JP2017057112A - Surface-treated molded heat insulator and method for producing the same - Google Patents

Surface-treated molded heat insulator and method for producing the same Download PDF

Info

Publication number
JP2017057112A
JP2017057112A JP2015183095A JP2015183095A JP2017057112A JP 2017057112 A JP2017057112 A JP 2017057112A JP 2015183095 A JP2015183095 A JP 2015183095A JP 2015183095 A JP2015183095 A JP 2015183095A JP 2017057112 A JP2017057112 A JP 2017057112A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
surface coating
carbon
molded heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015183095A
Other languages
Japanese (ja)
Other versions
JP6546489B2 (en
Inventor
潤也 水野
Junya Mizuno
潤也 水野
曽我部 敏明
Toshiaki Sogabe
敏明 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2015183095A priority Critical patent/JP6546489B2/en
Publication of JP2017057112A publication Critical patent/JP2017057112A/en
Application granted granted Critical
Publication of JP6546489B2 publication Critical patent/JP6546489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Ceramic Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long-life molded heat insulator at a low cost, which could be suppressed from deterioration and powdering.SOLUTION: Provided is a method for producing a surface-treated molded heat insulator, comprising: an immersion step where at least one surface of a molded heat insulator, having a fiber felt interlaced with carbon fibers and a protective carbon layer comprising a carbonaceous material which coats surfaces of the carbon fibers in the fiber felt, is immersed in a solution of a surface coating agent comprising a synthetic resin which is carbonized by a heat treatment and a solvent which dissolves the synthetic resin to add the surface coating agent-containing solution to the molded heat insulator; and a heat treatment step where, after the immersion step, the molded heat insulator is heat treated at 1500 to 2500°C under an inert atmosphere to form a surface coating layer by carbonizing the synthetic resin.SELECTED DRAWING: Figure 1

Description

本発明は、成形断熱材に関し、詳しくは表面被覆剤による表面処理が施された成形断熱材に関する。   The present invention relates to a molded heat insulating material, and more particularly to a molded heat insulating material that has been surface-treated with a surface coating agent.

炭素繊維系の断熱材は、熱的安定性や断熱性能に優れ且つ軽量であることから、種々の用途で使用されている。特に、炭素繊維フェルトに樹脂材料を含浸させ炭素化させた炭素繊維成形断熱材は、形状安定性に優れ、微細な加工が可能であるため、単結晶シリコン引き上げ装置、多結晶シリコンキャスト炉、金属やセラミックスの焼結炉、真空蒸着炉等の高温炉の断熱材として使用されている。   Carbon fiber-based heat insulating materials are used in various applications because they are excellent in thermal stability and heat insulating performance and are lightweight. In particular, carbon fiber molded heat insulating material, which is carbonized by impregnating carbon fiber felt with a resin material, is excellent in shape stability and can be finely processed. Therefore, single crystal silicon pulling device, polycrystalline silicon cast furnace, metal It is used as a heat insulating material for high temperature furnaces such as ceramic sintering furnaces and vacuum evaporation furnaces.

このような成形断熱材は、直径が5〜20μm程度の細い炭素繊維を用いているため、ハンドリング時や設置時に、炭素繊維が欠落等して粉化(発塵)するおそれがある。粉化した炭素繊維が炉内雰囲気中に放出されると、製品品質を低下させてしまうおそれがある。   Since such a molded heat insulating material uses thin carbon fibers having a diameter of about 5 to 20 μm, there is a risk that the carbon fibers may be lost or powdered (dust generation) during handling or installation. If the powdered carbon fiber is released into the furnace atmosphere, the product quality may be reduced.

また、単結晶や多結晶シリコンなどの製造装置においては、高温炉内でSiOガスが発生したり、酸素ガスが不純物ガスとして製造雰囲気に混入したりする。SiOガスや酸素ガスは活性(反応性)が高く、炭素繊維成形断熱材とSiOガスとが反応するとSiCが生じ、また、炭素繊維成形断熱材と酸素ガスとが反応すると、一酸化炭素や二酸化炭素等の炭素酸化物が生じる。これらの反応により、炭素繊維で構成されている骨格構造が崩れ、その結果として当該骨格構造が多数の空間を形成することにより得られる断熱機能が低下する。また、この劣化により特に炭素繊維が粉化して炉内雰囲気中に放出される結果、製品品質が低下する。   Further, in a manufacturing apparatus such as single crystal or polycrystalline silicon, SiO gas is generated in a high temperature furnace, or oxygen gas is mixed as impurity gas into the manufacturing atmosphere. SiO gas and oxygen gas are highly active (reactive), and SiC is produced when the carbon fiber molded heat insulating material reacts with the SiO gas, and when the carbon fiber molded heat insulating material reacts with the oxygen gas, carbon monoxide and carbon dioxide are reacted. Carbon oxides such as carbon are produced. By these reactions, the skeletal structure composed of the carbon fibers is broken, and as a result, the heat insulating function obtained by the skeleton structure forming a large number of spaces is lowered. In addition, this deterioration particularly causes carbon fibers to be pulverized and released into the furnace atmosphere, resulting in a reduction in product quality.

上記問題に対して、特許文献1は、炭素繊維の発塵や劣化を防止する成形断熱材の表面処理技術を提案している。   In order to solve the above problem, Patent Document 1 proposes a surface treatment technique of a molded heat insulating material that prevents the generation and deterioration of carbon fiber.

