JP2017051440A - Sterilizer - Google Patents

Sterilizer Download PDF

Info

Publication number
JP2017051440A
JP2017051440A JP2015177981A JP2015177981A JP2017051440A JP 2017051440 A JP2017051440 A JP 2017051440A JP 2015177981 A JP2015177981 A JP 2015177981A JP 2015177981 A JP2015177981 A JP 2015177981A JP 2017051440 A JP2017051440 A JP 2017051440A
Authority
JP
Japan
Prior art keywords
semiconductor light
irradiation
emission wavelength
emitting element
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015177981A
Other languages
Japanese (ja)
Inventor
保徳 角
Yasunori Sumi
保徳 角
健二 松下
Kenji Matsushita
健二 松下
堀岡 悟
Satoru Horioka
悟 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
National Center for Geriatrics and Gerontology
Original Assignee
Nikkiso Co Ltd
National Center for Geriatrics and Gerontology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd, National Center for Geriatrics and Gerontology filed Critical Nikkiso Co Ltd
Priority to JP2015177981A priority Critical patent/JP2017051440A/en
Publication of JP2017051440A publication Critical patent/JP2017051440A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a sterilizer which is effective for sterilization of germ or the like inside an oral cavity while reducing an impact to a human body.SOLUTION: A sterilizer 100 includes: a semiconductor light-emitting element for emitting an ultraviolet light having a peak emission wavelength in a range from 300nm or more to less than 400nm; and an irradiation part 24 for irradiating the ultraviolet light emitted from the semiconductor light-emitting element to an object to be irradiated. The semiconductor light-emitting element may emit an ultraviolet light having a peak emission wavelength in a range from 300nm or more to 320nm or less. Also, the semiconductor light-emitting element may be configured to have an illumination intensity of 0.5 to 3 mW/cmat a part on which the ultraviolet light is irradiated. Further, a control unit can control an operation of the semiconductor light-emitting element so that the irradiation time of the ultraviolet light falls within a range of 10 to 60 seconds.SELECTED DRAWING: Figure 15

Description

本発明は、殺菌装置に関する。   The present invention relates to a sterilizer.

従来、歯周病菌の殺菌として、抗生物質等の殺菌剤が用いられている。また、光を用いた歯周病用光治療器が考案されている(特許文献1参照)。この歯周病用光治療器は、波長400〜420nmの範囲に発光中心波長を有する光源と、この光源からの光を導光して光を照射すべき患部に放射するプローブと、を備えている。また、近年、従来よりも短波長の紫外線を発光する小型のLEDが実用化されており、このような小型の紫外線LEDを口腔等の殺菌に応用して、効率的良く治療することができないか期待されている。   Conventionally, antibacterial agents such as antibiotics have been used to sterilize periodontal disease bacteria. In addition, a phototherapy device for periodontal disease using light has been devised (see Patent Document 1). This phototherapy device for periodontal disease includes a light source having an emission center wavelength in a wavelength range of 400 to 420 nm, and a probe that guides light from the light source and emits it to an affected part to be irradiated. Yes. In recent years, small-sized LEDs emitting ultraviolet light having a shorter wavelength than in the past have been put into practical use. Can such small-sized ultraviolet LEDs be applied to sterilization of the oral cavity or the like to efficiently treat them? Expected.

特開2007−202891号公報JP 2007-202891 A

しかしながら、抗生物質を用いると、人体の広い範囲に存在する有用な菌まで殺菌してしまうおそれがある。また、波長が400〜420nm程度の光は、殺菌性能がそれほど高くない。一方、250〜260nm程度の紫外線は、殺菌性能は非常に高いものの、人体に与える影響が大きい。   However, when antibiotics are used, there is a possibility that useful bacteria existing in a wide range of the human body may be sterilized. Further, light having a wavelength of about 400 to 420 nm has not so high sterilization performance. On the other hand, ultraviolet rays having a wavelength of about 250 to 260 nm have a great effect on the human body although the sterilization performance is very high.

本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、人体に与える影響を低減しつつ、口腔内の細菌等の殺菌に有効な殺菌装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sterilizing apparatus effective for sterilizing bacteria in the oral cavity while reducing the influence on the human body.

上記課題を解決するために、本発明のある態様の殺菌装置は、ピーク発光波長が300nm以上400nm未満の範囲にある紫外線を発する半導体発光素子と、半導体発光素子が発する紫外線を照射対象部に照射する照射部と、を備える。   In order to solve the above-described problem, a sterilization apparatus according to an aspect of the present invention includes a semiconductor light emitting device that emits ultraviolet light having a peak emission wavelength in a range of 300 nm to less than 400 nm, and an irradiation target portion that is irradiated with ultraviolet light emitted by the semiconductor light emitting device. And an irradiating unit.

