JP2017054716A - Flat type battery - Google Patents

Flat type battery Download PDF

Info

Publication number
JP2017054716A
JP2017054716A JP2015178417A JP2015178417A JP2017054716A JP 2017054716 A JP2017054716 A JP 2017054716A JP 2015178417 A JP2015178417 A JP 2015178417A JP 2015178417 A JP2015178417 A JP 2015178417A JP 2017054716 A JP2017054716 A JP 2017054716A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015178417A
Other languages
Japanese (ja)
Inventor
美晴 杉浦
Yoshiharu Sugiura
美晴 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2015178417A priority Critical patent/JP2017054716A/en
Publication of JP2017054716A publication Critical patent/JP2017054716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, in an electrode structure of a conventional flat type battery, since connection parts connecting a plurality of electrode parts are provided in the same direction, the connection parts are overlapped in the same direction, thereby disabling thickness from being sufficiently reduced.SOLUTION: In a flat type battery, a positive electrode plate and a negative electrode plate in a band plate shape with an active material layer formed on a surface are formed, and an electrode group 40 is formed by oppositely folding a positive electrode plate 41 and a negative electrode plate 43. The positive electrode plate 41 and the negative electrode plate 43 include a plurality of electrode parts (411-415 and 431-435) in the same shape and a plurality of connection parts (411t-415t and 431t-435t) each connecting the adjacent electrode parts. In the case where the electrode group is formed by folding the electrode plates at the respective connection parts, the connection parts (411t-415t and 431t-435t) are disposed so as not to overlap each other in a planar view watching the electrode group from a top face.SELECTED DRAWING: Figure 1

Description

本発明は活物質層による複数の層を形成した電極群を収納体に内包した扁平型電池に関するものであり、特に電極群を構成する折り畳部の処理を考慮した扁平型電池に関する。   The present invention relates to a flat battery in which an electrode group in which a plurality of layers of active material layers are formed is contained in a storage body, and more particularly to a flat battery in consideration of processing of a fold portion constituting the electrode group.

電池は、金属箔の表面に活物質層(所定の活物質とバインダー剤との混合物)を設けてなる正極及び負極の電極板を、セパレータを介して電気的に絶縁した状態で対向させ、その間に電解液を介在させる構造を有している。   In the battery, positive and negative electrode plates, each having an active material layer (a mixture of a predetermined active material and a binder agent) provided on the surface of a metal foil, are opposed to each other while being electrically insulated through a separator. It has a structure in which an electrolyte is interposed.

電極板同士が対向してなる構成を電極群と呼び、この電極群を所定の形状の電池ケースに収納し、電池ケースの所定の電極端子に正極及び負極をそれぞれ電気的に接続することで、一次又は二次電池として機能する。   The configuration in which the electrode plates are opposed to each other is called an electrode group, this electrode group is housed in a battery case of a predetermined shape, and a positive electrode and a negative electrode are electrically connected to predetermined electrode terminals of the battery case, respectively. Functions as a primary or secondary battery.

ボタン型やコインセル型に代表される扁平型電池は、多くの場合、電池ケースが金属で構成されており、それぞれの極性の電極端子を兼ねている。この電池ケースは、正極の電極端子となるケースと負極の電極端子となるケースとが、電気的に絶縁された状態で嵌合や接着などで固定されている。   In many cases, a flat battery represented by a button type or a coin cell type has a battery case made of metal and serves also as an electrode terminal of each polarity. In this battery case, a case serving as a positive electrode terminal and a case serving as a negative electrode terminal are fixed by fitting, bonding, or the like in an electrically insulated state.

特に近年、高機能携帯電話や小型情報端末等の携帯電子機器の進歩に伴い、搭載される電池もますます小型薄型化が求められており、扁平型電池が採用される機会が多くなってきている。同時に、このような電子機器の多機能化によって機器の消費電力も増大する傾向にあり、より電池容量が大きい扁平型の一次、二次電池が求められている。こうした背景から、一次電池の場合は放電レートが高く、二次電池の場合は充放電レートが高く、しかも薄型かつ小型大容量の扁平型電池が求められている。   Particularly in recent years, with the advancement of portable electronic devices such as high-function mobile phones and small information terminals, batteries to be mounted are increasingly required to be smaller and thinner, and there are more opportunities to adopt flat batteries. Yes. At the same time, the power consumption of the devices tends to increase due to the multi-functionalization of such electronic devices, and flat primary and secondary batteries with larger battery capacities are demanded. From such a background, a flat battery having a high discharge rate in the case of a primary battery, a high charge / discharge rate in the case of a secondary battery, and having a small size and a large capacity is demanded.

この扁平型電池は、小型で薄い形状であるため、電池ケースの限られたスペースの中で正極の電極板と負極の電極板とを対向させただけでは十分な蓄電量を確保できない。そこで、より多くの蓄電量を得るために、電池ケースよりも大きな面積で帯形状の正極の電極板と負極の電極板を用い、この正極と負極との電極板を、セパレータを介して折り返すことにより積層し、電極板の面積を増やすと共に、電極板の短絡が起こりにくい構造の提案がなされている(例えば、特許文献1参照。)。   Since this flat battery is small and thin, it is not possible to secure a sufficient amount of electricity storage by simply facing the positive electrode plate and the negative electrode plate in a limited space of the battery case. Therefore, in order to obtain a larger amount of power storage, a strip-shaped positive electrode plate and a negative electrode plate having a larger area than the battery case are used, and the positive and negative electrode plates are folded back via a separator. Has been proposed to increase the area of the electrode plate and to prevent the electrode plate from being short-circuited (see, for example, Patent Document 1).

図20を参照して特許文献1について説明する。図20は特許文献1に記載されたコイン型リチウムイオン二次電池の電極構造を説明する断面図である。
図20に示すように特許文献1のコイン型リチウムイオン二次電池は、帯形状の一対の正極102及び負極103と、この一対の正極102及び負極103を互いに離間させる間隙106を備え、セパレータ104と、この一対の正極102及び負極103に積層された電極体層105とを備え、帯形状の一対の正極102及び負極103を所定長さ毎に異なる方向に交互に折り曲げて、正極102及び負極103の、いずれか一方の電極板の電極部と他方の電極板の電極部とが交互に積層されて積層体をなしている。
Patent Document 1 will be described with reference to FIG. FIG. 20 is a cross-sectional view illustrating an electrode structure of a coin-type lithium ion secondary battery described in Patent Document 1.
As shown in FIG. 20, the coin-type lithium ion secondary battery of Patent Document 1 includes a pair of strip-shaped positive electrode 102 and negative electrode 103, and a gap 106 that separates the pair of positive electrode 102 and negative electrode 103 from each other. And the electrode body layer 105 laminated on the pair of positive electrodes 102 and the negative electrode 103, and the pair of strip-shaped positive electrodes 102 and the negative electrode 103 are alternately bent in different directions for each predetermined length, and the positive electrode 102 and the negative electrode The electrode portion of any one electrode plate 103 and the electrode portion of the other electrode plate 103 are alternately laminated to form a laminate.

この構造によって、一対の正極102及び負極103を九十九折りにして折り畳んだ連結部は同方向に向いているため、この連結部の厚い膨らみ部分105aが折り重なって積層電極の厚さが大きくなり、電池ケースに収納する時に薄型化が困難である。図20に示すように、この薄型対策として、この連結部の位置を一つおきにずらせ、折り畳み部分の端縁1051〜1054の位置を交互に配することで、連結部の厚さを重ねないようにして積積層電極の厚さを小さくした電極構造が記載されている。   With this structure, the connecting portion obtained by folding the pair of the positive electrode 102 and the negative electrode 103 into the ninety-nine folds faces in the same direction, so that the thick bulge portion 105a of the connecting portion is folded to increase the thickness of the laminated electrode. It is difficult to reduce the thickness when the battery case is stored. As shown in FIG. 20, as a measure against this thinness, the positions of the connecting portions are shifted every other place, and the positions of the edges 1051 to 1054 of the folded portions are alternately arranged so that the thickness of the connecting portions is not overlapped. Thus, an electrode structure in which the thickness of the stacked electrode is reduced is described.

特開平08−064225号公報(第2−3頁、図1)Japanese Patent Application Laid-Open No. 08-064225 (page 2-3, FIG. 1)

しかし、引用文献1に記載されたコイン型リチウムイオン二次電池の電極構造では、連結部について一つおきに場所をずらせることで、連結部の厚さを重ねないようにして積層電極の厚さを小さくしてはいるが、やはり連結部を同じ方向で重ねているので、厚みが十分薄くはならない。またこのずらし量を管理することが難しく、ずらし量が足らないと厚い部分が重なって薄くならず、またずらし過ぎると最大外形寸法が大きくなってケース内に収まらなくなる危険性がある。
さらに何層もの連結部に対して、位置をずらすことにより電極間ギャップが不均一になることで電極間距離の一様性が失われ、例えば、リチウムイオン二次電池の場合、両電極の間でリチウムイオンの移動が不均一になり、二次電池としての充放電特性、すなわちサイクル特性が劣化する危険性がある。
However, in the electrode structure of the coin-type lithium ion secondary battery described in the cited document 1, the thickness of the laminated electrode is reduced so as not to overlap the thickness of the connecting portion by shifting the location of every other connecting portion. Although the thickness is reduced, the connecting portions are overlapped in the same direction, so the thickness cannot be sufficiently reduced. In addition, it is difficult to manage the shift amount, and if the shift amount is insufficient, the thick portions overlap and do not become thin, and if the shift amount is excessive, there is a risk that the maximum outer dimension becomes too large to fit in the case.
Furthermore, the gap between the electrodes becomes non-uniform by shifting the position with respect to the connecting portions of the layers, so that the uniformity of the distance between the electrodes is lost. For example, in the case of a lithium ion secondary battery, between the two electrodes Therefore, the movement of lithium ions becomes non-uniform, and there is a risk that charge / discharge characteristics as a secondary battery, that is, cycle characteristics may deteriorate.

