JP2017052912A - Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator - Google Patents

Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator Download PDF

Info

Publication number
JP2017052912A
JP2017052912A JP2015179820A JP2015179820A JP2017052912A JP 2017052912 A JP2017052912 A JP 2017052912A JP 2015179820 A JP2015179820 A JP 2015179820A JP 2015179820 A JP2015179820 A JP 2015179820A JP 2017052912 A JP2017052912 A JP 2017052912A
Authority
JP
Japan
Prior art keywords
peptide
heteropolysaccharide
complement
molecular weight
chlorella
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015179820A
Other languages
Japanese (ja)
Inventor
伊藤 均
Hitoshi Ito
均 伊藤
浩子 伊藤
Hiroko Ito
浩子 伊藤
雅基 藤島
Masaki Fujishima
雅基 藤島
ゆかり 荒川
Yukari Arakawa
ゆかり 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUN CHLORELLA CORP
Original Assignee
SUN CHLORELLA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUN CHLORELLA CORP filed Critical SUN CHLORELLA CORP
Priority to JP2015179820A priority Critical patent/JP2017052912A/en
Publication of JP2017052912A publication Critical patent/JP2017052912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material capable of more effectively conducting activation of a complement third component, a manufacturing method of the material and a complement third component activator containing the material as an active component.SOLUTION: There are provided peptide heteropolysaccharide obtained by removing low molecular weight material with molecular weight of 10,000 or less from an extract obtained by hot water extraction of a cell wall crushed article of Chlorella, fractionating the resulting crude polysaccharide and purifying the same, a manufacturing method therefor and a complement third component activator containing the peptide heteropolysaccharide as an active component.SELECTED DRAWING: None

Description

本発明は、クロレラから得られるペプチドヘテロ多糖体及びその製造方法並びに前記ペプチドヘテロ多糖体を有効成分とする補体第3成分活性化剤に関する。   The present invention relates to a peptide heteropolysaccharide obtained from chlorella, a method for producing the same, and a complement third component activator comprising the peptide heteropolysaccharide as an active ingredient.

防御機構の中で一番原始的な機構は、マクロファージに代表される食作用と補体の活性化に始まる一連の防御機構である。   The most primitive of the defense mechanisms is a series of defense mechanisms that begin with phagocytosis represented by macrophages and activation of complement.

補体とマクロファージは、病原微生物を含む外因性の異物の侵入、自己由来の異物的成分、老廃物、過剰生産物、不用となった活性化物などを処理し、生体の恒常性(ホメオスターシス)を保つうえで大変重要な役割を果たしている。   Complements and macrophages treat the invasion of exogenous foreign substances including pathogenic microorganisms, self-derived foreign components, waste products, excess products, waste activated products, etc., and homeostasis of the living body (homeostasis) It plays a very important role in maintaining

補体第3成分(C3)を中心とした補体活性化経路は、リンパ球、マクロファージ、赤血球、血小板、顆粒性白血球、肥満細胞などの細胞性因子に作用し、これらの生物学的活性に重要な役割を果たしている。特に生体防御反応において補体は、免疫溶血、溶菌、食作用、オプソニン化、走化性、免疫細胞溶解、および補体依存性細胞溶解など多彩な役割を示す。さらに、体液性免疫の主因子である補体は、細胞性免疫にも関与している。   Complement activation pathways centering on the third component of complement (C3) act on cellular factors such as lymphocytes, macrophages, erythrocytes, platelets, granular leukocytes, and mast cells. Plays an important role. In particular, complement plays a variety of roles in immune defense such as immune hemolysis, lysis, phagocytosis, opsonization, chemotaxis, immune cell lysis, and complement-dependent cell lysis. Furthermore, complement, which is a main factor of humoral immunity, is also involved in cellular immunity.

クロレラの細胞壁破砕物から熱水で抽出された、分子量1万以上の多糖体を有効成分とする補体第3成分の活性化については、特開2015−44753号公報に開示されている。   JP-A-2015-44753 discloses the activation of a third complement component extracted from a chlorella cell wall disruption product with hot water and containing a polysaccharide having a molecular weight of 10,000 or more as an active ingredient.

特開2015−44753号公報JP 2015-44753 A

本発明の目的は、補体第3成分の活性化をより効果的に行い得る物質及びその物質の製造方法並びにその物質を有効成分とする補体第3成分活性化剤を提供することにある。   An object of the present invention is to provide a substance capable of more effectively activating the complement third component, a method for producing the substance, and a complement third component activator containing the substance as an active ingredient. .

本発明のペプチドヘテロ多糖体及びその製造方法並びに補体第3成分活性化剤は、次のように表すことができる。   The peptide heteropolysaccharide of the present invention, the production method thereof, and the complement third component activator can be expressed as follows.

(1) 下記理化学的性質(a)乃至(e)を有するペプチドへテロ多糖体。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕 -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
(1) A peptide heteropolysaccharide having the following physicochemical properties (a) to (e):
(a) Average molecular weight: 1 million
(b) Specific rotation: [α] D −11.6 (measurement temperature 25 ° C.)
(c) Nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%
(d) Sugar composition (molar ratio): Gal: GIc: Man: Xyl: Rha: Ara: Fru = 32: 25: 13: 8: 7: 5: 3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%

(2) クロレラ・ピレノイドサの細胞壁破砕物の熱水抽出液由来である上記(1)記載のペプチドへテロ多糖体。   (2) The peptide heteropolysaccharide according to the above (1), which is derived from a hot water extract of a cell wall fragment of Chlorella pyrenoidosa.

(3) クロレラの細胞壁破砕物を熱水抽出して得られた抽出液から分子量10,000以下の低分子物質を除去し、分子量10,000以下の低分子物質が除去された液を得、
この液に無水エタノールを加え、その沈殿物として粗多糖を得、
得られた粗多糖を水に溶解させ、イオン交換クロマトグラフィーに供し、得られた画分を更にゲル濾過法に供して精製することによって上記(1)記載のペプチドヘテロ多糖体を得ることを特徴とするペプチドヘテロ多糖体の製造方法。
(3) A low molecular weight material having a molecular weight of 10,000 or less is removed from an extract obtained by hot water extraction of chlorella cell wall crushed material to obtain a liquid from which a low molecular weight material having a molecular weight of 10,000 or less has been removed;
Anhydrous ethanol is added to this solution to obtain a crude polysaccharide as a precipitate,
The obtained crude polysaccharide is dissolved in water, subjected to ion exchange chromatography, and the obtained fraction is further subjected to gel filtration to purify the peptide heteropolysaccharide described in (1) above. A method for producing a peptide heteropolysaccharide.

(4) 熱水抽出が、95乃至100℃の熱水により行われる上記(3)記載のペプチドヘテロ多糖体の製造方法。   (4) The method for producing a peptide heteropolysaccharide according to the above (3), wherein the hot water extraction is performed with hot water at 95 to 100 ° C.

(5) 上記クロレラがクロレラ・ピレノイドサである上記(3)又は(4)記載のペプチドヘテロ多糖体の製造方法。   (5) The method for producing a peptide heteropolysaccharide according to (3) or (4) above, wherein the chlorella is chlorella pyrenoidosa.

(6) 上記(1)又は(2)記載のペプチドヘテロ多糖体を有効成分とする補体第3成分活性化剤。   (6) A complement third component activator comprising the peptide heteropolysaccharide according to (1) or (2) as an active ingredient.

