JP2017056452A - Processing method and processing equipment for high concentration organic solution - Google Patents

Processing method and processing equipment for high concentration organic solution Download PDF

Info

Publication number
JP2017056452A
JP2017056452A JP2015185972A JP2015185972A JP2017056452A JP 2017056452 A JP2017056452 A JP 2017056452A JP 2015185972 A JP2015185972 A JP 2015185972A JP 2015185972 A JP2015185972 A JP 2015185972A JP 2017056452 A JP2017056452 A JP 2017056452A
Authority
JP
Japan
Prior art keywords
solution
organic solution
concentration organic
concentration
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015185972A
Other languages
Japanese (ja)
Inventor
彰仁 熊見
Akihito Kumami
彰仁 熊見
結衣 関口
Yui Sekiguchi
結衣 関口
秀人 松山
Hideto Matsuyama
秀人 松山
政宏 安川
Masahiro Yasukawa
政宏 安川
智輝 高橋
Tomoki Takahashi
智輝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Osaka Gas Co Ltd
Original Assignee
Kobe University NUC
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Osaka Gas Co Ltd filed Critical Kobe University NUC
Priority to JP2015185972A priority Critical patent/JP2017056452A/en
Publication of JP2017056452A publication Critical patent/JP2017056452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for treating a highly dense organic solution biologically conveniently at a low cost without causing a fermentation obstruction, when the highly dense organic solution is subjected to a biological treatment.SOLUTION: A processing equipment comprises: a dilution part 3 for diluting a high-concentration organic solution 1a with dilution water thereby to acquire a diluted solution 3a; and biological treatment parts (4, 5, 6 and 8) for biologically treating the diluted solution 3a. The dilution part 3 is caused to contact the high-concentration organic solution 1a and a low-concentration solution 2a through a permeable membrane 30, and seepage water is caused to permeate from the low-concentration solution side to the high-concentration solution side, so that the diluted solution 3a diluted from the high-concentration organic solution 1a is obtained by the correctly permeable membrane method, in which the seepage water is the dilution water.SELECTED DRAWING: Figure 1

Description

本発明は、高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈工程を行い、希釈溶液を生物処理する生物処理工程を順次行う高濃度有機溶液の処理方法、および、高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈部を備え、希釈溶液を生物処理する生物処理部を備えた高濃度有機溶液の処理装置に関する。   The present invention relates to a high-concentration organic solution processing method for performing a biological treatment step of performing a biological treatment step of diluting a high-concentration organic solution with dilution water to obtain a diluted solution, and a high-concentration organic solution The present invention relates to a high-concentration organic solution processing apparatus including a dilution unit that dilutes a diluted solution with dilution water to obtain a diluted solution, and a biological processing unit that biologically processes the diluted solution.

たとえば、石鹸製造業における高濃度有機溶液は、グリセリン、脂肪酸等の有機物が含まれているが、従来、この高濃度有機溶液は有価な有機物を回収、再生した後廃棄されていた。しかし、バイオディーゼルフューエル製造副産物としてのグリセリンが大量に流通する昨今、高濃度有機溶液からのグリセリンの回収がコスト的に見合わなくなってきており、近年ではこのような高濃度有機溶液を焼却処理等により処分することが主流になってきている。   For example, high-concentration organic solutions in the soap manufacturing industry contain organic substances such as glycerin and fatty acids. Conventionally, these high-concentration organic solutions have been discarded after recovering and regenerating valuable organic substances. However, in recent years when glycerin as a by-product of biodiesel fuel production is distributed in large quantities, the recovery of glycerin from high-concentration organic solutions has become unsuitable for cost. In recent years, such high-concentration organic solutions have been incinerated. Disposal is becoming mainstream.

しかし、このような処理を行うと、エネルギー的に無駄が多く、環境負荷が高いなどの問題があるため、高濃度有機溶液中の有機物を有効利用することが検討されている。高濃度有機溶液中の有機物の利用形態としては、回収、再生を除けば、他に微生物によるメタン発酵を利用してメタンガスとしてエネルギーを回収することが考えられる。ただし、高濃度塩化ナトリウム含有、高pHの高濃度有機溶液は、メタン発酵を行う微生物が活動する環境としては好ましくなく、上記石鹸製造業における高濃度有機溶液などには適用できないという実情があった。   However, when such a treatment is performed, there are problems such as high energy waste and high environmental load. Therefore, effective use of organic substances in high-concentration organic solutions has been studied. As a utilization form of the organic matter in the high-concentration organic solution, except for recovery and regeneration, it is conceivable to recover energy as methane gas by utilizing methane fermentation by microorganisms. However, high-concentration sodium chloride-containing, high-pH organic solution is not preferable as an environment where microorganisms that perform methane fermentation are active, and there is a situation that it cannot be applied to the high-concentration organic solution in the soap manufacturing industry. .

これに対して、先に、本出願人らは、このような高濃度有機溶液を適切に希釈し、pH調整することによって生物処理する技術を開発している(特許文献1参照)。この技術により、比較的簡単な工程の付加のみで、入手容易な排水を低濃度溶液として有効利用し、低コストで高濃度有機溶液を生物処理できるようになった。   In contrast, the present applicants have previously developed a technique for biological treatment by appropriately diluting such a high-concentration organic solution and adjusting the pH (see Patent Document 1). With this technology, it became possible to biologically treat high-concentration organic solutions at low cost by effectively using easily available wastewater as a low-concentration solution with the addition of relatively simple processes.

尚、以下では、主に石鹸製造廃液を例に説明を行うが、特許文献1に示すように、バイオディーゼル製造業など各種産業廃液についても同様の問題点を抱えており、この種の廃液中の有機物からメタンを生成することが検討されている。そのため本願では、これらの廃液を高濃度有機溶液と総称するものとする。   In the following, description will be given mainly using soap manufacturing waste liquid as an example, but as shown in Patent Document 1, various industrial waste liquids such as biodiesel manufacturing industry have similar problems, and this kind of waste liquid The production of methane from the organic matter is being studied. Therefore, in the present application, these waste liquids are collectively referred to as high-concentration organic solutions.

特開2012−152675号公報JP2012-152675A

ところが、本発明者らによると、入手容易な低濃度溶液をそのまま高濃度有機溶液の希釈に用いた場合に、生物処理に悪影響を与えることがあることが明らかになってきている。例えば、低濃度溶液として用いられる設備の冷却水や洗浄排水中には、洗浄に用いた界面活性剤や、設備の汚れとして付着していた金属錆から生じた重金属イオンなどが溶解しているものと考えられる。このような溶解成分の中には、メタン発酵や酸発酵に利用される種々の微生物の増殖を阻害して、発酵阻害の原因となる物質が含まれている場合があるものと考えられる。   However, according to the present inventors, it has become clear that when an easily available low-concentration solution is used as it is for diluting a high-concentration organic solution, it may adversely affect biological treatment. For example, equipment used as a low-concentration solution, such as surfactants used for cleaning, or heavy metal ions generated from metal rust attached as equipment stains are dissolved it is conceivable that. It is considered that such dissolved components may contain substances that inhibit the growth of various microorganisms used for methane fermentation and acid fermentation and cause fermentation inhibition.

そこで、低濃度溶液からこれらの溶解成分を除去して希釈に用いることが考えられるが、上記溶解成分は、凝集沈殿処理などでは取り除けない場合が多い。また、低濃度溶液を逆浸透膜法により処理することにより、清浄な希釈用の水を得ることも考えられる。しかし、逆浸透膜法による処理を行うには、低濃度溶液の浸透圧に逆らって高圧を付与する必要があり、エネルギーのかかる工程を付加することになり、簡便かつ低コストで高濃度有機溶液を生物処理するという本来の目的が達成できなくなる。   Thus, it is conceivable to remove these dissolved components from the low-concentration solution and use them for dilution. However, the dissolved components are often not removed by coagulation sedimentation treatment or the like. It is also conceivable to obtain clean dilution water by treating the low concentration solution by the reverse osmosis membrane method. However, in order to perform the treatment by the reverse osmosis membrane method, it is necessary to apply a high pressure against the osmotic pressure of the low-concentration solution, which adds an energy-intensive process, and a simple and low-cost high-concentration organic solution. The original purpose of biological treatment of the plant cannot be achieved.

したがって、本発明は上記実情に鑑み、簡便かつ低コストで、高濃度有機溶液を生物処理するにあたって、高濃度有機溶液を希釈しても発酵阻害が生じにくいように処理する技術を提供することを目的とする。   Therefore, in view of the above circumstances, the present invention provides a technique for processing so that fermentation inhibition is unlikely to occur even when a high-concentration organic solution is diluted in a simple and low-cost biological treatment. Objective.