この態様によると、ピーク発光波長が300nm以上400nm未満の範囲にある紫外線を照射することで、人体に与える影響を低減しつつ、歯周病菌等の口腔内細菌を殺菌できる。   According to this aspect, by irradiating ultraviolet rays having a peak emission wavelength in the range of 300 nm or more and less than 400 nm, oral bacteria such as periodontal disease bacteria can be sterilized while reducing the influence on the human body.

半導体発光素子は、ピーク発光波長が300nm以上320nm以下の範囲にある紫外線を発してもよい。これにより、より効率よく口腔内細菌を殺菌できる。   The semiconductor light emitting element may emit ultraviolet rays having a peak emission wavelength in the range of 300 nm or more and 320 nm or less. Thereby, oral bacteria can be sterilized more efficiently.

半導体発光素子は、紫外線被照射部における照度が0.5〜3mW/cmとなるように構成されていてもよい。 The semiconductor light emitting device may be configured such that the illuminance at the ultraviolet irradiated portion is 0.5 to 3 mW / cm 2 .

照射部は、紫外線が照射される開口部の径が0.5〜10mmであってもよい。これにより、所望の患部に選択的に紫外線を照射することが容易となる。   The irradiation part may have a diameter of an opening irradiated with ultraviolet rays of 0.5 to 10 mm. Thereby, it becomes easy to selectively irradiate the desired affected part with ultraviolet rays.

紫外線を所定時間照射するように半導体発光素子の駆動を制御する制御部を更に備えてもよい。これにより、過剰な紫外線を患部に照射することを防止できる。   You may further provide the control part which controls the drive of a semiconductor light-emitting device so that an ultraviolet-ray may be irradiated for a predetermined time. Thereby, it can prevent irradiating an excess ultraviolet-ray to an affected part.

制御部は、紫外線の照射時間が10〜60秒の範囲となるように半導体発光素子の駆動を制御してもよい。これにより、過剰な紫外線を患部に照射することを防止しつつ、口腔内細菌を適切に殺菌できる。   The control unit may control the driving of the semiconductor light emitting element so that the irradiation time of ultraviolet rays is in a range of 10 to 60 seconds. Thus, oral bacteria can be appropriately sterilized while preventing the affected part from being irradiated with excessive ultraviolet rays.

照射部は、プローブを有していてもよい。半導体発光素子は、プローブの先端に装着されていてもよい。これにより、半導体発光素子が発する紫外線を口腔内または切開部等の照射対象部に直接照射することができる。   The irradiation unit may have a probe. The semiconductor light emitting element may be attached to the tip of the probe. Thereby, the ultraviolet-ray which a semiconductor light-emitting device emits can be directly irradiated to irradiation object parts, such as an intraoral area or an incision part.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation of the present invention converted between a method, an apparatus, a system, etc. are also effective as an aspect of the present invention.

本発明によれば、人体に与える影響を低減しつつ、口腔内の細菌等の殺菌に有効な殺菌装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the effective sterilization apparatus for disinfection of bacteria etc. in an oral cavity is realizable, reducing the influence which it has on a human body.

殺菌作用を測定するための実験を模式的に示した図である。It is the figure which showed typically the experiment for measuring a bactericidal action. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とEschelichia coli (E.coli)生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and Eschelichia coli (E.coli) survival rate. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とE.coli生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and E. coli survival rate. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とPorphylomonas gingivalis(P.gingivalis)生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and Porphylomonas gingivalis (P. gingivalis) survival rate. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とP.gingivalis生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and P.gingivalis survival rate. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とFusobacterium nucleatem(F.nucleatum)菌生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and Fusobacterium nucleatem (F. nucleatum) microbe survival rate. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とF.nucleatum生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and F. nucleatum survival rate. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とStreptococcus sanguinis(S.sanguinis)生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and Streptococcus sanguinis (S.sanguinis) survival rate. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とS.sanguinis生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and S.sanguinis survival rate. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とStreptococcus mutans(S.mutans)生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and Streptococcus mutans (S.mutans) survival rate. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とS.mutans生存率との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and S.mutans survival rate. 細胞障害性を測定するための実験を模式的に示した図である。It is the figure which showed typically the experiment for measuring cytotoxicity. ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とLDH放出量との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 265 nm, and LDH discharge | release amount. ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とLDH放出量との関係を示す図である。It is a figure which shows the relationship between the irradiation time at the time of using UV-LED whose peak light emission wavelength is 310 nm, and LDH discharge | release amount. 第1の実施形態に係る殺菌装置の模式図である。It is a mimetic diagram of a sterilizer concerning a 1st embodiment. 第2の実施形態に係る殺菌装置の模式図である。It is a schematic diagram of the sterilizer which concerns on 2nd Embodiment.