上記(2)乃至(4)の何れか1項に製造方法により得られたペプチドヘテロ多糖体を有効成分とする補体第3成分活性化剤。   A complement third component activator comprising the peptide heteropolysaccharide obtained by the production method according to any one of (2) to (4) as an active ingredient.

(7) 補体を活性化する経路が補体第2経路である上記(6)記載の補体第3成分活性化剤。   (7) The complement third component activator according to (6) above, wherein the complement activation pathway is the complement second pathway.

(8) 経口投与剤である上記(6)又は(7)記載の補体第3成分活性化剤。   (8) The complement third component activator according to (6) or (7), which is an orally administered agent.

本発明のペプチドヘテロ多糖体及び本発明の製造法により得られたペプチドヘテロ多糖体並びに本発明のペプチドヘテロ多糖体を有効成分とする補体第3成分活性化剤は、補体第3成分(C3)を効果的に活性化し得、更に、マクロファージを効果的に活性化し得る。   The complement third component activator comprising the peptide heteropolysaccharide of the present invention, the peptide heteropolysaccharide obtained by the production method of the present invention, and the peptide heteropolysaccharide of the present invention as an active ingredient is a complement third component ( C3) can be activated effectively, and macrophages can be activated effectively.

デキストランについての抗原抗体交叉免疫電気泳動パターンである。FIG. 5 is an antigen-antibody cross-immunoelectrophoresis pattern for dextran. FIG. カワラタケ由来のATSOについての抗原抗体交叉免疫電気泳動パターンである。It is an antigen antibody cross immunoelectrophoresis pattern about ATSO derived from Kawaratake. FA-1aについての抗原抗体交叉免疫電気泳動パターンである。It is an antigen antibody cross immunoelectrophoresis pattern about FA-1a.

(1) 本発明におけるクロレラとは、クロレラ属(Chlorella) に属する単細胞緑藻類であって、例えば、Chlorella pyrenoidosa、Chlorella ellipsoidea 、Chlorella vulgaris 、Chlorella regularis 等を挙げることができる。本発明に最も適しているのは、クロレラ・ピレノイドサ(Chlorella pyrenoidosa)である。   (1) The chlorella in the present invention is a unicellular green algae belonging to the genus Chlorella, and examples thereof include Chlorella pyrenoidosa, Chlorella ellipsoidea, Chlorella vulgaris, and Chlorella regularis. Most suitable for the present invention is Chlorella pyrenoidosa.

(2) 本発明のペプチドヘテロ多糖体の製造に用い得るクロレラ(好ましくはクロレラ・ピレノイドサ)の細胞壁破砕物は、例えば次のようにして得ることができる。すなわち、先ずクロレラ濃度10乃至25重量%のクロレラ粉体・水懸濁液を10℃以下に調整する。次にこの懸濁液を、下記のような連続湿式微粉砕機に送入し、破砕直後のスラリーが40℃以下になるよう微粉砕する。次いで、このようにして得られたクロレラスラリーを、直ちに10℃以下に冷却することにより、細胞壁が破砕されたクロレラを、品質劣化を生じさせることなく得ることができる。   (2) A cell wall disrupted product of chlorella (preferably chlorella pyrenoidosa) that can be used for production of the peptide heteropolysaccharide of the present invention can be obtained, for example, as follows. That is, first, a chlorella powder / water suspension having a chlorella concentration of 10 to 25% by weight is adjusted to 10 ° C. or lower. Next, this suspension is fed into a continuous wet pulverizer as described below, and pulverized so that the slurry immediately after crushing becomes 40 ° C. or lower. Subsequently, the chlorella slurry thus obtained is immediately cooled to 10 ° C. or lower, so that a chlorella having a crushed cell wall can be obtained without causing quality deterioration.

上記連続湿式微粉砕機は、冷却外套を持つ密閉シリンダー中に多数の直径0.5乃至1.5mmのグラスビーズが封入されたものである。そのグラスビーズ容量は密閉シリンダー容量の80乃至85%であり、グラスビーズを流入液体と混和・回転することにより、流入液体中の物質を摩砕するものである。   In the continuous wet pulverizer, a large number of glass beads having a diameter of 0.5 to 1.5 mm are enclosed in a closed cylinder having a cooling mantle. The capacity of the glass beads is 80 to 85% of the capacity of the sealed cylinder, and the glass beads are mixed and rotated with the inflowing liquid to grind the substance in the inflowing liquid.

このようにして細胞壁が破砕されたクロレラは、そのまま用いることもできるが、例えば、真空乾燥後粉砕を行う等の適宜の処理を施した後に使用してもよい。   The chlorella in which the cell wall is crushed in this way can be used as it is, but it may be used after an appropriate treatment such as pulverization after vacuum drying.

(3) 本発明のペプチドヘテロ多糖体は、例えば次のように製造することができる。   (3) The peptide heteropolysaccharide of the present invention can be produced, for example, as follows.

クロレラ(好ましくはクロレラ・ピレノイドサ)の細胞壁破砕物(例えば、細胞壁破砕物を真空乾燥した後、粉砕した物)を、熱水抽出(例えば95−100℃の熱水による抽出。抽出時間は例えば2時間であるがこれに限らない。)し、抽出液を、例えば抽出後静置して上澄として、得る。   Chlorella (preferably Chlorella pyrenoidosa) cell wall crushed material (for example, vacuum-dried cell wall crushed material) and hot water extraction (for example, extraction with 95-100 ° C. hot water. Extraction time is 2 for example. Time, but not limited to this), and the extract is left as a supernatant after extraction, for example.

得られた抽出液(好ましくは遠心分離による上澄液)から分子量10,000以下の低分子物質を、例えば透析濾過又は限外濾過により、除去し、分子量10,000以下の低分子物質が除去された液を得る。   The low molecular weight material having a molecular weight of 10,000 or less is removed from the obtained extract (preferably the supernatant obtained by centrifugation), for example, by diafiltration or ultrafiltration, and the low molecular weight material having a molecular weight of 10,000 or less is removed. To obtain a liquid.

この液に(例えば3倍体積量の)無水エタノールを加え,その沈殿物(例えば遠心分離を行った沈殿物)として粗多糖(FA)を得る。この粗多糖(FA)は、前記沈殿物を無水エタノールで洗浄し、次いで無水エーテルで洗浄し、乾燥(好ましくは真空乾燥)させたものであることが好ましい。   To this solution is added absolute ethanol (for example, 3 times the volume), and crude polysaccharide (FA) is obtained as a precipitate (for example, a centrifuged precipitate). The crude polysaccharide (FA) is preferably obtained by washing the precipitate with absolute ethanol, then washing with anhydrous ether, and drying (preferably vacuum drying).

得られた粗多糖(FA)を水に溶解させ、イオン交換クロマトグラフィー[例えば、和光純薬工業社製のDEAE-Cellulose(Cl)を使用]及び必要な勾配溶離[例えば、(gradient elution with 0→1.0M NaCl)]に供して分画し、画分(FA-1)を得る。 The obtained crude polysaccharide (FA) is dissolved in water, ion-exchange chromatography [eg, using DEAE-Cellulose (Cl ) manufactured by Wako Pure Chemical Industries, Ltd.] and necessary gradient elution [eg, (gradient elution with 0 → 1.0M NaCl)] to obtain a fraction (FA-1).