特開2005−133033号公報JP 2005-133033 A

特許文献1の技術は、(1)炭化率が40%以上の炭素化材、(2)鱗状黒鉛、(3)粘貼剤及び(4)粘貼剤を溶かし、且つ炭素化材を分散又は溶解させる液剤からなる断熱材用コーティング剤、及び嵩密度が0.1〜0.8g/cm3の炭素化成形物の表面に、当該断熱用コーティング剤を塗工し炭素化してなる積層体に関する技術である。 The technique of Patent Document 1 is (1) a carbonized material having a carbonization rate of 40% or more, (2) scaly graphite, (3) a sticking agent, and (4) a sticking agent, and the carbonized material is dispersed or dissolved. It is a technique related to a laminate formed by applying a carbonization to the surface of a coating agent for a heat insulating material comprising a liquid agent and a carbonized molded product having a bulk density of 0.1 to 0.8 g / cm 3 and carbonizing the heat insulating coating agent. is there.

この技術では、鱗片状黒鉛(鱗状黒鉛)や粘貼剤(バインダー)の炭素化物が、摩擦時に炭素繊維を保護するのでハンドリング時等の粉化を抑制でき、且つ、鱗状黒鉛や炭素化物が炭素繊維に先んじて活性ガスと反応するので、炭素繊維の劣化が抑制でき、これにより断熱性能の低下が抑制できるとされる。   In this technology, the carbonized material of scaly graphite (scaled graphite) or adhesive (binder) protects the carbon fiber during friction, so that powdering during handling can be suppressed, and the scaly graphite or carbonized material is carbon fiber. Since it reacts with the active gas prior to this, it is said that the deterioration of the carbon fiber can be suppressed, and thereby the deterioration of the heat insulation performance can be suppressed.

本発明者らが上記特許文献1に係る技術について鋭意検討したところ、次のような問題点があることを知った。   When the present inventors diligently examined the technique according to Patent Document 1, it was found that there are the following problems.

鱗状黒鉛は、高度に黒鉛構造(層構造)が発達しており、非晶質炭素に比較して比表面積が大きく、特にそのエッジ部分で活性ガスと反応し易く、鱗状黒鉛が不均一に酸化されて粉化するおそれがある。   Scalar graphite has a highly developed graphite structure (layer structure), has a larger specific surface area than amorphous carbon, and is particularly susceptible to reaction with active gas at its edge, so that scaly graphite is oxidized unevenly. May be pulverized.

また、鱗状黒鉛は、その性質上灰分が含まれるが、この灰分が炉内に混入すると、製品性能を低下させる副反応を引き起こすおそれもある。   In addition, scaly graphite contains ash due to its nature, but if this ash is mixed in the furnace, it may cause a side reaction that lowers the product performance.

さらに、黒鉛粒子を含んだコーティング剤の塗工は、手間がかかるために生産性を低下させてしまうという問題もある。   Furthermore, the coating of the coating agent containing the graphite particles has a problem that productivity is lowered because it takes time and effort.

本発明は上記の課題を解決するためになされたものであり、劣化や粉化を抑制できる表面処理された成形断熱材を高い生産性で提供することを目的とする。   This invention is made | formed in order to solve said subject, and it aims at providing the surface treatment shaping | molding heat insulating material which can suppress deterioration and powdering with high productivity.

上記課題を解決するための成形断熱材の製造方法に係る本発明は、次のように構成されている。
炭素繊維を交絡させた繊維フェルトと前記繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材の少なくとも一つの表面を、熱処理により炭素化する合成樹脂と前記合成樹脂を溶解する溶媒とからなる表面被覆剤溶液に浸漬して、成形断熱材に前記表面被覆剤溶液を添加する浸漬ステップと、前記浸漬ステップ後、成形断熱材を不活性雰囲気下1500〜2500℃で熱処理し、前記合成樹脂を炭素化させて、表面被覆層を形成する熱処理ステップと、を有する表面処理された成形断熱材の製造方法。
The present invention according to a method for manufacturing a molded heat insulating material for solving the above-described problems is configured as follows.
A synthetic resin that carbonizes by heat treatment at least one surface of a molded heat insulating material having a fiber felt entangled with carbon fibers and a carbonaceous protective carbon layer covering the carbon fiber surface of the fiber felt and the synthetic resin A dipping step of adding the surface coating solution to the molded heat insulating material, and after the dipping step, the molded heat insulating material is heated at 1500 to 2500 ° C. in an inert atmosphere. And a heat treatment step of carbonizing the synthetic resin to form a surface coating layer.

表面被覆剤溶液に成形断熱材を浸漬すると、成形断熱材を構成する炭素繊維や保護炭素層の表面や炭素繊維相互間の空隙に表面被覆剤溶液が浸透して、成形断熱材に表面被覆材溶液が添加される。その後、不活性雰囲気で熱処理すると、表面被覆剤溶液に溶解された合成樹脂は炭素化して炭素繊維や保護炭素層の表面及び炭素繊維相互間の空隙に残存するとともに、溶剤は揮発する。これらの工程により、炭素繊維の表面等には合成樹脂由来の炭素質からなる表面被覆層が形成されるが、この層は黒鉛粒子等の粒状の成分を含まなくとも成形断熱材の粉落ちや雰囲気ガスによる成形断熱材の劣化を効果的に抑制する。   When the molded heat insulating material is immersed in the surface coating solution, the surface coating solution penetrates into the surface of the carbon fiber or protective carbon layer constituting the molded heat insulating material or the gap between the carbon fibers, and the surface coating material is formed into the molded heat insulating material. The solution is added. Thereafter, when heat treatment is performed in an inert atmosphere, the synthetic resin dissolved in the surface coating solution is carbonized and remains on the surface of the carbon fiber or the protective carbon layer and in the space between the carbon fibers, and the solvent is volatilized. By these steps, a surface coating layer made of a synthetic resin-derived carbonaceous material is formed on the surface of the carbon fiber, etc., but this layer does not contain granular components such as graphite particles, Effectively suppresses the deterioration of the molded insulation due to the atmospheric gas.

