JP2017050938A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2017050938A
JP2017050938A JP2015171276A JP2015171276A JP2017050938A JP 2017050938 A JP2017050938 A JP 2017050938A JP 2015171276 A JP2015171276 A JP 2015171276A JP 2015171276 A JP2015171276 A JP 2015171276A JP 2017050938 A JP2017050938 A JP 2017050938A
Authority
JP
Japan
Prior art keywords
voltage
contact
battery power
capacitor
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015171276A
Other languages
Japanese (ja)
Inventor
茉衣 末永
Mai Suenaga
茉衣 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015171276A priority Critical patent/JP2017050938A/en
Publication of JP2017050938A publication Critical patent/JP2017050938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device which can shorten a standby time from a drive start operation up to a vehicle travelable state.SOLUTION: At a drive start operation of a vehicle, a capacitor of an inverter is charged by a current limit resistor by closing a charging contact point in a state that a positive contact point is opened, and a negative contact point is closed, a voltage Vp of a battery power supply is lowered by a prescribed value ΔVb when a voltage Vc of the capacitor reaches a value which is lower than a voltage Vb of the battery power supply by the prescribed value ΔVb by the charging, the direct supply of a voltage to the inverter from the battery power supply is started by closing the positive contact point after the reduction of the voltage, the charging contact point is opened, the reduction of the voltage is released, and the vehicle is brought into a travelable state.SELECTED DRAWING: Figure 1

Description

この発明は、バッテリ電源により駆動されるモータを動力源として備えた車両の車両制御装置に関する。   The present invention relates to a vehicle control device for a vehicle including a motor driven by a battery power source as a power source.

バッテリ電源により駆動されるモータを動力源として備えた車両いわゆる電動車両は、運転開始操作に応じてバッテリ電圧が供給されるインバータを備え、そのインバータの出力によりモータを駆動する。インバータは、平滑用のコンデンサを含み、このコンデンサの電圧をスイッチングにより交流電圧に変換しモータへの駆動電力として出力する。   A vehicle equipped with a motor driven by a battery power source as a power source, so-called an electric vehicle, includes an inverter to which a battery voltage is supplied in accordance with an operation start operation, and drives the motor by the output of the inverter. The inverter includes a smoothing capacitor, and converts the voltage of the capacitor into an AC voltage by switching and outputs it as driving power to the motor.

運転開始操作が行われると、バッテリ電圧が電流制限用抵抗器を介してインバータに供給され、上記コンデンサの充電が始まる。このコンデンサの電圧がバッテリ電圧に近い値まで上昇し(充電完了)、コンデンサに大電流が流れ込む心配がなくなったところで、主回路接点がオンする。この主回路接点のオンにより、バッテリ電圧がインバータに直接的に供給されて走行可能状態となる。これに伴い、運転席近傍のレディランプが点灯する。   When the operation start operation is performed, the battery voltage is supplied to the inverter via the current limiting resistor, and charging of the capacitor starts. When the voltage of the capacitor rises to a value close to the battery voltage (charging is completed) and there is no concern that a large current flows into the capacitor, the main circuit contact is turned on. When the main circuit contact is turned on, the battery voltage is directly supplied to the inverter and the vehicle is ready to run. Along with this, a ready lamp near the driver's seat is turned on.

特開2008−199786号公報JP 2008-199786 A 特許第3560876号公報Japanese Patent No. 3560876 特開2004−120866号公報JP 2004-120866 A

運転開始操作がなされてから、バッテリ電圧がインバータに直接的に供給されて車両が走行可能状態となるまでの待ち時間は、運転者に苛立ちやストレスを与えることがある。   The waiting time from when the operation is started until the battery voltage is directly supplied to the inverter and the vehicle is ready to travel may cause irritation and stress to the driver.

この発明の目的は、運転開始操作から走行可能状態となるまでの待ち時間を短縮できる車両制御装置を提供することである。   The objective of this invention is providing the vehicle control apparatus which can shorten the waiting time until it will be in a driving | running | working possible state after driving | operation start operation.