〔構成1〕
上記目的を達成するための本発明の高濃度有機溶液の処理方法の特徴構成は、
高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈工程を行い、
前記希釈溶液を生物処理する生物処理工程を順次行う高濃度有機溶液の処理方法であって、
前記希釈工程において、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させて、前記浸透水を前記希釈水とする正浸透膜法により、前記高濃度有機溶液を希釈した前記希釈溶液を得る点にある。
[Configuration 1]
In order to achieve the above object, the characteristic configuration of the processing method of the high concentration organic solution of the present invention is:
Dilute a highly concentrated organic solution with dilution water to obtain a diluted solution,
A treatment method of a high concentration organic solution for sequentially performing a biological treatment step of biologically treating the diluted solution,
In the dilution step, the high-concentration organic solution and the low-concentration solution are brought into contact with each other through a permeation membrane, and permeation water is permeated from the low-concentration solution side to the high-concentration organic solution side, thereby diluting the permeation water. The point is to obtain the diluted solution obtained by diluting the high-concentration organic solution by a forward osmosis membrane method using water.

〔作用効果1〕
高濃度有機溶液に含まれる溶解成分が微生物の生育を阻害する虞のある高濃度であっても、高濃度有機溶液を希釈すると、その溶解成分の濃度を微生物が生育しやすい濃度にまで低下させることができる。そのため、希釈工程後の希釈溶液を生物処理する生物処理工程を好適に行えるようになると考えられる。
[Operation effect 1]
Even if the dissolved component contained in the high-concentration organic solution has a high concentration that may inhibit the growth of microorganisms, diluting the high-concentration organic solution reduces the concentration of the dissolved component to a concentration at which microorganisms can easily grow. be able to. Therefore, it is considered that a biological treatment process for biologically treating the diluted solution after the dilution process can be suitably performed.

ここで、希釈工程を、低濃度溶液により行うと、希釈水として水道水を用いる場合等に比べて、希釈水に要するコストを低減できるとともに、低濃度溶液の処理も同時に行えることから好ましいと考えられる。この場合、先述のように、低濃度溶液に含まれる溶解成分に、メタン発酵や酸発酵に利用される種々の微生物の増殖を阻害して、発酵阻害の原因となる物質が含まれている場合がある。しかし、本発明者らによると、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させる、いわゆる正浸透膜法を利用することにより、低濃度溶液から発酵阻害の原因となる物質を除去された浸透水が得られることが明らかになった。   Here, it is considered preferable to perform the dilution step with a low-concentration solution because the cost required for the dilution water can be reduced and the treatment of the low-concentration solution can be performed simultaneously as compared with the case where tap water is used as the dilution water. It is done. In this case, as described above, the dissolved component contained in the low-concentration solution contains substances that inhibit the growth of various microorganisms used for methane fermentation and acid fermentation and cause fermentation inhibition. There is. However, according to the present inventors, the high-concentration organic solution and the low-concentration solution are brought into contact with each other through an osmosis membrane, and so-called forward osmosis is caused to permeate permeated water from the low-concentration solution side to the high-concentration organic solution side. By using the membrane method, it became clear that permeated water from which substances causing fermentation inhibition were removed from a low-concentration solution was obtained.

そのため、得られた浸透水を希釈水とする希釈工程を行うことができ、生物処理工程において発酵阻害を生じにくくできる。また、高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、低濃度溶液側から高濃度有機溶液側に浸透水を浸透させ、得られた浸透水を希釈水とする正浸透膜法であるから、逆浸透膜法により発酵阻害の原因となる物質を除去するのに比べて、特に大きなエネルギーを付与する必要はなく、簡便かつ低コストで浸透水を得ることができる。   Therefore, the dilution process which uses the obtained osmotic water as dilution water can be performed, and fermentation inhibition can be hardly caused in the biological treatment process. Further, a normal osmosis membrane in which a high-concentration organic solution and a low-concentration solution are brought into contact with each other through an osmotic membrane, and the osmotic water is permeated from the low-concentration solution side to the high-concentration organic solution side. Since it is a method, compared with removing the substance which causes fermentation inhibition by a reverse osmosis membrane method, it is not necessary to give especially big energy, and osmotic water can be obtained simply and at low cost.

したがって、低濃度溶液を用いて簡便かつ低コストで、高濃度有機溶液を生物処理工程に供することができるように希釈することができる。   Therefore, it is possible to dilute the high-concentration organic solution using the low-concentration solution in a simple and low-cost manner so that it can be used for the biological treatment process.

〔構成2〕
また、前記高濃度有機溶液が、石鹸製造廃液を主成分としてもよい。
[Configuration 2]
The high-concentration organic solution may contain soap production waste liquid as a main component.

〔作用効果2〕
また、石鹸製造廃液としては、石鹸製造設備における塩析工程などから排出される廃液が、大量のグリセリンや塩化ナトリウムを含有するため、高濃度(高CODかつ高塩濃度)かつ高pHであることが知られている。そのため、高濃度有機溶液の処理方法により処理する高濃度有機溶液として好適であり、きわめて高効率で石鹸製造設備の廃液を有効に利用しながら有価物を生産することができる。
[Operation effect 2]
In addition, as the waste liquid for soap production, the waste liquid discharged from the salting-out process in the soap production facility contains a large amount of glycerin and sodium chloride, so it has a high concentration (high COD and high salt concentration) and high pH. It has been known. Therefore, it is suitable as a high-concentration organic solution to be processed by the processing method of the high-concentration organic solution, and it is possible to produce a valuable material while effectively using the waste liquid of the soap production facility with extremely high efficiency.

〔構成3〕
また、前記低濃度溶液が、前記高濃度有機溶液を発生する設備における冷却水あるいは洗浄水を主成分としてもよい。
[Configuration 3]
The low-concentration solution may be mainly composed of cooling water or washing water in a facility that generates the high-concentration organic solution.

〔作用効果3〕
また、石鹸製造設備における冷却水や洗浄排水は、石鹸製造設備における種々工程における熱交換器に流通される冷却水や、配管等の洗浄排水が低濃度(低CODかつ低塩濃度)かつ低pHであることが知られている。そのため、高濃度有機溶液の処理方法により処理する低濃度溶液として好適であり、きわめて高効率で石鹸製造設備の排水を有効に利用しながら有価物を生産することができる。
[Operation effect 3]
In addition, the cooling water and washing wastewater in the soap production facility are low in concentration (low COD and low salt concentration) and low pH in the cooling water distributed to the heat exchanger in various processes in the soap production facility and in the washing wastewater such as piping. It is known that Therefore, it is suitable as a low-concentration solution to be processed by a processing method for a high-concentration organic solution, and it is possible to produce a valuable material while effectively using the waste water of the soap manufacturing facility with extremely high efficiency.

特に、高濃度有機溶液が、石鹸製造廃液を主成分とするものであり、かつ、低濃度溶液が、高濃度有機溶液を発生する設備における冷却水あるいは洗浄水を主成分とするものである場合には、同一設備から発生する2種類の廃液や排水を組み合わせて有効利用し、同時に処理できるようになるため好ましい。   In particular, when the high-concentration organic solution is mainly composed of soap production waste liquid, and the low-concentration solution is mainly composed of cooling water or washing water in a facility that generates the high-concentration organic solution. It is preferable because two types of waste liquid and waste water generated from the same facility can be effectively used in combination and processed simultaneously.

〔構成4〕
上記目的を達成するための本発明の高濃度有機溶液の処理装置の特徴構成は、
高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈部と、前記希釈溶液を生物処理する生物処理部とを備えた高濃度有機溶液の処理装置であって、
前記希釈部が、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させて、前記浸透水を前記希釈水とする正浸透膜法により、前記高濃度有機溶液を希釈した前記希釈溶液を得る構成である点にある。
[Configuration 4]
In order to achieve the above object, the high-concentration organic solution processing apparatus according to the present invention has the following characteristic configuration:
A treatment apparatus for a high concentration organic solution, comprising a dilution section for diluting a high concentration organic solution with dilution water to obtain a diluted solution, and a biological treatment section for biologically treating the diluted solution,
The diluting unit makes the high-concentration organic solution and the low-concentration solution contact each other through a permeation membrane, and permeates the high-concentration organic solution side from the low-concentration solution side to infiltrate the permeated water. This is a configuration in which the diluted solution obtained by diluting the high-concentration organic solution is obtained by a forward osmosis membrane method using water.

〔作用効果4〕
高濃度有機溶液に含まれる溶解成分が微生物の生育を阻害する虞のある高濃度であっても、高濃度有機溶液を希釈すると、その溶解成分の濃度を微生物が生育しやすい濃度にまで低下させることができる。そのため、希釈部において得られた希釈溶液を生物処理する生物処理工程を好適に行えるようになると考えられる。
[Operation effect 4]
Even if the dissolved component contained in the high-concentration organic solution has a high concentration that may inhibit the growth of microorganisms, diluting the high-concentration organic solution reduces the concentration of the dissolved component to a concentration at which microorganisms can easily grow. be able to. Therefore, it is considered that a biological treatment process for biologically treating the diluted solution obtained in the dilution section can be suitably performed.