また、表面被覆剤は合成樹脂と溶媒とからなり、その他の成分(例えば、黒鉛粒子等の粒状成分)が含まれない。このため、表面被覆剤の添加には成形断熱材を表面処理剤溶液に浸漬する方法を用いることができるが、この方法は塗布よりも手間がかからず生産性に優れる。また、製造される成形断熱材の表面被覆層に粒状成分が残存することもなく、上述した黒鉛粒子による問題が生じることもない。   The surface coating agent is composed of a synthetic resin and a solvent, and does not contain other components (for example, granular components such as graphite particles). For this reason, although the method of immersing a shaping | molding heat insulating material in a surface treating agent solution can be used for the addition of a surface coating agent, this method does not take time and is excellent in productivity rather than application | coating. Further, the particulate component does not remain in the surface coating layer of the molded heat insulating material to be manufactured, and the above-described problems due to the graphite particles do not occur.

以上に説明したように、上記製造方法を採用することにより、塗工のような煩雑な工程を必要とすることのない簡便な手法で、粉落ちや活性ガスによる劣化を抑制できる良質な表面被覆層が形成された成形断熱材を製造することができる。   As explained above, by adopting the above manufacturing method, it is a simple method that does not require a complicated process such as coating, and a high-quality surface coating that can suppress powder fall and deterioration due to active gas A molded heat insulating material having a layer formed thereon can be produced.

表面被覆材溶液に浸漬する成形断熱材の表面の数は、使用する用途に応じて適宜選択すればよく、1又は2以上とすることができ、また全面としても良い。   What is necessary is just to select suitably according to the use to be used, and the number of the surface of the shaping | molding heat insulating material immersed in a surface coating material solution can be made into 1 or 2 or the whole surface.

合成樹脂としては、特に限定されることはなく、溶剤に溶解可能で熱処理によって炭素化する合成樹脂を広く用いることができる。なかでも、ポリイミドを用いることが好ましい。ここで、合成樹脂としてポリイミドのような熱硬化性樹脂を用いる場合には、熱処理ステップと浸漬ステップとの間に、成形断熱材に浸透させた熱硬化性樹脂の熱硬化を行うことが好ましい。   The synthetic resin is not particularly limited, and synthetic resins that can be dissolved in a solvent and carbonized by heat treatment can be widely used. Among these, it is preferable to use polyimide. Here, when a thermosetting resin such as polyimide is used as the synthetic resin, it is preferable to perform thermosetting of the thermosetting resin soaked in the molded heat insulating material between the heat treatment step and the immersion step.

ここで、本明細書でいうポリイミドとは、すでにイミド化が行われた化合物を意味し、カルボン酸2無水物やジアミン等のイミド化前の化合物を意味しない。   Here, the polyimide in the present specification means a compound that has already been imidized, and does not mean a compound before imidization such as carboxylic acid dianhydride or diamine.

また、溶剤の揮発は、熱硬化や炭素化と同時に行ってもよく、これらの工程の前に溶剤を揮発させるステップを別個に設けてもよい。   Further, the volatilization of the solvent may be performed simultaneously with the heat curing or carbonization, and a step of volatilizing the solvent may be separately provided before these steps.

成形断熱材の空隙に浸透し易く、良質な表面被覆層を形成し易いことから、表面被覆剤溶液の粘度は0.1〜1Pa・sであることが好ましい。ここで、表面被覆剤溶液の粘度は、25℃、1気圧(1.013×105Pa)における値を意味する。 The viscosity of the surface coating solution is preferably 0.1 to 1 Pa · s because it easily penetrates into the voids of the molded heat insulating material and easily forms a good surface coating layer. Here, the viscosity of the surface coating solution means a value at 25 ° C. and 1 atm (1.013 × 10 5 Pa).

上記課題を解決するための表面処理が施された成形断熱材に係る本発明は、次のように構成されている。
炭素繊維を交絡させた繊維フェルトと、前記繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層と、を有する成形断熱材において、前記成形断熱材の少なくとも一つの表面近傍の領域には、炭素繊維表面及び保護炭素層表面を被覆するとともに、炭素繊維相互間の空隙の一部を埋める表面被覆層が設けられ、前記表面被覆層は、粒状成分を含まない炭素質からなることを特徴とする。
The present invention relating to a molded heat insulating material that has been subjected to a surface treatment for solving the above-described problems is configured as follows.
In a molded heat insulating material having a fiber felt entangled with carbon fibers and a protective carbon layer made of carbon that covers the carbon fiber surface of the fiber felt, the region in the vicinity of at least one surface of the molded heat insulating material A surface coating layer is provided which covers the carbon fiber surface and the protective carbon layer surface and fills a part of the gap between the carbon fibers, and the surface coating layer is made of carbonaceous material containing no particulate component. And

この構成では、炭素繊維表面及び保護炭素層表面を被覆するとともに、炭素繊維相互間の空隙の一部を埋める表面被覆層が、活性ガスと先んじて反応することにより、炭素繊維や炭素繊維により構成される骨格構造を維持する保護炭素層の劣化を抑制することができる。   In this configuration, the surface coating layer that covers the surface of the carbon fiber and the surface of the protective carbon layer and fills a part of the gap between the carbon fibers is composed of carbon fiber and carbon fiber by reacting with the active gas first. It is possible to suppress the deterioration of the protective carbon layer that maintains the skeleton structure.