請求項1に係る発明の車両制御装置は、バッテリ電源により駆動されるモータを動力源として備えた車両の車両制御装置であって、前記バッテリ電源の電圧を平滑するコンデンサを含み、このコンデンサの電圧をスイッチングにより交流電圧に変換し前記モータへの駆動電力として出力するインバータと、前記バッテリ電源と前記インバータとの間の正側通電路を開閉する正側接点と、前記バッテリ電源と前記インバータとの間の負側通電路を開閉する負側接点と、前記正側接点に充電用接点を介して並列接続された電流制限用抵抗器と、制御手段とを備える。制御手段は、前記車両の運転開始操作に際し、前記正側接点を開き前記負側接点を閉じた状態で前記充電用接点を閉じることにより前記コンデンサを前記電流制限用抵抗器を介して充電し、この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより所定値ΔVb低い値に達した場合に前記バッテリ電源の電圧Vbを前記所定値ΔVbだけ低減し、この電圧低減後に前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧低減を解除して前記車両を走行可能状態とする。   A vehicle control device according to a first aspect of the present invention is a vehicle control device for a vehicle including a motor driven by a battery power source as a power source, and includes a capacitor for smoothing the voltage of the battery power source. Is converted to an AC voltage by switching and output as drive power to the motor, a positive contact for opening and closing a positive current path between the battery power source and the inverter, and the battery power source and the inverter. A negative contact that opens and closes a negative energization path therebetween, a current limiting resistor connected in parallel to the positive contact via a charging contact, and a control means. The control means charges the capacitor via the current limiting resistor by closing the charging contact in a state where the positive contact is opened and the negative contact is closed when the vehicle starts driving operation. When the voltage Vc of the capacitor reaches a value lower by a predetermined value ΔVb than the voltage Vb of the battery power supply due to this charging, the voltage Vb of the battery power supply is reduced by the predetermined value ΔVb. By closing, the direct voltage supply from the battery power source to the inverter is started, the charging contact is opened, and the voltage reduction is released to make the vehicle ready to run.

請求項2に係る発明の車両制御装置は、請求項1に係る発明のバッテリ電源および制御手段について限定している。バッテリ電源は、複数の単電池を直列接続してなる組電池を複数備え、かつこれら組電池を直列接続してなり、直流電圧Vbを出力するとともに、その出力電圧Vbを必要に応じて低減するための電圧調整手段を含む。制御手段は、前記車両の運転開始操作に際し、前記正側接点を開き前記負側接点を閉じた状態で前記充電用接点を閉じることにより前記コンデンサを前記電流制限用抵抗器を介して充電する。制御手段は、この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより前記所定値ΔVb低い値に達した場合に、前記バッテリ電源の電圧Vbを前記電圧調整手段により前記所定値ΔVbだけ低減する。制御手段は、この電圧低減後の前記バッテリ電源の電圧Vbと前記コンデンサの電圧Vcとの差ΔVが前記設定値ΔVx未満であることを条件に、前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧低減を解除して前記車両を走行可能状態とする。   The vehicle control device of the invention according to claim 2 limits the battery power supply and the control means of the invention according to claim 1. The battery power supply includes a plurality of assembled batteries formed by connecting a plurality of single cells in series, and these assembled batteries are connected in series to output a DC voltage Vb and reduce the output voltage Vb as necessary. Voltage adjusting means for The control means charges the capacitor via the current limiting resistor by closing the charging contact while the positive contact is opened and the negative contact is closed when the vehicle starts driving. The control means reduces the voltage Vb of the battery power supply by the predetermined value ΔVb by the voltage adjusting means when the voltage Vc of the capacitor reaches the value lower than the voltage Vb of the battery power supply by the charging. To do. The control means closes the positive side contact from the battery power source on condition that the difference ΔV between the voltage Vb of the battery power source after the voltage reduction and the voltage Vc of the capacitor is less than the set value ΔVx. The direct voltage supply to the inverter is started, the charging contact is opened, and the voltage reduction is released to make the vehicle ready to travel.

請求項3に係る発明の車両制御装置は、請求項2に係る発明の電圧調整手段について限定している。電圧調整手段は、前記複数の単電池にそれぞれ並列接続されその各単電池の電圧を調整するための複数の電圧バランス回路であり、放電用の抵抗器および放電路形成用の接点を含み、前記複数の単電池に対して前記抵抗器を介した放電路を形成することにより前記各単電池の電圧をそれぞれ低減させる。   The vehicle control device of the invention according to claim 3 limits the voltage adjusting means of the invention according to claim 2. The voltage adjusting means is a plurality of voltage balance circuits connected in parallel to the plurality of single cells, respectively, for adjusting the voltage of each single cell, and includes a discharge resistor and a contact for forming a discharge path, By forming discharge paths through the resistors for a plurality of unit cells, the voltage of each unit cell is reduced.