以下、本発明の実施の形態を図面を参照して説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Moreover, the structure described below is an illustration and does not limit the scope of the present invention at all.

(殺菌装置の光源)
波長が400〜420nm程度の光は、殺菌性能がそれほど高くなく、殺菌時間が長くなりがちである。そこで、本実施の形態に係る殺菌装置は、光源として、ピーク発光波長が400nm未満の範囲にある紫外線を発する半導体発光素子を用いている。半導体発光素子は、発光ダイオードやレーザである。そのため、光源を小型化できる。
(Light source for sterilizer)
Light having a wavelength of about 400 to 420 nm does not have a high sterilization performance and tends to have a long sterilization time. Therefore, the sterilization apparatus according to the present embodiment uses a semiconductor light emitting element that emits ultraviolet light having a peak emission wavelength in the range of less than 400 nm as a light source. The semiconductor light emitting element is a light emitting diode or a laser. Therefore, the light source can be reduced in size.

本実施の形態では、半導体発光素子として深紫外線を発する発光ダイオード(以下、「UV−LED」と称する。)を用いている。本実施の形態に係るUV−LEDは、サファイアからなる基板と、AlGaN系の発光層と、基板と発光層との間に積層されたAlNからなる格子不整緩衝層と、を有している。これにより、小型で高効率の殺菌装置を実現できる。   In the present embodiment, a light emitting diode that emits deep ultraviolet rays (hereinafter referred to as “UV-LED”) is used as the semiconductor light emitting element. The UV-LED according to the present embodiment includes a substrate made of sapphire, an AlGaN-based light emitting layer, and a lattice irregular buffer layer made of AlN stacked between the substrate and the light emitting layer. Thereby, a small and highly efficient sterilizer can be realized.

(殺菌作用)
次に、UV−LEDによる殺菌作用について説明する。図1は、殺菌作用を測定するための実験を模式的に示した図である。紫外線照射器10は、UV−LED12を有する。
(Bactericidal action)
Next, the bactericidal action by UV-LED will be described. FIG. 1 is a diagram schematically showing an experiment for measuring the bactericidal action. The ultraviolet irradiator 10 includes a UV-LED 12.

図1に示すように、96ウェルプレートのウェル14に、Eschelichia coli (E.coli)16を含むPBS(リン酸緩衝生理食塩水)18を満たし、紫外線照射器10(波長265nmまたは310nm)で紫外線Lを10,30,60,120秒間照射し、希釈後寒天培地に塗抹して一晩培養後、形成されたコロニーを数えた。なお、ウェルプレート上では1mW/cm2の紫外線を受けるように調整されている(波長265nm、310nm共通)。   As shown in FIG. 1, the well 14 of a 96-well plate is filled with PBS (phosphate buffered saline) 18 containing Eschelichia coli (E. coli) 16 and irradiated with ultraviolet rays 10 (wavelength 265 nm or 310 nm). L was irradiated for 10, 30, 60, and 120 seconds, diluted, smeared on an agar medium, cultured overnight, and the formed colonies were counted. The well plate is adjusted to receive 1 mW / cm 2 of ultraviolet light (having wavelengths of 265 nm and 310 nm).

図2は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とE.coli生存率との関係を示す図である。図3は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とE.coli生存率との関係を示す図である。   FIG. 2 is a diagram showing the relationship between the irradiation time and the E. coli survival rate when a UV-LED having a peak emission wavelength of 265 nm is used. FIG. 3 is a diagram showing the relationship between the irradiation time and the E. coli survival rate when a UV-LED having a peak emission wavelength of 310 nm is used.

図2に示すように、ピーク発光波長が265nmのUV−LEDを用いた紫外線照射器では、10秒以上の照射でほぼ全部のE. coliが死滅していることがわかる。また、図3に示すように、ピーク発光波長が310nmのUV−LEDを用いた紫外線照射器では、10秒の照射で80%程度のE. coliが死滅しており、30秒以上の照射でほぼ全部のE. coliが死滅していることがわかる。   As shown in FIG. 2, in the ultraviolet irradiator using the UV-LED having a peak emission wavelength of 265 nm, it can be seen that almost all E. coli is killed by irradiation for 10 seconds or more. In addition, as shown in FIG. 3, in an ultraviolet irradiator using a UV-LED having a peak emission wavelength of 310 nm, about 80% of E. coli is killed by irradiation for 10 seconds, and irradiation by 30 seconds or more. It can be seen that almost all E. coli is dead.

