JP2017053702A - Minute channel device and measuring method - Google Patents

Minute channel device and measuring method Download PDF

Info

Publication number
JP2017053702A
JP2017053702A JP2015177331A JP2015177331A JP2017053702A JP 2017053702 A JP2017053702 A JP 2017053702A JP 2015177331 A JP2015177331 A JP 2015177331A JP 2015177331 A JP2015177331 A JP 2015177331A JP 2017053702 A JP2017053702 A JP 2017053702A
Authority
JP
Japan
Prior art keywords
fitting member
groove
fine
fluid
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015177331A
Other languages
Japanese (ja)
Other versions
JP6583913B2 (en
Inventor
弘之 竹井
Hiroyuki Takei
弘之 竹井
諒太 志賀
Ryota Shiga
諒太 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2015177331A priority Critical patent/JP6583913B2/en
Publication of JP2017053702A publication Critical patent/JP2017053702A/en
Application granted granted Critical
Publication of JP6583913B2 publication Critical patent/JP6583913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a minute channel device and a measuring method that keep cost down.SOLUTION: A minute channel device 100 comprises a minute channel where fluid flows through and is used when materials included in the fluid are measured by surface enhanced Raman spectroscopy. The minute channel device comprises: a pipe member 110 where a hollow part 111 extending along a prescribed direction is formed; and a fitting member 120 fitted into the hollow part 111. An outer peripheral part 120a of the fitting member 120 is provided with a minute groove 121 that forms a minute channel between an inner peripheral part 110a of the pipe member 110 and the outer peripheral part, and metal nanoparticles M for surface enhanced Raman spectroscopy are formed on the groove internal surface of the minute groove 121.SELECTED DRAWING: Figure 2

Description

本発明は、流体を流す微細流路を備え、前記流体に含まれる物質を表面増強ラマン分光法により測定する際に用いられる微細流路デバイス及び測定方法に関する。   The present invention relates to a microchannel device and a measuring method that are provided with a microchannel through which a fluid flows, and that are used when a substance contained in the fluid is measured by surface-enhanced Raman spectroscopy.

従来、高速液体クロマトグラフ(HPLC)に代表されるクロマトグラフィーの分野では、流体に含まれる物質を同定することが重要であり、この物質を同定するための手法として、表面増強ラマン分光法(SERS:Surface Enhanced Raman Scattering)が注目されている(例えば、特許文献1参照)。   Conventionally, in the field of chromatography typified by high performance liquid chromatography (HPLC), it is important to identify a substance contained in a fluid, and surface enhanced Raman spectroscopy (SERS) is a method for identifying this substance. : Surface Enhanced Raman Scattering) (see, for example, Patent Document 1).

表面増強ラマン分光法では、流体を搬送する流路の内面に形成した表面増強ラマン分光測定用金属ナノ粒子(以下、金属ナノ粒子として適宜説明する)に励起光を照射して、この金属ナノ粒子から発光するラマン散乱光を測定する。そして、測定したラマン散乱光を解析することにより、物質を同定することができる。   In surface-enhanced Raman spectroscopy, metal nanoparticles for surface-enhanced Raman spectroscopy (hereinafter, appropriately described as metal nanoparticles) formed on the inner surface of a channel carrying fluid are irradiated with excitation light. The Raman scattered light emitted from is measured. And a substance can be identified by analyzing the measured Raman scattered light.

ここで、流体に含まれる物質を表面増強ラマン分光法により測定する場合、流体を搬送する流路の直径が大きいと、流体に含まれる物質が、流路の内面に形成した金属ナノ粒子と接触しにくくなるため、流路の直径を100μm程度に設定した微細流路を形成した微細流路デバイスを用いた手法が検討されている(例えば、特許文献1参照)。   Here, when a substance contained in a fluid is measured by surface-enhanced Raman spectroscopy, the substance contained in the fluid comes into contact with metal nanoparticles formed on the inner surface of the flow path when the diameter of the flow path for transporting the fluid is large. Therefore, a technique using a microchannel device in which a microchannel having a channel diameter of about 100 μm is formed has been studied (for example, see Patent Document 1).

特開2013−142546号公報JP2013-142546A 特開2015−014512号公報Japanese Patent Laying-Open No. 2015-014512

しかしながら、従来技術には、次のような問題があった。従来技術に係る微細流路デバイスは、透明な基板の内部に微細溝を形成するとともに、この微細溝の溝内面に金属ナノ粒子を形成する加工処理を経て製造される。このような微細で特殊な加工処理を必要とする微細流路デバイスは、非常に高価なものとなっていた。このため、コストを抑制した微細流路デバイスが望まれていた。   However, the prior art has the following problems. The microchannel device according to the prior art is manufactured through a processing process in which fine grooves are formed inside a transparent substrate and metal nanoparticles are formed on the groove inner surface of the fine grooves. Such a fine channel device that requires fine and special processing has been very expensive. For this reason, there has been a demand for a fine channel device with reduced cost.

本発明は、このような状況に鑑みてなされたもので、コストを抑制した微細流路デバイス及び測定方法を提供することを目的とする。   This invention is made | formed in view of such a condition, and it aims at providing the microchannel device and measuring method which suppressed cost.

本発明の第1の特徴は、流体を流す微細流路を備え、前記流体に含まれる物質を表面増強ラマン分光法により測定する際に用いられる微細流路デバイスであって、所定方向に沿って延びる中空部が形成される管部材と、前記中空部に嵌合される嵌合部材と、を備え、前記嵌合部材を覆っている前記管部材の少なくともラマン分光測定部分は、透明な部材で形成され、前記嵌合部材の外周部には、前記管部材の内周部との間に前記微細流路を形成する微細溝が設けられており、前記微細溝の溝内面には、表面増強ラマン分光測定用金属ナノ粒子が形成されることを要旨とする。   A first feature of the present invention is a microchannel device that includes a microchannel for flowing a fluid, and is used when measuring a substance contained in the fluid by surface-enhanced Raman spectroscopy, along a predetermined direction. A tube member in which an extending hollow portion is formed; and a fitting member fitted into the hollow portion; at least a Raman spectroscopic measurement portion of the tube member covering the fitting member is a transparent member. A fine groove is formed on the outer peripheral portion of the fitting member to form the fine flow channel between the outer peripheral portion of the fitting member and the inner peripheral portion of the pipe member. The gist is that metal nanoparticles for Raman spectroscopy are formed.

本発明の第2の特徴は、上記特徴に係り、前記管部材は、中空チューブであることを要旨とする。   The second feature of the present invention relates to the above feature, and is summarized in that the tube member is a hollow tube.

本発明の第3の特徴は、上記特徴に係り、前記嵌合部材の外周部には、前記微細溝が螺旋状に形成されていることを要旨とする。   A third feature of the present invention is related to the above feature, and is summarized in that the fine groove is formed in a spiral shape on an outer peripheral portion of the fitting member.