表面被覆層による効果は、表面被覆層の量が増大するほど増加するが、表面被覆層の量が増大するほどコスト高につながる。このため、表面被覆層が形成された領域の嵩密度は、成形断熱材の他の領域の嵩密度よりも、0.02〜0.07g/cm3大きい構成とすることが好ましく、0.03〜0.06g/cm3大きい構成とすることがより好ましく、0.04〜0.05g/cm3大きい構成とすることがさらに好ましい。また、表面被覆層が形成された領域の厚みは、1〜20mmとすることが好ましく、3〜15mmとすることがより好ましく、5〜10mmとすることがさらに好ましい。 The effect of the surface coating layer increases as the amount of the surface coating layer increases, but the cost increases as the amount of the surface coating layer increases. For this reason, the bulk density of the region where the surface coating layer is formed is preferably 0.02 to 0.07 g / cm 3 larger than the bulk density of the other region of the molded heat insulating material. more preferably to ~0.06g / cm 3 greater configuration, and even more preferably from 0.04~0.05g / cm 3 greater configuration. In addition, the thickness of the region where the surface coating layer is formed is preferably 1 to 20 mm, more preferably 3 to 15 mm, and still more preferably 5 to 10 mm.

以上に説明したように、本発明によると、低コストでもって断熱性能の劣化を抑制し得た炭素繊維成形断熱材を実現することができる。   As described above, according to the present invention, it is possible to realize a carbon fiber molded heat insulating material that can suppress deterioration of heat insulating performance at low cost.

図1は、実施例1にかかる成形断熱材の表面被覆層が形成された領域の顕微鏡写真である。FIG. 1 is a photomicrograph of the region where the surface coating layer of the molded heat insulating material according to Example 1 was formed. 図2は、実施例2にかかる成形断熱材の表面被覆層が形成された領域の顕微鏡写真である。FIG. 2 is a photomicrograph of the region where the surface coating layer of the molded heat insulating material according to Example 2 was formed. 図3は、実施例3にかかる成形断熱材の表面被覆層が形成された領域の顕微鏡写真である。FIG. 3 is a photomicrograph of the region where the surface coating layer of the molded heat insulating material according to Example 3 was formed. 図4は、比較例1に係る成形断熱材の顕微鏡写真である。FIG. 4 is a photomicrograph of the molded heat insulating material according to Comparative Example 1.

(実施の形態)
本実施の形態に係る成形断熱材は、炭素繊維を交絡させた繊維フェルトと繊維フェルトの炭素繊維の表面を被覆する炭素質からなる保護炭素層とを有している。そして、成形断熱材の少なくとも一つの表面近傍の領域には、炭素繊維表面及び保護炭素層表面を被覆するとともに、炭素繊維相互間の空隙の一部を埋める表面被覆層が設けられている。この表面被覆層は、粒状成分を含まない炭素質で構成されている。
(Embodiment)
The molded heat insulating material according to the present embodiment includes a fiber felt entangled with carbon fibers and a protective carbon layer made of carbonaceous material that covers the surface of the carbon fibers of the fiber felt. And the surface coating layer which fills a part of space | gap between carbon fibers while covering the carbon fiber surface and the surface of a protective carbon layer is provided in the area | region of at least one surface vicinity of a shaping | molding heat insulating material. This surface coating layer is composed of carbonaceous material that does not contain particulate components.

なお、表面被覆層が形成される前の成形断熱材は特に限定されることはなく、市販の成形断熱材を用いることができる。例えば成形断熱材を構成する炭素繊維や保護炭素層として、以下に示すものを用いることができる。   In addition, the shaping | molding heat insulating material before a surface coating layer is formed is not specifically limited, A commercially available shaping | molding heat insulating material can be used. For example, what is shown below can be used as a carbon fiber and protective carbon layer which comprise a shaping | molding heat insulating material.

成形断熱材を構成する炭素繊維としては、特に限定されることはなく、例えば石油ピッチ系、ポリアクリロニトリル(PAN)系、レーヨン系、フェノール樹脂系、セルロース系等の炭素繊維を、単一種又は複数種混合して用いることができる。中でも、熱処理による黒鉛化が起こり難い炭素繊維(たとえば、等方性の石炭ピッチ系、等方性の石油ピッチ系、レーヨン系、フェノール樹脂系の炭素繊維)を用いることが好ましい。また、炭素繊維の微視的な構造としては特に限定されず、形状(巻縮型、直線型、断面形状等)が同一のもののみを用いてもよく、また異なる構造のものが混合されていてもよい。ただし、炭素繊維の種類やその微視的構造は、製造される成形断熱材の物性に影響を与えるので、用途に応じて適宜選択するのがよい。   The carbon fiber constituting the molded heat insulating material is not particularly limited. For example, a single or a plurality of carbon fibers such as petroleum pitch-based, polyacrylonitrile (PAN) -based, rayon-based, phenol resin-based, and cellulose-based may be used. It can be used as a mixture of seeds. Among these, it is preferable to use carbon fibers (for example, isotropic coal pitch-based, isotropic petroleum pitch-based, rayon-based, phenol resin-based carbon fibers) that are not easily graphitized by heat treatment. Further, the microscopic structure of the carbon fiber is not particularly limited, and only carbon fibers having the same shape (contracted type, linear type, cross-sectional shape, etc.) may be used, or those having different structures are mixed. May be. However, the type of carbon fiber and its microscopic structure affect the physical properties of the molded heat insulating material to be manufactured, so it is preferable to select it appropriately according to the application.

保護炭素層は、炭素繊維の表面全部、あるいは、炭素繊維の表面の一部を被覆しているものである。また、保護炭素層は炭素質(非晶質炭素や黒鉛質炭素)であればよく、非晶質炭素は難黒鉛化性、易黒鉛化性のいずれでもよい。保護炭素層の由来となる化合物は特に限定されることはないが、繊維フェルトに含浸可能な樹脂材料の炭素化物を用いることが好ましい。このような樹脂材料としては、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂が好ましい。また、熱硬化性樹脂は1種のみを用いてもよく、2種以上を混合して用いてもよい。   The protective carbon layer covers the entire surface of the carbon fiber or a part of the surface of the carbon fiber. The protective carbon layer may be carbonaceous (amorphous carbon or graphitic carbon), and the amorphous carbon may be either non-graphitizable or graphitizable. The compound from which the protective carbon layer is derived is not particularly limited, but it is preferable to use a carbonized resin material that can be impregnated into the fiber felt. Such a resin material is preferably a thermosetting resin such as a phenol resin, a furan resin, a polyimide resin, or an epoxy resin. Moreover, only 1 type may be used for a thermosetting resin, and 2 or more types may be mixed and used for it.