本発明の目的は、上記課題を解決するためにある。すなわち、連結部で結合された電極板の電極部と、他方の電極板の電極部とが、交互に積層されて九十九折り形状の積層体を構成する扁平型電池の電極構造であって、連結部の配置を工夫し、電極群を形成した際に、全体を薄くすることが可能であり、二次電池としての充放電特性、すなわちサイクル特性を良好にする扁平型電池を提供することである。   An object of the present invention is to solve the above problems. That is, an electrode structure of a flat battery in which an electrode portion of an electrode plate joined at a connecting portion and an electrode portion of the other electrode plate are alternately stacked to form a ninety-nine-fold stacked body. The present invention provides a flat battery that can be thinned as a whole when the electrode group is formed by devising the arrangement of the connecting portion, and the charge / discharge characteristics as a secondary battery, that is, the cycle characteristics are good. It is.

上記課題を解決するため本発明の扁平型電池は下記記載の構成を採用する。   In order to solve the above problems, the flat battery of the present invention adopts the following configuration.

本発明の扁平型電池は、表面に活物質層が形成された帯板状の正極板及び負極板と、正極板と負極板とが対向するように折り畳むことにより電極群を形成する扁平型電池において、正極板及び負極板は、複数の同形状である電極部と、隣り合う電極部を連結する複数の連結部とを有し、それぞれの連結部にて折り畳んで電極群を形成した際に、電極群を上面から見た平面視で、それぞれの連結部が互いに重ならない位置に配置されていることを特徴とする。   The flat battery of the present invention is a flat battery in which an electrode group is formed by folding a positive electrode plate and a negative electrode plate each having an active material layer formed on the surface thereof, and the positive electrode plate and the negative electrode plate are opposed to each other. The positive electrode plate and the negative electrode plate each have a plurality of electrode portions having the same shape and a plurality of connection portions that connect adjacent electrode portions, and are folded at each connection portion to form an electrode group. The electrode groups are arranged at positions where they do not overlap each other in a plan view when the electrode group is viewed from above.

上記構成により、折り畳んで電極群を形成した際に、電極部を連結する連結部の位置が各々異なる位置に配され、連結部が互いに重ならないので連結部の厚みが増加しない。   With the above configuration, when the electrode group is formed by folding, the positions of the connecting portions that connect the electrode portions are arranged at different positions, and the connecting portions do not overlap each other, so the thickness of the connecting portion does not increase.

さらに、正極板と負極板とを九十九折りで折り畳む構造とすることが望ましい。   Furthermore, it is desirable to have a structure in which the positive electrode plate and the negative electrode plate are folded in ninety-nine folds.

これにより、正極板と負極板とを効率よく積層することが可能となるので、小型で電池の容量に応じた最小限の厚みとなる扁平型電池を実現できる。   Thereby, since the positive electrode plate and the negative electrode plate can be efficiently laminated, a flat battery having a small size and a minimum thickness corresponding to the battery capacity can be realized.

本発明によれば、連結部を異なる位置で重ねているので連結部の厚みが増加しない。また電極板を形成する段階で、連結部の取り出し角度及び連結部の形状を正確に設定できるので、連結部が厚くなり電極構造体がケース内に収まらなくなるといった問題も生じない。
さらに何層もの電極部に対して、連結部の位置を適正にずらすことにより電極間ギャップが均一になり電極間距離の一様性が維持されるので、例えばリチウムイオン二次電池の場合ではリチウムイオンの移動の均一性を保つことも可能となり、二次電池としての充放
電特性すなわちサイクル特性が向上する。
According to the present invention, since the connecting portions are stacked at different positions, the thickness of the connecting portions does not increase. Further, at the stage of forming the electrode plate, the connecting portion take-out angle and the shape of the connecting portion can be accurately set, so that there is no problem that the connecting portion becomes thick and the electrode structure does not fit in the case.
Furthermore, the gap between the electrodes is made uniform by properly shifting the position of the connecting portion with respect to the electrode layers of several layers, and the uniformity of the distance between the electrodes is maintained. For example, in the case of a lithium ion secondary battery, lithium The uniformity of ion movement can be maintained, and the charge / discharge characteristics, that is, the cycle characteristics as the secondary battery are improved.

本発明の第1実施形態における扁平型電池1の電極群の構造を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the electrode group of the flat battery 1 in 1st Embodiment of this invention. 図1に示す電極群を構成する正極板及び負極板の平面図及び断面図である。It is the top view and sectional drawing of the positive electrode plate and negative electrode plate which comprise the electrode group shown in FIG. 図1に示す電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group shown in FIG. 図3に続く電極群の製造方法を示す平面図及び部分断面図である。It is the top view and partial sectional view which show the manufacturing method of the electrode group following FIG. 図4に続く電極群の製造方法を示す平面図及び完成した電極群の断面図である。FIG. 5 is a plan view showing a manufacturing method of the electrode group following FIG. 4 and a sectional view of the completed electrode group. 図1に示す電極群を電池ケースに組み込む状態を示す斜視図である。It is a perspective view which shows the state which incorporates the electrode group shown in FIG. 1 in a battery case. 本発明の第1実施形態における扁平型電池1の構造を示す断面図である。It is sectional drawing which shows the structure of the flat battery 1 in 1st Embodiment of this invention. 図1に示す電極群の設計工程を示すフローチャートである。It is a flowchart which shows the design process of the electrode group shown in FIG. 本発明の第1実施形態における第1変形例の扁平型電池2の電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group of the flat battery 2 of the 1st modification in 1st Embodiment of this invention. 図9に続く扁平型電池2の電極群の製造方法を示す平面図である。FIG. 10 is a plan view showing a method for manufacturing the electrode group of the flat battery 2 following FIG. 9. 図10に続く扁平型電池2の電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group of the flat battery 2 following FIG. 本発明の第1実施形態における第2変形例の扁平型電池3の電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group of the flat battery 3 of the 2nd modification in 1st Embodiment of this invention. 図12に続く電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group following FIG. 本発明の第2実施形態における扁平型電池4の電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group of the flat battery 4 in 2nd Embodiment of this invention. 図14に続く電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group following FIG. 図15に続く電極群の製造方法を示す平面図である。FIG. 16 is a plan view illustrating a method for manufacturing the electrode group following FIG. 15. 本発明の第3実施形態における扁平型電池5の電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group of the flat battery 5 in 3rd Embodiment of this invention. 図17に続く電極群の製造方法を示す平面図である。FIG. 18 is a plan view showing a method for manufacturing the electrode group following FIG. 17. 図18に続く電極群の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electrode group following FIG. 従来の扁平型電池の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional flat battery.

本発明は、正極板と負極板とを積層して形成した電極群を有する扁平型電池において、正極板及び負極板のそれぞれが備える複数の正極電極部及び負極電極部を連結する複数の連結部を、所定の角度もしくは間隔で配することで、折り畳んで電極群としたときに連結部の重なりを防ぎ、薄型かつ高容量の扁平型電池を提供するものである。   The present invention relates to a flat battery having an electrode group formed by laminating a positive electrode plate and a negative electrode plate, and a plurality of positive electrode portions and a plurality of connecting portions that connect the negative electrode portions provided in each of the positive electrode plate and the negative electrode plate. Are arranged at a predetermined angle or interval to prevent the overlapping of the connecting portions when folded into an electrode group, thereby providing a thin battery with a thin and high capacity.

本発明における正極板又は負極板の形状は、各々複数の同形状の正極電極部又は負極電極部を、細長い帯状の連結部によって連結した帯板状の構造である。また以降の説明において「正極電極部」又は「負極電極部」を、単に「電極部」と表現することがある。さらに「正極板」又は「負極板」を、総称して「電極板」と表現することがある。   The shape of the positive electrode plate or the negative electrode plate in the present invention is a band plate-like structure in which a plurality of positive electrode portions or negative electrode portions having the same shape are connected by an elongated band-like connecting portion. In the following description, “positive electrode part” or “negative electrode part” may be simply expressed as “electrode part”. Furthermore, the “positive electrode plate” or “negative electrode plate” may be collectively referred to as “electrode plate”.

また本発明の様態は、以下に述べる様に第1実施形態から第3実施形態とから成り、さらに第1実施形態は、第1実施形態、第1実施形態の第1変形例、第1実施形態の第2変形例とから成る。
第1実施形態における扁平型電池の構成は、複数の正極電極部及び負極電極部を連結部で接続した帯板状の正極板と負極板とを九十九折りによって積層する電極群であって、帯板状の電極板の連結部の数で、電極部の外周の角度、すなわち360°を割り算して電極群の周囲に配置する連結部の角度を算出する。そして正極板及び負極板の電極部の枚数と、連結部の数と算出された連結部間の取り出し角度から、電極群40を形成する九十九折りの、当初における正極板及び負極板の重ね合わせ角度を設定し、九十九折りにて正極板及
び負極板の積層を行う。
The aspect of the present invention includes the first to third embodiments as described below, and the first embodiment further includes the first embodiment, the first modification of the first embodiment, and the first embodiment. And a second modification of the embodiment.
The configuration of the flat battery in the first embodiment is an electrode group in which a strip-shaped positive electrode plate and a negative electrode plate in which a plurality of positive electrode portions and negative electrode portions are connected by a connecting portion are stacked by ninety-nine folds. Then, the angle of the outer periphery of the electrode part, that is, the angle of the connecting part arranged around the electrode group is calculated by dividing the angle of the outer periphery of the electrode part by the number of connecting parts of the strip-like electrode plate. Then, from the number of the electrode portions of the positive electrode plate and the negative electrode plate, the number of connecting portions and the calculated take-off angle between the connecting portions, the overlapping of the positive electrode plate and the negative electrode plate at the beginning of the ninety-nine fold forming the electrode group 40 The alignment angle is set, and the positive electrode plate and the negative electrode plate are stacked by 99-fold.

[第1実施形態]
第1の実施形態は、正極電極部及び負極電極部が各々5枚(連結部が4本)、連結部間の取り出し角度は90度で各電極部の形状は正8角形であるものを例として説明する。
[First embodiment]
In the first embodiment, there are five positive electrode portions and four negative electrode portions (four connection portions), the take-out angle between the connection portions is 90 degrees, and the shape of each electrode portion is a regular octagon. Will be described.