本発明の第4の特徴は、上記特徴に係り、前記微細溝の断面形状は、V字形状、U字形状、コの字状の何れか、又は、それらの組合せであることを要旨とする。   A fourth feature of the present invention relates to the above feature, wherein the cross-sectional shape of the fine groove is any one of a V shape, a U shape, a U shape, or a combination thereof. .

本発明の第5の特徴は、上記特徴に係り、前記嵌合部材は、前記微細溝の溝底部に固定される微小部材を更に備え、前記金属ナノ粒子は、前記微小部材の外表面に形成されることを要旨とする。   A fifth feature of the present invention is the above feature, wherein the fitting member further includes a minute member fixed to a groove bottom of the minute groove, and the metal nanoparticles are formed on an outer surface of the minute member. The gist is that

本発明の第6の特徴は、流体を流す微細流路を備える微細流路デバイスを用いて、前記流体に含まれる物質を表面増強ラマン分光法により測定する工程を含み、前記微細流路デバイスは、所定方向に沿って延びる中空部が形成される管部材と、前記中空部に嵌合される嵌合部材と、を備え、前記嵌合部材を覆っている前記管部材の少なくともラマン分光測定部分は、透明な部材で形成され、前記嵌合部材の外周部には、前記管部材の内周部との間に前記微細流路を形成する微細溝が設けられており、前記微細溝の溝内面には、表面増強ラマン分光測定用金属ナノ粒子が形成されることを要旨とする。   A sixth feature of the present invention includes a step of measuring a substance contained in the fluid by surface-enhanced Raman spectroscopy using a microchannel device including a microchannel that allows fluid to flow, and the microchannel device includes: A tube member in which a hollow portion extending along a predetermined direction is formed, and a fitting member fitted into the hollow portion, and at least a Raman spectroscopic measurement portion of the tube member covering the fitting member Is formed of a transparent member, and the outer periphery of the fitting member is provided with a minute groove that forms the minute channel between the inner periphery of the tube member, and the groove of the minute groove The gist is that metal nanoparticles for surface enhanced Raman spectroscopy are formed on the inner surface.

本発明によれば、コストを抑制した微細流路デバイス及び測定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the microchannel device and measuring method which suppressed cost can be provided.

本発明の第1実施形態に係る測定システムの構成を示す概略構成図である。1 is a schematic configuration diagram illustrating a configuration of a measurement system according to a first embodiment of the present invention. 本発明の第1実施形態に係る微細流路デバイスの拡大断面図である。It is an expanded sectional view of the fine channel device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る微細流路デバイスの拡大断面図である。It is an expanded sectional view of the fine channel device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る測定方法を示すフローチャートである。It is a flowchart which shows the measuring method which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る測定システムによって測定されたラマンスペクトルの一例を示すグラフである。It is a graph which shows an example of the Raman spectrum measured by the measuring system concerning a 1st embodiment of the present invention. (a)本発明の変形例に係る嵌合部材を示す説明図である。(b)本発明の変形例に係る嵌合部材を示す説明図である。(A) It is explanatory drawing which shows the fitting member which concerns on the modification of this invention. (B) It is explanatory drawing which shows the fitting member which concerns on the modification of this invention. (a)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(b)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(A) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (B) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (a)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(b)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(c)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(A) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (B) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (C) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (a)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(b)本発明の第1実施形態に係る嵌合部材の他の例を示す説明図である。(A) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention. (B) It is explanatory drawing which shows the other example of the fitting member which concerns on 1st Embodiment of this invention.

以下、本発明の第1実施形態について、図面を参照しながら説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

[本発明の第1実施形態]
(測定システム1の構成)
図1は、本発明の第1実施形態に係る測定システム1の概略構成図である。本発明の第1実施形態に係る測定システム1は、フロー系において、流体に含まれる物質を表面増強ラマン分光法により同定する。
[First embodiment of the present invention]
(Configuration of measurement system 1)
FIG. 1 is a schematic configuration diagram of a measurement system 1 according to the first embodiment of the present invention. The measurement system 1 according to the first embodiment of the present invention identifies a substance contained in a fluid by surface-enhanced Raman spectroscopy in a flow system.

図1に示すように、第1実施形態に係る測定システム1は、供給機10と、搬送管20,30と、微細流路デバイス100と、発光器40と、受光器50とを備える。   As shown in FIG. 1, the measurement system 1 according to the first embodiment includes a feeder 10, transport pipes 20 and 30, a fine channel device 100, a light emitter 40, and a light receiver 50.

供給機10は、フロー系の一部として、検体となる物質を含む流体を供給する。搬送管20,30は、中空状の管であり、流体を搬送する。微細流路デバイス100は、搬送管20,30の間において、搬送管20,30を連結するように配置されている。   The supply machine 10 supplies a fluid containing a substance to be a specimen as a part of the flow system. The conveyance pipes 20 and 30 are hollow pipes and convey a fluid. The microchannel device 100 is disposed between the transport pipes 20 and 30 so as to connect the transport pipes 20 and 30.

発光器40は、微細流路デバイス100に励起光L1を照射し、受光器50は、励起光L1によって発光するラマン散乱光L2を受光する。受光器50によって受光されたラマン散乱光L2は、ラマンスペクトルとして解析される。なお、測定システム1は、分光器や解析装置などの他の機器(不図示)も備えているが、ここでは詳細な説明を省略する。   The light emitter 40 irradiates the microchannel device 100 with the excitation light L1, and the light receiver 50 receives the Raman scattered light L2 emitted by the excitation light L1. The Raman scattered light L2 received by the light receiver 50 is analyzed as a Raman spectrum. The measurement system 1 also includes other devices (not shown) such as a spectroscope and an analysis device, but detailed description thereof is omitted here.

(微細流路デバイス100の構成)
次に、微細流路デバイス100の構成について説明する。図2は、微細流路デバイス100の中心軸Axに沿った断面図である。なお、本実施形態では、図2に示すように、中心軸Axに沿ったX方向と、中心軸Axに直交するY方向とを規定する。図3は、図2における微細流路デバイス100の一部を拡大した拡大断面図である。
(Configuration of microchannel device 100)
Next, the configuration of the fine channel device 100 will be described. FIG. 2 is a cross-sectional view taken along the central axis Ax of the microchannel device 100. In the present embodiment, as shown in FIG. 2, an X direction along the central axis Ax and a Y direction orthogonal to the central axis Ax are defined. FIG. 3 is an enlarged cross-sectional view in which a part of the microchannel device 100 in FIG. 2 is enlarged.

微細流路デバイス100は、流体を流す微細流路を備え、流体に含まれる物質を表面増強ラマン分光法により測定する際に用いられる。   The microchannel device 100 includes a microchannel that allows a fluid to flow, and is used when a substance contained in the fluid is measured by surface-enhanced Raman spectroscopy.