表面被覆層は、炭素質(非晶質炭素や黒鉛質炭素)であればよく、特に限定されないが、熱処理の際に発泡しにくく、表面被覆層が形成されやすいポリイミド樹脂の炭素化物であることがより好ましい。   The surface coating layer is not particularly limited as long as it is carbonaceous (amorphous carbon or graphitic carbon), but is a carbonized product of a polyimide resin that is difficult to foam during heat treatment and easily forms a surface coating layer. Is more preferable.

表面被覆層は、次のようにして成形断熱材に形成される。合成樹脂(例えば、ポリイミド)が溶剤(例えば、N−メチル−2−ピロリドン)に溶解されてなる表面被覆剤溶液(炭素質の粒子を含まない)に、成形断熱材の一つの表面の厚みが5〜10mmの領域を5〜30秒程度浸漬して、この領域に表面被覆剤溶液を浸透させる。   The surface coating layer is formed on the molded heat insulating material as follows. The surface coating solution (not including carbonaceous particles) in which a synthetic resin (for example, polyimide) is dissolved in a solvent (for example, N-methyl-2-pyrrolidone) has a thickness of one surface of the molded heat insulating material. A region of 5 to 10 mm is immersed for about 5 to 30 seconds, and the surface coating solution is infiltrated into this region.

こののち、不活性雰囲気下、1000〜2500℃で熱処理して、合成樹脂を炭素化させることにより、合成樹脂の炭素化物からなる表面被覆層が、炭素繊維の表面、保護炭素層の表面及び炭素繊維相互間の空隙の一部に形成される。ここで、合成樹脂が熱硬化性樹脂の場合には、炭素化の前に当該熱硬化性樹脂の硬化温度以上に加熱して、熱硬化性樹脂の熱硬化を行う。溶剤は、熱処理や熱硬化の際に揮発除去される。   After that, by heat-treating at 1000 to 2500 ° C. under an inert atmosphere to carbonize the synthetic resin, the surface coating layer made of the carbonized product of the synthetic resin becomes the surface of the carbon fiber, the surface of the protective carbon layer, and the carbon. It is formed in a part of the space between the fibers. Here, when the synthetic resin is a thermosetting resin, the thermosetting resin is thermally cured by heating to a temperature higher than the curing temperature of the thermosetting resin before carbonization. The solvent is volatilized and removed during heat treatment or thermosetting.

ここで、本明細書でいう炭素化とは、黒鉛化を含んだ広義のものを意味する。例えば、特に2000℃以上の温度で熱処理する場合、表面被覆層の黒鉛構造が発展することが考えられるが、本発明では、表面被覆層を構成する炭素質は、非晶質炭素、黒鉛質炭素のいずれでもよい。   Here, the carbonization referred to in this specification means a broad meaning including graphitization. For example, when heat treatment is performed at a temperature of 2000 ° C. or more, it is considered that the graphite structure of the surface coating layer is developed. In the present invention, the carbonaceous material constituting the surface coating layer is amorphous carbon, graphitic carbon. Either of these may be used.

実施例に基づいて、本発明をさらに詳細に説明する。   The invention is explained in more detail on the basis of examples.

(実施例1)
(表面被覆剤の作製)
新日本理化(株)製ポリイミドリカコートSN−20(粘度13.9Pa・s)に、溶媒としてのN−メチル−2−ピロリドンを粘度が1Pa・sとなるように加えて、表面被覆剤溶液を作製した。表面被覆剤溶液の粘度は、JIS Z 8803に準拠して、25℃、1気圧における粘度を測定した。
Example 1
(Production of surface coating agent)
Surface coating agent solution by adding N-methyl-2-pyrrolidone as a solvent to polyimide Rika Coat SN-20 (viscosity 13.9 Pa · s) manufactured by Shin Nippon Rika Co., Ltd. so that the viscosity becomes 1 Pa · s. Was made. The viscosity of the surface coating solution was measured at 25 ° C. and 1 atm in accordance with JIS Z 8803.

成形断熱材(大阪ガスケミカル製DON−1000−H、嵩密度0.16g/cm3)を、100mm(縦)×100mm(横)×40mm(厚み)に、切断した。この成形断熱材の1つの表面を、表面から5mmの領域が液に浸されるように、上記表面被覆剤溶液に10秒間浸漬し、その後ゆっくりと引き上げた。 A molded heat insulating material (DON-1000-H manufactured by Osaka Gas Chemical Co., Ltd., bulk density 0.16 g / cm 3 ) was cut into 100 mm (length) × 100 mm (width) × 40 mm (thickness). One surface of this molded heat insulating material was immersed in the surface coating solution for 10 seconds so that an area of 5 mm from the surface was immersed in the liquid, and then slowly pulled up.

この表面被覆剤添加成形断熱材を、不活性雰囲気下500℃で1時間熱処理してポリイミド樹脂を熱硬化させるとともにN−メチル−2−ピロリドンを揮発除去し、その後不活性雰囲気下2000℃で5時間熱処理して、ポリイミド樹脂を炭素化させて、実施例1に係る成形断熱材を作製した。   This surface coating agent-added molded heat insulating material is heat-treated at 500 ° C. for 1 hour under an inert atmosphere to thermally cure the polyimide resin and volatilize and remove N-methyl-2-pyrrolidone, and then 5 ° C. at 2000 ° C. under an inert atmosphere. The molded heat insulating material according to Example 1 was produced by heat treating for a time to carbonize the polyimide resin.