FA-1をゲル濾過法に供して精製することによって、すなわち、例えば和光純薬工業社製のSephadex G-50等を使用したゲル濾過法及び必要な勾配溶離[例えば(gradient elution with 0→2.0M NaCl)]により精製することによって、FA-1a、すなわち本発明のペプチドヘテロ多糖体を得ることができる。   By purifying FA-1 by gel filtration, for example, gel filtration using Sephadex G-50 manufactured by Wako Pure Chemical Industries, Ltd. and necessary gradient elution [for example, (gradient elution with 0 → 2.0 FA-1a, that is, the peptide heteropolysaccharide of the present invention can be obtained by purification with M NaCl)].

(4) 本発明のペプチドヘテロ多糖体は、下記理化学的性質(a)乃至(e)を有する。好ましくはクロレラ・ピレノイドサの細胞壁破砕物の熱水抽出液由来のペプチドヘテロ多糖体である。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕 -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
(4) The peptide heteropolysaccharide of the present invention has the following physicochemical properties (a) to (e). Preferably, it is a peptide heteropolysaccharide derived from a hot water extract of a cell wall fragment of Chlorella pyrenoidosa.
(a) Average molecular weight: 1 million
(b) Specific rotation: [α] D −11.6 (measurement temperature 25 ° C.)
(c) Nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%
(d) Sugar composition (molar ratio): Gal: GIc: Man: Xyl: Rha: Ara: Fru = 32: 25: 13: 8: 7: 5: 3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%

(5) 本発明の補体第3成分活性化剤は、上記(4)記載のペプチドヘテロ多糖体を有効成分とする。或いは、上記(3)記載の製造方法により得られたペプチドヘテロ多糖体を有効成分とする。   (5) The complement third component activator of the present invention comprises the peptide heteropolysaccharide described in (4) above as an active ingredient. Alternatively, the peptide heteropolysaccharide obtained by the production method described in (3) above is used as an active ingredient.

本発明の補体第3成分活性化剤が補体を活性化する経路としては、補体第2経路を挙げることができる。   Examples of the pathway by which the third complement activator of the present invention activates complement include the complement second pathway.

本発明の補体第3成分活性化剤は、経口投与の他、補体第3成分活性化剤として通常採用し得る他の各種剤形において適用可能である。   The complement third component activator of the present invention can be applied in various other dosage forms that can be usually employed as a complement third component activator in addition to oral administration.

本発明の補体第3成分活性化剤における経口投与の形態に特に限定はないが、
例えば、粉末、錠剤、硬カプセル剤、軟カプセル剤、水に溶解した液剤若しくはその他の液剤とすることができる。
There is no particular limitation on the form of oral administration in the complement third component activator of the present invention,
For example, it can be a powder, a tablet, a hard capsule, a soft capsule, a solution dissolved in water, or another solution.

また種々の形態を形成する上で、各種賦形剤、結合剤、崩壊剤、滑沢剤、コーティング剤、着色剤、矯味剤、矯臭剤、可塑剤等を適宜用いることができる。   In forming various forms, various excipients, binders, disintegrants, lubricants, coating agents, coloring agents, flavoring agents, flavoring agents, plasticizers, and the like can be appropriately used.

賦形剤の例としては、糖類(乳糖,白糖,ブドウ糖,マンニトール),デンプン(バレイショ,コムギ,トウモロコシ),無機物(炭酸カルシウム,硫酸カルシウム,炭酸水素ナトリウム,塩化ナトリウム),結晶セルロース,植物末(カンゾウ末,ゲンチアナ末)等を挙げることができる。   Examples of excipients include sugars (lactose, sucrose, glucose, mannitol), starch (potato, wheat, corn), minerals (calcium carbonate, calcium sulfate, sodium bicarbonate, sodium chloride), crystalline cellulose, plant powder ( Licorice powder, gentian powder) and the like.

結合剤の例としては、デンプンのり液,アラビアゴム,ゼラチン,アルギン酸ナトリウム,メチ/レセルロース(MC),エチルセルロース(EC),ポリビニルピロリドン(PVP),ポリビニルアルコール(PVA),ヒドロキシプロピルセルロース(HPC),カルポキシメチルセルロース(CMC)等を挙げることができる。   Examples of binders include starch paste, gum arabic, gelatin, sodium alginate, meth / recellulose (MC), ethylcellulose (EC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC). , Carboxymethylcellulose (CMC) and the like.

崩壊剤の例としては、デンプン,寒天,ゼラチン末,結晶セルロース,CMC・Na,CMC・Ca,炭酸カルシウム,炭酸水素ナトリウム,アルギン酸ナトリウム等を挙げることができる。   Examples of the disintegrant include starch, agar, gelatin powder, crystalline cellulose, CMC / Na, CMC / Ca, calcium carbonate, sodium hydrogen carbonate, sodium alginate and the like.

滑沢剤の例としては、ステアリン酸マグネシウム,タルク,水素添加植物油,マクロゴール,シリコーン油等を挙げることができる。   Examples of lubricants include magnesium stearate, talc, hydrogenated vegetable oil, macrogol, silicone oil and the like.

コーティング剤の例としては、糖衣(白糖,HPC,セラック),膠衣(ゼラチン,グリセリン,ソルビトール),フイルムコーティング〔ヒドロキシプロピルメチルセルロース(HPMC),EC,HPC,PVP〕,腸溶性コーティング〔ヒドロキシプロビルメチルセルロースフタレート(HPMCP),セルロースアセテートフタレート(CAP)〕等を挙げることができる。   Examples of coating agents include sugar coating (sucrose, HPC, shellac), glue (gelatin, glycerin, sorbitol), film coating [hydroxypropyl methylcellulose (HPMC), EC, HPC, PVP], enteric coating [hydroxyprovir Methyl cellulose phthalate (HPMCP), cellulose acetate phthalate (CAP)] and the like.

着色剤の例としては、水溶性食用色素,レーキ色素)等を挙げることができる。矯味剤の例としては、乳糖,白糖,ブドウ糖,マンニトール)等を挙げることができる。矯臭剤の例としては、芳香性精油類),光線遮断剤(酸化チタン)等を挙げることができる。可塑剤の例としては、フタル酸エステル類,植物油,ポリエチレングリコール)等を挙げることができる。   Examples of the colorant include water-soluble food dyes and lake dyes. Examples of the corrigent include lactose, sucrose, glucose, mannitol) and the like. Examples of flavoring agents include aromatic essential oils) and light blocking agents (titanium oxide). Examples of the plasticizer include phthalic acid esters, vegetable oils, polyethylene glycol) and the like.

なお、本発明の補体第3成分活性化剤のヒトの服用量は、有効成分であるペプチドヘテロ多糖体の含有量において、例えば3mg乃至250mg/日程度が好ましい。   In addition, the human dose of the complement third component activator of the present invention is preferably, for example, about 3 mg to 250 mg / day in terms of the content of the peptide heteropolysaccharide as an active ingredient.

ペプチドへテロ多糖体の補体第3成分活性化効果について試験を行った。   A test was performed for the effect of activating the third component of complement of peptide heteropolysaccharide.

1.被験物質の製造   1. Manufacture of test substances

(1) 細胞壁を破砕したクロレラ・ピレノイドサ(Chlorella pyrenoidosa)の乾燥粉末(以下、単に「クロレラ」とも言う。)を、次のように製造した。   (1) A dried powder (hereinafter also simply referred to as “chlorella”) of Chlorella pyrenoidosa with the cell wall crushed was produced as follows.