図2に示すように、微細流路デバイス100は、所定方向に沿って延びる中空部111が形成される管部材110と、中空部111に嵌合される嵌合部材120と、を備える。すなわち、管部材110は、嵌合部材120を覆っている。なお、所定方向とは、流体の搬送方向であり、本実施形態では、微細流路デバイス100の中心軸Axに沿ったX方向である。   As shown in FIG. 2, the microchannel device 100 includes a tube member 110 in which a hollow portion 111 extending along a predetermined direction is formed, and a fitting member 120 fitted in the hollow portion 111. That is, the pipe member 110 covers the fitting member 120. The predetermined direction is a fluid conveyance direction, and in the present embodiment, the predetermined direction is the X direction along the central axis Ax of the microchannel device 100.

本実施形態では、管部材110の少なくともラマン分光測定部分110Xは、透明な部材で形成される。ラマン分光測定部分110Xは、励起光L1及び散乱光L2が透過する部分である。ラマン分光測定部分110Xのサイズは、励起光L1を照射できるとともに、ラマン散乱光L2を受光できれば、特に制限はない。例えば、ラマン分光測定部分110Xのサイズは、中心軸Axに直交するY方向に沿って見た場合に、一辺2mm×2mm以上(4mm以上)、もしくは、直径2mm以上としてもよい。なお、管部材110の全体が、透明な部材で形成されていてもよいことは無論である。 In the present embodiment, at least the Raman spectroscopic measurement portion 110X of the tube member 110 is formed of a transparent member. The Raman spectroscopic measurement portion 110X is a portion through which the excitation light L1 and the scattered light L2 are transmitted. The size of the Raman spectroscopic measurement portion 110X is not particularly limited as long as it can irradiate the excitation light L1 and can receive the Raman scattered light L2. For example, the size of the Raman spectroscopic measurement portion 110X may be 2 mm × 2 mm or more (4 mm 2 or more) or 2 mm or more in diameter when viewed along the Y direction orthogonal to the central axis Ax. Of course, the entire tube member 110 may be formed of a transparent member.

管部材110のラマン分光測定部分110Xの素材となる透明な部材は、一般に、表面増強ラマン分光法に使用される波長において透明な部材である。例えば、管部材110には、ガラス、プラスチックやシリコーンなどの樹脂、及び他の任意の部材を使用してもよい。なお、本実施形態において「透明」とは、波長が380nmから2000nmの波長帯域の特定波長の光に対して透過率が50%以上であることを意味している。管部材110のラマン分光測定部分110Xの光透過率は、80%以上であることが更に好ましい。また、管部材110のラマン分光測定部分110Xの光透過率は、その厚みを増減することで調節してもよい。   The transparent member that is the material of the Raman spectroscopic measurement portion 110X of the tube member 110 is generally a transparent member at the wavelength used for surface-enhanced Raman spectroscopy. For example, the tube member 110 may be made of glass, a resin such as plastic or silicone, and any other member. In the present embodiment, “transparent” means that the transmittance is 50% or more for light of a specific wavelength in a wavelength band of 380 nm to 2000 nm. The light transmittance of the Raman spectroscopic measurement portion 110X of the tube member 110 is more preferably 80% or more. Further, the light transmittance of the Raman spectroscopic measurement portion 110X of the tube member 110 may be adjusted by increasing or decreasing its thickness.

本実施形態では、管部材110は、中空チューブである。例えば、管部材110は、シリコーンなどの弾性部材からなる円筒状の中空チューブである。   In the present embodiment, the pipe member 110 is a hollow tube. For example, the tube member 110 is a cylindrical hollow tube made of an elastic member such as silicone.

嵌合部材120は、管部材110の中空部111に嵌合される。嵌合部材120の外周部120aには、管部材110の内周部110aとの間に微細流路を形成する微細溝121が設けられている。   The fitting member 120 is fitted into the hollow portion 111 of the tube member 110. A fine groove 121 that forms a fine flow path between the outer peripheral portion 120 a of the fitting member 120 and the inner peripheral portion 110 a of the tube member 110 is provided.

具体的に、微細溝121によって形成される外側端部123が管部材110の内周部110aに接することで、微細溝121と管部材110との間の隙間空間に微細流路が形成される。なお、微細溝121が微細流路を構成するとも言い換えることができる。微細溝121は、嵌合部材120のX方向の一方から他方に連続する。これにより、微細流路が、嵌合部材120のX方向の両側に連通する。   Specifically, the outer end portion 123 formed by the fine groove 121 is in contact with the inner peripheral portion 110 a of the pipe member 110, so that a fine flow path is formed in the gap space between the fine groove 121 and the pipe member 110. . It can also be said that the fine groove 121 constitutes a fine flow path. The fine groove 121 continues from one side of the fitting member 120 in the X direction to the other side. Thereby, the fine channel communicates with both sides of the fitting member 120 in the X direction.

本実施形態では、嵌合部材120の外周部120aには、微細溝121が螺旋状に形成されている。具体的に、微細溝121は、外周部120aにおいて、中心軸Axを中心とした螺旋状に延びている。   In the present embodiment, the fine groove 121 is spirally formed in the outer peripheral portion 120 a of the fitting member 120. Specifically, the fine groove 121 extends in a spiral shape around the central axis Ax in the outer peripheral portion 120a.

また、図3に示すように、微細溝121の延在方向に直交する方向において、微細溝121の断面形状は、V字形状である。微細溝121の溝幅Wgは、10μm〜1mmの範囲であることが好ましい。微細溝121の溝深さDgは、10μm〜100μmの範囲であることが好ましい。また、微細溝121の延在方向に直交する方向において、微細溝121の断面積は、100μm〜0.1mmの範囲であることが好ましい。 As shown in FIG. 3, the cross-sectional shape of the fine groove 121 is V-shaped in the direction orthogonal to the extending direction of the fine groove 121. The groove width Wg of the fine groove 121 is preferably in the range of 10 μm to 1 mm. The groove depth Dg of the fine groove 121 is preferably in the range of 10 μm to 100 μm. Moreover, in the direction orthogonal to the extending direction of the fine groove 121, the cross-sectional area of the fine groove 121 is preferably in the range of 100 μm 2 to 0.1 mm 2 .

ここで、より安価に構成するという観点から、嵌合部材120には、規格に規定されるネジ(所謂、雄ネジ)を使用することが好ましい。なお、規格は、使用される地域に有効な産業規格によって定められており、例えば、JIS(日本工業規格)やISO(国際標準化機構)に規定される規格などである。   Here, it is preferable to use the screw (so-called male screw) prescribed | regulated to a specification for the fitting member 120 from a viewpoint of comprising more cheaply. The standard is determined by an industrial standard effective in the region where it is used, and is, for example, a standard defined by JIS (Japanese Industrial Standards) or ISO (International Organization for Standardization).