(他の口腔内殺菌に対する殺菌作用)
Porphyromonas gingivalis ATCC 33277、Fusobacterium nucleatem ATCC 25586 (以上歯周病関連細菌)、Streptococcus mutans ATCC 25175(齲蝕原性菌)、およびStreptococcus sanguinis ATCC 10556(非病原性口腔常在菌)の計4種の口腔内細菌をそれぞれPBSに懸濁した後、ピーク発光波長が310nmの紫外線LEDを用いて0〜120秒間それぞれに照射した。
(Bactericidal action against other oral sterilization)
Porphyromonas gingivalis ATCC 33277, Fusobacterium nucleatem ATCC 25586 (periodontal disease-related bacteria), Streptococcus mutans ATCC 25175 (cariogenic bacteria), and Streptococcus sanguinis ATCC 10556 (non-pathogenic oral resident bacteria) Each bacterium was suspended in PBS and then irradiated for 0 to 120 seconds using an ultraviolet LED having a peak emission wavelength of 310 nm.

その後、菌を含む懸濁液を寒天平板培地へ塗布し、形成されたコロニーを数えた。また、紫外線を照射していない非照射群を100%とした時の各照射群の細菌生存率によって殺菌作用を評価した。   Thereafter, the suspension containing the bacteria was applied to an agar plate medium, and the formed colonies were counted. Further, the bactericidal action was evaluated based on the bacterial survival rate of each irradiated group when the non-irradiated group not irradiated with ultraviolet rays was taken as 100%.

図4は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とP.gingivalis生存率との関係を示す図である。図5は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とP.gingivalis生存率との関係を示す図である。図6は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とF.nucleatem生存率との関係を示す図である。図7は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とF.nucleatem生存率との関係を示す図である。図8は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とS.sanguinis生存率との関係を示す図である。図9は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とS.sanguinis生存率との関係を示す図である。図10は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とS.mutans生存率との関係を示す図である。図11は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とS.mutans生存率との関係を示す図である。   FIG. 4 is a diagram showing the relationship between the irradiation time and the survival rate of P. gingivalis when using a UV-LED having a peak emission wavelength of 265 nm. FIG. 5 is a diagram showing the relationship between the irradiation time and the P. gingivalis survival rate when a UV-LED having a peak emission wavelength of 310 nm is used. FIG. 6 is a diagram showing the relationship between the irradiation time and the F.nucleatem survival rate when using a UV-LED having a peak emission wavelength of 265 nm. FIG. 7 is a diagram showing the relationship between the irradiation time and the F. nucleatem survival rate when using a UV-LED having a peak emission wavelength of 310 nm. FIG. 8 is a diagram showing the relationship between the irradiation time and the S. sanguinis survival rate when a UV-LED having a peak emission wavelength of 265 nm is used. FIG. 9 is a diagram showing the relationship between the irradiation time and the S. sanguinis survival rate when a UV-LED having a peak emission wavelength of 310 nm is used. FIG. 10 is a diagram showing the relationship between the irradiation time and the S. mutans survival rate when a UV-LED having a peak emission wavelength of 265 nm is used. FIG. 11 is a diagram showing the relationship between the irradiation time and the S. mutans survival rate when a UV-LED having a peak emission wavelength of 310 nm is used.

各図に示すように、ピーク発光波長が265nmのUV−LEDを用いた場合、10秒以上の照射で各菌の生存率はほぼ0%となった。また、ピーク発光波長が310nmのUV−LEDを用いた場合、P.gingivalisにおいては60秒間以上の紫外線照射で生存率が60〜30%に、F.nucleatemにおいては30秒以上の照射で70〜50%になった。またS.sanguinisは10秒以上の照射で生存率は40%まで低下し、S.mutansでは60秒以上の照射で生存率が60〜50%まで低下した。このように、ピーク発光波長が400nm未満の紫外線、より好ましくはピーク発光波長が320nm以下の紫外線は口腔細菌に対する殺菌作用がある。   As shown in each figure, when a UV-LED having a peak emission wavelength of 265 nm was used, the survival rate of each bacterium was almost 0% after irradiation for 10 seconds or longer. Further, when a UV-LED having a peak emission wavelength of 310 nm is used, the survival rate is 60 to 30% after 60 seconds of ultraviolet irradiation in P. gingivalis, and 70 to 30% of irradiation is performed for 30 seconds or more in F. nucleatem. 50%. The survival rate of S. sanguinis decreased to 40% after irradiation for 10 seconds or longer, and the survival rate of S. mutans decreased to 60-50% after irradiation for 60 seconds or longer. Thus, ultraviolet rays having a peak emission wavelength of less than 400 nm, more preferably ultraviolet rays having a peak emission wavelength of 320 nm or less, have a bactericidal action against oral bacteria.