請求項4に係る発明の車両制御装置は、請求項3に係る発明の制御手段について限定している。制御手段は、前記複数の電圧バランス回路のうち所定のバランス回路がオンした場合に低減し得る前記バッテリ電源の電圧Vbの値を、前記バッテリ電源の状態に応じて前記所定値ΔVbとして検出する。   The vehicle control device of the invention according to claim 4 limits the control means of the invention according to claim 3. The control means detects the value of the voltage Vb of the battery power supply that can be reduced when a predetermined balance circuit is turned on among the plurality of voltage balance circuits as the predetermined value ΔVb according to the state of the battery power supply.

請求項5に係る発明の車両制御装置は、請求項2に係る発明の制御手段について限定している。制御手段は、前記車両の運転開始操作があった場合、前記正側接点、前記負側接点、前記充電用接点を共に開き、この状態で前記充電用接点を閉じたときの前記コンデンサの電圧変化から前記負側接点の溶着の有無を診断する。制御手段は、この診断結果が異常なしの場合に前記充電用接点を開いて前記負側接点を閉じ、そのときの前記コンデンサの電圧変化から前記充電用接点の溶着の有無を診断する。制御手段は、この診断結果が異常なしの場合に、前記正側接点が開で前記負側接点が閉の状態のまま前記充電用接点を閉じて前記コンデンサを充電する。制御手段は、この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより前記所定値ΔVb低い値に達した場合に前記バッテリ電源の電圧Vbを前記電圧調整手段により前記所定値ΔVbだけ低減する。制御手段は、この電圧低減後の前記バッテリ電源の電圧Vbと前記コンデンサの電圧Vcとの差ΔVが前記設定値ΔVx未満であることを条件に、前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧低減を解除して前記車両を走行可能状態とする。また、制御手段は、前記車両の運転停止操作があった場合、前記正側接点を開いて前記バッテリ電源から前記インバータへの電圧供給を終了し、かつその正側接点を開いた時点の前記コンデンサの電圧変化から前記正側接点の溶着の有無を診断し、この診断後に前記負側接点を開く。   The vehicle control device of the invention according to claim 5 limits the control means of the invention according to claim 2. The control means opens the positive side contact, the negative side contact, and the charging contact when there is a driving start operation of the vehicle, and changes the voltage of the capacitor when the charging contact is closed in this state. From this, the presence or absence of welding of the negative contact is diagnosed. The control means opens the charging contact and closes the negative contact when the diagnosis result is normal, and diagnoses the presence or absence of welding of the charging contact from the voltage change of the capacitor at that time. The control means charges the capacitor by closing the charging contact while the positive contact is open and the negative contact is closed when the diagnosis result is normal. The control means reduces the voltage Vb of the battery power supply by the predetermined value ΔVb by the voltage adjusting means when the voltage Vc of the capacitor reaches a value lower than the voltage Vb of the battery power supply by the charging. . The control means closes the positive side contact from the battery power source on condition that the difference ΔV between the voltage Vb of the battery power source after the voltage reduction and the voltage Vc of the capacitor is less than the set value ΔVx. The direct voltage supply to the inverter is started, the charging contact is opened, and the voltage reduction is released to make the vehicle ready to travel. Further, the control means opens the positive contact when the operation of the vehicle is stopped, ends the voltage supply from the battery power supply to the inverter, and the capacitor at the time when the positive contact is opened. The presence or absence of welding of the positive contact is diagnosed from the voltage change of the negative contact, and the negative contact is opened after this diagnosis.

この発明の車両制御装置によれば、運転開始操作から走行可能状態となるまでの待ち時間を短縮できる。   According to the vehicle control device of the present invention, it is possible to shorten the waiting time from the driving start operation until the vehicle is ready to run.

この発明の一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of this invention. 同実施形態の制御を示すフローチャート。The flowchart which shows the control of the same embodiment. 同実施形態におけるコンデンサ電圧の変化を各接点の開閉と共に示すタイムチャート。The time chart which shows the change of the capacitor voltage in the embodiment with opening and closing of each contact.

