch bypass pipe 35 Flow control valve 100 Steam turbine equipment

Claims (5)

ボイラからの主蒸気により蒸気加減弁を経て駆動され複数の段落を備える高圧タービンと
、前記高圧タービンの排気蒸気に基づいて駆動される中圧タービンと、前記中圧タービン
の排気蒸気により駆動される低圧タービンと、を備えた蒸気タービン設備であって、
前記高圧タービンにおける前記複数段落のうちの初段落を含む所定段落の蒸気室の蒸気を
、前記高圧タービンの下流段落への流れと、前記高圧タービンの外部への流れとに分岐す
るためのバイパス管と、
前記バイパス管を流れる蒸気の量を制御するための流量制御弁と、
定格出力時は前記蒸気加減弁を全開とするとともに前記流量制御弁を全閉とし、定格出力
時の周波数変動時に伴う過負荷運転時は、前記蒸気加減弁を全開のまま、前記流量制御弁
を開弁するように制御する制御部と
を備えたことを特徴とする蒸気タービン設備。
Driven by main steam from a boiler through a steam control valve, a high pressure turbine having a plurality of paragraphs, an intermediate pressure turbine driven based on exhaust steam of the high pressure turbine, and driven by exhaust steam of the intermediate pressure turbine A steam turbine facility comprising a low-pressure turbine,
A bypass pipe for branching the steam in the steam chamber of a predetermined stage including the first stage of the plurality of stages in the high-pressure turbine into a flow to a downstream stage of the high-pressure turbine and a flow to the outside of the high-pressure turbine. When,
A flow control valve for controlling the amount of steam flowing through the bypass pipe;
At the rated output, the steam control valve is fully opened and the flow control valve is fully closed.At the time of overload operation at the time of frequency fluctuation at the rated output, the steam control valve is left fully open. A steam turbine facility comprising: a control unit that controls the valve to open.
前記バイパス管は、前記高圧タービンの前記所定段落の蒸気室より下流であって、前記中
圧タービンおよび前記低圧タービンを含めた任意段落に接続されることを特徴とする請求
項1記載の蒸気タービン設備。
2. The steam turbine according to claim 1, wherein the bypass pipe is connected to an arbitrary stage including the intermediate-pressure turbine and the low-pressure turbine downstream from the steam chamber of the predetermined stage of the high-pressure turbine. Facility.
前記バイパス管は複数の接続先を有し、それぞれのバイパス管に流量制御弁が設置されて
いることを特徴とする請求項1から請求項3いずれかに記載の蒸気タービン設備。
The steam turbine equipment according to any one of claims 1 to 3, wherein the bypass pipe has a plurality of connection destinations, and flow control valves are installed in the respective bypass pipes.
前記流量制御弁は弁開度要求信号に基いて開閉し、その開閉動作は前記蒸気加減弁が全開
した後の運転域で行われることを特徴とする請求項1から請求項4いずれかに記載の蒸気
タービン設備。
5. The flow rate control valve opens and closes based on a valve opening request signal, and the opening and closing operation is performed in an operating region after the steam control valve is fully opened. Steam turbine equipment.
前記ボイラからの主蒸気により前記蒸気加減弁を経て駆動される前記高圧タービンと、
前記高圧タービンの排気蒸気に基づいて駆動される前記中圧タービンと、前記中圧タービ
ンの排気蒸気により駆動される前記低圧タービンとを備えるとともに、
前記蒸気タービンは、前記高圧タービンにおける前記複数段落のうちの初段落を含む所定
段落の蒸気室の蒸気を、前記高圧タービンの下流段落への流れと、前記高圧タービンの外
部への流れとに分岐するためのバイパス管と、前記バイパス管を流れる蒸気の量を制御す
るための流量制御弁とを備えた蒸気タービン設備の運転方法であって、
定格出力時は前記蒸気加減弁を全開とするとともに前記流量制御弁を全閉とし、
定格出力時の周波数変動時に伴う過負荷運転時は、前記蒸気加減弁を全開のまま、前記流
量制御弁を開弁すること
を特徴とする蒸気タービン設備の運転方法。
The high pressure turbine driven by the main steam from the boiler via the steam control valve;
The intermediate pressure turbine driven based on the exhaust steam of the high pressure turbine, and the low pressure turbine driven by the exhaust steam of the intermediate pressure turbine,
The steam turbine branches steam in a predetermined stage including a first stage of the plurality of stages in the high-pressure turbine into a flow to a downstream stage of the high-pressure turbine and a flow to the outside of the high-pressure turbine. An operation method of a steam turbine facility comprising a bypass pipe for controlling the flow rate and a flow rate control valve for controlling the amount of steam flowing through the bypass pipe,
At the rated output, the steam control valve is fully opened and the flow control valve is fully closed.
An operation method for steam turbine equipment, wherein the flow control valve is opened while the steam control valve is fully opened during an overload operation associated with frequency fluctuation at the rated output.
JP2015185608A 2015-09-18 2015-09-18 Steam turbine equipment and operation method of steam turbine equipment Active JP6603526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185608A JP6603526B2 (en) 2015-09-18 2015-09-18 Steam turbine equipment and operation method of steam turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185608A JP6603526B2 (en) 2015-09-18 2015-09-18 Steam turbine equipment and operation method of steam turbine equipment