ここで、希釈水を、低濃度溶液とすると、希釈水として水道水を用いる場合等に比べて、希釈水に要するコストを低減できるとともに、低濃度溶液の処理も同時に行えることから好ましいと考えられる。この場合、先述のように、低濃度溶液に含まれる溶解成分に、メタン発酵や酸発酵に利用される種々の微生物の増殖を阻害して、発酵阻害の原因となる物質が含まれている場合がある。しかし、本発明者らによると、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させる、いわゆる正浸透膜法を利用することにより、低濃度溶液から発酵阻害の原因となる物質を除去された浸透水が得られることが明らかになった。   Here, if the dilution water is a low-concentration solution, it is considered preferable because the cost required for the dilution water can be reduced and the treatment of the low-concentration solution can be performed simultaneously as compared with the case where tap water is used as the dilution water. . In this case, as described above, the dissolved component contained in the low-concentration solution contains substances that inhibit the growth of various microorganisms used for methane fermentation and acid fermentation and cause fermentation inhibition. There is. However, according to the present inventors, the high-concentration organic solution and the low-concentration solution are brought into contact with each other through an osmosis membrane, and so-called forward osmosis is caused to permeate permeated water from the low-concentration solution side to the high-concentration organic solution side. By using the membrane method, it became clear that permeated water from which substances causing fermentation inhibition were removed from a low-concentration solution was obtained.

そのため、得られた浸透水を希釈水とすることができ、生物処理において発酵阻害を生じにくくできる。また、高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、低濃度溶液側から高濃度有機溶液側に浸透水を浸透させ、得られた浸透水を希釈水とするものであるから、逆浸透膜法により発酵阻害の原因となる物質を除去するのに比べて、特に大きなエネルギーを付与する必要はなく、簡便かつ低コストで浸透水を得られる。   Therefore, the obtained osmotic water can be used as dilution water, and fermentation inhibition can be hardly caused in biological treatment. Further, the high concentration organic solution and the low concentration solution are brought into contact with each other through the osmosis membrane, and the osmotic water is permeated from the low concentration solution side to the high concentration organic solution side, and the obtained osmotic water is used as dilution water. Therefore, it is not necessary to apply particularly large energy compared to removing substances that cause fermentation inhibition by the reverse osmosis membrane method, and osmotic water can be obtained simply and at low cost.

したがって、低濃度溶液を用いて簡便かつ低コストで、高濃度有機溶液を生物処理することができるように希釈できるようになった。   Therefore, it has become possible to dilute the high-concentration organic solution so that it can be biologically treated using the low-concentration solution easily and at low cost.

尚、上述のように、浸透膜による処理を行うと、低濃度溶液から発酵阻害の原因となる物質を除去された浸透水が得られるが、発酵阻害の原因となる物質としては、界面活性剤や、重金属イオン、有機化合物が想定されている。詳細にどのような物質が実際の発酵阻害を生じているのかは定かではないが、本発明者らは、これらの物質群を除去することにより、発酵阻害を抑制できることを見出している。そこで、これらの物質群を膜分離できる浸透膜であれば、発酵阻害を抑制することができることが明らかである。   As described above, when treatment with an osmotic membrane is performed, osmotic water is obtained by removing substances that cause fermentation inhibition from low-concentration solutions. However, substances that cause fermentation inhibition include surfactants. Also, heavy metal ions and organic compounds are assumed. Although it is not certain which substance causes actual fermentation inhibition in detail, the present inventors have found that fermentation inhibition can be suppressed by removing these substance groups. Thus, it is clear that fermentation inhibition can be suppressed by using a permeable membrane capable of membrane separation of these substance groups.

上記界面活性剤や、重金属イオン、有機化合物は、一般に、正浸透膜(FO膜)、逆浸透膜(RO膜)、ナノフィルター(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)により膜分離することができるものと考えられており、これらの膜は、上記正浸透膜法に用いられる浸透膜として有用である。   The above surfactants, heavy metal ions, and organic compounds are generally used as forward osmosis membranes (FO membranes), reverse osmosis membranes (RO membranes), nanofilters (NF membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes. It is considered that the membrane can be separated by (MF membrane), and these membranes are useful as osmotic membranes used in the forward osmosis membrane method.

なお、本発明において、
逆浸透膜(RO膜)とは、分画分子量60Da以上〜350Da未満程度の分子量(分画分子量)の物質などを対象として分離する膜をいい、
正浸透膜(FO膜)とは、60Da以上〜1000Da未満程度の分子量の物質などを対象として分離する膜をいい、
ナノフィルター(NF膜)とは、350Da以上1000Da未満程度の分子量の物質などを対象として分離する膜をいい、
限外ろ過膜(UF膜)とは、1000Da以上300000Da未満程度の分子量の物質などを対象として分離する膜をいい、
精密ろ過膜(MF膜)とは分画分子量300000Da以上の分子量の物質などを対象として分離する膜をいう。
In the present invention,
Reverse osmosis membrane (RO membrane) refers to a membrane that separates a substance with a molecular weight (fractionated molecular weight) of about 60 Da to less than 350 Da.
The forward osmosis membrane (FO membrane) refers to a membrane that separates a substance having a molecular weight of about 60 Da or more and less than 1000 Da.
A nanofilter (NF membrane) refers to a membrane that separates a substance having a molecular weight of about 350 Da to less than 1000 Da.
An ultrafiltration membrane (UF membrane) refers to a membrane that separates a substance having a molecular weight of about 1000 Da or more and less than 300000 Da.
A microfiltration membrane (MF membrane) refers to a membrane that separates a substance having a molecular weight of 300,000 Da or higher.

〔構成5〕
前記生物処理部が、希釈溶液を酸発酵する酸発酵部と、
前記酸発酵部で酸発酵された酸発酵溶液を、pH5.5〜8.5に中和する中和処理部と、
前記中和処理部でpH5.5〜8.5となった中和溶液を、メタン発酵してメタン発酵溶液とするメタン発酵部と、を備えてもよい。
[Configuration 5]
The biological treatment unit is an acid fermentation unit for acid fermentation of the diluted solution;
A neutralization treatment section for neutralizing the acid fermentation solution acid-fermented in the acid fermentation section to a pH of 5.5 to 8.5;
And a methane fermentation section in which the neutralized solution having a pH of 5.5 to 8.5 in the neutralization processing section is subjected to methane fermentation to obtain a methane fermentation solution.

〔作用効果5〕
上記生物処理部として、酸発酵部により希釈部で希釈された希釈溶液を酸発酵すると、酸生成菌が希釈溶液中の有機物を資化して、希釈溶液を酸発酵させ、その希釈溶液をより流動化させるとともに、含有される有機物をメタン発酵に適したものとできる。また、酸発酵により生成した酸は、希釈溶液の高pH条件を緩和する役割も担う。
[Operation effect 5]
When the diluted solution diluted in the dilution unit by the acid fermentation unit is acid-fermented as the biological treatment unit, the acid-producing bacteria assimilate the organic matter in the diluted solution, acid-ferment the diluted solution, and the diluted solution becomes more fluid And the contained organic matter can be made suitable for methane fermentation. Moreover, the acid produced | generated by acid fermentation also plays the role which relieve | moderates the high pH conditions of a diluted solution.

また、中和処理部により、酸発酵溶液をpH5.5〜8.5に中和すると、中和された中和溶液は、メタン生成菌の生育に適した環境に整えられる。尚、中和処理はpH5.5〜8.5としておけば、微生物の活動に支障が生じにくくかつ、微生物の働きによって、中和溶液のpHがさらに変動したとしても適度な微生物育成環境が維持されるので好ましい。ここで、中和溶液は、酸発酵工程を経たものであるから、有機物が適度に低分子化され、メタン発酵が効率よく行われる条件まで消化されていることになり、安定的にメタン発酵を行うことができる。   Moreover, when the acid fermentation solution is neutralized to pH 5.5 to 8.5 by the neutralization treatment unit, the neutralized neutralized solution is adjusted to an environment suitable for the growth of the methanogen. If the neutralization treatment is performed at a pH of 5.5 to 8.5, it is difficult for microorganisms to interfere with the activity of the microorganism, and an appropriate microorganism growth environment is maintained even if the pH of the neutralization solution further varies due to the action of microorganisms. This is preferable. Here, since the neutralization solution has been subjected to an acid fermentation process, the organic matter has been moderately reduced in molecular weight and digested to conditions under which methane fermentation can be performed efficiently. It can be carried out.