[第1実施形態の説明:図1〜図8]
以下図面により扁平型電池の第1実施形態について説明する。
図1〜図8は第1実施形態に関し、図1は本発明の第1実施形態における扁平型電池1の電極群の構造を示す平面図及び断面図、図2は図1に示す電極群を構成する正極側の電極板及び負極側の電極板の平面図及び断面図、図3は図1に示す電極群の製造方法を示す平面図、図4は図3に続く電極群の製造方法を示す平面図及び部分断面図、図5は図4に続く電極群の製造方法を示す平面図及び完成した電極群の断面図、図6は図1に示す電極群を金属ケースに組み込む状態を示す斜視図、図7は扁平型電池1の構造を示す断面図、図8は扁平型電池1の電極群の設計工程を示すフローチャートである。
[Description of First Embodiment: FIGS. 1 to 8]
Hereinafter, a flat battery according to a first embodiment will be described with reference to the drawings.
1 to 8 relate to the first embodiment, FIG. 1 is a plan view and a sectional view showing the structure of the electrode group of the flat battery 1 in the first embodiment of the present invention, and FIG. 2 shows the electrode group shown in FIG. FIG. 3 is a plan view showing a manufacturing method of the electrode group shown in FIG. 1, and FIG. 4 is a manufacturing method of the electrode group following FIG. FIG. 5 is a plan view showing a manufacturing method of the electrode group following FIG. 4 and a sectional view of the completed electrode group. FIG. 6 shows a state in which the electrode group shown in FIG. FIG. 7 is a cross-sectional view showing the structure of the flat battery 1, and FIG. 8 is a flowchart showing the design process of the electrode group of the flat battery 1.

図1を用いて第1実施形態における扁平型電池1の主要な要素である電極群40の構造を説明する。図1(a)は電極群40の構造を示す平面図であり、図1(b)は、図1(a)に示す電極群40のA−A´断面図である。   The structure of the electrode group 40 which is a main element of the flat battery 1 in the first embodiment will be described with reference to FIG. 1A is a plan view showing the structure of the electrode group 40, and FIG. 1B is a cross-sectional view taken along the line AA ′ of the electrode group 40 shown in FIG.

図1(a)に示す様に、正極板41と負極板43とが折り畳まれた電極群40は平面視で正8角形の形状であり、正極板41と負極板43の各辺の中点から直角に8個の折り畳まれた連結部411t〜414t及び連結部431t〜434tが突出している。
すなわち、電極群40の8角形の各辺に対し、正極の連結部411t〜414tと負極の連結部431t〜434tが交互に設けられている。
As shown in FIG. 1A, the electrode group 40 in which the positive electrode plate 41 and the negative electrode plate 43 are folded has a regular octagonal shape in plan view, and is the midpoint of each side of the positive electrode plate 41 and the negative electrode plate 43. Eight folded connecting portions 411t to 414t and connecting portions 431t to 434t protrude at right angles.
That is, positive electrode connecting portions 411t to 414t and negative electrode connecting portions 431t to 434t are alternately provided for each octagonal side of the electrode group 40.

図1(b)に示す様に、電極群40は正極板41と負極板43とを、九十九折りとして知られている方法で交互に積層して形成されている。図1(b)には、図1(a)に示す電極群40のA−A‘断面上の連結部412tと連結部414tとが図示されている。   As shown in FIG. 1B, the electrode group 40 is formed by alternately stacking positive plates 41 and negative plates 43 by a method known as a ninety-nine fold. FIG. 1B shows a connecting portion 412t and a connecting portion 414t on the A-A ′ cross section of the electrode group 40 shown in FIG.

次に図2を用いて電極群40の形成方法を説明する。図2(a)は電極群40を形成する正極板41の構造を説明する平面図で、図2(b)は、図2(a)に示す正極板41のB−B´断面図である。   Next, the formation method of the electrode group 40 is demonstrated using FIG. FIG. 2A is a plan view for explaining the structure of the positive electrode plate 41 forming the electrode group 40, and FIG. 2B is a cross-sectional view of the positive electrode plate 41 shown in FIG. .

また、図2(c)は電極群40を形成する負極板43の構造を説明する平面図、図2(d)は、図2(c)に示す負極板43のC−C´断面図である。   2C is a plan view for explaining the structure of the negative electrode plate 43 forming the electrode group 40, and FIG. 2D is a cross-sectional view taken along the line C-C 'of the negative electrode plate 43 shown in FIG. is there.

図2(a)に示す様に、正極板41は、平面視で正8角形の5枚の正極電極部411〜415を連結部411t〜414t(413tと414tの符号は図示していない。)で結合して形成されている。5枚の正極電極部411〜415のうち、端部に配置されている正極電極部411と正極電極部415を除いた正極電極部412、413、414は、それぞれ連結部を2つ備えている。2つの連結部のなす角度を取り出し角度とし、本実施形態では、取り出し角度θ1を90度としている。なお、正極板41はセパレータに包まれているが、本発明に直接関係しないので図示を省略している。   As shown in FIG. 2A, the positive electrode plate 41 includes five positive electrode portions 411 to 415 having a regular octagonal shape in a plan view, and connecting portions 411t to 414t (the symbols 413t and 414t are not shown). It is formed by joining. Of the five positive electrode portions 411 to 415, the positive electrode portions 412, 413, and 414 excluding the positive electrode portion 411 and the positive electrode portion 415 arranged at the end portions each include two connecting portions. . The angle formed by the two connecting portions is the take-out angle, and in this embodiment, the take-out angle θ1 is 90 degrees. Although the positive electrode plate 41 is encased in a separator, it is not shown because it is not directly related to the present invention.

[第1実施形態における正極板の構造説明:図2(a)(b)]
図2(b)に示す様に、正極板41は、アルミニウム(以下、Alと表記する)を用いた正極箔41mの、連結部411tを除く両面に、正極側の活物質層41kを形成している。活物質層41kは正極活物質と導電剤及びバインダー剤との混合物である。活物質塗工面は両面とは限らず、組み立て後に正極外装缶と接触する面に活物質はなくても良い。
本実施形態では、折り曲げ性を考慮して連結部には活物質層を設けていないが、製造工程を考えると電極板と連結部に一括して活物質層を形成するほうが容易であり、連結部の活物質層は設けても設けなくてもよい。
[Structure Explanation of Positive Electrode Plate in First Embodiment: FIGS. 2A and 2B]
As shown in FIG. 2B, the positive electrode plate 41 is formed by forming a positive electrode-side active material layer 41k on both surfaces of the positive electrode foil 41m using aluminum (hereinafter referred to as Al) except for the connecting portion 411t. ing. The active material layer 41k is a mixture of a positive electrode active material, a conductive agent, and a binder agent. The active material coated surface is not limited to both surfaces, and the active material may not be present on the surface that comes into contact with the positive electrode outer can after assembly.
In this embodiment, the active material layer is not provided in the connecting portion in consideration of bendability, but considering the manufacturing process, it is easier to form the active material layer collectively on the electrode plate and the connecting portion. Part of the active material layer may or may not be provided.

[第1実施形態における負極板の構造説明:図2(c)(d)]
図2(c)に示す様に、負極板43は、平面視で正8角形の5枚の負極電極部431〜435を連結部431t〜434t(432t〜434tの符号は図示していない。)で結合して形成され、各連結部間の取り出し角度θ1は、正極板41と同様に90度である。
[Description of Structure of Negative Electrode Plate in First Embodiment: FIGS. 2C and 2D]
As shown in FIG. 2 (c), the negative electrode plate 43 includes five negative electrode parts 431 to 435 having a regular octagonal shape in plan view and connecting parts 431t to 434t (reference numerals of 432t to 434t are not shown). As with the positive electrode plate 41, the take-out angle θ1 between the connecting portions is 90 degrees.

図2(d)に示す様に、負極板43は、銅(以下、Cuと表記する)を用いた負極箔43mの、連結部431t〜434tを除く両面に、負極側の活物質層43kを形成している。活物質層43kは、負極活物質と導電剤及びバインダー剤との混合物である。活物質塗工面は両面とは限らず、組み立て後に負極外装缶と接触する面に活物質はなくても良い。   As shown in FIG. 2 (d), the negative electrode plate 43 includes a negative electrode foil 43m made of copper (hereinafter referred to as Cu) with active material layers 43k on the negative electrode side on both surfaces excluding the connecting portions 431t to 434t. Forming. The active material layer 43k is a mixture of a negative electrode active material, a conductive agent, and a binder agent. The active material coated surface is not limited to both surfaces, and the active material may not be present on the surface that contacts the negative electrode outer can after assembly.

[第1実施形態における電極群40の製造方法の説明:図3〜図5]
次に図3〜図5を用いて電極群形成方法を説明する。図3(a)〜図3(c)は、正極板41と負極板43の九十九折りによる電極群形成工程を示す平面図である。
[Description of Manufacturing Method of Electrode Group 40 in First Embodiment: FIGS. 3 to 5]
Next, an electrode group forming method will be described with reference to FIGS. FIG. 3A to FIG. 3C are plan views showing an electrode group forming process by ninety-nine folds of the positive electrode plate 41 and the negative electrode plate 43.

まず図3(a)に示す様に、正極板41の連結部411tと負極板43の連結部431tとが、平面的に45度ずれる様に配置し、正極板41の正極電極部411上に負極板43の負極電極部431を重ねる。   First, as shown in FIG. 3A, the connecting portion 411t of the positive electrode plate 41 and the connecting portion 431t of the negative electrode plate 43 are arranged so as to be shifted by 45 degrees in a plan view, and on the positive electrode portion 411 of the positive electrode plate 41. The negative electrode part 431 of the negative electrode plate 43 is overlapped.

次に図3(b)に示す様に、正極板41の連結部411tと直角に交わる折り曲げ線B1を規定する。そして折り曲げ線B1を谷にして、矢印F1の方向に、正極板41を折り畳む。これにより正極板41の正極電極部412は、負極板43の負極電極部431の上に重なる。すなわち図3(c)に示す状態となる。   Next, as shown in FIG. 3B, a fold line B1 that intersects the connecting portion 411t of the positive electrode plate 41 at a right angle is defined. The positive electrode plate 41 is folded in the direction of the arrow F1 with the fold line B1 as a valley. As a result, the positive electrode portion 412 of the positive electrode plate 41 overlaps the negative electrode portion 431 of the negative electrode plate 43. That is, the state shown in FIG.