例えば、微細流路デバイス100では、内径D110が3mmの管部材110を使用した場合、嵌合部材120にM3のネジを使用してもよい。なお、管部材110の材料として弾性部材を用いた場合、管部材110は、中心軸Axに直交するY方向に伸張可能である。このため、嵌合部材120の直径D120は、管部材110の内径D110に対して、例えば5〜10%程度大きくてもよい。   For example, in the microchannel device 100, when the tube member 110 having an inner diameter D110 of 3 mm is used, an M3 screw may be used for the fitting member 120. When an elastic member is used as the material of the tube member 110, the tube member 110 can be extended in the Y direction orthogonal to the central axis Ax. For this reason, the diameter D120 of the fitting member 120 may be, for example, about 5 to 10% larger than the inner diameter D110 of the tube member 110.

嵌合部材120の素材には、鉄鋼材、特殊鋼材、ステンレス鋼材、アルミ、チタン、樹脂等の材料を適用できる。   Materials such as steel, special steel, stainless steel, aluminum, titanium, and resin can be applied to the material of the fitting member 120.

嵌合部材120は、管部材110の中空部111に嵌合した状態で固定されている。本実施形態では、嵌合部材120は、管部材110の中空部111にねじ込まれることにより、管部材110の中空部111に固定されている。   The fitting member 120 is fixed in a state of being fitted into the hollow portion 111 of the tube member 110. In the present embodiment, the fitting member 120 is fixed to the hollow portion 111 of the tube member 110 by being screwed into the hollow portion 111 of the tube member 110.

微細溝121の溝内面122には、表面増強ラマン分光測定用金属ナノ粒子M(以下、金属ナノ粒子Mとして適宜説明する)が形成される。金属ナノ粒子Mを構成する金属は、例えば、金、銀、白金等の貴金属である。また、金属ナノ粒子Mを形成する手法としては、例えば、次の手法を適用できる。   On the groove inner surface 122 of the fine groove 121, surface-enhanced Raman spectroscopic metal nanoparticles M (hereinafter, appropriately described as metal nanoparticles M) are formed. The metal which comprises the metal nanoparticle M is noble metals, such as gold | metal | money, silver, platinum, for example. Moreover, as a method for forming the metal nanoparticles M, for example, the following method can be applied.

まず、嵌合部材120の溝内面122に粒径が50〜500nmのシリカナノ粒子を吸着させる。シリカナノ粒子を吸着させる方法は、嵌合部材120の材料によって適宜可能であるが、例えば、真空蒸着又はメッキ法により、金薄膜を嵌合部材120の溝内面122に形成した後に、シリカナノ粒子を吸着させてもよい。これにより、シリカナノ粒子を容易に吸着できる。   First, silica nanoparticles having a particle size of 50 to 500 nm are adsorbed on the groove inner surface 122 of the fitting member 120. The method of adsorbing silica nanoparticles can be appropriately performed depending on the material of the fitting member 120. For example, after forming a gold thin film on the groove inner surface 122 of the fitting member 120 by vacuum deposition or plating, the silica nanoparticles are adsorbed. You may let them. Thereby, silica nanoparticles can be easily adsorbed.

次に、真空蒸着法により、厚さ5〜500nmの金又は銀をシリカナノ粒子の一部に帽子状にコーティングすることにより、嵌合部材120の溝内面122に貴金属帽子状ナノ粒子を形成する。   Next, gold or silver having a thickness of 5 to 500 nm is coated on a part of the silica nanoparticles in a cap shape by vacuum deposition, thereby forming noble metal cap-shaped nanoparticles on the groove inner surface 122 of the fitting member 120.

上述の例では、金属ナノ粒子Mとして、貴金属帽子状ナノ粒子を形成する手法を例に挙げたが、これに限定されるものではない。例えば、金属ナノ粒子Mは、貴金属で構成されたナノ粒子そのものを嵌合部材120の溝内面122に吸着させることで形成してもよい。   In the above example, the method of forming noble metal cap-shaped nanoparticles as the metal nanoparticles M is described as an example, but the present invention is not limited to this. For example, the metal nanoparticles M may be formed by adsorbing the nanoparticles themselves made of a noble metal to the groove inner surface 122 of the fitting member 120.

また、上述のようにして金属ナノ粒子Mを形成した嵌合部材120を、管部材110の中空部111に嵌合させることによって、微細溝121と管部材110との間の隙間空間に微細流路が形成された微細流路デバイス100を製造できる。   Further, the fitting member 120 in which the metal nanoparticles M are formed as described above is fitted into the hollow portion 111 of the pipe member 110, whereby a fine flow is formed in the gap space between the fine groove 121 and the pipe member 110. The microchannel device 100 in which the path is formed can be manufactured.

(測定方法)
次に、測定システム1を用いた測定方法について説明する。図4は、測定方法を示すフローチャートである。
(Measuring method)
Next, a measurement method using the measurement system 1 will be described. FIG. 4 is a flowchart showing the measurement method.

ステップS10において、測定システム1を準備する。具体的に、供給機10に対して、搬送管20と、微細流路デバイス100と、搬送管30とを連結する。   In step S10, the measurement system 1 is prepared. Specifically, the transport pipe 20, the fine channel device 100, and the transport pipe 30 are connected to the feeder 10.

ステップS20において、微細流路デバイス100を用いて、流体に含まれる物質を表面増強ラマン分光法により測定する。具体的に、測定システム1では、供給機10から供給される流体が、搬送管20、微細流路デバイス100、搬送管30を介して、搬送される。   In step S20, the substance contained in the fluid is measured by the surface enhanced Raman spectroscopy using the microchannel device 100. Specifically, in the measurement system 1, the fluid supplied from the supply machine 10 is transported via the transport pipe 20, the fine channel device 100, and the transport pipe 30.

このとき、微細流路デバイス100では、流体が、嵌合部材120に設けられる微細溝121に沿って、嵌合部材120の外周部120aを螺旋状に流れる。   At this time, in the microchannel device 100, the fluid spirally flows on the outer peripheral portion 120 a of the fitting member 120 along the microgroove 121 provided in the fitting member 120.

そして、発光器40から放射された励起光L1が、管部材110を介して、微細流路デバイス100に形成される金属ナノ粒子Mに照射されると、ラマン散乱光L2が、受光器50によって検出される。受光器50によって検出されたラマン散乱光L2は、分光器(不図示)などによってラマンスペクトルとして検出される。測定システム1では、検出されたラマンスペクトルを解析することで、流体に含まれる物質を同定する。   And when the excitation light L1 radiated | emitted from the light emitter 40 is irradiated to the metal nanoparticle M formed in the microchannel device 100 via the tube member 110, the Raman scattered light L2 is received by the light receiver 50. Detected. The Raman scattered light L2 detected by the light receiver 50 is detected as a Raman spectrum by a spectroscope (not shown). In the measurement system 1, the substance contained in the fluid is identified by analyzing the detected Raman spectrum.