特に酸発酵部に関して、希釈の後、酸発酵を行わず、中和しただけの中和溶液をメタン発酵部に供すると、pHを低下させる酸発酵と、有機酸を分解してpHを上昇させるメタン発酵とが同時に起こる。そのため、pHが不安定になりやすく、安定的にメタン発酵を起こさせることが困難となる場合がある。そのため、酸発酵部を経た酸発酵溶液をメタン発酵工程に供することにより、pHを安定させることが可能となり、良好にメタン発酵が行えることがわかった。   Especially for acid fermentation part, after dilution, acid fermentation is not performed, and if neutralized neutralized solution is used for methane fermentation part, acid fermentation that lowers pH and organic acid is decomposed to raise pH Methane fermentation occurs simultaneously. Therefore, the pH tends to become unstable, and it may be difficult to cause methane fermentation stably. Therefore, it became possible to stabilize pH by supplying the acid fermentation solution which passed through the acid fermentation part to a methane fermentation process, and to perform methane fermentation satisfactorily.

なお、酸発酵とは、酸素の存在しない嫌気状態において酸生成菌により有機物が分解されることである。つまり、酸発酵によると、有機物は無酸素状態において、酸生成菌が生産する酵素の加水分解、脱アミノ作用により低分子化され、有機酸、アルコール、アンモニア等が生成する。このような酸発酵は、汚泥の可溶化、油分の発酵処理等の目的でメタン発酵処理の前処理として行われる場合がある。   Acid fermentation means that organic substances are decomposed by acid-producing bacteria in an anaerobic state where oxygen is not present. In other words, according to acid fermentation, organic substances are reduced in molecular weight by hydrolysis and deamination of enzymes produced by acid-producing bacteria in the absence of oxygen, and organic acids, alcohols, ammonia and the like are generated. Such acid fermentation may be performed as a pretreatment of methane fermentation treatment for the purpose of solubilization of sludge, fermentation treatment of oil, and the like.

〔構成6〕
前記メタン発酵部が、UASB法によりメタン発酵を行うUASB反応槽であってもよい。
[Configuration 6]
The UASB reaction tank in which the methane fermentation unit performs methane fermentation by the UASB method may be used.

〔作用効果6〕
生物処理法としては、嫌気処理法で一般にメタンを生成することができるので、メタン発酵部としていずれの形態を採用してもかまわないが、メタン発酵部としてUASB法を行うUASB反応槽を採用すると、高濃度有機溶液中の有機物量に対するメタン転換能力が高く、かつ、反応処理速度も速いので好適である。
[Operation effect 6]
As a biological treatment method, methane can generally be produced by an anaerobic treatment method, so any form may be adopted as the methane fermentation part, but when a UASB reaction tank that performs the UASB method is adopted as the methane fermentation part. The methane conversion ability with respect to the amount of organic matter in the high-concentration organic solution is high, and the reaction process speed is also high.

尚、メタン発酵の方法として知られている、UASB法(上向流嫌気性汚泥床法(Upflow Anaerobic Sludge Blanket))によるUASB反応槽は汚泥保持濃度が高く、高負荷処理が可能であることから、近年、食品排水を中心に急速に普及している。UASB法は、原水を反応槽の下部より上向流で流入させ、菌の付着担体を用いることなく、汚泥をブロック化または粒状化させて粒径1〜数mmのグラニュール汚泥の汚泥床(スラッジブランケット)を形成させ、反応槽中に高濃度の微生物を保持して、高負荷処理を行う方法である。この方法は、好気性活性汚泥法に比べて、反応槽容積当りの有機物負荷が10kg−CODCr/m3/day以上と非常に高い。しかも、曝気のためのエネルギーが不要である;メタンガスとしてエネルギーの回収が可能である;余剰汚泥発生量が少ない;等の優れた特徴も備えている。 In addition, the UASB reaction tank by the UASB method (Upflow Anaerobic Sludge Blanket), which is known as a methane fermentation method, has a high sludge retention concentration and is capable of high load treatment. In recent years, food drainage has spread rapidly. In the UASB method, raw water is introduced in an upward flow from the lower part of the reaction tank, and sludge is sludge bed of granulated sludge having a particle diameter of 1 to several mm by using sludge blocked or granulated without using a bacterial adhesion carrier ( Sludge blanket) is formed and a high concentration of microorganisms is retained in the reaction tank to perform a high load treatment. In this method, compared with the aerobic activated sludge method, the organic matter load per reaction tank volume is as high as 10 kg-CODCr / m 3 / day or more. In addition, it has excellent features such as no energy for aeration; energy recovery as methane gas; small amount of excess sludge generation;

したがって、簡便かつ低コストで、高濃度有機溶液を発酵阻害が生じにくいように生物処理できるようになった。 Therefore, it has become possible to perform biological treatment of a highly concentrated organic solution so that fermentation inhibition is unlikely to occur easily and at low cost.

高濃度有機溶液の処理装置のフロー図Flow chart of processing equipment for high concentration organic solution

以下に、本発明の実施形態にかかる高濃度有機溶液の処理方法および処理装置を説明する。尚、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the processing method and processing apparatus of the high concentration organic solution concerning embodiment of this invention are demonstrated. Preferred embodiments are described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔高濃度有機溶液の処理装置〕
高濃度有機溶液の処理装置は、図1に示すように、
高濃度有機溶液1aを希釈水により希釈して希釈溶液3aを得る希釈部3を備え、
希釈溶液3aを生物処理する生物処理部4,5,6,8を備え、
希釈部3に、高濃度有機溶液1aと低濃度溶液2aとを、浸透膜30を介して接触させ、低濃度溶液2aと接触する一方面側30Aから高濃度有機溶液1aと接触する他方面側30Bに浸透水30aを取り出す正浸透膜装置を設けて構成してある。
[High-concentration organic solution processing equipment]
As shown in FIG.
A dilution unit 3 is provided to obtain a diluted solution 3a by diluting the high concentration organic solution 1a with dilution water,
Comprising biological treatment units 4, 5, 6, and 8 for biologically treating the diluted solution 3a;
The diluting part 3 is brought into contact with the high concentration organic solution 1a and the low concentration solution 2a through the osmosis membrane 30, and the other surface side in contact with the high concentration organic solution 1a from the one surface side 30A in contact with the low concentration solution 2a. A forward osmosis membrane device for extracting the osmotic water 30a is provided at 30B.

また、図1に示す実施形態において、生物処理部4,5,6,8は、希釈溶液3aを酸発酵して酸発酵溶液4aを得る酸発酵部4と、酸発酵部4で酸発酵された酸発酵溶液4aを、pH5.5〜8.5に中和して中和溶液5aを得る中和処理部5と、中和処理部5でpH5.5〜8.5となった中和溶液5aを、メタン発酵してメタン発酵溶液6aとするメタン発酵部6とを備え、さらに、メタン発酵部6で処理されたメタン発酵溶液6aを好気的に生物処理して好気処理溶液8aとする好気処理部8を備える構成としている。なお、好気処理部8は、メタン発酵部6での水処理状況(排水の水質)に応じて設ければよく、メタン発酵部6での処理状況によっては、好気処理部8は備えなくても構わない。
また、高濃度有機溶液1aを貯留する高濃度有機溶液貯留部1、低濃度溶液2aを貯留する低濃度溶液貯留部2およびメタン発酵部6で得られるメタンガス6bを燃料として消費するガス消費部7を設けてある。
これらの構成により、高濃度有機溶液1aとしての石鹸製造廃液を、低濃度溶液2aとしての石鹸製造設備における冷却水や洗浄排水から得られた浸透水30aにより希釈して生物処理することができる。
In the embodiment shown in FIG. 1, the biological treatment units 4, 5, 6, and 8 are acid-fermented by the acid fermentation unit 4 that performs acid fermentation of the diluted solution 3 a to obtain the acid fermentation solution 4 a, and the acid fermentation unit 4. The neutralization treatment part 5 which neutralizes the acid fermentation solution 4a to pH 5.5-8.5 and obtains the neutralization solution 5a, and neutralization which became pH 5.5-8.5 in the neutralization treatment part 5 The solution 5a is provided with a methane fermentation unit 6 that is subjected to methane fermentation to obtain a methane fermentation solution 6a. Further, the methane fermentation solution 6a treated in the methane fermentation unit 6 is aerobically biologically treated to perform an aerobic treatment solution 8a. The aerobic processing unit 8 is provided. In addition, the aerobic treatment part 8 should just be provided according to the water treatment condition (water quality of waste water) in the methane fermentation part 6, and depending on the treatment condition in the methane fermentation part 6, the aerobic treatment part 8 is not provided. It doesn't matter.
Moreover, the gas consumption part 7 which consumes the methane gas 6b obtained by the high concentration organic solution storage part 1 which stores the high concentration organic solution 1a, the low concentration solution storage part 2 which stores the low concentration solution 2a, and the methane fermentation part 6 as a fuel. Is provided.
With these configurations, the soap production waste liquid as the high-concentration organic solution 1a can be biologically treated by being diluted with the osmotic water 30a obtained from the cooling water or the washing waste water in the soap production facility as the low-concentration solution 2a.