次に図3(c)に示す様に、負極板43の連結部432tと直角に交わる折り曲げ線B2を規定する。そして折り曲げ線B2を谷にして、矢印F2の方向に、負極板43を折り畳む。これにより負極板43の負極電極部432は、正極板41の正極電極部412の上に重なる。   Next, as shown in FIG. 3C, a fold line B2 that intersects the connecting portion 432t of the negative electrode plate 43 at a right angle is defined. Then, the negative electrode plate 43 is folded in the direction of the arrow F2 with the fold line B2 as a valley. As a result, the negative electrode portion 432 of the negative electrode plate 43 overlaps the positive electrode portion 412 of the positive electrode plate 41.

なお図3(c)の折り畳み前の状態においては、負極電極部432に正極電極部414の一部が重なってしまい折り畳みがし難くなるので、負極板43の折り畳みを容易に行う上では、図3(c)に示す連結部の長さLを、例えば負極電極部432の対角線寸法の50%に設定する等の、構造上の考慮を行って電極同士の重なり量を少なくする必要がある。   In addition, in the state before folding of FIG. 3C, a part of the positive electrode part 414 overlaps with the negative electrode part 432 and is difficult to fold. Therefore, for easy folding of the negative electrode plate 43, FIG. For example, the length L of the connecting portion shown in FIG. 3C is set to 50% of the diagonal dimension of the negative electrode portion 432, so that the amount of overlap between the electrodes needs to be reduced by considering the structure.

図4(a)〜図4(d)を用いて図3に続く電極群形成方法を説明する。
図4(a)に示す様に、正極板41の連結部412tと直角に交わる折り曲げ線B3を規定する。そして折り曲げ線B3を谷にして、矢印F3の方向に、正極板41を折り畳む。これにより正極板41の正極電極部413は、負極板43の負極電極部432の上に重なる。
The electrode group formation method following FIG. 3 will be described with reference to FIGS. 4 (a) to 4 (d).
As shown in FIG. 4A, a fold line B3 that intersects with the connecting portion 412t of the positive electrode plate 41 at a right angle is defined. The positive electrode plate 41 is folded in the direction of the arrow F3 with the fold line B3 as a valley. As a result, the positive electrode portion 413 of the positive electrode plate 41 overlaps the negative electrode portion 432 of the negative electrode plate 43.

次に図4(b)に示す様に、負極板43の連結部433tと直角に交わる折り曲げ線B4を規定する。そして折り曲げ線B4を谷にして、矢印F4の方向に、負極板43を折り畳む。これにより負極板43の負極電極部433は、正極板41の正極電極部413の上に重なる。負極板43の折り畳みを容易に行う方法は前述したので説明は省略する。   Next, as shown in FIG. 4B, a fold line B4 that intersects the connecting portion 433t of the negative electrode plate 43 at a right angle is defined. Then, the negative electrode plate 43 is folded in the direction of the arrow F4 with the fold line B4 as a valley. As a result, the negative electrode portion 433 of the negative electrode plate 43 overlaps the positive electrode portion 413 of the positive electrode plate 41. Since the method for easily folding the negative electrode plate 43 has been described above, the description thereof will be omitted.

次に図4(c)に示す様に、正極板41の連結部414tと直角に交わる折り曲げ線B5を規定する。そして折り曲げ線B5を谷にして、矢印F5の方向に、正極板41を折り畳む。これにより正極板41の正極電極部414は、負極板43の負極電極部433の上に重なる。   Next, as shown in FIG. 4C, a fold line B5 that intersects the connecting portion 414t of the positive electrode plate 41 at a right angle is defined. Then, the positive electrode plate 41 is folded in the direction of the arrow F5 with the fold line B5 as a valley. As a result, the positive electrode portion 414 of the positive electrode plate 41 overlaps the negative electrode portion 433 of the negative electrode plate 43.

図4(d)を用いて、図3(a)〜図4(c)の工程後の電極群40の断面の構造を説明する。図4(d)は図4(c)までの工程で折り畳まれた電極群40のX−X´断面であり、正極電極部411が最下層でその上に負極電極部431が積層され、以降これが2回繰り返されて正極側及び負極側の電極部の対が3層形成されている。図4(d)において連結部412tは正極電極部412と正極電極部413とを連結している。   The cross-sectional structure of the electrode group 40 after the steps of FIGS. 3A to 4C will be described with reference to FIG. FIG. 4D is an XX ′ cross section of the electrode group 40 folded in the steps up to FIG. 4C, the positive electrode portion 411 is the lowermost layer, and the negative electrode portion 431 is laminated thereon, and thereafter This is repeated twice to form three pairs of electrode portions on the positive electrode side and the negative electrode side. In FIG. 4D, the connecting portion 412t connects the positive electrode portion 412 and the positive electrode portion 413.

図5(a)〜図5(e)を用いて図4に続く電極群形成方法を説明する。
図5(a)に示す様に、負極板43の連結部433tと直角に交わる折り曲げ線B6を規定する。そして折り曲げ線B6を谷にして、矢印F6の方向に、負極板43を折り畳む。これにより負極板43の負極電極部434は、正極板41の正極電極部414の上に重なる。
The electrode group formation method following FIG. 4 will be described with reference to FIGS. 5 (a) to 5 (e).
As shown in FIG. 5A, a fold line B6 that intersects the connecting portion 433t of the negative electrode plate 43 at a right angle is defined. Then, the negative electrode plate 43 is folded in the direction of the arrow F6 with the fold line B6 as a valley. As a result, the negative electrode portion 434 of the negative electrode plate 43 overlaps the positive electrode portion 414 of the positive electrode plate 41.

次に図5(b)に示す様に、正極板41の連結部414tと直角に交わる折り曲げ線B7を規定する。そして折り曲げ線B7を谷にして、矢印F7の方向に、正極板41を折り畳む。これにより正極板41の正極電極部415は、負極板43の負極電極部434の上に重なる。   Next, as shown in FIG. 5B, a fold line B7 that intersects the connecting portion 414t of the positive electrode plate 41 at a right angle is defined. Then, the positive electrode plate 41 is folded in the direction of the arrow F7 with the fold line B7 as a valley. As a result, the positive electrode portion 415 of the positive electrode plate 41 overlaps the negative electrode portion 434 of the negative electrode plate 43.

次に図5(c)に示す様に、負極板43の連結部434tと直角に交わる折り曲げ線B8を規定する。そして折り曲げ線B8を谷にして、矢印F8の方向に、負極板43を折り畳む。これにより負極板43の負極電極部435は、正極板41の正極電極部415の上に重なる。   Next, as shown in FIG. 5C, a fold line B8 that intersects the connecting portion 434t of the negative electrode plate 43 at a right angle is defined. Then, the negative electrode plate 43 is folded in the direction of the arrow F8 with the fold line B8 as a valley. As a result, the negative electrode portion 435 of the negative electrode plate 43 overlaps the positive electrode portion 415 of the positive electrode plate 41.

以上の工程によって、図5(d)に示す様に最上層に負極電極部435が配され電極群40が完成する。電極群40を上から見た平面視で、電極群40の各辺の中点から交互に重ならないように連結部411t〜414t及び連結部431t〜434tが配置されている。
図5(e)は、図5(d)のG−G´断面であり、連結部412tと連結部414tとが図示されている。
Through the above steps, as shown in FIG. 5D, the negative electrode portion 435 is arranged on the uppermost layer, and the electrode group 40 is completed. The connecting portions 411t to 414t and the connecting portions 431t to 434t are arranged so as not to alternately overlap from the midpoint of each side of the electrode group 40 in a plan view when the electrode group 40 is viewed from above.
FIG. 5E is a GG ′ cross section of FIG. 5D, and shows a connecting portion 412 t and a connecting portion 414 t.

[電極群40の電池ケースへの組み込みの説明:図6]
次に図6を用いて完成した電極群40を電池ケースへ組み込む工程を説明する。図6は正極側の外部端子である外装ケース(正極外装缶)10と負極側の外部端子である封口ケース(負極外装缶)30とガスケット20とで構成される電池ケースと、電極群40とを組み立てる方法を説明する斜視図である。
[Description of incorporation of electrode group 40 into battery case: FIG. 6]
Next, a process of incorporating the completed electrode group 40 into the battery case will be described with reference to FIG. FIG. 6 shows a battery case composed of an outer case (positive electrode outer can) 10 which is an external terminal on the positive electrode side, a sealing case (negative electrode outer can) 30 which is an outer terminal on the negative electrode side, and a gasket 20; It is a perspective view explaining the method of assembling.

図6に示す様に外装ケース10に電極群40を収納し、電極群40の正極板41と外装ケース10とを溶接法により電気的に接続する。さらに図示していないが電解液を注入し、電極群40の負極板43と封口ケース30とを押接により電気的に接続し、外装ケース10と封口ケース30とをガスケット20を挟んで嵌合し扁平型電池1が完成する。   As shown in FIG. 6, the electrode group 40 is housed in the outer case 10, and the positive electrode plate 41 of the electrode group 40 and the outer case 10 are electrically connected by a welding method. Although not shown, an electrolytic solution is injected, the negative electrode plate 43 of the electrode group 40 and the sealing case 30 are electrically connected by pressing, and the outer case 10 and the sealing case 30 are fitted with the gasket 20 interposed therebetween. Then, the flat battery 1 is completed.

[第1実施形態の扁平型電池1の全体構造の説明:図7]
図7を用いて扁平型電池1の全体構造を説明する。図7は扁平型電池1の電池中央部の断面図である。図7に示すように、扁平型電池1は正極側の外部端子である外装ケース10と負極側の外部端子である封口ケース30とガスケット20とからなる電池ケース15の中に、正極板41と負極板43とセパレータ(図示は省略)とを5層に積層して形成した電極群40とにより構成されている。
[Description of Overall Structure of Flat Battery 1 of First Embodiment: FIG. 7]
The overall structure of the flat battery 1 will be described with reference to FIG. FIG. 7 is a cross-sectional view of the central portion of the flat battery 1. As shown in FIG. 7, the flat battery 1 includes a positive electrode plate 41 in a battery case 15 including an outer case 10 that is an external terminal on the positive electrode side, a sealing case 30 that is an external terminal on the negative electrode side, and a gasket 20. The electrode group 40 is formed by stacking a negative electrode plate 43 and a separator (not shown) in five layers.