(作用及び効果)
以上のように、本発明の第1実施形態に係る微細流路デバイス100は、管部材110と嵌合部材120とを備える。嵌合部材120の外周部120aには、管部材110の内周部110aとの間に微細流路を形成する微細溝121が形成されている。また、微細溝121の溝内面122には、表面増強ラマン分光測定用金属ナノ粒子Mが形成される。
(Function and effect)
As described above, the microchannel device 100 according to the first embodiment of the present invention includes the tube member 110 and the fitting member 120. A fine groove 121 is formed in the outer peripheral portion 120 a of the fitting member 120 so as to form a fine flow passage with the inner peripheral portion 110 a of the tube member 110. Further, metal nanoparticles M for surface enhanced Raman spectroscopy are formed on the groove inner surface 122 of the fine groove 121.

すなわち、微細流路デバイス100では、管部材110と嵌合部材120とが別体であり、嵌合部材120の微細溝121の溝内面122に金属ナノ粒子Mが形成される。   That is, in the microchannel device 100, the tube member 110 and the fitting member 120 are separate bodies, and the metal nanoparticles M are formed on the groove inner surface 122 of the microgroove 121 of the fitting member 120.

かかる微細流路デバイス100によれば、管部材110の中空部111に嵌合部材120を嵌合すれば、金属ナノ粒子Mを溝内面122に形成した微細流路を容易に形成できる。これにより、従来技術のように、基板の内部に微細溝を形成することや、この微細溝の溝内面に金属ナノ粒子を形成するといった特殊な加工処理も不要になるため、容易に製造できるとともに、微細流路デバイス100を安価に製造できる。   According to the fine channel device 100, if the fitting member 120 is fitted in the hollow portion 111 of the tube member 110, a fine channel in which the metal nanoparticles M are formed on the groove inner surface 122 can be easily formed. This eliminates the need for special processing such as the formation of fine grooves inside the substrate and the formation of metal nanoparticles on the inner surfaces of the fine grooves, as in the prior art. The microchannel device 100 can be manufactured at low cost.

このように、本実施形態に係る微細流路デバイス100によれば、コストを抑制した微細流路デバイス100を提供できる。   Thus, according to the microchannel device 100 according to the present embodiment, the microchannel device 100 with reduced cost can be provided.

また、管部材110には、流体を流す際に一般的に用いられている管部材を適用できる。例えば、管部材110には、搬送管20及び搬送管30を適用することもできる。このため、微細流路デバイス100を製造する際のコストを一層抑制できる。   Moreover, the pipe member generally used when flowing a fluid can be applied to the pipe member 110. For example, the transport pipe 20 and the transport pipe 30 can be applied to the pipe member 110. For this reason, the cost at the time of manufacturing the microchannel device 100 can be suppressed further.

更に、管部材110の中空部111に嵌合部材120を嵌合すれば、管部材110の内部に微細流路を形成できる。これにより、従来技術のように板状の基板と、搬送管20及び搬送管30などの他の管部材とを連結する場合に比べて、より隙間なく連結できるため、連結部分において流体の漏れが発生する等の問題を防止できる。また、流体を流すフロー系の一部に微細流路デバイス100を組み込み易くなり、フロー系を構築しやすくなる。   Furthermore, if the fitting member 120 is fitted into the hollow portion 111 of the pipe member 110, a fine flow path can be formed inside the pipe member 110. Thereby, compared with the case where the plate-like substrate and other pipe members such as the transfer pipe 20 and the transfer pipe 30 are connected as in the prior art, it is possible to connect without gaps, so that fluid leaks at the connection portion. Problems such as occurrence can be prevented. Moreover, it becomes easy to incorporate the micro-channel device 100 into a part of the flow system for flowing a fluid, and it becomes easy to construct the flow system.

また、本実施形態では、嵌合部材120の外周部120aには、微細溝121が螺旋状に形成されている。これにより、嵌合部材120を管部材110の中空部111にねじ込みやすくなる。すなわち、嵌合部材120を管部材110に取り付け易くなるため、微細流路デバイス100が製造しやすくなる。   In the present embodiment, the fine groove 121 is spirally formed in the outer peripheral portion 120 a of the fitting member 120. Thereby, it becomes easy to screw the fitting member 120 into the hollow portion 111 of the tube member 110. That is, since the fitting member 120 can be easily attached to the tube member 110, the microchannel device 100 is easily manufactured.

[実施例]
次に、本発明の実施例について説明する。なお、本発明はこれらの例によって何ら限定されるものではない。
[Example]
Next, examples of the present invention will be described. In addition, this invention is not limited at all by these examples.

ここで、実施例では、測定システム1を用いて、微細流路デバイス100に流体を流す前の第1状態と、微細流路デバイス100に流体を流している間の第2状態とを測定し、それぞれの測定結果を比較することとした。   Here, in the embodiment, the measurement system 1 is used to measure the first state before flowing the fluid to the microchannel device 100 and the second state while the fluid is flowing to the microchannel device 100. Each measurement result was to be compared.

まず、第1状態の微細流路デバイス100として、参照モデル分子を付着させた嵌合部材120を有する微細流路デバイス100を作成した。参照モデル分子としては、トランス1,2ビス4ピリジルエチレン(通称、BPE)を用いた。具体的に、嵌合部材120をBPEの1mM溶液に浸漬し、その後、嵌合部材120を洗浄乾燥させた。また、乾燥後の嵌合部材120を、管部材110に嵌合させることで、微細流路デバイス100を作成した。   First, as the microchannel device 100 in the first state, the microchannel device 100 having the fitting member 120 to which the reference model molecule was attached was created. As a reference model molecule, trans 1,2 bis 4-pyridylethylene (common name, BPE) was used. Specifically, the fitting member 120 was immersed in a 1 mM solution of BPE, and then the fitting member 120 was washed and dried. Moreover, the fine channel device 100 was created by fitting the fitting member 120 after drying to the pipe member 110.

そして、第1状態の微細流路デバイス100を、表面増強ラマン分光法によって測定した。   Then, the microchannel device 100 in the first state was measured by surface enhanced Raman spectroscopy.

次に、第1状態の微細流路デバイス100に対して、対象モデル分子を含む流体を流しながら、第2状態の微細流路デバイス100を測定した。具体的に、対象モデル分子であるp−アミノチオフェノール(通称、PATP)の1mM溶液を、流体として流しながら、表面増強ラマン分光法によってリアルタイムで測定した。   Next, the microchannel device 100 in the second state was measured while flowing a fluid containing the target model molecule through the microchannel device 100 in the first state. Specifically, a 1 mM solution of p-aminothiophenol (common name, PATP), which is a target model molecule, was measured in real time by surface-enhanced Raman spectroscopy while flowing as a fluid.

図5には、測定システム1を用いて測定した測定結果を示すグラフが示されている。図5の縦軸はラマン信号強度を示し、横軸はラマンシフト(cm−1)を示す。   FIG. 5 shows a graph showing the measurement results measured using the measurement system 1. The vertical axis in FIG. 5 indicates the Raman signal intensity, and the horizontal axis indicates the Raman shift (cm−1).

図5において、データX1は、微細流路デバイス100に流体を流さずに、参照モデル分子を付着させた第1状態の微細流路デバイス100を用いて、ラマンスペクトルを測定したデータである。   In FIG. 5, data X <b> 1 is data obtained by measuring a Raman spectrum using the microchannel device 100 in the first state in which a reference model molecule is attached without flowing a fluid through the microchannel device 100.