〔高濃度有機溶液貯留部、低濃度溶液貯留部〕
本実施形態において、高濃度有機溶液貯留部1では、たとえば、高濃度有機溶液1aとしての石鹸製造廃液を貯留する。また、低濃度溶液貯留部2では、石鹸製造設備における冷却水や洗浄排水を低濃度溶液2aとして貯留する。ここで、高濃度有機溶液としては、石鹸製造設備における塩析工程などから排出される石鹸製造廃液が、大量のグリセリンや塩化ナトリウムを含有するため、高濃度(高CODかつ高塩濃度)かつ高pHであることが知られている。また、低濃度溶液としては、石鹸製造設備における冷却水や洗浄排水として、石鹸製造設備における種々工程における熱交換器に流通される冷却水や、配管等の洗浄排水が、石鹸製造配廃液にくらべて十分低濃度(低CODかつ低塩濃度)かつ低pHであることが知られている。以下にこれらの性状の一例を示す。
[High concentration organic solution reservoir, low concentration solution reservoir]
In this embodiment, in the high concentration organic solution storage part 1, the soap manufacture waste liquid as the high concentration organic solution 1a is stored, for example. Moreover, in the low concentration solution storage part 2, the cooling water and washing waste_water | drain in a soap manufacturing facility are stored as the low concentration solution 2a. Here, as the high-concentration organic solution, the soap production waste liquid discharged from the salting-out process in the soap production facility contains a large amount of glycerin and sodium chloride, so that the concentration is high (high COD and high salt concentration) and high. It is known to be pH. In addition, as low-concentration solutions, cooling water and washing effluent in soap production facilities, cooling water circulated to heat exchangers in various processes in soap production facilities, and washing effluents such as pipes are compared to soap production wastewater. It is known that the concentration is sufficiently low (low COD and low salt concentration) and low pH. Examples of these properties are shown below.

石鹸製造廃液:
CODCr ;40000〜120000mg/L
陽イオン濃度;30000〜60000mg/L
pH ;9〜13
溶解成分 ;グリセリン、塩化ナトリウム
溶解成分量 ;グリセリン11%
塩化ナトリウム12%
Soap manufacturing wastewater:
CODCr; 40,000 to 120,000 mg / L
Cation concentration: 30000-60000 mg / L
pH; 9-13
Dissolved component: glycerin, sodium chloride dissolved component amount; glycerin 11%
Sodium chloride 12%

洗浄排水:
CODCr ;100〜5000mg/L
陽イオン濃度;50〜500mg/L
pH ;6〜8
溶解成分 ;界面活性剤(陽イオン界面活性剤、陰イオン界面活性剤、両性界面活性剤、非イオン界面活性剤)、金属イオン(鉄イオン、銅イオン)、ベンゼンメタノール、メチルベンゼンメタノール、ジメチルベンゼンエタノール、2,2−ジメトキシエチルベンゼン、t−ブチルシクロヘキサノール、ジメチルベンゼンプロパノール、トリクロサン、イソプロピルメチルフェノール、フェノキシエタノール、安息香酸ナトリウム、パラオキシ安息香酸メチル、エチルヘキシルグリセリン、カプリン酸グリセリル、1,2−ペンタンジオール、エタノール、パラオキシ安息香酸プロピル、パラオキシ安息香酸イソプロピル、ブタンジオール、1,2−オクタンジオール、サリチル酸、エチレンジアミン四酢酸(EDTA)
溶解成分量 ;CODCr濃度120mg/L
Cleaning drainage:
CODCr; 100-5000 mg / L
Cation concentration: 50 to 500 mg / L
pH; 6-8
Soluble component: Surfactant (cationic surfactant, anionic surfactant, amphoteric surfactant, nonionic surfactant), metal ion (iron ion, copper ion), benzenemethanol, methylbenzenemethanol, dimethylbenzene Ethanol, 2,2-dimethoxyethylbenzene, t-butylcyclohexanol, dimethylbenzenepropanol, triclosan, isopropylmethylphenol, phenoxyethanol, sodium benzoate, methyl paraoxybenzoate, ethylhexylglycerin, glyceryl caprate, 1,2-pentanediol, Ethanol, propyl paraoxybenzoate, isopropyl paraoxybenzoate, butanediol, 1,2-octanediol, salicylic acid, ethylenediaminetetraacetic acid (EDTA)
Dissolved component amount: CODCr concentration 120 mg / L

〔希釈部〕
希釈部3は、低濃度溶液供給路31と、濃縮溶液排出路32と、高濃度有機溶液供給路33と、希釈溶液排出路34と、を備えてなる正浸透膜装置を備える。つまり、低濃度溶液供給路31にて、低濃度溶液貯留部2からの低濃度溶液2aを受け入れる。濃縮溶液排出路32にて、受け入れた低濃度溶液2aを浸透膜30の一方面側30Aに接触させて浸透水30aを取り出したのち濃縮溶液3cとして排出する。高濃度有機溶液供給路33にて、高濃度有機溶液貯留部1からの高濃度有機溶液1aを受け入れる。希釈溶液排出路34にて、受け入れた高濃度有機溶液1aを浸透膜30の他方面側30Bに接触させて浸透水30aにより希釈したのち希釈溶液3aとして排出する。これにより、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させられる。
[Dilution part]
The dilution unit 3 includes a forward osmosis membrane device including a low concentration solution supply path 31, a concentrated solution discharge path 32, a high concentration organic solution supply path 33, and a diluted solution discharge path 34. That is, the low concentration solution supply path 31 receives the low concentration solution 2 a from the low concentration solution storage unit 2. In the concentrated solution discharge path 32, the received low concentration solution 2a is brought into contact with one surface side 30A of the osmotic membrane 30, and the permeated water 30a is taken out and then discharged as a concentrated solution 3c. In the high concentration organic solution supply path 33, the high concentration organic solution 1a from the high concentration organic solution storage unit 1 is received. In the diluted solution discharge path 34, the received high-concentration organic solution 1a is brought into contact with the other surface side 30B of the osmotic membrane 30, diluted with the osmotic water 30a, and then discharged as the diluted solution 3a. Thereby, the high concentration organic solution and the low concentration solution are brought into contact with each other through the osmotic membrane, and the permeated water is allowed to permeate from the low concentration solution side to the high concentration organic solution side.

浸透膜30としては、本実施形態においては、正浸透膜(FO)膜が用いられる。より具体的には、たとえばMWCO(分画分子量)60Da程度の正浸透膜(HTI社TFC膜)を用いる。   As the osmotic membrane 30, a forward osmotic membrane (FO) membrane is used in the present embodiment. More specifically, for example, a forward osmosis membrane (HTI TFC membrane) of about MWCO (fractionated molecular weight) 60 Da is used.

これらの構成により希釈部3内の浸透膜30の他方面側30Bの塩濃度が所定値(たとえば2.0%)以下、(さらに好ましくは、1.5%以下)となるように浸透水30aにて希釈して、その希釈された希釈溶液3aを外部に排出する希釈工程を行うことができるように構成してある。   With these configurations, the osmotic water 30a is such that the salt concentration on the other surface side 30B of the osmotic membrane 30 in the dilution section 3 is a predetermined value (for example, 2.0%) or less (more preferably, 1.5% or less). And a dilution step of discharging the diluted diluted solution 3a to the outside can be performed.

〔酸発酵部〕
酸発酵部4は、希釈部3からの希釈溶液3aを酸発酵する酸発酵槽40を備え、酸発酵槽40に、希釈溶液3aを受ける希釈溶液供給部41を備えるとともに、酸発酵済みの酸発酵溶液4aを排出する排出部42を備えて構成される。酸発酵部4では、内部に通性嫌気性菌(酸生成菌)を主体とする汚泥を収容するとともに、酸発酵槽内に導入された希釈溶液3aを酸発酵して酢酸等の有機酸を生成する酸発酵工程を行うことができる構成となっている。
[Acid fermentation section]
The acid fermentation unit 4 includes an acid fermentation tank 40 that performs acid fermentation of the diluted solution 3a from the dilution unit 3, and the acid fermentation tank 40 includes a diluted solution supply unit 41 that receives the diluted solution 3a. A discharge part 42 for discharging the fermentation solution 4a is provided. In the acid fermentation section 4, sludge mainly containing facultative anaerobic bacteria (acid producing bacteria) is housed, and the diluted solution 3a introduced into the acid fermentation tank is subjected to acid fermentation to produce organic acids such as acetic acid. It is the structure which can perform the acid fermentation process to produce | generate.