冷却外套を持つ密閉シリンダー中にその密閉シリンダー容量の80乃至85%の容量の多数の直径0.5乃至1.5mmのグラスビーズが封入されており、そのグラスビーズを流入液体と混和・回転することにより流入液体中の物質を摩砕する連続湿式微粉砕機(商品名:ダイノーミル[KD型] WAB, Inc.製)に、10℃以下に調整されたクロレラ・ピレノイドサ濃度10乃至25重量%のクロレラ・ピレノイドサ粉体・水懸濁液を送入して、破砕直後のスラリーが40℃以下になるよう微粉砕し、次いで、このようにして得られたクロレラ・ピレノイドサスラリーを、直ちに10℃以下に冷却し、真空乾燥後、粉砕することにより、細胞壁破砕クロレラ・ピレノイドサ乾燥粉末が得られた。   A large number of glass beads of 0.5 to 1.5 mm in diameter with a capacity of 80 to 85% of the capacity of the sealed cylinder are enclosed in a sealed cylinder having a cooling jacket, and the glass beads are mixed and rotated with the inflowing liquid. In a continuous wet pulverizer (trade name: DYNOMILL [KD type, manufactured by WAB, Inc.) that crushes substances in the inflowing liquid, the concentration of chlorella pyrenoids adjusted to 10 ° C. or lower is 10 to 25% by weight. The chlorella / pyrenoid powder / water suspension was fed and pulverized so that the slurry immediately after crushing was 40 ° C. or lower, and then the chlorella / pyrenoid slurry thus obtained was immediately cooled to 10 ° C. By cooling to the following, vacuum drying, and pulverization, a cell wall-crushed chlorella pyrenoidosa dry powder was obtained.

(2) 得られた細胞壁破砕クロレラ・ピレノイドサ乾燥粉末を水に懸濁させた後、95乃至100℃で2時間煮沸した。   (2) The obtained cell wall disrupted chlorella pyrenoidosa dry powder was suspended in water and then boiled at 95 to 100 ° C. for 2 hours.

これを常温に冷却した後、静置状態で上澄をダイアフィルターG−10T(日本真空技術社製:分画分子量10000)を用いて限外濾過して第1の濾過残渣を得た。   After cooling this to room temperature, the supernatant was allowed to stand still and ultrafiltered using a diafilter G-10T (manufactured by Nippon Vacuum Engineering Co., Ltd .: molecular weight cut off 10,000) to obtain a first filtration residue.

前記静置状態における沈殿物を、再度、95乃至100℃で2時間にわたり水で煮沸し、これを常温に冷却した後、静置状態で上澄をダイアフィルターG−10T(日本真空技術社製:分画分子量10000)を用いて限外濾過して第2の濾過残渣を得、第1の濾過残渣と第2の濾過残渣を混合した。   The precipitate in the standing state is again boiled with water at 95 to 100 ° C. for 2 hours, cooled to room temperature, and then the supernatant is left to stand in a diafilter G-10T (manufactured by Nippon Vacuum Technology Co., Ltd.). : A fractional molecular weight of 10000) to obtain a second filtration residue, and the first filtration residue and the second filtration residue were mixed.

この混合物を3℃で12時間静置した後、室温で10,000 rpmで20分間遠心分離処理し、上澄と沈殿に分けた。   The mixture was allowed to stand at 3 ° C. for 12 hours, and then centrifuged at 10,000 rpm for 20 minutes at room temperature to separate into a supernatant and a precipitate.

この上澄を回収して3℃でダイアフィルターG−10T(日本真空技術社製:分画分子量10000)を用いて限外濾過することにより、非濾過画分(M.W. 10,000以上)と濾過画分(M.W. 10,000以下) を得た。   The supernatant is collected and ultrafiltered at 3 ° C. using Diafilter G-10T (manufactured by Nippon Vacuum Engineering Co., Ltd .: molecular weight cut off 10,000) to obtain an unfiltered fraction (MW 10,000 or more) and a filtered fraction. (MW 10,000 or less).

この非濾過画分に、容量の3倍の無水エタノールを加えて室温で10,000 rpmで遠心分離処理し、上澄と沈殿に分けた。   To this non-filtered fraction, 3 times the volume of absolute ethanol was added and centrifuged at room temperature at 10,000 rpm to separate into supernatant and precipitate.

沈殿は、無水エタノールで3回洗浄後、無水エーテルで1回洗浄した。その後、40℃で真空乾燥してFA(粗多糖)を得た。   The precipitate was washed 3 times with absolute ethanol and then once with anhydrous ether. Then, it vacuum-dried at 40 degreeC and obtained FA (crude polysaccharide).

FAを水に溶解させ、イオン交換クロマトグラフィー[和光純薬工業社製のDEAE-Cellulose(Cl)を使用]及び勾配溶離[(gradient elution with 0→1.0M NaCl)]に供して画分FA-1、FA-2、FA-3に分画した。 FA is dissolved in water and subjected to ion exchange chromatography [using DEAE-Cellulose (Cl ) manufactured by Wako Pure Chemical Industries, Ltd.] and gradient elution [(gradient elution with 0 → 1.0 M NaCl)]. -1, FA-2, and FA-3.

画分FA-1を、ゲル濾過法[和光純薬工業社製のSephadex G-50を使用]及び勾配溶離(gradient elution with 0→2.0M NaCl)により精製することによって、FA-1aを得た。   Fraction FA-1 was purified by gel filtration [using Sephadex G-50 manufactured by Wako Pure Chemical Industries, Ltd.] and gradient elution (gradient elution with 0 → 2.0 M NaCl) to obtain FA-1a. .

クロレラ・ピレノイドサ乾燥粉末400gからの粗多糖FAおよび本発明のペプチドヘテロ多糖体FA-1aの収量は、真空凍結乾燥粉末でそれぞれ15.63g及び253.27mgであった。   The yields of crude polysaccharide FA and peptide heteropolysaccharide FA-1a of the present invention from 400 g of chlorella pyrenoids dried powder were 15.63 g and 253.27 mg, respectively, as a vacuum lyophilized powder.

FA-1aを下記のように分析した結果、下記理化学的性質(a)乃至(e)を有するペプチドヘテロ多糖体であることが判明した。   As a result of analyzing FA-1a as described below, it was found to be a peptide heteropolysaccharide having the following physicochemical properties (a) to (e).

(i) 糖組成の分析   (i) Analysis of sugar composition

全糖については,フェノール硫酸法(比色法)により分析した。   Total sugars were analyzed by the phenol-sulfuric acid method (colorimetric method).

構成糖組成の分析は次のように行った。   Analysis of the constituent sugar composition was performed as follows.

検体であるFA-1a(2mg)をジメチルスルホキシド(DMSO,0.5mL)に溶解させ、その溶液に対し水酸化ナトリウム(20mg)及びヨウ化メチル(0.2mL)を添加した。   The sample FA-1a (2 mg) was dissolved in dimethyl sulfoxide (DMSO, 0.5 mL), and sodium hydroxide (20 mg) and methyl iodide (0.2 mL) were added to the solution.

これを撹拝した後、クロロホルム(1.5mL)で抽出を行い、減圧乾固してメチル化多糖を得た。   After stirring this, extraction with chloroform (1.5 mL) was carried out, followed by drying under reduced pressure to obtain a methylated polysaccharide.

これに対し80%ギ酸(1mL)を添加し滅圧乾固した後、2Nトリフルオロ酢酸(1mL)によりメチル化多糖を得た。   On the other hand, 80% formic acid (1 mL) was added and vacuum-dried, and then methylated polysaccharide was obtained with 2N trifluoroacetic acid (1 mL).