一方、図5において、データX2は、対象モデル分子であるPATPの1mM溶液を流体として流した第2状態の微細流路デバイス100を用いて、ラマンスペクトルをリアルタイムで測定したデータである。   On the other hand, in FIG. 5, data X2 is data obtained by measuring a Raman spectrum in real time using the microchannel device 100 in the second state in which a 1 mM solution of PATP as a target model molecule is flowed as a fluid.

図5に示すように、データX1に見られたピークが、データX2では減少しており、データX1〜X2間のピークの変化を確認できる。特に、データX2では、PATPの特徴である1073cm−1付近のピークが検出できていることから、流体に含まれる物質をリアルタイムに測定できることが確認できた。   As shown in FIG. 5, the peak observed in the data X1 is decreased in the data X2, and the change of the peak between the data X1 and X2 can be confirmed. In particular, in data X2, since a peak around 1073 cm −1, which is a characteristic of PATP, can be detected, it has been confirmed that substances contained in the fluid can be measured in real time.

[変形例]
次に、上述した第1実施形態の変形例について説明する。上述した第1実施形態では、嵌合部材120の溝内面122に金属ナノ粒子Mが形成されていたが、これに限定されるものではない。例えば、嵌合部材120は、微細溝121の溝底部122bに固定される微小部材132を更に備え、金属ナノ粒子Mが、微小部材132の表面132aに形成されていてもよい。
[Modification]
Next, a modification of the first embodiment described above will be described. In 1st Embodiment mentioned above, although the metal nanoparticle M was formed in the groove | channel inner surface 122 of the fitting member 120, it is not limited to this. For example, the fitting member 120 may further include a micro member 132 that is fixed to the groove bottom 122 b of the micro groove 121, and the metal nanoparticles M may be formed on the surface 132 a of the micro member 132.

具体的に、図6(a)に示すように、微小部材132は、微細溝121の一部に形成される穴部131に埋め込まれることで、微細溝121の溝底部122bに固定されていてもよい。また、微小部材132は、微細溝121の一部に所定間隔を設けて複数配置されていてもよい。   Specifically, as shown in FIG. 6A, the micro member 132 is fixed to the groove bottom 122 b of the micro groove 121 by being embedded in a hole 131 formed in a part of the micro groove 121. Also good. A plurality of minute members 132 may be arranged in a part of the minute groove 121 with a predetermined interval.

微小部材132は、嵌合部材120を貫通する構成であってもよい。また、微小部材132の固定方法は、接着剤を用いて固定してもよいし、穴部131に形成した雌ネジに、微小部材132に形成した雄ネジを締め込むことによって固定してもよい。   The minute member 132 may be configured to penetrate the fitting member 120. The micro member 132 may be fixed using an adhesive or may be fixed by tightening the male screw formed on the micro member 132 into the female screw formed on the hole 131. .

なお、微小部材132の形状は、円柱、四角柱、三角柱など、何れの柱状であってもよい。また、微小部材132の形状は、図6(b)に示すように、球状であってもよい。   The shape of the micro member 132 may be any column shape such as a cylinder, a quadrangular column, or a triangular column. Moreover, the shape of the micro member 132 may be spherical as shown in FIG.

また、微小部材132は、紐状であってもよい。この場合、紐状の微小部材132は、微細溝121の溝底部122bに沿って固定した状態で配置される。   Further, the minute member 132 may have a string shape. In this case, the string-like minute member 132 is arranged in a state of being fixed along the groove bottom portion 122 b of the minute groove 121.

以上のように、嵌合部材120は、金属ナノ粒子Mを形成した微小部材132を別体で作成した上で、微細溝121に取り付ける構成であってもよい。   As described above, the fitting member 120 may be configured to be attached to the minute groove 121 after the minute member 132 in which the metal nanoparticles M are formed is separately formed.

これにより、微小部材132に金属ナノ粒子Mをより確実に形成した上で、微細溝121に取り付けることができるので、金属ナノ粒子Mをより確実に形成した嵌合部材120を作成できる。よって、表面増強ラマン分光法を用いた測定方法により、ラマン散乱光L2をより確実に発光させることができ、この結果、測定精度を向上することができる。   Accordingly, the metal nanoparticles M can be more reliably formed on the minute member 132 and then attached to the minute groove 121, so that the fitting member 120 in which the metal nanoparticles M are more reliably formed can be created. Therefore, the Raman scattered light L2 can be more reliably emitted by the measurement method using the surface enhanced Raman spectroscopy, and as a result, the measurement accuracy can be improved.

[本発明のその他の実施形態]
以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。
[Other Embodiments of the Present Invention]
Although the present invention has been described in detail using the above-described embodiments, it is obvious to those skilled in the art that the present invention is not limited to the embodiments described in this specification.

例えば、上述した第1実施形態では、微細溝121の断面形状は、V字形状である場合を例に挙げて説明したが、これに限定されるものではない。例えば、図7(a)〜(b)に示すように、微細溝121の断面形状は、コの字状、又は、U字形状あってもよい。すなわち、微細溝121の断面形状は、V字形状、U字形状、コの字状の何れであってもよい。又は、それらの組合せであってもよい。すなわち、V字形状、U字形状、コの字状の内の2つ以上を組合せた構成であってもよい。   For example, in the first embodiment described above, the case where the cross-sectional shape of the fine groove 121 is V-shaped has been described as an example, but is not limited thereto. For example, as shown in FIGS. 7A to 7B, the cross-sectional shape of the fine groove 121 may be a U-shape or a U-shape. That is, the cross-sectional shape of the fine groove 121 may be any of a V shape, a U shape, and a U shape. Alternatively, a combination thereof may be used. That is, the structure which combined 2 or more of V shape, U shape, and U shape may be sufficient.

例えば、微細溝121の断面形状が、コの字状、又は、U字形状である場合、V字形状に比べて、溝底部122bに底面を広く確保でき、この底面に金属ナノ粒子Mを形成できる。このため、発光器40から放出させる励起光L1が、金属ナノ粒子Mに照射されやすくなり、ラマン散乱光L2がより発光しやすくなる。   For example, when the cross-sectional shape of the fine groove 121 is a U-shape or a U-shape, the bottom surface of the groove bottom portion 122b can be secured wider than the V-shape, and the metal nanoparticles M are formed on the bottom surface. it can. For this reason, the excitation light L1 emitted from the light emitter 40 is easily applied to the metal nanoparticles M, and the Raman scattered light L2 is more easily emitted.