Publications (2)

Publication Number Publication Date
JP2017057837A true JP2017057837A (en) 2017-03-23
JP6603526B2 JP6603526B2 (en) 2019-11-06

Family

ID=58390102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185608A Active JP6603526B2 (en) 2015-09-18 2015-09-18 Steam turbine equipment and operation method of steam turbine equipment

Country Status (1)

Country Link
JP (1) JP6603526B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163438A1 (en) * 2018-02-21 2019-08-29 株式会社東芝 Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
CN114575940A (en) * 2022-03-09 2022-06-03 中国船舶重工集团公司第七0三研究所 Integrated marine valve cavity structure of arranging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163628A (en) * 2003-12-02 2005-06-23 Toshiba Corp Reheat steam turbine plant and method for operating the same
JP2010270756A (en) * 2009-05-19 2010-12-02 Alstom Technology Ltd Method for primary control of steam turbine device
JP2013194720A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Steam turbine installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163628A (en) * 2003-12-02 2005-06-23 Toshiba Corp Reheat steam turbine plant and method for operating the same
JP2010270756A (en) * 2009-05-19 2010-12-02 Alstom Technology Ltd Method for primary control of steam turbine device
JP2013194720A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Steam turbine installation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163438A1 (en) * 2018-02-21 2019-08-29 株式会社東芝 Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
CN114575940A (en) * 2022-03-09 2022-06-03 中国船舶重工集团公司第七0三研究所 Integrated marine valve cavity structure of arranging

Also Published As

Publication number Publication date
JP6603526B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
US8863522B2 (en) Operating steam turbine reheat section with overload valve
JP5539521B2 (en) Power plant system with overload control valve
US9845710B2 (en) Start-up method of steam turbine plant
US20100000216A1 (en) Steam turbine overload valve and related method
KR20210009279A (en) Steam power generation plant, method for modifying steam power generation plant and method for operating steam power generation
JP5685165B2 (en) Power plant and method for increasing power generation output thereof
US9322298B2 (en) Steam turbine installation and method for operating the steam turbine installation
JP6603526B2 (en) Steam turbine equipment and operation method of steam turbine equipment
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP2010242673A (en) Steam turbine system and method for operating the same
JP2015124710A (en) Control device and activation method
US10871072B2 (en) Systems and methods for dynamic balancing of steam turbine rotor thrust
JP4929010B2 (en) Power generation system
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
CN104074561B (en) Throttling adjusting system of cogeneration turbine unit and method of ordering power by heat
JP2014025801A (en) Pressurized water nuclear power plant and steam supply method for the same
JP5738227B2 (en) Steam turbine equipment
JP5959454B2 (en) Steam turbine system
JP5985737B2 (en) Method for operating a power plant and power plant equipment
CN105756721B (en) Multi-stage steam turbine for power generation
CN204960991U (en) Prevent to lead structure of steam pipe cluster vapour between hydrophobic
US10167742B2 (en) Steam cycle, and method for operating a steam cycle
JP2012117532A (en) Steam-driven power plant
CN105041393A (en) Structure for preventing steam crossing between drain pipes of steam guiding pipes
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191011

R150 Certificate of patent or registration of utility model

Ref document number: 6603526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150