これに80%ギ酸(1mL)を添加し滅圧乾固した後、2Nトリフルオロ酢酸(1mL)によりメチル化多糖を加水分解し、滅圧乾固して部分メチル化多糖を得た。   To this, 80% formic acid (1 mL) was added and vacuum-dried, and then the methylated polysaccharide was hydrolyzed with 2N trifluoroacetic acid (1 mL) and vacuum-dried to obtain a partially methylated polysaccharide.

この部分メチル化多糖に少量の蒸留水と水酸化ホウ素ナトリウム(5mg)を添加し、一晩放置後、酢酸で水酸化ホウ素ナトリウムを分解した。   A small amount of distilled water and sodium borohydride (5 mg) were added to the partially methylated polysaccharide, and after standing overnight, sodium borohydride was decomposed with acetic acid.

更にホウ酸を除去して部分メチル化アルジトールを得た。これに無水酢酸・ピリジン(1:1)混合液(1mL)を加え4時間加熱後、冷却乾固した。続いてクロロホルム(2mL)と蒸留水(1mL)を添加して混合後、クロロホルム層を回収して無水硫酸ナトリウム(1.5g)を添加し、脱水処理を行った後、減圧乾固した。   Further, boric acid was removed to obtain partially methylated alditol. To this was added an acetic anhydride / pyridine (1: 1) mixture (1 mL), and the mixture was heated for 4 hours and then cooled to dryness. Subsequently, chloroform (2 mL) and distilled water (1 mL) were added and mixed, the chloroform layer was recovered, anhydrous sodium sulfate (1.5 g) was added, and dehydration treatment was performed, followed by drying under reduced pressure.

これを蒸留水200μLに溶解させ、その溶液30μLを高速液体クロマトグラフイー(HPLC)分析(島津LC-9A型)に供し、構成糖の同定・定量を行つた。   This was dissolved in 200 μL of distilled water, and 30 μL of the solution was subjected to high performance liquid chromatography (HPLC) analysis (Shimadzu LC-9A type) to identify and quantify the constituent sugars.

(ii) 全窒素の定量   (ii) Determination of total nitrogen

セミミクロナルダール法により測定した。   It was measured by the semi-micronardal method.

(iii) タンパクの定量   (iii) Protein quantification

タンパク定量はLowry法により行なった。   Protein quantification was performed by the Lowry method.

(iv) アミノ酸分析   (iv) Amino acid analysis

検体(1mg)を6N塩酸(1mL)と共に封管し,110℃,20時間の加水分解処理後,日立835型アミノ酸自動分析装置に供した。   A sample (1 mg) was sealed with 6N hydrochloric acid (1 mL), subjected to hydrolysis treatment at 110 ° C. for 20 hours, and then subjected to a Hitachi 835 amino acid automatic analyzer.

(v) 平均分子量の測定   (v) Measurement of average molecular weight

平均分子量の測定は,ゲル濾過法(Sephadex G-100、和光純薬工業)により行った。   The average molecular weight was measured by gel filtration (Sephadex G-100, Wako Pure Chemical Industries).

ゲル濾過用多糖分子量マーカーには,α−1,6結合の直鎖状多糖類pullulanキットShodex standard P-82(昭和電工)および標準デキストラン(Sigma-Aldrich)を用いた。   As the polysaccharide molecular weight markers for gel filtration, α-1,6-linked linear polysaccharide pullulan kit Shodex standard P-82 (Showa Denko) and standard dextran (Sigma-Aldrich) were used.

(vi) 比旋光度の測定   (vi) Measurement of specific rotation

比旋光度の測定には円木分光自動旋光計(DIP-360型)を用い、測定温度は25℃とした。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕 -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
The circular rotation spectrophotometer (DIP-360 type) was used to measure the specific rotation, and the measurement temperature was 25 ° C.
(a) Average molecular weight: 1 million
(b) Specific rotation: [α] D −11.6 (measurement temperature 25 ° C.)
(c) Nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%
(d) Sugar composition (molar ratio): Gal: GIc: Man: Xyl: Rha: Ara: Fru = 32: 25: 13: 8: 7: 5: 3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%

2.交叉免疫電気泳動法による補体活性能の測定   2. Measurement of complement activity by cross immunoelectrophoresis

(1) 材料   (1) Material

ヒト新鮮自家血清0.2mLを分注した蓋付き遠心管(2mL)に、被検物質であるFA-1a 200μg、陰性対照としてデキストラン(分子量228,000;半井化学薬品製)200μg,陽性対照としてカワラタケ由来のATSO 200μgを加え、これらを被検血清とした。   From a centrifuge tube with a lid (2 mL) into which 0.2 mL of human fresh autologous serum was dispensed, the test substance FA-1a 200 μg, the negative control dextran (molecular weight 228,000; manufactured by Hanai Chemicals) 200 μg, the positive control derived from Kawaratake 200 μg of ATSO was added, and these were used as test sera.

陽性対照として用いたカワラタケ由来のATSOは、β-1,3グルコシド結合をもつ直鎖のグルコース残基3個に対して1個の割合で、1分子のグルコースがβ-1,6グルコシド結合を介して分岐する多糖体であり、抗腫瘍活性と補体C3活性を示す。本発明のペプチドヘテロ多糖体であるFA-1aは、β(1,3)(1,6)グルカン構造を有するATSOとは異なる物質である。   As a positive control, ATSO derived from Kawaratake is one for every three linear glucose residues with β-1,3 glucoside bonds, and one molecule of glucose has β-1,6 glucoside bonds. It is a polysaccharide that branches through and exhibits antitumor activity and complement C3 activity. FA-1a which is a peptide heteropolysaccharide of the present invention is a substance different from ATSO having a β (1,3) (1,6) glucan structure.

なお、FA-1aに、抗原特異性をもった多糖体とりン脂質、すなわち0抗原(内毒素エンドトキシン)のリピドAが結合してできたリポ多糖体の混在する可能性については、リムルス試験を実施して陰性であったことにより否定された。   For the possibility of mixing polysaccharides with antigen specificity, that is, lipopolysaccharides formed by binding lipid A of 0 antigen (endotoxin endotoxin) with FA-1a, the Limulus test was conducted. Negative due to negative performance.

(2) 測定方法   (2) Measurement method

各被検血清の補体活性能は,抗原・抗体交叉免疫泳動法(antigen-antibody Crossed immunoelectrophoresis [志村圭志郎、塩見俊朗、伊藤均、成瀬千助 ATSOの添加によりConvertしたC3の抗原・抗体交差電気泳動像による残余C3活性の測定 医学のあゆみ 1977 103 20-22]、[Shimura K, Ito H, Hibasami H Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum Jpn. J. Pharmacol 1983 33 403-408])により測定した。   Complement activity of each test serum was determined by antigen-antibody crossed immunoelectrophoresis [Crossed C3 antigen-antibody crossed by addition of ATSO, Shiro Shimura, Toshiro Shiomi, Hitoshi Ito, Chisuke Naruse ATSO Measurement of residual C3 activity by electrophoresis image History of medicine 1977 103 20-22, [Shimura K, Ito H, Hibasami H Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophorphoresis using fresh human serum Jpn. J. Pharmacol 1983 33 403 -408]).