(細胞障害性)
上述の殺菌作用の実験において、UV−LEDによる殺菌効果について明らかになった。一方で、殺菌装置を歯周病等の治療に用いるためには、殺菌作用以外に人体に与える影響についても把握しておく必要がある。図12は、細胞障害性を測定するための実験を模式的に示した図である。
(Cytotoxicity)
In the experiment of the above-mentioned sterilization action, it became clear about the sterilization effect by UV-LED. On the other hand, in order to use the sterilization apparatus for the treatment of periodontal diseases and the like, it is necessary to grasp the influence on the human body in addition to the sterilization action. FIG. 12 is a diagram schematically showing an experiment for measuring cytotoxicity.

図12に示すように、96ウェルプレートのウェル14に、ヒト口腔粘膜上皮細胞の培養細胞20を含むPBS18を満たし、紫外線照射器10(波長265nmまたは310nm)で紫外線Lを10,30,60,120秒間照射し、一晩培養後、放出されたLDH(乳酸脱水素酵素)の活性を測定した。なお、ウェルプレート上では1mW/cm2の紫外線を受けるように調整されている(波長265nm、310nm共通)。   As shown in FIG. 12, the well 14 of a 96-well plate is filled with PBS 18 containing cultured cells 20 of human oral mucosal epithelial cells, and ultraviolet rays L are emitted at 10, 30, 60, Irradiated for 120 seconds, and after overnight culture, the activity of released LDH (lactate dehydrogenase) was measured. The well plate is adjusted to receive 1 mW / cm 2 of ultraviolet light (having wavelengths of 265 nm and 310 nm).

図13は、ピーク発光波長が265nmのUV−LEDを用いた際の照射時間とLDH放出量との関係を示す図である。図14は、ピーク発光波長が310nmのUV−LEDを用いた際の照射時間とLDH放出量との関係を示す図である。   FIG. 13 is a diagram showing the relationship between the irradiation time and the LDH emission amount when a UV-LED having a peak emission wavelength of 265 nm is used. FIG. 14 is a diagram showing the relationship between irradiation time and LDH emission when using a UV-LED with a peak emission wavelength of 310 nm.

図13に示すように、ピーク発光波長が265nmのUV−LEDを用いた紫外線照射器では、10秒以上の照射によりLDH放出量が約2倍以上に増大しており、細胞障害が認められる。一方、図14に示すように、ピーク発光波長が310nmのUV−LEDを用いた紫外線照射器では、60秒までの照射でLDH放出量が1.5倍未満となっており、特に30秒までの照射ではLDH放出量はほとんど増加しておらず、細胞障害がほぼないことがわかる。   As shown in FIG. 13, in the ultraviolet irradiator using the UV-LED having a peak emission wavelength of 265 nm, the LDH release amount is increased about twice or more by irradiation for 10 seconds or more, and cell damage is recognized. On the other hand, as shown in FIG. 14, in the ultraviolet irradiator using the UV-LED having a peak emission wavelength of 310 nm, the LDH emission amount is less than 1.5 times by the irradiation up to 60 seconds, especially up to 30 seconds. It can be seen that the amount of LDH released is almost not increased by irradiation, and there is almost no cell damage.

(殺菌装置)
上述の知見に基づいて歯周病等の口腔内の治療に好適な殺菌装置を考案した。図15は、第1の実施形態に係る殺菌装置の模式図である。
(Sterilizer)
Based on the above-mentioned findings, a sterilization apparatus suitable for treatment of the oral cavity such as periodontal disease has been devised. FIG. 15 is a schematic diagram of the sterilizer according to the first embodiment.

紫外線を伝えるには紫外線を透過するコアが石英ガラスであるファイバが必要であるが、光源を外に置いて口腔内あるいは外科手術の切開部内へ自在に紫外線を導入するような柔軟な石英ファイバは得がたい。   In order to transmit ultraviolet light, a fiber whose core that transmits ultraviolet light is quartz glass is required, but flexible silica fiber that can freely introduce ultraviolet light into the oral cavity or surgical incision by placing the light source outside is not available. It is hard to get.