[第1実施形態の扁平型電池の効果:図5(d)]
次に、図5(d)を用いて、第1実施形態の扁平型電池1の効果を説明する。
図5(d)は第1実施形態の扁平型電池1の完成した電極群40の平面図である。図5(d)に示す様に、電極群40において8個の正極板41の連結部411t〜414t及び負極板43の連結部431t〜434tは、電極群40の8辺に均等に形成されている。
[Effect of the flat battery of the first embodiment: FIG. 5 (d)]
Next, the effect of the flat battery 1 according to the first embodiment will be described with reference to FIG.
FIG. 5D is a plan view of the completed electrode group 40 of the flat battery 1 according to the first embodiment. As shown in FIG. 5D, in the electrode group 40, the connecting portions 411 t to 414 t of the eight positive electrode plates 41 and the connecting portions 431 t to 434 t of the negative electrode plate 43 are equally formed on the eight sides of the electrode group 40. Yes.

連結部411t〜414t及び連結部431t〜434tが均等にずらされ、異なる位置に配置されているので、各箇所での厚みが増加しない。また電極板を形成する段階で、連結部ごとのずらし量及び連結部の形状を正確に設定できるので、ずらし量の不足やずらし量の過多等によって連結部が厚くなり電極構造体がケース内に収まらなくなるといった問題も生じない。
さらに何層もの連結部に対して、連結部の位置を適正に配置することにより電極間ギャップが均一になり電極間距離の一様性が維持されるので、例えばリチウムイオン二次電池の場合ではリチウムイオンの移動の均一性を保つことも可能となり、二次電池としての充放電特性すなわちサイクル特性が向上する。
Since the connecting portions 411t to 414t and the connecting portions 431t to 434t are evenly shifted and arranged at different positions, the thickness at each location does not increase. Also, at the stage of forming the electrode plate, the shift amount for each connecting portion and the shape of the connecting portion can be set accurately, so that the connecting portion becomes thick due to insufficient shift amount, excessive shift amount, etc. There is no problem of not being able to fit.
Furthermore, with respect to multiple layers of connecting portions, by appropriately arranging the positions of the connecting portions, the gap between the electrodes becomes uniform and the uniformity of the distance between the electrodes is maintained. For example, in the case of a lithium ion secondary battery It is also possible to maintain the uniformity of lithium ion movement, and charge / discharge characteristics, that is, cycle characteristics as a secondary battery are improved.

[第1実施形態における電極群40の設計方法の説明:図8]
次に、図8を用いて本発明の扁平型電池1の電極群40の正極板41及び負極板43を例に、設計方法を説明する。図8は扁平型電池1の電極群40の正極板41及び負極板43設計手順を説明するフローチャートである。図8に示す様に、正極板41及び負極板43の設計方法のフローチャートはST1〜ST5で構成される。
[Description of Design Method of Electrode Group 40 in First Embodiment: FIG. 8]
Next, the design method will be described with reference to FIG. 8 taking the positive electrode plate 41 and the negative electrode plate 43 of the electrode group 40 of the flat battery 1 of the present invention as an example. FIG. 8 is a flowchart for explaining the design procedure of the positive electrode plate 41 and the negative electrode plate 43 of the electrode group 40 of the flat battery 1. As shown in FIG. 8, the flowchart of the design method of the positive electrode plate 41 and the negative electrode plate 43 is composed of ST1 to ST5.

電池仕様諸元設定工程ST1は、まず扁平型電池の仕様を決定する。例としては必要な扁平型電池の容量、外形寸法、厚み等の項目である。   In the battery specification specification setting step ST1, first, the specification of the flat battery is determined. Examples are items such as necessary capacity, external dimensions, thickness, etc. of the flat battery.

電極部枚数設定工程ST2は、電池仕様諸元設定工程ST1で設定された容量と、正極板41及び負極板43を構成する正極電極部411〜415及び負極電極部431〜435の、電極部1対当たりの容量から、必要な電極部の枚数を算出する。すなわち、必要な電極部の枚数=(扁平型電池の容量)/(電極部1対当たりの容量)である。   In the electrode part number setting step ST2, the capacity set in the battery specification specification setting process ST1, the electrode part 1 of the positive electrode parts 411 to 415 and the negative electrode parts 431 to 435 constituting the positive electrode plate 41 and the negative electrode plate 43 are provided. The number of necessary electrode portions is calculated from the capacity per pair. That is, the number of necessary electrode parts = (capacity of flat battery) / (capacity per pair of electrode parts).

連結部の総数設定工程ST3は、電極部枚数設定工程ST2で設定された電極部の枚数から、電極部間を連結する連結部数を算出する。算出法の一例を示すと、連結部数=(電極部の枚数−1)である。   In the total number setting step ST3 of the connecting parts, the number of connecting parts for connecting the electrode parts is calculated from the number of electrode parts set in the electrode part number setting step ST2. An example of the calculation method is the number of connected parts = (number of electrode parts−1).

連結部間角度設定工程ST4は、電極部枚数設定工程ST3で設定された連結部数から、電極部の外周部に配する連結部間の取り出し角度を算出する。算出法の一例を示すと、連結部間の取り出し角度=(360度/連結部数)である。なお、得られた連結部間の取り出し角度を整数倍しても構わない。ただし、取り出し角度は、電極群40を容易に製造するためには60度〜180度が望ましい。しかし、電極部の形状や連結部の長さによっては60度より小さい角度でも製造可能である。   In the connecting portion angle setting step ST4, the angle between the connecting portions arranged on the outer peripheral portion of the electrode portion is calculated from the number of connecting portions set in the electrode portion number setting step ST3. As an example of the calculation method, the extraction angle between the connecting portions = (360 degrees / number of connecting portions). In addition, you may multiply the taking-out angle between the obtained connection parts by an integral multiple. However, the take-off angle is preferably 60 to 180 degrees in order to easily manufacture the electrode group 40. However, depending on the shape of the electrode part and the length of the connecting part, it can be manufactured even at an angle smaller than 60 degrees.

九十九折り工程の重ね角度設定工程ST5は、電極部枚数設定工程ST2〜連結部間角度設定工程ST4で設定された正極板及び負極板の電極部の枚数、連結部数、連結部間の取り出し角度から、電極群40を形成する九十九折りの、当初における正極板及び負極板の重ね合わせ角度を設定する。設定法の一例を示すと、重ね合わせの角度=(連結部間の取り出し角度/2)×nである。ただしnは1以上の奇数であることが望ましい。   The overlapping angle setting step ST5 of the 99-folding step includes the number of electrode portions of the positive and negative electrode plates, the number of connecting portions, and the number of connecting portions taken out in the electrode portion number setting step ST2 to the connecting portion angle setting step ST4. From the angle, the overlapping angle of the positive electrode plate and the negative electrode plate at the beginning of the ninety-nine fold forming the electrode group 40 is set. As an example of the setting method, the angle of superposition = (takeout angle between connecting parts / 2) × n. However, n is preferably an odd number of 1 or more.

以上の工程によって電極群40を構成する正極板41及び、負極板43の設計が完了する。先に記載した第1実施形態では、図8の設計方法に基づいており、電極部の枚数が「5」枚であったので、連結部数は、5−1=4で、「4」つとなり、連結部間の取り出し角度は、360/4=90で、90度、重ね合わせの角度は、n=1として、90/2×1=45で、45度としている。   The design of the positive electrode plate 41 and the negative electrode plate 43 constituting the electrode group 40 is completed by the above steps. In the first embodiment described above, based on the design method of FIG. 8, the number of electrode portions is “5”, so the number of connection portions is 5-1 = 4 and “4”. The take-out angle between the connecting portions is 360/4 = 90, 90 degrees, and the overlapping angle is n = 1, 90/2 × 1 = 45, 45 degrees.

[第1実施形態における第1変形例]
次に第1実施形態の第1変形例について説明する。第1変形例は、正極電極部及び負極電極部が各々6枚(連結部が5本)であり連結部間の取り出し角度は72度で各電極部の形状は正10角形である。
[First Modification of First Embodiment]
Next, a first modification of the first embodiment will be described. In the first modification, there are 6 positive electrode portions and 5 negative electrode portions (5 connection portions), the take-out angle between the connection portions is 72 degrees, and the shape of each electrode portion is a regular decagon.

[第1変形例の説明:図9〜図11]
次に図9〜図11を用いて第1変形例における扁平型電池2の電極群40pの形成方法を説明する。
[Explanation of First Modification: FIGS. 9 to 11]
Next, a method of forming the electrode group 40p of the flat battery 2 in the first modification will be described with reference to FIGS.

第1変形例における電極群40pの特徴は、第1実施形態における電極群40と比べて、正極板41pおよび負極板43pの平面視の形状が正10角形であることと、正極板41pおよび負極板43pの数が1枚多いことと、正極板41pおよび負極板43pの連結部間の取り出し角度θ2が72度であることである。その他の構造や要素は第1実施形態と同様である。   The characteristics of the electrode group 40p in the first modified example are that the shape of the positive electrode plate 41p and the negative electrode plate 43p in a plan view is a regular decagon compared to the electrode group 40 in the first embodiment, and the positive electrode plate 41p and the negative electrode That is, the number of the plates 43p is one more, and the take-out angle θ2 between the connecting portions of the positive plate 41p and the negative plate 43p is 72 degrees. Other structures and elements are the same as those in the first embodiment.

図9(a)〜図9(c)は、第2実施形態における電極群40pの製造工程を示す平面図である。図9(a)〜図9(c)は、電極群40pの正極板41pと負極板43qの九十九折りによる電極群形成工程の最初の工程を示す平面図である。まず図9(a)に示す様に、正極板41pの連結部411ptと負極板43pの連結部431ptとを、同一線上、つまり重ね合わせの角度として180度に配置し、図9(b)に示す様に正極板41pの正極電極部411pを負極板43pの負極電極部431pの上に重ねる。   FIG. 9A to FIG. 9C are plan views showing manufacturing steps of the electrode group 40p in the second embodiment. FIG. 9A to FIG. 9C are plan views showing the first step of the electrode group formation step by folding the positive electrode plate 41p and the negative electrode plate 43q of the electrode group 40p. First, as shown in FIG. 9A, the connecting portion 411pt of the positive electrode plate 41p and the connecting portion 431pt of the negative electrode plate 43p are arranged on the same line, that is, at 180 degrees as the overlapping angle, as shown in FIG. As shown, the positive electrode portion 411p of the positive electrode plate 41p is overlaid on the negative electrode portion 431p of the negative electrode plate 43p.