電気泳動はTricine veronal buffer(TVB)(pH8.6,μ=0.05)の条件下で行なった。支持体として、agarose A-45(ナカライテクス)をTVBで1.2%に溶解して調製した1.2% agarose-TVBを用いた。   Electrophoresis was performed under the condition of Tricine veronal buffer (TVB) (pH 8.6, μ = 0.05). As a support, 1.2% agarose-TVB prepared by dissolving agarose A-45 (Nacalai Tex) to 1.2% with TVB was used.

抗ヒト血清については、human C3(Gene Tex.Inc.)をFreund's complete adjuvant(Difco Lab.)と共にウサギに免疫して作製した。抗ヒト血清は、1.2% agarose-TVBで10倍希釈したものを76×76mmのスライドガラス上に5mL流し固め、これをimunoplateとして用いた。   Anti-human serum was prepared by immunizing rabbits with Freund's complete adjuvant (Difco Lab.) With human C3 (Gene Tex. Inc.). The anti-human serum diluted 10-fold with 1.2% agarose-TVB was poured on a 76 × 76 mm glass slide and solidified, and this was used as an imunoplate.

これとは別に、スライドガラス上で被検血清5μLを含む1.2% agarose-TVB(6-7mm幅)を電気泳動した後、これを抗ヒト血清10%を含むimmunoplate上に載せ、二次元的に展開泳動を行った。なお、泳動条件は1.2mA/cm, 5時間とした。   Separately, after electrophoresis of 1.2% agarose-TVB (6-7mm width) containing 5 μL of test serum on a slide glass, this was placed on an immunoplate containing 10% of anti-human serum, and two-dimensionally. Development electrophoresis was performed. The electrophoresis conditions were 1.2 mA / cm for 5 hours.

(3) 測定結果   (3) Measurement results

このようにヒト新鮮自家血清を用いて行なった二次元の抗原抗体交叉免疫電気泳動パターンをそれぞれ図1乃至図3に示す。図1乃至図3において、右が陽極(+)、左が陰極(−)である。   The two-dimensional antigen-antibody cross-immunoelectrophoresis patterns performed using human fresh autologous serum are shown in FIGS. 1 to 3, respectively. 1 to 3, the right side is an anode (+), and the left side is a cathode (-).

図1乃至図3に示されるように、デキストラン(陰性対照)、ATSO(陽性対照)、FA-1aで、Tr(トランスフェリン)とα-M(マクログロブリン)のピークの変動はほとんど認めらわなかった。 As shown in FIGS. 1 to 3, dextran (negative control), ATSO (positive control), and FA-1a show almost no fluctuation in peaks of Tr (transferrin) and α 2 -M (macroglobulin). There was no.

陰性対照であるデキストランでは、C3(native C3)がTrの(−)側の内側に沿って直立し(+)側に裾野を形成するパターンとして出現した(図1)。   In dextran, which is a negative control, C3 (native C3) appeared upright along the inner side of the (−) side of Tr and formed a skirt on the (+) side (FIG. 1).

これに対し、ATSOとFA-1aでは、native C3のピークは低下し、変換C3(converted C3)は三峰性を示して(+)側にシフトした(図2及び図3における文字が添えられていない矢印)。デキストラン、ATSO及びFA-1aの泳動パターンを比較すると、安定なα-Mのピークと変換C3のピークの高さの比率は、デキストランで最も低く、ATSOとFA-1aはほぼ同程度であった。 On the other hand, in ATSO and FA-1a, the peak of native C3 decreased, and the converted C3 (converted C3) shifted to the (+) side with a trimodality (the letters in FIGS. 2 and 3 are attached). No arrow). Comparing the migration patterns of dextran, ATSO and FA-1a, the ratio of the height of the stable α 2 -M peak to the peak of converted C3 was the lowest for dextran, and ATSO and FA-1a were almost the same. It was.

以上の結果から、FA-1aもATSOと同様に補体第3成分(C3)活性化剤として作用することが確認された。   From the above results, it was confirmed that FA-1a also acts as a complement third component (C3) activator like ATSO.

補体活性化経路としては,古典経路(C1assical pathway)といわわるC1→C4→C2→C3→C5→C6→C7→C8→C9の順で活性化する経路と、補体第2経路(alternative pathway)といわわるC1、C4、C2を活性化することなく,C3以降(C3→C5→C6→C7→C8→C9)を活性化する径路が知られている。   As the complement activation pathway, the pathway that is activated in the order of C1-> C4-> C2-> C3-> C5-> C6-> C7-> C8-> C9 called the classical pathway (C1assical pathway) and the alternative pathway (alternative) There is a known pathway that activates C3 and later (C3 → C5 → C6 → C7 → C8 → C9) without activating C1, C4, and C2 (pathway).

補体第1成分のC1は、C1q、C1r、C1sの3つの成分がCa2+を介して結合した複合体である。Ca2+キレート試薬エチレングリコールビス(β−アミノエチルエーテル)N, N, N', N'−四酢酸(EGTA)10mM存在下でFA-1a及びATSOのそれぞれについて電気泳動を行っても、同様の泳動パターンが認められた。 C1 of the first complement component is a complex in which three components C1q, C1r and C1s are bound via Ca 2+ . Ca 2+ chelating reagent ethylene glycol bis (β-aminoethyl ether) N, N, N ′, N′-tetraacetic acid (EGTA) In the presence of 10 mM, each of FA-1a and ATSO was electrophoresed similarly. A migration pattern was observed.

このことより、FA-1aとATSOは、何れも補体第2経路に働き、補体C3を活性化することか明らかとなった。   From this, it was clarified that FA-1a and ATSO both act on the alternative pathway of the complement and activate complement C3.

なお、上記の分子量1万未満の多糖体からなる濾過画分(M.W. 10,000以下) が、陰性対照であるデキストランと同様の泳動パターンを示すことは、特願2013−175440(特開2015−44753号公報)に開示した通りである。   Note that the filtration fraction (MW 10,000 or less) composed of a polysaccharide having a molecular weight of less than 10,000 exhibits the same migration pattern as that of dextran, which is a negative control, (Japanese Patent Application No. 2013-44553). Publication).

3.生体内補体C3活性の測定   3. Measurement of in vivo complement C3 activity

(1) 実験動物および飼育条件   (1) Laboratory animals and rearing conditions

6適齢のICR/Slc雌マウス(日本エスエルシー社製)を、温度23±2℃、相対湿度55±5%、明暗サイクル12時間(8時開始)のバリアシステム環境下で飼育し、固型飼料(クレアCE-7,日本クレア社製)と水道水を自由に摂収させた。   6 ICR / Slc female mice of appropriate age (manufactured by SLC Japan) are raised in a barrier system environment at a temperature of 23 ± 2 ° C., a relative humidity of 55 ± 5%, and a light / dark cycle of 12 hours (starting at 8 o'clock). Feed (CLEA CE-7, manufactured by CLEA Japan) and tap water were collected freely.

7日間の予備飼育の後、一般症状観察及び尿検査で異常が認められなかったマウスを1群10匹としてプラスチックケージに5匹ずつ飼育して試験に供した。   After 7 days of preliminary breeding, 5 mice were grouped in plastic cages as groups of 10 mice that had no abnormality observed in general symptom observation and urinalysis, and used for the test.

(2) 測定方法   (2) Measurement method

各群のマウスに、被検物質としてFA-1a(50mg/kg)及びATSO(150mg/kg)、対照物質としてデキストラン(250mg/kg)を、1日2回、7日間連日、胃カテーテルにより強制的に経口投与した。   For each group of mice, FA-1a (50 mg / kg) and ATSO (150 mg / kg) as test substances and dextran (250 mg / kg) as control substances were forced twice daily for 7 days by gastric catheter. Orally.