〔中和処理部〕
中和処理部5は、酸発酵溶液4aを中和する中和反応処理のための中和反応槽50に、酸発酵溶液4aを供給する酸発酵溶液供給部51を備え、アルカリ(たとえば水酸化ナトリウム水溶液)5bを投入するためのアルカリ添加部52を備え、酸発酵部4からの酸発酵溶液4aを受けて内部で混合反応させ、中和する中和工程を行うことができる構成としてある。この反応は、所定の反応効率を維持するために、アルカリ添加部52からのアルカリ5bの添加による中和反応により反応を促進させることができる。そして、中和反応槽50内のpHが所定範囲(たとえばpH5.5〜8.5)になると、その中和した中和溶液5aを溶液排出部53から中和反応槽50外へ排出できるように構成してある。
[Neutralization section]
The neutralization process part 5 is equipped with the acid fermentation solution supply part 51 which supplies the acid fermentation solution 4a to the neutralization reaction tank 50 for the neutralization reaction process which neutralizes the acid fermentation solution 4a, and is alkali (for example, hydroxylation). The aqueous solution (sodium aqueous solution) 5b is provided with an alkali addition unit 52, and the neutralization step of receiving and mixing the acid fermentation solution 4a from the acid fermentation unit 4 and neutralizing it can be performed. In order to maintain a predetermined reaction efficiency, this reaction can be promoted by a neutralization reaction by adding the alkali 5b from the alkali addition unit 52. When the pH in the neutralization reaction tank 50 falls within a predetermined range (for example, pH 5.5 to 8.5), the neutralized neutralized solution 5a can be discharged out of the neutralization reaction tank 50 from the solution discharge unit 53. It is configured.

〔メタン発酵部〕
メタン発酵部6は、図1に示すように、UASB反応槽60を備えて構成してあり、UASB反応槽60は、下部に嫌気性菌(UASB菌)を主体とする汚泥のグラニュール60aを充填されるスラッジベッド61を備えるとともに、中和処理部5から排出された中和溶液5aをメタン発酵液60bとして分散供給する高濃度有機溶液供給部62を備える。これにより、導入されるメタン発酵液60bの上向流が形成されるとともに、内部のメタン発酵液60bの循環を促し、流動するグラニュール60aにより有機物をメタン発酵するメタン発酵工程が行われる。スラッジベッド61の上部には、グラニュール60aの流失を防止するとともに処理済みの上澄液および生成したメタンガス6bを上方に移流させる分離板63を設けてある。分離板63上方に移流した処理済みのメタン発酵溶液6aは、オーバーフロー部64よりUASB反応槽60外へ取出されるとともに、生成したメタンガス6bは、ガス回収部65よりUASB反応槽60外へ取出される構成となっている。また、オーバーフロー部64にはメタン発酵溶液6aの一部6cを高濃度有機溶液供給部62に循環させる循環処理液循環路66を設けて、必要な滞留時間を維持しながら、塔内の液線速度を適切な値に設定できる構成としている。塔内の液線速度は、速すぎるとグラニュール60aが磨耗あるいは流出し、遅すぎると分解速度が遅くなったり、グラニュール以外の懸濁物質が蓄積されやすくなるため、3m/h程度とすることが好ましい。
[Methane fermentation department]
As shown in FIG. 1, the methane fermentation unit 6 includes a UASB reaction tank 60, and the UASB reaction tank 60 has a sludge granule 60 a mainly composed of anaerobic bacteria (UASB bacteria) at the bottom. A sludge bed 61 is provided, and a high-concentration organic solution supply unit 62 that supplies the neutralized solution 5a discharged from the neutralization processing unit 5 as a methane fermentation solution 60b is provided. Thereby, while the upward flow of the introduced methane fermentation liquid 60b is formed, the circulation of the internal methane fermentation liquid 60b is promoted, and the methane fermentation process of methane fermentation of the organic substance by the flowing granule 60a is performed. At the upper part of the sludge bed 61, there is provided a separation plate 63 for preventing the granule 60a from flowing out and moving the processed supernatant and the generated methane gas 6b upward. The treated methane fermentation solution 6a transferred to the upper side of the separation plate 63 is taken out of the UASB reaction tank 60 from the overflow part 64, and the generated methane gas 6b is taken out of the UASB reaction tank 60 from the gas recovery part 65. It is the composition which becomes. The overflow section 64 is provided with a circulating processing liquid circulation path 66 for circulating a part 6c of the methane fermentation solution 6a to the high-concentration organic solution supply section 62 so that the liquid line in the tower is maintained while maintaining a necessary residence time. The speed can be set to an appropriate value. The liquid line velocity in the column is about 3 m / h because if the granule 60a is too fast, the granule 60a will be worn out or will flow out. If it is too slow, the decomposition rate will be slow, and suspended substances other than granules will tend to accumulate. It is preferable.

〔ガス消費部〕
ガス消費部7は、可燃性ガス7aを、ガス回収部65から回収されたメタンガス6bとともに混合して燃料ガスとして供給する燃料ガス供給部70を備え、燃料ガスを燃料として消費して蒸気や動力7bを発生するボイラ、エンジン、タービン等からなる。ここで発生した蒸気や動力7bは、たとえば、石鹸製造プラントの熱源や動力源として用いられ、有効利用される。
[Gas consumption department]
The gas consumption unit 7 includes a fuel gas supply unit 70 that mixes the combustible gas 7a with the methane gas 6b recovered from the gas recovery unit 65 and supplies the fuel gas as fuel gas, and consumes the fuel gas as fuel to generate steam and power. It consists of a boiler, an engine, a turbine, etc. which generate 7b. The steam and power 7b generated here are used as, for example, a heat source or power source of a soap production plant and are effectively used.

〔好気処理部〕
好気処理部8は、活性汚泥槽、接触曝気槽等の種々公知の廃水処理槽を適用でき、メタン発酵部6から供給されるメタン発酵溶液6aをさらに好気分解処理して、清浄な好気処理溶液8aとして排出可能にする好気処理工程を行う。
[Aerobic treatment department]
The aerobic treatment part 8 can apply various known wastewater treatment tanks such as an activated sludge tank and a contact aeration tank, and further aerobically decomposes the methane fermentation solution 6a supplied from the methane fermentation part 6 to obtain a clean good An aerobic treatment process is performed that enables the gas treatment solution 8a to be discharged.

ここで、生物処理部4,5,6,8で行われる酸発酵工程、中和工程、メタン発酵工程、好気処理工程が、それぞれ生物処理工程に該当するものである。   Here, the acid fermentation process, the neutralization process, the methane fermentation process, and the aerobic treatment process performed in the biological treatment units 4, 5, 6, and 8 respectively correspond to the biological treatment process.

尚、中和処理部5には、アルカリ添加部52のほかに、希釈部3で希釈された希釈溶液3aの一部3bを、酸発酵部4を経ずにバイパス路35より直接供給する原液供給部54を設けて、アルカリ添加部52から供給すべきアルカリ5bの一部または全部を希釈溶液3aの一部3bで代用して酸発酵を受けた酸発酵溶液4aを中和処理可能に構成してある。   In addition to the alkali addition unit 52, the neutralization unit 5 supplies a part 3 b of the diluted solution 3 a diluted in the dilution unit 3 directly from the bypass path 35 without passing through the acid fermentation unit 4. A supply unit 54 is provided so that a part or all of the alkali 5b to be supplied from the alkali addition unit 52 can be replaced with a part 3b of the diluted solution 3a so that the acid fermentation solution 4a subjected to acid fermentation can be neutralized. It is.

また、同様に、中和処理部5には、好気処理部8からの好気処理溶液8aの一部8bを返送路81より返送供給する好気処理溶液返送部55を設けアルカリ添加部52から供給すべきアルカリ5bの一部または全部を好気処理溶液8aの一部8bで置換して酸発酵を受けた酸発酵溶液4aを中和処理可能に構成することもできる。   Similarly, the neutralization processing unit 5 is provided with an aerobic treatment solution returning unit 55 that supplies and returns a part 8b of the aerobic processing solution 8a from the aerobic processing unit 8 through the return path 81. The acid fermentation solution 4a that has undergone acid fermentation by replacing part or all of the alkali 5b to be supplied from a part with the part 8b of the aerobic treatment solution 8a can also be configured to be neutralized.