また、嵌合部材120の形状や微細溝121の形状は、様々な形状を適用できる。例えば、図8(a)に示すように、嵌合部材120が、円柱形状であって、嵌合部材120の外周部120aに、中心軸Axに沿って延びる微細溝121が形成されていてもよい。また、図8(b)に示すように、嵌合部材120が、円錐形状であって、嵌合部材120の外周部120aに、中心軸Axに沿って延びる微細溝121が形成されていてもよい。また、図8(c)に示すように、嵌合部材120が、卵形形状であって、嵌合部材120の外周部120aに、中心軸Axに沿って延びる微細溝121が形成されていてもよい。   Various shapes can be applied to the fitting member 120 and the fine groove 121. For example, as shown in FIG. 8A, even when the fitting member 120 has a columnar shape and the fine groove 121 extending along the central axis Ax is formed on the outer peripheral portion 120 a of the fitting member 120. Good. Further, as shown in FIG. 8B, even when the fitting member 120 has a conical shape and the fine groove 121 extending along the central axis Ax is formed in the outer peripheral portion 120 a of the fitting member 120. Good. Further, as shown in FIG. 8C, the fitting member 120 has an oval shape, and a fine groove 121 extending along the central axis Ax is formed in the outer peripheral portion 120 a of the fitting member 120. Also good.

或いは、図9(a)に示すように、嵌合部材120は、中空部125を有する筒形状であって、嵌合部材120の外周部120aの一部において、両端が中空部125に連通する微細溝121が形成される構成であってもよい。また、図9(b)に示すように、嵌合部材120の外周部120aに形成される微細溝121が、溝断面積が所定面積の第1微細溝121aと、溝断面積が所定面積よりも小さい第2微細溝121bとによって構成されていてもよい。なお、第1微細溝121aの溝断面積は、0.01mm〜10mmであり、第2微細溝121bの溝断面積は、100μm〜0.1mmであることが好ましい。 Or as shown to Fig.9 (a), the fitting member 120 is a cylinder shape which has the hollow part 125, Comprising: Both ends are connected to the hollow part 125 in some outer peripheral parts 120a of the fitting member 120. As shown in FIG. The structure by which the fine groove | channel 121 is formed may be sufficient. Further, as shown in FIG. 9B, the fine groove 121 formed on the outer peripheral portion 120a of the fitting member 120 includes a first fine groove 121a having a groove cross-sectional area of a predetermined area and a groove cross-sectional area of a predetermined area. May be constituted by a small second fine groove 121b. Incidentally, groove cross-sectional area of the first fine groove 121a is 0.01 mm 2 to 10 mm 2, groove cross-sectional area of the second fine groove 121b is preferably 100μm 2 ~0.1mm 2.

図9(a)〜(b)に示す嵌合部材120によれば、溝面積の小さい微細溝121及び第2微細溝121bを、嵌合部材120の外周部120aの一部にのみ形成するので、全部にわたって形成する場合に比べて、流体を搬送する際の流路抵抗を抑制することができる。   According to the fitting member 120 shown in FIGS. 9A to 9B, the fine groove 121 and the second fine groove 121 b having a small groove area are formed only in a part of the outer peripheral portion 120 a of the fitting member 120. Compared with the case where it forms all over, the channel resistance at the time of conveying a fluid can be controlled.

また、例えば、上述の実施形態では、管部材110の中空部111において、嵌合部材120が嵌合によってねじ込まれることで固定されていたが、これに限定されるものではない。例えば、嵌合部材120は、接着剤によって、管部材110の中空部111に固定されていてもよい。或いは、管部材110の外側から、管部材110と嵌合部材120とを挟み込む挟込部材を更に備えることで、嵌合部材120を固定してもよい。   For example, in the above-mentioned embodiment, in the hollow part 111 of the pipe member 110, although the fitting member 120 was fixed by being screwed by fitting, it is not limited to this. For example, the fitting member 120 may be fixed to the hollow portion 111 of the tube member 110 with an adhesive. Alternatively, the fitting member 120 may be fixed by further including a sandwiching member that sandwiches the pipe member 110 and the fitting member 120 from the outside of the pipe member 110.

また、例えば、嵌合部材120を管部材110に嵌合する作業効率を高める観点から、嵌合部材120は、嵌合部材120のX方向の端部(端面)において、ドライバーなどの工具でねじ込むためのマイナス(−)溝又はプラス(+)溝が形成されていてもよい。   Further, for example, from the viewpoint of improving the working efficiency of fitting the fitting member 120 to the pipe member 110, the fitting member 120 is screwed with a tool such as a screwdriver at the end portion (end surface) in the X direction of the fitting member 120. Therefore, a minus (−) groove or a plus (+) groove may be formed.

このように、本発明は上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合せにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。   As described above, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment.

本発明の微細流路デバイス及び測定方法は、流体に含まれる物質のリアルタイムモニタリング等に適用することができる。   The fine channel device and the measurement method of the present invention can be applied to real-time monitoring of a substance contained in a fluid.

1…測定システム
10…供給機
20,30…搬送管
100…微細流路デバイス
110…管部材
110a…内周部
111…中空部
120…嵌合部材
120a…外周部
121…微細溝
122…溝内面
122b…溝底部
123…外側端部
125…中空部
131…穴部
132…微小部材
M…金属ナノ粒子



DESCRIPTION OF SYMBOLS 1 ... Measurement system 10 ... Supply machine 20,30 ... Conveyance pipe 100 ... Fine flow path device 110 ... Pipe member 110a ... Inner peripheral part 111 ... Hollow part 120 ... Fitting member 120a ... Outer peripheral part 121 ... Fine groove 122 ... Groove inner surface 122b ... groove bottom part 123 ... outer end part 125 ... hollow part 131 ... hole part 132 ... minute member M ... metal nanoparticles



Claims (6)