最終投与2時間後に、次のようにして腹腔内マクロファージを採取し、細胞数測定を行なった。   Two hours after the final administration, intraperitoneal macrophages were collected and the number of cells was measured as follows.

エーテル麻酔下のマウスを脱血した後、腹腔内にリン酸緩衝生理食塩水(phosphate buffered saline, PBS)3mLを注射器で注入した。軽く腹部を揉んでから腹部の皮膚を剥ぎ、ピンセットで腹膜をつかみ、ハサミで少し切り口を開け、駒込ピペットで腹腔滲出細胞浮遊液を全て遠心管に採取し、直ちに氷水中に保存した。   After blood removal from the mice under ether anesthesia, 3 mL of phosphate buffered saline (PBS) was injected into the abdominal cavity with a syringe. After gently rubbing the abdomen, the skin of the abdomen was peeled off, the peritoneum was grasped with tweezers, a small cut was made with scissors, and all of the peritoneal exudate cell suspension was collected in a centrifuge tube with a Komagome pipette and immediately stored in ice water.

採取した腹腔滲出細胞浮遊液は、各々遠心管に入れて遠心分離(225×g,3分間)し、上清を捨て氷冷したPBS 3mLを加えて腹腔滲出細胞を再浮遊させた。同様の操作を3回行い、細胞を洗浄した。   The collected peritoneal exudate cell suspension was placed in a centrifuge tube and centrifuged (225 × g, 3 minutes). The supernatant was discarded, and 3 mL of ice-cold PBS was added to resuspend the peritoneal exudate cells. The same operation was performed 3 times to wash the cells.

最後の上清を捨てた後、無血清培地(cosmedium 001,コスモ・バイオ社製)2mLを入れてピペットで細胞を浮遊させ、ペトリ皿(3.5×10mm)に移し、COインキュベーターで37℃,2時間インキュベートした。 After discarding the final supernatant, add 2 mL of serum-free medium (cosmedium 001, manufactured by Cosmo Bio), float the cells with a pipette, transfer to a Petri dish (3.5 × 10 mm), and in a CO 2 incubator at 37 ° C. Incubated for 2 hours.

この腹腔滲出細胞浮遊液の一部をメランジュールにとり、Turk液で希釈して血球計算盤で細胞数を計測した。   A portion of this peritoneal exudate cell suspension was taken up in melanger, diluted with Turk solution, and the number of cells was counted with a hemocytometer.

採取した腹腔内マクロファージの一部はEagle培地(ニッスイ社製)に浮遊させ、カバースリップに付着させた。PBSでカバースリップに付着しない細胞を洗い落とし、直ちにエタノールで固定した。次いで,このカバースリップを、抗マウスC3F(ab')2と反応させ、よく洗浄した後にフルオレセインイソチオアネート(FITC)標識抗ウサギ免疫グロブリンG(IgG)と反応させて、マクロファージの補体レセプター(CR)に結合するC3 cleavage抗原の存在を蛍光顕微鏡で観察した。   A part of the collected intraperitoneal macrophages was suspended in Eagle's medium (manufactured by Nissui) and attached to a cover slip. Cells that did not adhere to the coverslip were washed off with PBS and immediately fixed with ethanol. The coverslip was then reacted with anti-mouse C3F (ab ') 2, washed thoroughly, and then reacted with fluorescein isothiocyanate (FITC) -labeled anti-rabbit immunoglobulin G (IgG) to obtain the complement receptor for macrophages ( The presence of C3 cleavage antigen binding to (CR) was observed with a fluorescence microscope.

また、残りの腹腔内マクロファージをEagle培地に浮遊させ、ラテックスビーズ(1.1μm,Sigma-Aldrich)を加えてよく混合した後、カバースリップを置いたシャーレに注ぎ、37℃で2時間インキュベートした。PBSで洗浄後、エタノールで直ちに固定し、ギムザ染色を行って抗体非依存性のラテックスビーズの貪食能を顕微鏡下で観察した。   The remaining intraperitoneal macrophages were suspended in Eagle's medium, latex beads (1.1 μm, Sigma-Aldrich) were added and mixed well, poured into a petri dish with a cover slip, and incubated at 37 ° C. for 2 hours. After washing with PBS, it was immediately fixed with ethanol, stained with Giemsa, and the phagocytic ability of antibody-independent latex beads was observed under a microscope.

(3) 結果   (3) Results

結果を表1に示す。   The results are shown in Table 1.

デキストラン投与群とFA-1a及びATSO投与群との比較はStudentのt検定、比率の差の検定にはχ検定を用いた。統計処理はDunnettのt検定で行い、5%未満を有意差あり(*)と判定した。貪食能の亢進率以外の数値は、平均値±標準偏差を表す。 The comparison between the dextran-administered group and the FA-1a and ATSO-administered group was performed using Student's t-test, and the ratio difference was tested using χ 2 test. Statistical processing was performed by Dunnett's t-test, and less than 5% was determined to be significant (*). Numerical values other than the rate of enhancement of phagocytic ability represent mean values ± standard deviation.

デキストラン投与マウスでは、蛍光陽性細胞が22.5%認められた。これに対し、FA-1a投与マウスでは51.4%、ATSO投与マウスでは63.7%と著明に増加した。   In dextran-treated mice, 22.5% of fluorescence-positive cells were observed. On the other hand, it increased remarkably to 51.4% in mice treated with FA-1a and 63.7% in mice treated with ATSO.

また、ラテックスビーズの貪食はデキストラン投与マウスの腹腔内マクロファージが取り込む総数を対照とした場合、FA-1a投与マウスでは2.7倍、ATSO投与マウスでは4.2倍を示した。   In addition, phagocytosis of latex beads was 2.7 times in FA-1a-treated mice and 4.2 times in ATSO-treated mice when the total number taken up by intraperitoneal macrophages of dextran-treated mice was used as a control.

マウスに対するFA-1a経口投与により、C3蛍光陽性細胞数および腹腔内マクロファージ数の増加、更に腹腔内マクロファージの抗体非依存性貪食能の上昇が認められた。この結果から、生体内補体活性化によって生成したC3 cleavage抗原は,マクロファージのCR1あるいはCR3レセプターと結合し、これが引き金となってマクロファージのカスケード的活性化に関与しているものと考えられる。また、FA-1a経口投与により、補体C3より変換されたC3 Cleavage(C3a、C3b、iC3b)の一つであるC3bがマクロファージの細胞膜上に存在するC3b受容体に結合し、その結果としてマクロファージの活性化が引き起こされたと考えられる。   Oral administration of FA-1a to mice showed an increase in the number of C3 fluorescence-positive cells and the number of intraperitoneal macrophages, as well as an increase in antibody-independent phagocytosis of intraperitoneal macrophages. From these results, it is considered that the C3 cleavage antigen generated by in vivo complement activation binds to CR1 or CR3 receptor of macrophages, and this is triggered to participate in cascade activation of macrophages. In addition, by oral administration of FA-1a, C3b, which is one of C3 Cleavage (C3a, C3b, iC3b) converted from complement C3, binds to the C3b receptor present on the cell membrane of macrophages, and as a result, macrophages It is thought that activation of was caused.