次に図9(b)に示す様に、負極板43pの連結部431ptと直角に交わる折り曲げ線B1規定する。そして折り曲げ線B1を谷にして、矢印F1の方向に、負極板43pを折り畳む。これにより負極板43pの負極電極部432pは、正極板41pの正極電極部411pの上に重なる。   Next, as shown in FIG. 9B, a fold line B1 is defined which intersects the connecting portion 431pt of the negative electrode plate 43p at a right angle. Then, the negative electrode plate 43p is folded in the direction of the arrow F1 with the fold line B1 as a valley. Thereby, the negative electrode part 432p of the negative electrode plate 43p overlaps with the positive electrode part 411p of the positive electrode plate 41p.

次に図9(c)に示す様に、正極板41pの連結部411ptと直角に交わる折り曲げ線B2を規定する。そして折り曲げ線B2を谷にして、矢印F2の方向に、正極板41pを折り畳む。これにより正極板41pの412pは、負極板43pの負極電極部432pの上に重なる。   Next, as shown in FIG. 9C, a fold line B2 that intersects the connecting portion 411pt of the positive electrode plate 41p at a right angle is defined. Then, the positive electrode plate 41p is folded in the direction of the arrow F2 with the fold line B2 as a valley. Thereby, 412p of the positive electrode plate 41p overlaps with the negative electrode portion 432p of the negative electrode plate 43p.

図10(a)〜図11(e)は、図9に続く電極群形成方法を説明する平面図である。図10(a)では、正極板41pと負極板43pとをB3を谷にしてF3の方向に、図10(b)では、B4を谷にしてF4の方向に、図10(c)では、B5を谷にしてF5の方向に、図10(d)では、B6を谷にしてF6の方向に九十九折りを順次行なう。   FIG. 10A to FIG. 11E are plan views for explaining an electrode group forming method subsequent to FIG. 10 (a), the positive electrode plate 41p and the negative electrode plate 43p are arranged in the direction of F3 with B3 as a valley, and in FIG. 10 (b), in the direction of F4 with B4 as a valley, in FIG. 10 (c), Ninety-nine folds are sequentially performed in the direction of F5 with B5 as a valley, and in FIG. 10D, in the direction of F6 with B6 as a valley.

同様に、図11(a)では、B7を谷にしてF7の方向に、図11(b)では、B8を谷にしてF8の方向に、図11(c)では、B9を谷にしてF9の方向に、図11(d)では、B10を谷にしてF10の方向に順次九十九折りを行なう。   Similarly, in FIG. 11A, B7 is a valley and is in the direction of F7. In FIG. 11B, B8 is a valley and is in the direction of F8. In FIG. In FIG. 11D, ninety nine folds are sequentially performed in the direction of F10 with B10 as a valley.

以上の工程により、図11(e)に示す様に、最上層に正極電極部416pを備えた電極群40pが完成する。電極群40pの各辺の中点から連結部411pt〜415pt及
び連結部431pt〜435ptが交互に配置されている。
Through the above steps, as shown in FIG. 11E, an electrode group 40p having a positive electrode portion 416p as the uppermost layer is completed. Connecting portions 411pt to 415pt and connecting portions 431pt to 435pt are alternately arranged from the midpoint of each side of the electrode group 40p.

以上の工程により完成した電極群40pを電池ケースに組み込み、扁平型電池が完成するが、組み込みの工程は第1実施形態と同様なので説明は省略する。   The electrode group 40p completed through the above steps is assembled into a battery case to complete a flat battery, but the description of the incorporation process is omitted because it is the same as in the first embodiment.

図11(e)に示す様に、電極群40pを上から見た平面視で、電極群40pにおいて10個の連結部411t〜415t及び連結部431t〜435tは、電極群40pの10辺に重ならないように配置されている。第1変形例の扁平型電池の効果の詳細は、第1実施形態と同様なので説明は省略する。   As shown in FIG. 11 (e), in the plan view of the electrode group 40p as viewed from above, the ten connecting portions 411t to 415t and the connecting portions 431t to 435t in the electrode group 40p are overlapped on the 10 sides of the electrode group 40p. It is arranged not to become. The details of the effect of the flat battery of the first modification are the same as those of the first embodiment, and thus the description thereof is omitted.

第1変形例も図8の設計方法に基づいており、電極部の枚数が「6」枚であったので、連結部数は、6−1=5で、「5」つとなり、連結部間の取り出し角度は、360/5=72で、72度、重ね合わせの角度は、n=5として、72/2×5=180で、180度としている。   The first modified example is also based on the design method of FIG. 8, and the number of electrode portions is “6”. Therefore, the number of connecting portions is 6-1 = 5, which is “5”. The take-out angle is 360/5 = 72 and 72 degrees, and the superposition angle is n = 5 and 72/2 × 5 = 180 and 180 degrees.

[第1実施形態における第2変形例]
次に第2変形例について説明する。第2変形例は、正極の電極部及び負極の電極部が各々6枚(連結部が5本)であり連結部間の取り出し角度は144度で各電極部の形状は正10角形である。
[Second Modification of First Embodiment]
Next, a second modification will be described. In the second modified example, the number of positive electrode portions and the number of negative electrode portions are six (five connection portions), the take-out angle between the connection portions is 144 degrees, and the shape of each electrode portion is a regular decagon.

[第2変形例の説明:図12〜図13]
図12〜図13を用いて第2変形例における扁平型電池3の電極群電極群40qの形成方法を説明する。図12(a)〜図13(b)は、第2変形例における電極群電極群40qの正極板41qと負極板43qの九十九折りによる電極群形成工程の工程を示す平面図である。
[Explanation of Second Modification: FIGS. 12 to 13]
A method of forming the electrode group electrode group 40q of the flat battery 3 in the second modification will be described with reference to FIGS. 12 (a) to 13 (b) are plan views showing the steps of an electrode group forming process by folding the positive electrode plate 41q and the negative electrode plate 43q of the electrode group electrode group 40q in the second modification.

第2変形例における電極群40qの特徴は、第1変形例における電極群40pと比べて、正極板41qおよび負極板43qの連結部間の取り出し角度θ3が144度と大きいことである。その他の構造や要素は第1変形例と同様である。   The feature of the electrode group 40q in the second modification is that the take-out angle θ3 between the connecting portions of the positive electrode plate 41q and the negative electrode plate 43q is as large as 144 degrees compared to the electrode group 40p in the first modification. Other structures and elements are the same as those in the first modification.

まず図12(a)に示す様に、正極板41qの連結部411qtと負極板43qの連結部431qtとを、同一線上、つまり重ね合わせの角度を180度として配置し、図12(b)に示す様に、正極板41qの正極電極部411qを負極板43qの負極電極部431qの上に重ねる。   First, as shown in FIG. 12 (a), the connecting portion 411qt of the positive electrode plate 41q and the connecting portion 431qt of the negative electrode plate 43q are arranged on the same line, that is, with a superposition angle of 180 degrees. As shown, the positive electrode portion 411q of the positive electrode plate 41q is overlaid on the negative electrode portion 431q of the negative electrode plate 43q.

次に図12(b)に示す様に、負極板43qの連結部431qtと直角に交わる折り曲げ線B1規定する。そして折り曲げ線B1を谷にして、矢印F1の方向に、負極板43qを折り畳む。これにより負極板43qの負極電極部432qは、正極板41qの正極電極部411qの上に重なる。   Next, as shown in FIG. 12B, a fold line B1 is defined which intersects the connecting portion 431qt of the negative electrode plate 43q at a right angle. Then, the negative electrode plate 43q is folded in the direction of the arrow F1 with the fold line B1 as a valley. Thereby, the negative electrode part 432q of the negative electrode plate 43q overlaps with the positive electrode part 411q of the positive electrode plate 41q.

図13(a)、図13(b)は、図12に続く電極群形成方法を説明する平面図である。図13(a)及び図13(b)に示す様に、正極板41qの連結部411qt、負極板43qの連結部432ptと直角に交わる折り曲げ線をそれぞれB2、B3として規定する。そして折り曲げ線B2、B3を谷にして、それぞれ矢印F2及びF3の方向に、正極板41q、負極板43qを折り畳む。これにより正極板41qの412qは負極板43qの負極電極部432qの上に重なり、負極板43qの負極電極部433qは正極板41qの412qの上に重なる。   FIG. 13A and FIG. 13B are plan views for explaining the electrode group forming method subsequent to FIG. As shown in FIGS. 13 (a) and 13 (b), fold lines that intersect at right angles with the connecting portion 411qt of the positive electrode plate 41q and the connecting portion 432pt of the negative electrode plate 43q are defined as B2 and B3, respectively. Then, with the fold lines B2 and B3 as valleys, the positive electrode plate 41q and the negative electrode plate 43q are folded in the directions of arrows F2 and F3, respectively. Thereby, 412q of the positive electrode plate 41q overlaps with the negative electrode portion 432q of the negative electrode plate 43q, and the negative electrode portion 433q of the negative electrode plate 43q overlaps with 412q of the positive electrode plate 41q.

更に同様の九十九折りの工程を繰り返し、最終的に、図13(c)に示す様に、最上層に負極電極部431qを備えた40qが完成する。電極群40qの各辺の中点から連結部
411qt〜415qt及び連結部431qt〜435qtが配置されている。
Further, the similar 99-folding process is repeated, and finally 40q having the negative electrode portion 431q as the uppermost layer is completed as shown in FIG. 13C. Connecting portions 411qt to 415qt and connecting portions 431qt to 435qt are arranged from the midpoint of each side of the electrode group 40q.

以上の工程により完成した電極群40qを電池ケースに組み込み、扁平型電池が完成するが、組み込みの工程及び効果は第1実施形態と同様なので説明は省略する。   The electrode group 40q completed through the above steps is incorporated into a battery case to complete a flat battery. However, since the incorporation steps and effects are the same as those in the first embodiment, description thereof is omitted.

第2変形例も図8の設計方法に基づいており、電極部の枚数が「6」枚であったので、連結部数は、6−1=5で、「5」つとなり、連結部間の取り出し角度は、360/5=72で、72の2倍として144度、重ね合わせの角度は、n=5として、72/2×5=180で、180度としている。   The second modified example is also based on the design method of FIG. 8, and the number of electrode portions is “6”. Therefore, the number of connecting portions is 6-1 = 5 and becomes “5”. The take-out angle is 360/5 = 72, which is twice 144, and 144 degrees. The superposition angle is n = 5, 72/2 × 5 = 180 and 180 degrees.