(比較例1)
表面処理を行っていない成形断熱材(大阪ガスケミカル製DON−1000、嵩密度0.16g/cm3)を100mm(縦)×100mm(横)×40mm(厚み)に、切断したものを、比較例1に係る成形断熱材とした。
(Comparative Example 1)
Comparison was made by cutting a molded heat insulating material (Don-1000, manufactured by Osaka Gas Chemical Co., Ltd., bulk density 0.16 g / cm 3 ) into 100 mm (vertical) x 100 mm (horizontal) x 40 mm (thickness) without surface treatment The molded heat insulating material according to Example 1 was obtained.

(粉落ち試験)
上記のように作製された実施例1、比較例1に係る成形断熱材を10cm四方に裁断して、試験片を作製した。この試験片の表面にサンドペーパー#500を設置し、15gf/cm2の荷重がかかるように、金属性の錘をサンドペーパー上に載置した。こののち、サンドペーパーを2cm/secで10cm引っ張り、試験前後の重量変化(減少)を測定した。試験片の表面1cm2あたりの重量変化は、実施例1で0.023mg、比較例1で0.047mgであった。
(Powder falling test)
The molded heat insulating materials according to Example 1 and Comparative Example 1 produced as described above were cut into 10 cm squares to produce test pieces. Sandpaper # 500 was placed on the surface of this test piece, and a metal weight was placed on the sandpaper so that a load of 15 gf / cm 2 was applied. After that, the sandpaper was pulled 10 cm at 2 cm / sec, and the weight change (reduction) before and after the test was measured. The weight change per 1 cm 2 of the surface of the test piece was 0.023 mg in Example 1 and 0.047 mg in Comparative Example 1.

粉落ち試験での重量変化は、サンドペーパーを引っ張る際の摩擦により、成形断熱材の構成材料が粉化脱離(発塵)したことによると考えられる。   The change in weight in the powder falling test is considered to be due to the pulverization and desorption (dust generation) of the constituent material of the molded heat insulating material due to the friction when pulling the sandpaper.

以上のことから、表面処理を行ったことにより、摩擦による発塵を抑制できることが分かる。   From the above, it can be seen that dusting due to friction can be suppressed by performing the surface treatment.

(実施例2)
N−メチル−2−ピロリドンの添加量を変化させて表面被覆剤溶液の粘度を0.1Pa・sとしたこと以外は、上記実施例1と同様にして、実施例2に係る成形断熱材を作製した。
(Example 2)
The molded heat insulating material according to Example 2 was obtained in the same manner as in Example 1 except that the addition amount of N-methyl-2-pyrrolidone was changed so that the viscosity of the surface coating solution was 0.1 Pa · s. Produced.

(実施例3)
N−メチル−2−ピロリドンの添加量を変化させて表面被覆剤溶液の粘度を10Pa・sとしたこと以外は、上記実施例1と同様にして、実施例3に係る成形断熱材を作製した。
(Example 3)
A molded heat insulating material according to Example 3 was produced in the same manner as in Example 1 except that the addition amount of N-methyl-2-pyrrolidone was changed so that the viscosity of the surface coating solution was 10 Pa · s. .

実施例1〜3に係る成形断熱材の表面被覆層形成前後の質量を測定し(各実施例2点)、表面被覆層が形成された領域の嵩密度変化量(表面被覆材溶液によるコート量)を算出した。この結果を下記表1に示す。なお、下記表1において、コート量の括弧外数値は平均値、括弧内数値は実測値を示す。   The mass before and after forming the surface coating layer of the molded heat insulating material according to Examples 1 to 3 was measured (2 points in each Example), and the amount of change in the bulk density of the region where the surface coating layer was formed (the coating amount by the surface coating material solution) ) Was calculated. The results are shown in Table 1 below. In Table 1 below, the numerical value outside the parentheses of the coating amount represents an average value, and the numerical value within the parentheses represents an actual measurement value.

上記表1から、表面被覆剤溶液の粘度が大きくなるほど、表面被覆材溶液によるコート量が小さくなる傾向にあることが分かる。また、粘度の最も大きい実施例3では、コート量のバラツキが大きいことが分かる。この結果から、表面被覆剤溶液の粘度が小さくなるに伴い、十分な量の炭素質を含んだ表面被覆層を安定して形成できるようになることが分かる。   From Table 1 above, it can be seen that as the viscosity of the surface coating agent solution increases, the coating amount by the surface coating material solution tends to decrease. Moreover, in Example 3 with the largest viscosity, it turns out that the variation in a coating amount is large. From this result, it can be seen that the surface coating layer containing a sufficient amount of carbonaceous material can be stably formed as the viscosity of the surface coating solution decreases.

実施例1〜3に係る成形断熱材の表面被覆層が形成された領域の顕微鏡写真を図1〜3に、比較例1に係る成形断熱材の顕微鏡写真を図4にそれぞれ示す。ここで、表面被覆層が存在しない図4では、多数の繊維(炭素繊維)1が多数の空隙(繊維間の空隙)を保持しつつ存在していること、及び、繊維1の表面や繊維1相互の接点近傍に、繊維1を覆う保護炭素層2が存在していることがわかる。また、これらの空隙から内部(奥)の繊維1や保護炭素層2等をみることができ、奥まで空隙である領域(合焦範囲内には繊維等が存在しない領域)も多くみられる。   The microscope picture of the area | region in which the surface coating layer of the shaping | molding heat insulating material which concerns on Examples 1-3 was formed is shown in FIGS. 1-3, and the microscope picture of the shaping | molding heat insulating material which concerns on the comparative example 1 is shown in FIG. Here, in FIG. 4 where the surface coating layer does not exist, a large number of fibers (carbon fibers) 1 exist while holding a large number of voids (voids between fibers), and the surface of the fibers 1 and the fibers 1. It turns out that the protective carbon layer 2 which covers the fiber 1 exists in the mutual contact vicinity. Further, the inside (back) fibers 1 and the protective carbon layer 2 can be seen from these gaps, and there are many areas that are voids to the back (areas where no fibers or the like exist in the in-focus range).