流体を流す微細流路を備え、前記流体に含まれる物質を表面増強ラマン分光法により測定する際に用いられる微細流路デバイスであって、
所定方向に沿って延びる中空部が形成される管部材と、
前記中空部に嵌合される嵌合部材と、を備え、
前記嵌合部材を覆っている前記管部材の少なくともラマン分光測定部分は、透明な部材で形成され、
前記嵌合部材の外周部には、前記管部材の内周部との間に前記微細流路を形成する微細溝が設けられており、
前記微細溝の溝内面には、表面増強ラマン分光測定用金属ナノ粒子が形成される
ことを特徴とする微細流路デバイス。
A microchannel device comprising a microchannel for flowing a fluid, and used when measuring a substance contained in the fluid by surface-enhanced Raman spectroscopy,
A tube member formed with a hollow portion extending along a predetermined direction;
A fitting member fitted into the hollow part,
At least the Raman spectroscopic measurement part of the tube member covering the fitting member is formed of a transparent member,
The outer periphery of the fitting member is provided with a minute groove that forms the minute channel between the inner periphery of the tube member,
A microchannel device, wherein metal nanoparticles for surface enhanced Raman spectroscopy are formed on the inner surface of the microgroove.
前記管部材は、中空チューブである
ことを特徴とする請求項1記載の微細流路デバイス。
The microchannel device according to claim 1, wherein the tube member is a hollow tube.
前記嵌合部材の外周部には、前記微細溝が螺旋状に形成されている
ことを特徴とする請求項1又は2に記載の微細流路デバイス。
The fine channel device according to claim 1, wherein the fine groove is formed in a spiral shape on an outer peripheral portion of the fitting member.
前記微細溝の断面形状は、V字形状、U字形状、コの字状の何れか、又は、それらの組合せである
ことを特徴とする請求項1乃至3の何れか一項に記載の微細流路デバイス。
4. The fine structure according to claim 1, wherein a cross-sectional shape of the fine groove is any one of a V shape, a U shape, a U shape, or a combination thereof. 5. Channel device.
前記嵌合部材は、前記微細溝の溝底部に固定される微小部材を更に備え、
前記金属ナノ粒子は、前記微小部材の外表面に形成される
ことを特徴とする請求項1乃至4の何れか一項に記載の微細流路デバイス。
The fitting member further includes a micro member fixed to a groove bottom of the micro groove,
5. The microchannel device according to claim 1, wherein the metal nanoparticles are formed on an outer surface of the micro member.
流体を流す微細流路を備える微細流路デバイスを用いて、前記流体に含まれる物質を表面増強ラマン分光法により測定する工程を含み、
前記微細流路デバイスは、
所定方向に沿って延びる中空部が形成される管部材と、
前記中空部に嵌合される嵌合部材と、を備え、
前記嵌合部材を覆っている前記管部材の少なくともラマン分光測定部分は、透明な部材で形成され、
前記嵌合部材の外周部には、前記管部材の内周部との間に前記微細流路を形成する微細溝が形成されており、
前記微細溝の溝内面には、表面増強ラマン分光測定用金属ナノ粒子が形成される
ことを特徴とする測定方法。



Measuring a substance contained in the fluid by surface enhanced Raman spectroscopy, using a microchannel device including a microchannel for flowing a fluid;
The fine channel device is:
A tube member formed with a hollow portion extending along a predetermined direction;
A fitting member fitted into the hollow part,
At least the Raman spectroscopic measurement part of the tube member covering the fitting member is formed of a transparent member,
A fine groove that forms the fine flow path is formed between the outer peripheral portion of the fitting member and the inner peripheral portion of the pipe member,
A measurement method, wherein metal nanoparticles for surface-enhanced Raman spectroscopy are formed on the inner surface of the fine groove.



JP2015177331A 2015-09-09 2015-09-09 Fine channel device and measuring method Active JP6583913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177331A JP6583913B2 (en) 2015-09-09 2015-09-09 Fine channel device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177331A JP6583913B2 (en) 2015-09-09 2015-09-09 Fine channel device and measuring method

Publications (2)

Publication Number Publication Date
JP2017053702A true JP2017053702A (en) 2017-03-16
JP6583913B2 JP6583913B2 (en) 2019-10-02

Family

ID=58317779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177331A Active JP6583913B2 (en) 2015-09-09 2015-09-09 Fine channel device and measuring method

Country Status (1)

Country Link
JP (1) JP6583913B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283556A (en) * 2004-03-05 2005-10-13 Canon Inc Target substance recognition element, detection method and device
JP2006144740A (en) * 2004-11-24 2006-06-08 Miraca Holdings Inc Micro pump, liquid supply device and liquid supply system
JP2012198059A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Measuring apparatus and measuring method
US20120276549A1 (en) * 2011-04-29 2012-11-01 The Board of Trustees of the University of Illinois SRU Biosystems, Inc. Photonic biosensors incorporated into tubing, methods of manufacture and instruments for analyziing the biosensors
WO2012165400A1 (en) * 2011-06-03 2012-12-06 株式会社日立ハイテクノロジーズ Method and device for optical analysis of biopolymer
JP2015114219A (en) * 2013-12-12 2015-06-22 セイコーエプソン株式会社 Electric field enhancement element, analysis device, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283556A (en) * 2004-03-05 2005-10-13 Canon Inc Target substance recognition element, detection method and device
JP2006144740A (en) * 2004-11-24 2006-06-08 Miraca Holdings Inc Micro pump, liquid supply device and liquid supply system
JP2012198059A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Measuring apparatus and measuring method
US20120276549A1 (en) * 2011-04-29 2012-11-01 The Board of Trustees of the University of Illinois SRU Biosystems, Inc. Photonic biosensors incorporated into tubing, methods of manufacture and instruments for analyziing the biosensors
WO2012165400A1 (en) * 2011-06-03 2012-12-06 株式会社日立ハイテクノロジーズ Method and device for optical analysis of biopolymer
JP2015114219A (en) * 2013-12-12 2015-06-22 セイコーエプソン株式会社 Electric field enhancement element, analysis device, and electronic device

Also Published As

Publication number Publication date
JP6583913B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
Haddad et al. Detection and quantitation of trace fentanyl in heroin by surface-enhanced Raman spectroscopy
Que et al. Highly Reproducible Surface‐Enhanced Raman Scattering on a Capillarity‐Assisted Gold Nanoparticle Assembly
Prakash et al. Direct detection of bacteria using positively charged Ag/Au bimetallic nanoparticles: a label-free surface-enhanced Raman scattering study coupled with multivariate analysis
He et al. Use of a fractal-like gold nanostructure in surface-enhanced Raman spectroscopy for detection of selected food contaminants
Quang et al. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis
Zhao et al. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate’s surface modification
Li et al. Applications of Raman spectroscopy in detection of water quality
Ma et al. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles
Nguyen et al. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy
Pham et al. 4-Mercaptobenzoic acid labeled gold-silver-alloy-embedded silica nanoparticles as an internal standard containing nanostructures for sensitive quantitative thiram detection
Litti et al. Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering
Chen et al. Characterization of polycyclic aromatic hydrocarbons using Raman and surface‐enhanced Raman spectroscopy
JPWO2007049487A1 (en) Analytical substrate and analytical substrate assembly used for Raman spectroscopy
Verma et al. Paper based low-cost flexible SERS sensor for food adulterant detection
Nyamekye et al. Directional Raman scattering spectra of metal–sulfur bonds at smooth gold and silver substrates
Lee et al. Rapid biochemical mixture screening by three-dimensional patterned multifunctional substrate with ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS)
JP6583913B2 (en) Fine channel device and measuring method
Visaveliya* et al. Microflow SERS measurements using sensing particles of polyacrylamide/silver composite materials
Lin et al. Design, fabrication, and applications of SERS substrates for food safety detection
Janotta et al. Direct analysis of oxidizing agents in aqueous solution with attenuated total reflectance mid-infrared spectroscopy and diamond-like carbon protected waveguides
KR20100015035A (en) A portable surface-enhanced raman scattering sensor integrated with a lab-on-a-chip for highly sensitive trace analysis
CN103822912A (en) Super hydrophobic type SERS (Surface-enhanced Raman scattering) composite substrate
Zhao et al. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates
Martínez-Torres et al. Facile nanostructured substrate preparation using gold nanocuboids for SERS
US10578544B2 (en) Flow cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6583913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250