[第2実施形態]
[第2実施形態の説明:図14〜図16]
次に図14〜図16を用いて第2実施形態における扁平型電池4の電極群40bの形成方法を説明する。図14(a)〜図16(e)は、第2実施形態における電極群40bの正極板41bと負極板43bの九十九折りによる電極群形成工程の工程を示す平面図である。
[Second Embodiment]
[Description of Second Embodiment: FIGS. 14 to 16]
Next, the formation method of the electrode group 40b of the flat battery 4 in 2nd Embodiment is demonstrated using FIGS. 14-16. FIG. 14A to FIG. 16E are plan views showing steps of an electrode group forming process by ninety-nine folds of the positive electrode plate 41b and the negative electrode plate 43b of the electrode group 40b in the second embodiment.

第2実施形態における電極群40bの特徴は、第1実施形態における電極群40と比べて、連結部間の取り出し角度が異なる。すなわち第1実施形態における電極群40では連結部間の取り出し角度は、図8の設計方法に基づいて決定され、1種類のであったが、第2実施形態における電極群40bは、図8の設計方法を採用せず、連結部間の取り出し角度は2種類である。本実施形態は、正極の電極部及び負極の電極部が各々5枚であり、連結部が4本の電極板を採用している。5枚の電極部のうち、端部部に位置する電極部は連結部の取り出し角度θ5を90度とし、他の取り出し角度取り出し角度θ4は180度である。その他の構造や要素及び工程は第1実施形態と同様である。   The feature of the electrode group 40b in the second embodiment is that the extraction angle between the connecting portions is different from that of the electrode group 40 in the first embodiment. That is, in the electrode group 40 in the first embodiment, the take-out angle between the connecting portions is determined based on the design method of FIG. 8 and is one type, but the electrode group 40b in the second embodiment is designed in the design of FIG. Without adopting the method, there are two types of take-off angles between the connecting portions. In the present embodiment, the number of the positive electrode portions and the number of the negative electrode portions are five, and the connecting portion employs four electrode plates. Of the five electrode portions, the electrode portion located at the end portion has a connecting portion take-out angle θ5 of 90 degrees, and the other take-out angle take-out angle θ4 is 180 degrees. Other structures, elements, and processes are the same as those in the first embodiment.

まず図14(a)に示す様に、正極板41bの連結部411btと負極板43bの連結部431btとが平面的に45度ずれるように配置し、図14(b)に示す様に、正極板41bの正極電極部411bを負極板43bの負極電極部431bの上に重ねる。   First, as shown in FIG. 14 (a), the connecting portion 411bt of the positive electrode plate 41b and the connecting portion 431bt of the negative electrode plate 43b are arranged so as to be shifted by 45 degrees in a plane, and as shown in FIG. The positive electrode part 411b of the plate 41b is overlaid on the negative electrode part 431b of the negative electrode plate 43b.

次に図14(b)に示す様に、負極板43bの連結部431btと直角に交わる折り曲げ線B1規定する。そして折り曲げ線B1を谷にして、矢印F1の方向に、負極板43bを折り畳む。これにより負極板43bの負極電極部432bは、正極板41bの正極電極部411bの上に重なる。   Next, as shown in FIG. 14B, a fold line B1 is defined which intersects the connecting portion 431bt of the negative electrode plate 43b at a right angle. Then, the negative electrode plate 43b is folded in the direction of the arrow F1 with the fold line B1 as a valley. Thereby, the negative electrode part 432b of the negative electrode plate 43b overlaps with the positive electrode part 411b of the positive electrode plate 41b.

図15(a)〜図16(e)に示す様に更に同様の工程を繰り返し、正極板41bと負極板43bとを、図15(a)ではB2を谷にしてF2の方向に、図15(b)ではB3を谷にしてF3の方向に、図15(c)ではB4を谷にしてF4の方向に、図16(a)ではB5を谷にしてF5の方向に、図16(b)ではB6を谷にしてF6の方向に、図16(c)ではB7を谷にしてF7の方向に、図16(d)ではB8を谷にして、F8の方向に順次九十九折りによって巻き重ね、最終的に図16(e)に示す様に、最上層に正極電極部415bを備えた電極群40bが完成する。電極群40bを上から見た平面視で、電極群40b各辺の中点から連結部411bt〜414bt及び連結部431bt〜434btが重ならないように配置されている。   As shown in FIGS. 15A to 16E, the same process is further repeated, and the positive electrode plate 41b and the negative electrode plate 43b are arranged in the direction of F2 with B2 as a valley in FIG. 15A. In FIG. 15 (b), B3 is a valley and in the direction of F3. In FIG. 15 (c), B4 is a valley and in the direction of F4. In FIG. 16 (a), B5 is a valley and in the direction of F5. ) In the direction of F6 with B6 as a valley, in FIG. 16 (c) with B7 as a valley in the direction of F7, in FIG. 16 (d) with B8 as a valley and in the direction of F8 As a result, the electrode group 40b having the positive electrode portion 415b as the uppermost layer is completed as shown in FIG. In the plan view of the electrode group 40b as viewed from above, the connecting portions 411bt to 414bt and the connecting portions 431bt to 434bt are arranged so as not to overlap from the midpoint of each side of the electrode group 40b.

以上の工程により完成した電極群40bを電池ケースに組み込み、扁平型電池が完成するが、組み込みの工程は第1実施形態と同様なので説明は省略する。   The electrode group 40b completed by the above steps is assembled into a battery case to complete a flat battery, but the description of the incorporation process is omitted because it is the same as in the first embodiment.

[第3実施形態]
第3実施形態は、一定長さの対向辺によって接続される帯板状電極を用い、連結部を各
対向辺の幅方向にずらせて設ける。実施の形態は正極の電極部及び負極の電極部が各々6枚(連結部が5つ)であり、正極の電極部及び負極の電極部の形状を四角形とし、各辺を5等分し各辺から突出した5つの連結部によって各電極部を連結する。なお、これら連結部間の間隔は等分に限定されず、必要に応じて間隔を決めてよい。
[Third embodiment]
In the third embodiment, strip-like electrodes connected by opposing sides having a fixed length are used, and the connecting portions are provided by being shifted in the width direction of the opposing sides. In the embodiment, each of the positive electrode portion and the negative electrode portion is six pieces (five connecting portions), the shape of the positive electrode portion and the negative electrode portion is a rectangle, and each side is divided into five equal parts. Each electrode part is connected by five connection parts protruding from the side. In addition, the space | interval between these connection parts is not limited equally, You may determine a space | interval as needed.

[第3実施形態の説明:図17〜図19]
次に図17〜図19を用いて第3実施形態における扁平型電池5の電極群40cの形成方法を説明する。図17(a)〜図19(d)は、第3実施形態における電極群40cの正極板41cと負極板43cの九十九折りによる電極群形成工程の工程を示す平面図である。
[Explanation of Third Embodiment: FIGS. 17 to 19]
Next, a method for forming the electrode group 40c of the flat battery 5 according to the third embodiment will be described with reference to FIGS. FIG. 17A to FIG. 19D are plan views showing a process of forming an electrode group by ninety-nine folds of the positive electrode plate 41c and the negative electrode plate 43c of the electrode group 40c in the third embodiment.

第3実施形態における電極群40cの特徴は、第1実施形態における電極群40と比べて正極板41cおよび負極板43cの平面視の形状が正方形であることと、正極板41cおよび負極板43cの連結部間の取り出し角度θ6が180度であることと、各連結部の取り出し位置が、正極板41cおよび負極板43cの各対向辺間にずれて配されていることである。   The characteristics of the electrode group 40c in the third embodiment are that the shape of the positive electrode plate 41c and the negative electrode plate 43c in the plan view is square compared to the electrode group 40 in the first embodiment, and that the positive electrode plate 41c and the negative electrode plate 43c The take-off angle θ6 between the connecting portions is 180 degrees, and the take-out position of each connecting portion is shifted between the opposing sides of the positive electrode plate 41c and the negative electrode plate 43c.

詳述すると第3実施形態における電極群40cの正極板41cおよび負極板43cの連結部411ct〜415ct(412ct〜414ctは図示せず)及び連結部431ct〜435ct(432ct〜434ctは図示せず)は、図17(a)に示す様に、正極板41cおよび負極板43cの各対向辺の幅方向に、各連結部をずらして設けている。   More specifically, the connecting portions 411ct to 415ct (412ct to 414ct are not shown) and the connecting portions 431ct to 435ct (432ct to 434ct are not shown) of the positive electrode plate 41c and the negative electrode plate 43c in the third embodiment. As shown in FIG. 17A, the connecting portions are shifted in the width direction of the opposing sides of the positive electrode plate 41c and the negative electrode plate 43c.

まず図17(a)に示す様に、正極板41cの連結部411ctと負極板43bの連結部431ctとが平面的に90度ずれる様に配置し、正極板41cの正極電極部411cの上に負極板43cの負極電極部431cを重ねる。   First, as shown in FIG. 17A, the connecting portion 411ct of the positive electrode plate 41c and the connecting portion 431ct of the negative electrode plate 43b are arranged so as to be shifted by 90 degrees in a plane, and is placed on the positive electrode portion 411c of the positive electrode plate 41c. The negative electrode part 431c of the negative electrode plate 43c is overlapped.

次に図17(b)に示す様に、正極板41cの連結部411ctと直角に交わる折り曲げ線B1を規定する。そして折り曲げ線B1を谷にして、矢印F1の方向に、正極板41cを折り畳む。これにより正極板41cの正極電極部412cは、負極板43cの負極電極部431cの上に重なる。   Next, as shown in FIG. 17B, a fold line B1 that intersects the connecting portion 411ct of the positive electrode plate 41c at a right angle is defined. Then, the positive electrode plate 41c is folded in the direction of the arrow F1 with the fold line B1 as a valley. As a result, the positive electrode portion 412c of the positive electrode plate 41c overlaps the negative electrode portion 431c of the negative electrode plate 43c.