第1の実施形態に係る殺菌装置100は、照射部24と制御部26とを備える。照射部24は、プローブ11と小型化したUV−LED12とカバー13を有し、プローブの先端にUV−LED12が装着されている。プローブ11の中にはUV−LED12に電力を供給するための配線が納められている。プローブ11にはアルミニウムまたはステンレスなどの金属あるいは樹脂を用いることができる。カバー13には紫外線を吸収しにくい石英ガラス、樹脂などを用いることができる。電源としては電池あるいは外部からの電力供給が考えられる。UV−LED12は、ピーク発光波長が300nm以上400nm未満の範囲、好ましくはピーク発光波長が300nm以上320nm以下の範囲にある紫外線を発する。照射部24は、UV−LED12が発する紫外線を口腔内または切開部等の照射対象部に直接照射する。これにより、より効率よく口腔内または切開部を殺菌できる。なお、紫外線の照度は、紫外線被照射部である照射対象部において、例えば0.5〜3mW/cmの範囲である。 The sterilizer 100 according to the first embodiment includes an irradiation unit 24 and a control unit 26. The irradiation unit 24 includes a probe 11, a miniaturized UV-LED 12 and a cover 13, and the UV-LED 12 is attached to the tip of the probe. A wiring for supplying power to the UV-LED 12 is housed in the probe 11. A metal such as aluminum or stainless steel or a resin can be used for the probe 11. The cover 13 can be made of quartz glass, resin, or the like that hardly absorbs ultraviolet rays. As the power source, battery or external power supply can be considered. The UV-LED 12 emits ultraviolet rays having a peak emission wavelength in a range of 300 nm to less than 400 nm, preferably a peak emission wavelength in a range of 300 nm to 320 nm. The irradiation unit 24 directly irradiates the irradiation target part such as an intraoral cavity or an incision part with ultraviolet rays emitted from the UV-LED 12. Thereby, the oral cavity or the incision can be sterilized more efficiently. In addition, the illumination intensity of an ultraviolet-ray is the range of 0.5-3 mW / cm < 2 >, for example in the irradiation object part which is an ultraviolet irradiation part.

図16は、第2の実施形態に係る殺菌装置の模式図である。近年、紫外線を透過する樹脂材料(例えば、旭硝子製サイトップ等)が開発されている。本実施形態では、このような紫外線透過樹脂をコアとした光ファイバを用いることができる。殺菌装置102は、光源部32と光ファイバ34を備える。紫外線を照射する光ファイバコア開口部34aの径Rが0.5〜10mm程度である。これにより、口腔内の正常な領域に紫外線を照射することなく、所望の患部に選択的に紫外線を照射することが容易となる。なお、光ファイバ34の先端部がテーパー状に細くなっていてもよい。この場合、細くなったテーパー部を歯周ポケット内に入れ、テーパー部先端より紫外線を照射し殺菌を行う。ファイバは、ディスポーザブルなものであってもよく、患者毎に取り替えることができる。   FIG. 16 is a schematic view of a sterilizer according to the second embodiment. In recent years, resin materials that transmit ultraviolet rays (for example, Asahi Glass Cytop) have been developed. In this embodiment, it is possible to use an optical fiber having such a UV transparent resin as a core. The sterilizer 102 includes a light source unit 32 and an optical fiber 34. The diameter R of the optical fiber core opening 34a for irradiating ultraviolet rays is about 0.5 to 10 mm. Thereby, it becomes easy to selectively irradiate a desired affected part with ultraviolet rays without irradiating the normal region in the oral cavity with ultraviolet rays. Note that the tip of the optical fiber 34 may be tapered. In this case, the taper part which became thin is put in a periodontal pocket, and an ultraviolet-ray is irradiated from a taper part front-end | tip, and it sterilizes. The fiber may be disposable and can be changed from patient to patient.

このように構成された殺菌装置100、102は、人体に与える影響を低減しつつ、口腔内または切開部を殺菌できる。このような殺菌装置の治療用途としては、歯周病治療、根管殺菌治療、ガン治療等が挙げられる。   The sterilization apparatuses 100 and 102 configured in this way can sterilize the oral cavity or incision while reducing the influence on the human body. The therapeutic use of such a sterilizer includes periodontal disease treatment, root canal sterilization treatment, cancer treatment and the like.

制御部26は、紫外線を所定時間照射するようにUV−LED12の駆動を制御する。これにより、過剰な紫外線を患部に照射することを防止できる。例えば、制御部26は、ボタン28を一度押すと、紫外線の照射時間が10〜60秒の範囲となるようにUV−LED12の駆動を制御する。これにより、過剰な紫外線を患部に照射することを防止しつつ、口腔内細菌を適切に殺菌できる。   The control unit 26 controls the driving of the UV-LED 12 so that ultraviolet rays are irradiated for a predetermined time. Thereby, it can prevent irradiating an excess ultraviolet-ray to an affected part. For example, once the button 28 is pressed, the control unit 26 controls the driving of the UV-LED 12 so that the ultraviolet irradiation time is in the range of 10 to 60 seconds. Thus, oral bacteria can be appropriately sterilized while preventing the affected part from being irradiated with excessive ultraviolet rays.