以下に、具体的な高濃度有機溶液を上記高濃度有機溶液処理装置に供給した場合のメタン生成効率を検討した実施例を示す。以下に示す実施例は、本発明を具体的に示すためのものであって、本発明は、以下の実施例に限られるものではない。   Below, the Example which examined the methane production | generation efficiency at the time of supplying a specific high concentration organic solution to the said high concentration organic solution processing apparatus is shown. The following examples are for specifically illustrating the present invention, and the present invention is not limited to the following examples.

〔実施例1〕
希釈部3の高濃度有機溶液供給路33に高濃度有機溶液1aを供給するとともに、低濃度溶液供給路31に低濃度溶液2aを供給し、高濃度有機溶液1aがどの程度希釈されるかを調べた。
[Example 1]
The high concentration organic solution 1a is supplied to the high concentration organic solution supply path 33 of the dilution unit 3, and the low concentration solution 2a is supplied to the low concentration solution supply path 31 to determine how much the high concentration organic solution 1a is diluted. Examined.

希釈部3は、浸透膜30として、膜面積42cm2の正浸透膜(HTI社TFC膜)を備えるものとした。また、高濃度有機溶液1aとして、界面活性剤及び重金属イオンを含まない、グリセリン濃度11%(CODCr134000mg/L相当)(以下特記なき限り%は質量%を示す)、塩化ナトリウム濃度12%、pH13の石鹸製造廃液を用いた。また、低濃度溶液2aとして、溶解成分として、CODCr120mg/Lの石鹸製造設備における洗浄排水を用いた。 The dilution section 3 is provided with a forward osmosis membrane (HTI TFC membrane) having a membrane area of 42 cm 2 as the osmosis membrane 30. Further, as the high-concentration organic solution 1a, a surfactant and a heavy metal ion are not included, a glycerin concentration of 11% (corresponding to CODCr 134000 mg / L) (% indicates mass% unless otherwise specified), a sodium chloride concentration of 12%, and a pH of 13 Soap manufacturing waste liquid was used. Moreover, the washing | cleaning waste_water | drain in the soap manufacturing facility of CODCr120mg / L was used as a low concentration solution 2a as a melt | dissolution component.

この希釈部3に対して、高濃度有機溶液供給路33に高濃度有機溶液1aを300mL/分で供給するとともに、低濃度溶液供給路31に低濃度溶液2aを300mL/分で供給したところ、常圧下で外部動力を用いることなく、低濃度溶液2aと接触する一方面側30Aからの浸透水30aが高濃度有機溶液1aと接触する他方面側30Bに取り出され、高濃度有機溶液1aが、6.7倍に希釈されることが分かった。このとき、透過量は10〜15LMH(L/m2/h)程度であり、塩分(NaCl)の逆拡散は0.1〜0.4mol/m2/h、グリセリンの漏れは1%未満であった。
〔実施例2〕
また、洗浄排水に含まれる阻害成分の除去性能を調べるために、実施例1の方法と同様に試験を行い、ただし、高濃度有機溶液の代わりに、CODCr0mg/L、塩化ナトリウム濃度12%、pH13の模擬高濃度溶液を用い、低濃度溶液2aには実施例1と同様に石鹸製造設備の洗浄排水を用いた。
このとき、低濃度溶液2aと得られた希釈溶液3aに含まれる有機物質を固相吸着GC/MS法により比較したところ、希釈溶液3aでは以下の表のように、ベンゼンメタノール、メチルベンゼンメタノール、ジメチルベンゼンエタノール、2,2−ジメトキシエチルベンゼン、t−ブチルシクロヘキサノール、ジメチルベンゼンプロパノールが、5mg/L未満で検出されない、または大幅に濃度を下げられることが明らかとなった。

Figure 2017056452
When supplying the high concentration organic solution 1a to the high concentration organic solution supply path 33 at 300 mL / min and supplying the low concentration solution 2a to the dilution section 3 at 300 mL / min, Without using external power under normal pressure, the permeated water 30a from one side 30A that contacts the low concentration solution 2a is taken out to the other side 30B that contacts the high concentration organic solution 1a, and the high concentration organic solution 1a is It was found to be diluted 6.7 times. At this time, the permeation amount is about 10-15 LMH (L / m 2 / h), the back diffusion of salt (NaCl) is 0.1-0.4 mol / m 2 / h, and the leakage of glycerin is less than 1%. there were.
[Example 2]
Moreover, in order to investigate the removal performance of the inhibitory component contained in the washing waste water, a test was performed in the same manner as in the method of Example 1, except that CODCr 0 mg / L, sodium chloride concentration 12%, pH 13 instead of the high concentration organic solution. In the same manner as in Example 1, washing waste water from a soap production facility was used as the low concentration solution 2a.
At this time, when the organic substance contained in the low concentration solution 2a and the obtained diluted solution 3a was compared by the solid phase adsorption GC / MS method, as shown in the following table, benzene methanol, methylbenzene methanol, It was revealed that dimethylbenzeneethanol, 2,2-dimethoxyethylbenzene, t-butylcyclohexanol, and dimethylbenzenepropanol were not detected at a concentration of less than 5 mg / L, or the concentration could be greatly reduced.
Figure 2017056452

〔実施例3〕
実施例1で得られた希釈溶液3aを用いて、酸発酵槽40から採取した酸発酵菌を培養したところ、1日培養後に遺伝子量が120%に増大していることが、16SrRNA遺伝子解析により明らかになった。
Example 3
When the acid fermentative bacteria collected from the acid fermenter 40 were cultured using the diluted solution 3a obtained in Example 1, the gene amount increased to 120% after 1-day culture, according to the 16S rRNA gene analysis. It was revealed.

これに対して、実施例1の高濃度有機溶液1aを希釈部3を経由していない実施例1の低濃度溶液2aで6.7倍に希釈したものを用いて、酸発酵槽40から採取した酸発酵菌を培養したところ、1日培養後に遺伝子量が10%に低下していることが、16SrRNA遺伝子解析により明らかになった。   On the other hand, the high-concentration organic solution 1a of Example 1 was sampled from the acid fermenter 40 using the one diluted 6.7 times with the low-concentration solution 2a of Example 1 that does not go through the dilution section 3. When the acid-fermenting bacteria were cultured, it was revealed by 16S rRNA gene analysis that the gene amount was reduced to 10% after one-day culture.

すなわち、低濃度溶液2aに含まれる有機化合物のなかには、酸発酵における発酵阻害物質となる物質が含まれていることが明らかになった。   That is, it became clear that the organic compound contained in the low-concentration solution 2a contains a substance that becomes a fermentation inhibitor in acid fermentation.

〔実施例4〕
実施例1の方法と同様に、高濃度溶液を模擬した12%のNaCl溶液でNaOHにてpHを13に調整した水を200ml、阻害物質を含んだ低濃度溶液を模擬したエチレンジアミン四酢酸(EDTA)を100mg/Lの水1000mlを作成し、これらの液を膜面積42cm2の正浸透膜(HTI社TFC膜)を用いて、希釈処理を実施した。なお、EDTAは、微生物に有効な微量栄養金属をキレートする効果があり、長期的に微生物の活性を阻害するとされる。希釈処理後、約800mlの水が低濃度溶液側から高濃度溶液側に移動し、このとき、高濃度溶液に含まれるEDTAの総量は7mg、低濃度溶液に含まれるEDTA総量は93mgであった。以上から、本過程において、低濃度溶液に含まれる阻害物質であるEDTAの約93%の移動を阻止しながら高濃度溶液を希釈できることを確認した。これにより、EDTAをはじめとした阻害物質の混入を低減し、後段の生物処理への影響を小さくできることが示唆される。
実施例1〜4より、浸透膜30を備えた希釈部3を用いて高濃度有機溶液1aを、微生物の活性を阻害する物質が含まれている低濃度溶液2aを使用したとしても、簡便かつ低コストで生物処理可能に希釈できることが明らかになった。
Example 4
Similar to the method of Example 1, 200 ml of water adjusted to pH 13 with NaOH with a 12% NaCl solution simulating a high concentration solution, and ethylenediaminetetraacetic acid (EDTA simulating a low concentration solution containing an inhibitor) ) Was prepared by using 1000 ml of 100 mg / L water and diluting these solutions using a forward osmosis membrane (HTI TFC membrane) having a membrane area of 42 cm 2 . Note that EDTA has an effect of chelating a micronutrient metal effective for microorganisms, and inhibits the activity of microorganisms in the long term. After the dilution treatment, about 800 ml of water moved from the low concentration solution side to the high concentration solution side. At this time, the total amount of EDTA contained in the high concentration solution was 7 mg, and the total amount of EDTA contained in the low concentration solution was 93 mg. . From the above, it was confirmed that in this process, it was possible to dilute the high concentration solution while preventing about 93% migration of EDTA, which is an inhibitor contained in the low concentration solution. Thereby, it is suggested that mixing of inhibitory substances including EDTA can be reduced and the influence on the biological treatment in the subsequent stage can be reduced.
Even if it uses the low concentration solution 2a in which the substance which inhibits the activity of microorganisms is used for the high concentration organic solution 1a using the dilution part 3 provided with the osmosis membrane 30 from Examples 1-4, it is simple and It became clear that it could be diluted biologically at low cost.