これに対し、表面被覆層が存在する図1〜3では、奥まで空隙である領域が図4よりも大きく減少しており、この代わりに繊維間を埋める平面状の層3が増加していることが分かる。つまり、この平面状の層3が表面被覆層3であり、この表面被覆層3が炭素繊維1や保護炭素層の表面を覆いつつ繊維1間の空隙の一部を埋めていることが確認できる。また、表面被覆層のコート量が多くなるに伴い、表面被覆層3に由来する平面状の層3が増加していることが分かる。以上のことから、表面被覆剤溶液の粘度が小さくなるほど、表面被覆剤溶液が繊維1間の空隙に浸透しやすくなるため、コート量が増加するものと考えられる。   On the other hand, in FIGS. 1 to 3 where the surface coating layer exists, the region that is a void to the back is greatly reduced as compared with FIG. 4, and instead the planar layer 3 that fills between the fibers is increased. I understand that. That is, it can be confirmed that the planar layer 3 is the surface coating layer 3 and the surface coating layer 3 covers the surface of the carbon fiber 1 or the protective carbon layer and fills a part of the gap between the fibers 1. . Moreover, it turns out that the planar layer 3 derived from the surface coating layer 3 is increasing as the coating amount of the surface coating layer increases. From the above, it is considered that as the viscosity of the surface coating solution decreases, the surface coating solution easily penetrates into the gaps between the fibers 1, so that the coating amount increases.

上記で説明したように、本発明によると、簡便な表面被覆処理により、劣化や粉化を抑制し得た長寿命な成形断熱材を実現できるので、その産業上の利用可能性は大きい。   As described above, according to the present invention, a long-life molded heat insulating material that can suppress deterioration and pulverization can be realized by a simple surface coating treatment, and therefore, its industrial applicability is great.

1 炭素繊維(繊維)
2 保護炭素層
3 表面被覆層(平面状の層)
1 Carbon fiber (fiber)
2 Protective carbon layer 3 Surface coating layer (planar layer)

Claims (6)

炭素繊維を交絡させた繊維フェルトと前記繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層とを有する成形断熱材の少なくとも一つの表面を、熱処理により炭素化する合成樹脂と前記合成樹脂を溶解する溶媒とからなる表面被覆剤溶液に浸漬して、成形断熱材に前記表面被覆剤溶液を添加する浸漬ステップと、
前記浸漬ステップ後、成形断熱材を不活性雰囲気下1500〜2500℃で熱処理し、前記合成樹脂を炭素化させて、表面被覆層を形成する熱処理ステップと、
を有する表面処理された成形断熱材の製造方法。
A synthetic resin that carbonizes by heat treatment at least one surface of a molded heat insulating material having a fiber felt entangled with carbon fibers and a carbonaceous protective carbon layer covering the carbon fiber surface of the fiber felt and the synthetic resin Dipping in a surface coating solution comprising a solvent that dissolves, and adding the surface coating solution to the molded insulation,
After the immersion step, a heat treatment step of heat-treating the molded heat insulating material at 1500 to 2500 ° C. in an inert atmosphere, carbonizing the synthetic resin, and forming a surface coating layer;
A method for producing a surface-treated molded heat insulating material having
前記合成樹脂は、ポリイミドであり、
前記浸漬ステップ後で前記熱処理ステップの前に、前記ポリイミドを熱硬化させる熱硬化ステップをさらに有する、
ことを特徴とする請求項1に記載の成形断熱材の製造方法。
The synthetic resin is polyimide,
The method further comprises a thermosetting step for thermosetting the polyimide after the dipping step and before the heat treatment step.
The manufacturing method of the shaping | molding heat insulating material of Claim 1 characterized by the above-mentioned.
前記表面被覆剤溶液の粘度が、0.1〜1Pa・sである、
ことを特徴とする請求項1又は2に記載の成形断熱材の製造方法。
The viscosity of the surface coating agent solution is 0.1 to 1 Pa · s.
The manufacturing method of the shaping | molding heat insulating material of Claim 1 or 2 characterized by the above-mentioned.
炭素繊維を交絡させた繊維フェルトと、前記繊維フェルトの炭素繊維表面を被覆する炭素質からなる保護炭素層と、を有する成形断熱材において、
前記成形断熱材の少なくとも一つの表面近傍の領域には、炭素繊維表面及び保護炭素層表面を被覆するとともに、炭素繊維相互間の空隙の一部を埋める表面被覆層が設けられ、
前記表面被覆層は、粒状成分を含まない炭素質からなる、
ことを特徴とする成形断熱材。
In a molded heat insulating material having a fiber felt entangled with carbon fibers, and a protective carbon layer made of carbon that covers the carbon fiber surface of the fiber felt,
In the region in the vicinity of at least one surface of the molded heat insulating material, a surface coating layer that covers the carbon fiber surface and the protective carbon layer surface and fills a part of the gap between the carbon fibers is provided,
The surface coating layer is made of carbonaceous material containing no particulate component,
A molded insulation characterized by that.
前記表面被覆層が形成された領域の嵩密度は、成形断熱材の他の領域の嵩密度よりも0.02〜0.07g/cm3大きい、
ことを特徴とする請求項4に記載の成形断熱材。
The bulk density of the region where the surface coating layer is formed is 0.02 to 0.07 g / cm 3 larger than the bulk density of other regions of the molded heat insulating material,
The molded heat insulating material according to claim 4.
前記表面被覆層が形成された領域の厚みが、1〜20mmである、
ことを特徴とする請求項4又は5に記載の成形断熱材。
The thickness of the region where the surface coating layer is formed is 1 to 20 mm.
The molded heat insulating material according to claim 4 or 5, characterized by the above.
JP2015183095A 2015-09-16 2015-09-16 Surface-treated molded heat insulating material and method for producing the same Active JP6546489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183095A JP6546489B2 (en) 2015-09-16 2015-09-16 Surface-treated molded heat insulating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183095A JP6546489B2 (en) 2015-09-16 2015-09-16 Surface-treated molded heat insulating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017057112A true JP2017057112A (en) 2017-03-23
JP6546489B2 JP6546489B2 (en) 2019-07-17