以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。   As described above, the present invention has been described with reference to the above-described embodiment. However, the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention. In addition, it is possible to appropriately change the combination and processing order in the embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to the embodiment. The described embodiments can also be included in the scope of the present invention.

10 紫外線照射器、 11 プローブ、12 UV−LED、 13 カバー、 14 ウェル、 16 大腸菌、 18 PBS、 20 培養細胞、 21 電源部、 24 照射部、 26 制御部、 28 ボタン、 32 光源部、 34 光ファイバ、 100、102 殺菌装置。   10 UV irradiator, 11 probe, 12 UV-LED, 13 cover, 14 well, 16 E. coli, 18 PBS, 20 cultured cells, 21 power supply unit, 24 irradiation unit, 26 control unit, 28 button, 32 light source unit, 34 light Fiber, 100, 102 Sterilizer.

Claims (7)

ピーク発光波長が300nm以上400nm未満の範囲にある紫外線を発する半導体発光素子と、
前記半導体発光素子が発する紫外線を照射対象部に照射する照射部と、
を備えることを特徴とする殺菌装置。
A semiconductor light emitting device emitting ultraviolet rays having a peak emission wavelength in a range of 300 nm or more and less than 400 nm;
An irradiation unit for irradiating the irradiation target unit with ultraviolet rays emitted from the semiconductor light emitting element;
A sterilizing apparatus comprising:
前記半導体発光素子は、ピーク発光波長が300nm以上320nm以下の範囲にある紫外線を発することを特徴とする請求項1に記載の殺菌装置。   The sterilizing apparatus according to claim 1, wherein the semiconductor light emitting element emits ultraviolet rays having a peak emission wavelength in a range of 300 nm or more and 320 nm or less. 前記半導体発光素子は、紫外線被照射部における照度が0.5〜3mW/cmとなるように構成されていることを特徴とする請求項1または2に記載の殺菌装置。 The semiconductor light-sterilizer according to claim 1 or 2 illuminance in the ultraviolet irradiated portion is characterized by being configured such that 0.5~3mW / cm 2. 前記照射部は、紫外線が照射される開口部の径が0.5〜10mmであることを特徴とする請求項1乃至3のいずれか1項に記載の殺菌装置。   The sterilization apparatus according to any one of claims 1 to 3, wherein the irradiation section has an opening having a diameter of 0.5 to 10 mm irradiated with ultraviolet rays. 紫外線を所定時間照射するように前記半導体発光素子の駆動を制御する制御部を更に備えることを特徴とする請求項1乃至4のいずれか1項に記載の殺菌装置。   The sterilizer according to any one of claims 1 to 4, further comprising a control unit that controls driving of the semiconductor light emitting element so as to irradiate ultraviolet rays for a predetermined time. 前記制御部は、紫外線の照射時間が10〜60秒の範囲となるように前記半導体発光素子の駆動を制御することを特徴とする請求項5に記載の殺菌装置。   The sterilization apparatus according to claim 5, wherein the control unit controls the driving of the semiconductor light emitting element so that the irradiation time of ultraviolet rays is in a range of 10 to 60 seconds. 前記照射部は、プローブを有し、
前記半導体発光素子は、前記プローブの先端に装着されていることを特徴とする請求項1乃至6のいずれか1項に記載の殺菌装置。
The irradiation unit has a probe,
The sterilizer according to any one of claims 1 to 6, wherein the semiconductor light emitting element is attached to a tip of the probe.
JP2015177981A 2015-09-09 2015-09-09 Sterilizer Pending JP2017051440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177981A JP2017051440A (en) 2015-09-09 2015-09-09 Sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177981A JP2017051440A (en) 2015-09-09 2015-09-09 Sterilizer

Publications (1)

Publication Number Publication Date
JP2017051440A true JP2017051440A (en) 2017-03-16

Family

ID=58316121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177981A Pending JP2017051440A (en) 2015-09-09 2015-09-09 Sterilizer

Country Status (1)

Country Link
JP (1) JP2017051440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546187A (en) * 2020-08-05 2021-10-26 优志旺电机株式会社 Method and apparatus for inactivating fungi or viruses
JP2021176285A (en) * 2020-05-08 2021-11-11 憲保 池田 Virus passivation method and passivation device
WO2023153478A1 (en) * 2022-02-10 2023-08-17 株式会社坪田ラボ Method for improving physiological conditions by photostimulation and device to be used therein