以下、この発明の一実施形態を図面を参照しながら説明する。
図1に示すように、バッテリパック1は、バッテリ電源10、正側接点(正側主回路接点ともいう)11a、負側接点(負側主回路接点ともいう)12a、充電用接点13a、電流制限用抵抗器14、およびバッテリコントローラ(バッテリECUともいう)15を含む。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the battery pack 1 includes a battery power source 10, a positive contact (also referred to as a positive main circuit contact) 11a, a negative contact (also referred to as a negative main circuit contact) 12a, a charging contact 13a, a current A limiting resistor 14 and a battery controller (also referred to as a battery ECU) 15 are included.

バッテリ電源10は、複数の組電池(バッテリモジュールともいう)2を直列接続してなり、定格値が例えば300Vの直流電圧(バッテリ電圧という)Vbを出力する。各組電池2は、複数の蓄電池いわゆる単電池(セルともいう)3a,3b,…3nを直列接続し、かつこれら単電池3a,3b,…3nにそれぞれ電圧バランス回路(電圧調整手段)4を並列接続してなり、電圧監視用のセルモニタ7を含む。また、バッテリ電源10は、温度検出部8を含む。温度検出部8は、バッテリ電源10の温度(バッテリ温度という)Tbを検出する。   The battery power source 10 is formed by connecting a plurality of assembled batteries (also referred to as battery modules) 2 in series, and outputs a DC voltage (referred to as a battery voltage) Vb having a rated value of, for example, 300V. Each assembled battery 2 has a plurality of storage batteries so-called single cells (also referred to as cells) 3a, 3b,... 3n connected in series, and a voltage balance circuit (voltage adjusting means) 4 connected to each of the single cells 3a, 3b,. It is connected in parallel and includes a cell monitor 7 for voltage monitoring. The battery power supply 10 includes a temperature detection unit 8. The temperature detector 8 detects the temperature (referred to as battery temperature) Tb of the battery power supply 10.

各組電池2の単電池3a,3b,…3nは、それぞれ内部抵抗rを有する。各電圧バランス回路4は、各組電池2における単電池3a,3b,…3nの個々の電圧(セル電圧という)Vcellを調整するためのもので、放電用の抵抗器5および放電路形成用(バイパス回路形成用)の接点6aを含む。接点6aは、例えばリレー等の開閉器6の常開接点であり、開閉器6における励磁コイル6cの付勢により閉成(オン)し、その励磁コイル6cの消勢により開放(オフ)する。励磁コイル6cは、セルモニタ7から駆動電圧が供給されることにより付勢され、その駆動電圧が遮断されることにより消勢される。励磁コイル6cが付勢されて接点6aが閉じている間、単電池に対し抵抗器5を介した放電路が形成され、セル電圧Vcellが徐々に低減していく。   Each of the unit cells 3a, 3b,... 3n of each assembled battery 2 has an internal resistance r. Each voltage balance circuit 4 is for adjusting the individual voltage (cell voltage) Vcell of each of the cells 3a, 3b,... 3n in each assembled battery 2, and is used to form a discharge resistor 5 and a discharge path ( A contact 6a for forming a bypass circuit). The contact 6a is a normally open contact of a switch 6 such as a relay, and is closed (turned on) by energizing the exciting coil 6c in the switch 6, and opened (turned off) by deactivating the exciting coil 6c. The exciting coil 6c is energized when a driving voltage is supplied from the cell monitor 7, and is de-energized when the driving voltage is cut off. While the exciting coil 6c is energized and the contact 6a is closed, a discharge path through the resistor 5 is formed for the single cell, and the cell voltage Vcell gradually decreases.

なお、各電圧バランス回路4のうち、いくつかの電圧バランス回路4が、バッテリ電圧Vbを所定値ΔVbだけ低減させるための電圧低減用として予め選定される。所定値ΔVbは、コンデンサ21に対する充電目標値Vbsを定めるためのもので、バッテリ電圧Vbの定格値やインバータ20の容量などに応じて定められる。   Among the voltage balance circuits 4, some voltage balance circuits 4 are selected in advance for voltage reduction for reducing the battery voltage Vb by a predetermined value ΔVb. The predetermined value ΔVb is for determining the charging target value Vbs for the capacitor 21 and is determined according to the rated value of the battery voltage Vb, the capacity of the inverter 20, and the like.