以降の工程は、第1実施形態と同様である。すなわち図17(c)〜図19(c)に示す様に、正極板41cと負極板43cとを図17(c)ではB2を谷にしてF2の方向に、図18(a)ではB3を谷にしてF3の方向に、図18(b)ではB4を谷にしてF4の方向に、図18(c)ではB5を谷にしてF5の方向に、図18(d)ではB6を谷にしてF6の方向に、図18(e)ではB7を谷にしてF7の方向に、図19(a)ではではB8を谷にしてF8の方向に、図19(b)ではB9を谷にしてF9の方向に、図19(c)ではB10を谷にしてF10の方向に順次九十九折りによって巻き重ね、最終的に図19(d)に示す様に、最上層に負極電極部436cを備えた電極群40cが完成する。電極群40cを上面からみた平面視で電極群40cの正方形の4辺から、対向辺の幅方向にずれた位置に連結部411bt〜414bt及び連結部431bt〜434btが重ならないように配置されている。   The subsequent steps are the same as in the first embodiment. That is, as shown in FIGS. 17 (c) to 19 (c), the positive electrode plate 41c and the negative electrode plate 43c are arranged in the direction F2 with B2 as a valley in FIG. 17 (c), and B3 in FIG. 18 (a). In the direction of F3 as a valley, in FIG. 18 (b), B4 is a valley and in the direction of F4, in FIG. 18 (c), B5 is a valley and in the direction of F5, and in FIG. 18 (d), B6 is a valley. In the direction of F6, in FIG. 18 (e), B7 is a valley and in the direction of F7, in FIG. 19 (a), B8 is a valley and in the direction of F8, and in FIG. 19 (b), B9 is a valley. In FIG. 19 (c), B10 is a trough in the direction of F9, and is wound up in turn in the direction of F10 by ninety-nine folds. Finally, as shown in FIG. 19 (d), the negative electrode portion 436c is formed on the uppermost layer. The provided electrode group 40c is completed. The connection parts 411 bt to 414 bt and the connection parts 431 bt to 434 bt are arranged so as not to overlap at positions shifted in the width direction of the opposite side from the four sides of the square of the electrode group 40 c in a plan view when the electrode group 40 c is viewed from above. .

以上の工程により完成した電極群40cを電池ケースに組み込み扁平型電池が完成するが、組み込みの工程は第1実施形態と同様なので説明は省略する。   The flat electrode battery is completed by incorporating the electrode group 40c completed by the above steps into the battery case, but the description of the incorporation process is omitted because it is the same as in the first embodiment.

以上説明した実施形態は、一実施形態であって、これに限定されるものではなく本発明の要旨を満たすものであれば任意に変更することができることはいうまでもない。
例えば連結部間の取り出し角度は、図8で説明した設計方法に基づいて、電極部を囲む円周角度(360度)を、電極部における連結部の数で分割し、その角度の整数倍の角度
から、60°より大きく180°より小さい範囲で選択する方法が基本であるが、図3(c)や、図4(b)に示す連結部長さLや、電極部の形状によっては、60°より小さくても実現可能な場合がある。
また、正極側及び負極側の電極部の形状は、4角形〜10角形でなく他の多角形や円形でも構わない。また、九十九折りで積層し構成する電極群の正極側及び負極側の電極部の数は任意に増減可能である。
また本発明における実施形態では、各連結部は細長い帯板状であるが、電極部との接続部を弧状にして連結部との結合強度を上げることも可能である。
It is needless to say that the embodiment described above is an embodiment, and is not limited thereto, and can be arbitrarily changed as long as it satisfies the gist of the present invention.
For example, the take-off angle between the connecting portions is obtained by dividing the circumferential angle (360 degrees) surrounding the electrode portion by the number of connecting portions in the electrode portion based on the design method described in FIG. A method of selecting from an angle in a range larger than 60 ° and smaller than 180 ° is basic, but depending on the connecting portion length L shown in FIG. 3C and FIG. It may be feasible even if it is smaller than °.
Further, the shape of the electrode portions on the positive electrode side and the negative electrode side may be other polygons or circles instead of the quadrangle to the ten-gon. In addition, the number of the electrode portions on the positive electrode side and the negative electrode side of the electrode group formed by stacking the ninety-nine folds can be arbitrarily increased or decreased.
In the embodiment of the present invention, each connecting portion is in the form of an elongated strip, but it is also possible to increase the coupling strength with the connecting portion by arcing the connecting portion with the electrode portion.

1 扁平型電池
10 外装ケース
15 電池ケース
20 ガスケット
30 封口ケース
40、40p、40q、40b、40c 電極群
41、41p、41q、41b、41c 正極板
41k (正極側の)活物質層
41m 正極箔
411〜415、411p〜415p、411q〜415q、411b〜415b、411c〜415c 正極電極部(電極部)
411t〜415t、411pt〜415pt、411qt〜415qt、411bt〜415bt、411ct〜415ct (正極側の)連結部
43、43p、43q、43b、43c 負極板
43k (負極側の)活物質層
43m 負極箔
431〜435、431p〜435p、431q〜435q、431b〜435b、431c〜435c 負極電極部(電極部)
431t〜435t、431pt〜435pt、431qt〜435qt、431bt〜435bt、431ct〜435ct (負極側の)連結部
θ1〜θ6 取り出し角度
L 連結部長さ
F1〜F10 折り方向
B1〜B10 折り曲げ線
100 電極体
102 正極
103 負極
104 セパレータ
105 電極体層
1051〜1054 折り畳み部分の端縁
105a 膨らみ部分
106 間隙
ST1 電池仕様諸元設定工程
ST2 電極部枚数設定工程
ST3 連結部の総数設定工程
ST4 連結部間角度設定工程
ST5 九十九折り工程の重ね角度設定工程
DESCRIPTION OF SYMBOLS 1 Flat type battery 10 Exterior case 15 Battery case 20 Gasket 30 Sealing case 40, 40p, 40q, 40b, 40c Electrode group 41, 41p, 41q, 41b, 41c Positive electrode plate 41k (positive electrode side) Active material layer 41m Positive electrode foil 411 ˜415, 411p˜415p, 411q˜415q, 411b˜415b, 411c˜415c, positive electrode part (electrode part)
411t to 415t, 411pt to 415pt, 411qt to 415qt, 411bt to 415bt, 411ct to 415ct (positive electrode side) connecting portion 43, 43p, 43q, 43b, 43c negative electrode plate 43k (negative electrode side) active material layer 43m negative electrode foil 431 ~ 435, 431p ~ 435p, 431q ~ 435q, 431b ~ 435b, 431c ~ 435c Negative electrode part (electrode part)
431t to 435t, 431pt to 435pt, 431qt to 435qt, 431bt to 435bt, 431ct to 435ct (negative electrode side) connecting portion θ1 to θ6 take-out angle L connecting portion length F1 to F10 folding direction B1 to B10 folding line 100 electrode body 102 positive electrode DESCRIPTION OF SYMBOLS 103 Negative electrode 104 Separator 105 Electrode body layer 1051-1054 Edge of folding part 105a Swelling part 106 Gap ST1 Battery specification specification setting process ST2 Number of electrode parts setting process ST3 Total number of connecting parts ST4 Angle setting process between connecting parts ST5 Nine Ninefold folding angle setting process

Claims (2)

表面に活物質層が形成された帯板状の正極板及び負極板と、前記正極板と前記負極板とが対向するように折り畳むことにより電極群を形成する扁平型電池において、
前記正極板及び前記負極板は、複数の同形状である電極部と、隣り合う前記電極部を連結する複数の連結部とを有し、
それぞれの前記連結部にて折り畳んで前記電極群を形成した際に、前記電極群を上面から見た平面視で、それぞれの前記連結部が互いに重ならない位置に配置されていることを特徴とする扁平型電池。
In a flat battery in which an electrode group is formed by folding a positive electrode plate and a negative electrode plate each having an active material layer formed on a surface thereof, and the positive electrode plate and the negative electrode plate are opposed to each other,
The positive electrode plate and the negative electrode plate have a plurality of electrode portions having the same shape, and a plurality of connecting portions that connect the adjacent electrode portions,
When the electrode group is formed by folding at each of the connection portions, the connection portions are arranged at positions where they do not overlap with each other in a plan view when the electrode group is viewed from above. Flat battery.
前記正極板と前記負極板とを九十九折りで折り畳むことを特徴とする請求項1に記載の扁平型電池。
The flat battery according to claim 1, wherein the positive electrode plate and the negative electrode plate are folded by ninety-nine folds.
JP2015178417A 2015-09-10 2015-09-10 Flat type battery Pending JP2017054716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178417A JP2017054716A (en) 2015-09-10 2015-09-10 Flat type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178417A JP2017054716A (en) 2015-09-10 2015-09-10 Flat type battery

Publications (1)

Publication Number Publication Date
JP2017054716A true JP2017054716A (en) 2017-03-16

Family

ID=58317105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178417A Pending JP2017054716A (en) 2015-09-10 2015-09-10 Flat type battery

Country Status (1)

Country Link
JP (1) JP2017054716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102315A (en) * 2017-12-05 2019-06-24 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102315A (en) * 2017-12-05 2019-06-24 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US9685679B2 (en) Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
JP6169789B2 (en) Curved electrode laminate and battery pack including the same
US9172109B2 (en) Electrode assembly and secondary battery using the same
JP5279784B2 (en) Secondary battery and method for manufacturing the same
TWI504035B (en) Secondary battery
EP2309568A1 (en) Secondary battery and method for manufacturing the same
JP6128282B2 (en) Storage device manufacturing method and electrode manufacturing method
KR101526457B1 (en) Electrode Having Round Corner
JP2011065913A (en) Nonaqueous solid electrolyte battery and its manufacturing method
KR20180032083A (en) Rechageable battery
US20120321930A1 (en) Electrode assembly and secondary battery using the same
WO2018016112A1 (en) Secondary battery and production method therefor
JP2016110856A (en) Flat battery
JP2017050243A (en) Flat-type battery
JP2016111020A (en) Flat battery
JP2017054716A (en) Flat type battery
JP2016115470A (en) Flat type battery
JP2016076329A (en) Flat type battery and manufacturing method for the same
JP6592495B2 (en) Electrochemical cell and method for producing electrochemical cell
KR101995288B1 (en) Electrode assembly
JP2017134901A (en) Flat type battery
US11961957B2 (en) Flexible battery and method for manufacturing flexible battery
JP6135244B2 (en) Storage element, power supply module, and method of manufacturing power supply module
WO2022239525A1 (en) Battery
JP6981115B2 (en) Lithium ion secondary battery