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070292A (en) * 1998-08-27 2000-03-07 Agency Of Ind Science & Technol Dental photoirradiation device
JP2000217844A (en) * 1999-02-01 2000-08-08 Toyoda Gosei Co Ltd Light irradiation device for dentistry
US20070072153A1 (en) * 2003-07-09 2007-03-29 Yossi Gross Photo-sterilization
KR20120082160A (en) * 2011-01-13 2012-07-23 배장환 The manufacturing methode of the ultra violet ray tooth brush
JP2012521225A (en) * 2009-03-20 2012-09-13 ウォーターピック,インコーポレイティド Oral irrigator with bactericidal action by radiant energy delivery
JP2013066685A (en) * 2011-09-22 2013-04-18 Ikooru:Kk Apparatus for treating periodontal disease with uv irradiation
CN203841997U (en) * 2014-05-26 2014-09-24 厦门丰泓照明有限公司 Deep UV LED electric brush with cleaning and massage functions
KR20150062358A (en) * 2013-11-29 2015-06-08 서울바이오시스 주식회사 Scaler device having ultra violet light emitting diode and operating method of the same
JP2015163091A (en) * 2014-02-28 2015-09-10 三發電器製造廠有限公司 toothbrush

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070292A (en) * 1998-08-27 2000-03-07 Agency Of Ind Science & Technol Dental photoirradiation device
JP2000217844A (en) * 1999-02-01 2000-08-08 Toyoda Gosei Co Ltd Light irradiation device for dentistry
US20070072153A1 (en) * 2003-07-09 2007-03-29 Yossi Gross Photo-sterilization
JP2012521225A (en) * 2009-03-20 2012-09-13 ウォーターピック,インコーポレイティド Oral irrigator with bactericidal action by radiant energy delivery
KR20120082160A (en) * 2011-01-13 2012-07-23 배장환 The manufacturing methode of the ultra violet ray tooth brush
JP2013066685A (en) * 2011-09-22 2013-04-18 Ikooru:Kk Apparatus for treating periodontal disease with uv irradiation
KR20150062358A (en) * 2013-11-29 2015-06-08 서울바이오시스 주식회사 Scaler device having ultra violet light emitting diode and operating method of the same
JP2015163091A (en) * 2014-02-28 2015-09-10 三發電器製造廠有限公司 toothbrush
CN203841997U (en) * 2014-05-26 2014-09-24 厦门丰泓照明有限公司 Deep UV LED electric brush with cleaning and massage functions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176285A (en) * 2020-05-08 2021-11-11 憲保 池田 Virus passivation method and passivation device
CN113546187A (en) * 2020-08-05 2021-10-26 优志旺电机株式会社 Method and apparatus for inactivating fungi or viruses
WO2023153478A1 (en) * 2022-02-10 2023-08-17 株式会社坪田ラボ Method for improving physiological conditions by photostimulation and device to be used therein

Similar Documents

Publication Publication Date Title
US11617898B2 (en) Apparatus, method, and system for selectively effecting and/or killing bacteria
Meire et al. Evaluation of Nd: YAG and Er: YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms
US9061082B2 (en) Ultraviolet-based sterilization
US8240312B2 (en) Method and means for exerting a phototoxic effect of visible light on microorganisms
Kim et al. In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation
Yavari et al. Effect of Er, Cr: YSGG laser irradiation on Enterococcus faecalis in infected root canals
JP2017136145A (en) Pasteurizer
TR201907062T4 (en) Ray application device.
US20210379215A1 (en) Methods and apparatus using far-ultraviolet light to inactivate pathogens
JP2017051440A (en) Sterilizer
US20230149736A1 (en) Light-based dental treatment device
Panov et al. Application of ultraviolet light (UV) in dental medicine
Ballout et al. Effects of plasma jet, dielectric barrier discharge, photodynamic therapy and sodium hypochlorite on infected curved root canals
CN103610464A (en) Method and device for carrying out oral-cavity photodynamics therapy on patient suffering from periodontitis through LED
US20120045738A1 (en) Method for enhancing viability of periodontal tissue cells
JP2022548535A (en) Device and method for UV disinfection
KR20100079228A (en) Apply led diode to den ture brush by white teeth and sterilized
Misischia et al. Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro
JP2022519820A (en) Light irradiation device
Deppe et al. Effect of 308-nm excimer laser light on peri-implantitis-associated bacteria—an in vitro investigation
Vaddamanu et al. An in vitro study to compare dental laser with other treatment modalities on biofilm ablation from implant and tooth surfaces
KR20090008643U (en) The Antiseptic Station for Razor Using UV LED
JP2023504781A (en) Systems and methods for removing microorganisms
RU168454U1 (en) Endodontic apparatus for final pre-obstructive sanitation (sterilization) of the root canal system
KR20200005312A (en) Implant sterilization device using ultraviolet rays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806