本発明は、微生物への阻害物質が含まれている低濃度溶液であっても高濃度有機溶液に悪影響を与えることなくともに生物処理できることが予想され、実際に行った連続のUASBでの処理性能評価試験において、希釈水に水道水を用いたものと本発明を用いたものとを比較して、数カ月間何ら差がなく処理できていることが確認できている。このことから、たとえば、石鹸製造業における廃液や、バイオディーゼルフューエル製造業における廃液等、種々の高濃度有機溶液を生物処理してメタンガスとして回収するのに利用することができる。   In the present invention, it is expected that even a low concentration solution containing an inhibitor to microorganisms can be biologically treated without adversely affecting the high concentration organic solution. In the evaluation test, it was confirmed that the treatment using tap water as dilution water and the one using the present invention were processed without any difference for several months. Thus, for example, various high-concentration organic solutions such as waste liquid in the soap manufacturing industry and waste liquid in the biodiesel fuel manufacturing industry can be biologically treated and recovered as methane gas.

1a :高濃度有機溶液
2a :低濃度溶液
3 :希釈部
3a :希釈溶液
4 :酸発酵部(生物処理部)
4a :酸発酵溶液
5 :中和処理部(生物処理部)
5a :中和溶液
6 :メタン発酵部(生物処理部)
6a :メタン発酵溶液
8 :好気処理部(生物処理部)
30 :浸透膜
30a :浸透水
60 :反応槽
1a: High concentration organic solution 2a: Low concentration solution 3: Dilution part 3a: Dilution solution 4: Acid fermentation part (biological treatment part)
4a: Acid fermentation solution 5: Neutralization processing part (biological processing part)
5a: Neutralization solution 6: Methane fermentation part (biological treatment part)
6a: Methane fermentation solution 8: Aerobic treatment part (biological treatment part)
30: Osmosis membrane 30a: Osmosis water 60: Reaction tank

Claims (6)

高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈工程を行い、
前記希釈溶液を生物処理する生物処理工程を順次行う高濃度有機溶液の処理方法であって、
前記希釈工程において、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させて、前記浸透水を前記希釈水とする正浸透膜法により、前記高濃度有機溶液を希釈した前記希釈溶液を得る高濃度有機溶液の処理方法。
Dilute a highly concentrated organic solution with dilution water to obtain a diluted solution,
A treatment method of a high concentration organic solution for sequentially performing a biological treatment step of biologically treating the diluted solution,
In the dilution step, the high-concentration organic solution and the low-concentration solution are brought into contact with each other through a permeation membrane, and permeation water is permeated from the low-concentration solution side to the high-concentration organic solution side, thereby diluting the permeation water. A method for treating a high concentration organic solution to obtain the diluted solution obtained by diluting the high concentration organic solution by a forward osmosis membrane method using water.
前記高濃度有機溶液が、石鹸製造廃液を主成分とするものである請求項1に記載の高濃度有機溶液の処理方法。   The processing method of the high concentration organic solution according to claim 1, wherein the high concentration organic solution has a soap production waste liquid as a main component. 前記低濃度溶液が、前記高濃度有機溶液を発生する設備における冷却水あるいは洗浄水を主成分とするものである請求項1または2に記載の高濃度有機溶液の処理方法。   The method for treating a high concentration organic solution according to claim 1 or 2, wherein the low concentration solution is mainly composed of cooling water or washing water in a facility that generates the high concentration organic solution. 高濃度有機溶液を希釈水により希釈して希釈溶液を得る希釈部と、前記希釈溶液を生物処理する生物処理部とを備えた高濃度有機溶液の処理装置であって、
前記希釈部が、前記高濃度有機溶液と低濃度溶液とを浸透膜を介して接触させ、前記低濃度溶液側から前記高濃度有機溶液側に浸透水を浸透させて、前記浸透水を前記希釈水とする正浸透膜法により、前記高濃度有機溶液を希釈した前記希釈溶液を得る構成である高濃度有機溶液の処理装置。
A treatment apparatus for a high concentration organic solution, comprising a dilution section for diluting a high concentration organic solution with dilution water to obtain a diluted solution, and a biological treatment section for biologically treating the diluted solution,
The diluting unit makes the high-concentration organic solution and the low-concentration solution contact each other through a permeation membrane, and permeates the high-concentration organic solution side from the low-concentration solution side to infiltrate the permeated water. An apparatus for processing a high concentration organic solution, wherein the diluted solution obtained by diluting the high concentration organic solution is obtained by a forward osmosis membrane method using water.
前記生物処理部が、前記希釈溶液を酸発酵する酸発酵部と、前記酸発酵部で酸発酵された酸発酵溶液をpH5.5〜8.5に中和する中和処理部と、前記中和処理部でpH5.5〜8.5となった中和溶液をメタン発酵してメタン発酵溶液とするメタン発酵部とを備える請求項4に記載の高濃度有機溶液の処理装置。   The biological treatment part is an acid fermentation part for acid fermentation of the diluted solution, a neutralization treatment part for neutralizing the acid fermentation solution acid-fermented in the acid fermentation part to pH 5.5 to 8.5, The processing apparatus of the high concentration organic solution of Claim 4 provided with the methane fermentation part which makes methane fermentation the neutralized solution used as pH 5.5-8.5 in the sum process part, and makes it a methane fermentation solution. 前記メタン発酵部が、UASB法によりメタン発酵を行うUASB反応槽を備える請求項5に記載の高濃度有機溶液の処理装置。   The processing apparatus of the high concentration organic solution of Claim 5 provided with the UASB reaction tank in which the said methane fermentation part performs methane fermentation by the UASB method.
JP2015185972A 2015-09-18 2015-09-18 Processing method and processing equipment for high concentration organic solution Pending JP2017056452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185972A JP2017056452A (en) 2015-09-18 2015-09-18 Processing method and processing equipment for high concentration organic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185972A JP2017056452A (en) 2015-09-18 2015-09-18 Processing method and processing equipment for high concentration organic solution

Publications (1)

Publication Number Publication Date
JP2017056452A true JP2017056452A (en) 2017-03-23

Family

ID=58388951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185972A Pending JP2017056452A (en) 2015-09-18 2015-09-18 Processing method and processing equipment for high concentration organic solution

Country Status (1)

Country Link
JP (1) JP2017056452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328495B2 (en) 2018-03-29 2023-08-17 日本製鉄株式会社 Specimen and stress corrosion cracking test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328495B2 (en) 2018-03-29 2023-08-17 日本製鉄株式会社 Specimen and stress corrosion cracking test method

Similar Documents

Publication Publication Date Title
Wang et al. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater
Wang et al. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
CN101209886B (en) Advanced treatment recycling technique of urban sewage
Ochando-Pulido et al. On the cleaning procedure of a hydrophilic reverse osmosis membrane fouled by secondary-treated olive mill wastewater
Zhu et al. Osmotic membrane bioreactors assisted with microfiltration membrane for salinity control (MF-OMBR) operating at high sludge concentrations: Performance and implications
CN104276711A (en) Reverse osmosis membrane treatment process for recycling industrial sewage and realizing zero release
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
CN106277591A (en) Percolate nanofiltration concentrated solution processing method
Viet et al. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations
Cao et al. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance
WO2010041041A1 (en) Method, system and apparatus for reducing oxyanion content
JP2010247115A (en) Anaerobic treatment apparatus equipped with evaporative concentration means for methane fermentation treated water, and anaerobic treatment method using the same
CN108585351A (en) Xinjiang textile industry garden dyeing waste water dual treatment and promotion reclamation rate integrated technique
CN207313382U (en) A kind of coal chemical sewage recycling makees the combination unit of boiler feedwater
Guo et al. Influence of operation modes on gravity-driven membrane process in treating the secondary effluent: Flux improvement and biocake layer property
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
CN105293787B (en) A kind of cold rolling alkalescence waste discharge advanced treatment recycling technique system and method
Gong et al. Application of A/O‐MBR for treatment of digestate from anaerobic digestion of cow manure
JP2017056452A (en) Processing method and processing equipment for high concentration organic solution
CN203807308U (en) Wastewater treatment system for oil extraction plant
Afonso et al. Nanofiltration of wastewater from the fishmeal industry
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP5999087B2 (en) Water treatment apparatus and water treatment method
Duong et al. A novel thermophilic anaerobic granular sludge membrane distillation bioreactor for wastewater reclamation