4.以上のように、FA-1aは、抗体非依存性の貪食能を亢進し、異物排除機構を促進させるので、抗癌剤投与時に見られる免疫抑制作用の軽減や病原微生物による感染防御の面から、生体防御機構に有利に作用すると考えられ、Fa-1aは免疫応答を非特異的に増強又は修飾する物質として、補助免疫化学療法(adjuvant immuno-chemotherapy)においても有用であると考えられる。   4). As described above, FA-1a enhances antibody-independent phagocytic ability and promotes the mechanism of foreign body exclusion.Therefore, from the aspect of reducing the immunosuppressive action seen during administration of anticancer drugs and protecting against infection by pathogenic microorganisms, Fa-1a is considered to be advantageous for the defense mechanism, and Fa-1a is also considered to be useful in adjuvant immuno-chemotherapy as a substance that non-specifically enhances or modifies the immune response.

Claims (8)

下記理化学的性質(a)乃至(e)を有するペプチドへテロ多糖体。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕 -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
A peptide heteropolysaccharide having the following physicochemical properties (a) to (e):
(a) Average molecular weight: 1 million
(b) Specific rotation: [α] D −11.6 (measurement temperature 25 ° C.)
(c) Nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%
(d) Sugar composition (molar ratio): Gal: GIc: Man: Xyl: Rha: Ara: Fru = 32: 25: 13: 8: 7: 5: 3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
クロレラ・ピレノイドサの細胞壁破砕物の熱水抽出液由来である請求項1記載のペプチドへテロ多糖体。   The peptide heteropolysaccharide according to claim 1, wherein the peptide heteropolysaccharide is derived from a hot water extract of a cell wall disruption of Chlorella pyrenoidosa. クロレラの細胞壁破砕物を熱水抽出して得られた抽出液から分子量10,000以下の低分子物質を除去し、分子量10,000以下の低分子物質が除去された液を得、
この液に無水エタノールを加え、その沈殿物として粗多糖を得、
得られた粗多糖を水に溶解させ、イオン交換クロマトグラフィーに供し、得られた画分を更にゲル濾過法に供して精製することによって請求項1記載のペプチドヘテロ多糖体を得ることを特徴とするペプチドヘテロ多糖体の製造方法。
Removing a low molecular weight material having a molecular weight of 10,000 or less from an extract obtained by hot water extraction of a chlorella cell wall crushed material to obtain a liquid from which the low molecular weight material having a molecular weight of 10,000 or less has been removed;
Anhydrous ethanol is added to this solution to obtain a crude polysaccharide as a precipitate,
The obtained crude polysaccharide is dissolved in water, subjected to ion exchange chromatography, and the obtained fraction is further subjected to gel filtration to purify the peptide heteropolysaccharide according to claim 1, wherein the peptide heteropolysaccharide is obtained. A method for producing a peptide heteropolysaccharide.
熱水抽出が、95乃至100℃の熱水により行われる請求項3記載のペプチドヘテロ多糖体の製造方法。   The method for producing a peptide heteropolysaccharide according to claim 3, wherein the hot water extraction is performed with hot water at 95 to 100 ° C. 上記クロレラがクロレラ・ピレノイドサである請求項3又は4記載のペプチドヘテロ多糖体の製造方法。   The method for producing a peptide heteropolysaccharide according to claim 3 or 4, wherein the chlorella is chlorella pyrenoid. 請求項1又は2記載のペプチドヘテロ多糖体を有効成分とする補体第3成分活性化剤。   A complement third component activator comprising the peptide heteropolysaccharide according to claim 1 or 2 as an active ingredient. 補体を活性化する経路が補体第2経路である請求項6記載の補体第3成分活性化剤。   The complement third component activator according to claim 6, wherein the pathway for activating complement is the complement second pathway. 経口投与剤である請求項6又は7記載の補体第3成分活性化剤。   The complement third component activator according to claim 6 or 7, which is an orally administered agent.
JP2015179820A 2015-09-11 2015-09-11 Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator Pending JP2017052912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179820A JP2017052912A (en) 2015-09-11 2015-09-11 Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179820A JP2017052912A (en) 2015-09-11 2015-09-11 Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator

Publications (1)

Publication Number Publication Date
JP2017052912A true JP2017052912A (en) 2017-03-16

Family

ID=58320261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179820A Pending JP2017052912A (en) 2015-09-11 2015-09-11 Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator

Country Status (1)

Country Link
JP (1) JP2017052912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202953A (en) * 2018-05-22 2019-11-28 浩子 伊藤 Hematopoietic precursor cell activator and related technique of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044753A (en) * 2013-08-27 2015-03-12 浩子 伊藤 Complement 3 component activator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044753A (en) * 2013-08-27 2015-03-12 浩子 伊藤 Complement 3 component activator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202953A (en) * 2018-05-22 2019-11-28 浩子 伊藤 Hematopoietic precursor cell activator and related technique of the same
JP7178041B2 (en) 2018-05-22 2022-11-25 浩子 伊藤 Hematopoietic progenitor cell activator and related technology

Similar Documents

Publication Publication Date Title
EP3421594B1 (en) Novel highly-stable recombinant superoxide dismutase and application thereof
Davydova et al. Cytokine-inducing and anti-inflammatory activity of chitosan and its low-molecular derivative
CN104470530B (en) polysaccharide from PRASINOCOCCALE
WO2021204170A1 (en) Active peptide derived from eupolyphaga sinensis walker and having blood lipid lowering function, and preparation method therefor and use thereof
CN106084087A (en) A kind of preparation method of Fructus Trichosanthis polysaccharide
CN102091318A (en) Toad peptide antibiotics separated from toad maggots and preparation method of antibacterial drugs thereof
Liao et al. Characterization and diabetic wound healing benefits of protein-polysaccharide complexes isolated from an animal ethno-medicine Periplaneta americana L.
CN102477103A (en) Platycodon grandiflorum polysaccharide, and degradation product, preparation method and application thereof
Xu et al. Wound healing activity of a skin substitute from residues of culinary-medicinal winter mushroom flammulina velutipes (agaricomycetes) cultivation
CN107698695B (en) Homogeneous polysaccharides with immunomodulatory activity and methods of making same
JPH0539305A (en) Immuno suppressive polysaccharide extracted from astragalus membranaceous and pharma- ceutical composition containing same
JP2017052912A (en) Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator
JP6772318B2 (en) Sulfated polyglulonic acid polysaccharide or its pharmaceutical salt, its preparation method and its use
Sakai et al. Peyer's patch-immunomodulating glucans from sugar cane enhance protective immunity through stimulation of the hemopoietic system
CN107126551B (en) Application of microalgae proteolysis peptide in preparation of medicine for preventing and treating enteritis
EA023370B1 (en) Shark-like chondroitin sulphate and process for the preparation thereof
JP5548561B2 (en) Skin fibroblast growth promoter and skin collagen production promoter
CN109793751B (en) Application of arabinoxylan sulfonate in preparation of medicine for treating osteoarthritis
JP6144997B2 (en) Complement third component activator
Mavlonov et al. Low molecular fucoidan and its macromolecular complex with bee venom melittin
JP2011528058A (en) Method for producing glycosaminoglycan
WO2024142827A1 (en) Proteoglycan production method and proteoglycan
JP7178041B2 (en) Hematopoietic progenitor cell activator and related technology
EP0970968A1 (en) Pharmacologically active substance
Suekawa et al. Development of hyaluronic acid-collagen-proteoglycan complex (Hyaluco PG) by hot water extraction from salmon nasal cartilage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326