Family

ID=58391348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183095A Active JP6546489B2 (en) 2015-09-16 2015-09-16 Surface-treated molded heat insulating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6546489B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292462A (en) * 1991-03-20 1992-10-16 Mitsui Mining Co Ltd Production of composite molded article of carbon fiber
JP2000141526A (en) * 1998-11-13 2000-05-23 Nippon Carbon Co Ltd Carbon fiber-forming heat insulation material
JP2000327441A (en) * 1999-05-26 2000-11-28 Kureha Chem Ind Co Ltd Composite carbonaceous thermal insulant and its production
JP2001230588A (en) * 2000-02-17 2001-08-24 Nippon Muki Co Ltd Electromagnetic wave absorbing body and its manufacturing method
JP2002255664A (en) * 2001-03-05 2002-09-11 Tokai Carbon Co Ltd C/c composite material and production method therefor
WO2006115102A1 (en) * 2005-04-22 2006-11-02 Kureha Corporation Coating layer for heat insulation, laminate for heat insulation, coating material for heat insulation and process for production of the coating material
JP2007211963A (en) * 2006-02-13 2007-08-23 Ibiden Co Ltd Inorganic fiber block
JP2008196552A (en) * 2007-02-09 2008-08-28 Nippon Carbon Co Ltd Carbon fiber heat insulating material and its manufacturing method
JP2009185411A (en) * 2008-02-06 2009-08-20 Teijin Ltd Heat insulator containing carbon fiber
JP2012218954A (en) * 2011-04-05 2012-11-12 Osaka Gas Chem Kk Surface treated molded insulation material, method for producing the same, and surface coating agent used for this
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292462A (en) * 1991-03-20 1992-10-16 Mitsui Mining Co Ltd Production of composite molded article of carbon fiber
JP2000141526A (en) * 1998-11-13 2000-05-23 Nippon Carbon Co Ltd Carbon fiber-forming heat insulation material
JP2000327441A (en) * 1999-05-26 2000-11-28 Kureha Chem Ind Co Ltd Composite carbonaceous thermal insulant and its production
JP2001230588A (en) * 2000-02-17 2001-08-24 Nippon Muki Co Ltd Electromagnetic wave absorbing body and its manufacturing method
JP2002255664A (en) * 2001-03-05 2002-09-11 Tokai Carbon Co Ltd C/c composite material and production method therefor
WO2006115102A1 (en) * 2005-04-22 2006-11-02 Kureha Corporation Coating layer for heat insulation, laminate for heat insulation, coating material for heat insulation and process for production of the coating material
JP2007211963A (en) * 2006-02-13 2007-08-23 Ibiden Co Ltd Inorganic fiber block
JP2008196552A (en) * 2007-02-09 2008-08-28 Nippon Carbon Co Ltd Carbon fiber heat insulating material and its manufacturing method
JP2009185411A (en) * 2008-02-06 2009-08-20 Teijin Ltd Heat insulator containing carbon fiber
JP2012218954A (en) * 2011-04-05 2012-11-12 Osaka Gas Chem Kk Surface treated molded insulation material, method for producing the same, and surface coating agent used for this
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material

Also Published As

Publication number Publication date
JP6546489B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
KR101241775B1 (en) Method for preparing high density fiber reinforced silicon carbide composite materials
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
KR100634935B1 (en) Composite Carbonaceous Heat Insulator
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
JP6086943B2 (en) Carbon fiber heat insulating material and manufacturing method thereof
KR101079665B1 (en) Producing method of low-dimensional carbon-contained composits and Carbon block
JP5690789B2 (en) Surface-treated molded heat insulating material and method for producing the same
JP6721991B2 (en) Surface-treated molded heat insulating material and method for producing the same
KR102109800B1 (en) Graphite sheet derived from coated heat-conductive carbon particles and method for preparing same
CN111148728A (en) Method for producing parts of complex geometry containing carbon or silicon carbide
JP5972362B2 (en) Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon
JP7373498B2 (en) Carbon fiber molded insulation material and its manufacturing method
JP5671375B2 (en) Molded heat insulating material and manufacturing method thereof
JP2017057112A (en) Surface-treated molded heat insulator and method for producing the same
JP5829134B2 (en) Method for producing carbon fiber felt
JP6864588B2 (en) Carbon fiber sheet laminate and its manufacturing method
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JP5492817B2 (en) Surface-treated molded heat insulating material and method for producing the same
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP2017071535A (en) METHOD FOR PRODUCING SiC/SiC COMPOSITE MATERIAL
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
JP6265802B2 (en) Oxide-coated carbon material with enhanced coating adhesion and method for producing the same
KR102149991B1 (en) Graphite sheet derived from coated polymeric resin particles and method for preparing same
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250