セルモニタ7は、単電池3a,3b,…3nのセル電圧Vcellをそれぞれ検出し、かつ検出した各セル電圧Vcellの最低値と最高値を検出し、これら検出結果をバッテリコントローラ15に通知する。また、セルモニタ7は、バッテリコントローラ15からの指令に応じて各電圧バランス回路4における励磁コイル6cの付勢と消勢を操作する。温度検出部8は、検出したバッテリ温度Tbをバッテリコントローラ15に通知する。   The cell monitor 7 detects the cell voltages Vcell of the single cells 3a, 3b,... 3n, detects the lowest value and the highest value of each detected cell voltage Vcell, and notifies the battery controller 15 of these detection results. Further, the cell monitor 7 operates energization and deactivation of the excitation coil 6 c in each voltage balance circuit 4 in accordance with a command from the battery controller 15. The temperature detector 8 notifies the battery controller 15 of the detected battery temperature Tb.

正側接点(正側主回路接点ともいう)11aは、例えば電磁開閉器・電磁接触器・リレー等の開閉器11の常開接点であり、開閉器11における励磁コイル11cの付勢により閉成(オン)し、その励磁コイル11cの消勢により開放(オフ)する。負側接点(負側主回路接点ともいう)12aも、同じく電磁開閉器・電磁接触器・リレー等の開閉器12の常開接点であり、開閉器12における励磁コイル12cの付勢により閉成(オン)し、その励磁コイル12cの消勢により開放(オフ)する。充電用接点(プリチャージ接点ともいう)13aも、同じく電磁開閉器・電磁接触器・リレー等の開閉器13の常開接点であり、開閉器13における励磁コイル13cの付勢により閉成(オン)し、その励磁コイル13cの消勢により開放(オフ)する。   The positive contact (also referred to as positive main circuit contact) 11a is a normally open contact of a switch 11 such as an electromagnetic switch, an electromagnetic contactor, or a relay, and is closed by energizing an exciting coil 11c in the switch 11. (Turned on) and opened (turned off) when the exciting coil 11c is de-energized. Similarly, the negative contact (also referred to as negative main circuit contact) 12a is a normally open contact of the switch 12 such as an electromagnetic switch, an electromagnetic contactor, or a relay, and is closed by energizing the exciting coil 12c in the switch 12. (Turned on) and opened (turned off) when the exciting coil 12c is de-energized. A charging contact (also referred to as a precharge contact) 13a is also a normally open contact of the switch 13 such as an electromagnetic switch, an electromagnetic contactor, or a relay, and is closed (ON) by energizing the exciting coil 13c in the switch 13. And opened (turned off) when the exciting coil 13c is de-energized.

励磁コイル11c,12c,13cは、メインコントローラ40に信号線接続され、メインコントローラ40から駆動電圧が供給されることにより付勢され、その駆動電圧が遮断されることにより消勢される。   The excitation coils 11c, 12c, and 13c are connected to the main controller 40 by signal lines, are energized when a drive voltage is supplied from the main controller 40, and are deactivated when the drive voltage is cut off.

バッテリコントローラ15は、各組電池2のセルモニタ7から通知される各セル電圧Vcellに基づく演算によりバッテリ電源10の電圧(バッテリ電圧)Vbを検出し、その検出電圧Vbを温度検出部8の検出温度(バッテリ温度)Tbと共にメインコントローラ40に知らせる。   The battery controller 15 detects the voltage (battery voltage) Vb of the battery power supply 10 by calculation based on each cell voltage Vcell notified from the cell monitor 7 of each assembled battery 2, and uses the detected voltage Vb as the detected temperature of the temperature detection unit 8. (Battery temperature) The main controller 40 is notified together with Tb.

また、バッテリコントローラ15は、バッテリ電源10における全ての単電池のセル電圧Vcellを各組電池2のセルモニタ7を通じて監視し、各セル電圧Vcellの相互間に所定の差が生じた場合に、各セル電圧Vcellのうちの最低値に他のセル電圧Vcellを一致させるための電圧調整処理を各組電池2のセルモニタ7に指示する。この指示を受けたセルモニタ7は、当該組電池2内の各セル電圧Vcellのうち、セル電圧Vcellが上記最低値ではない単電池を選定し、選定した単電池のセル電圧Vcellが上記最低値に一致するまで同単電池に対応する電圧バランス回路4をオン(接点6aを閉成)する。例えば、単電池3aのセル電圧Vcellが上記最低値でない場合、バッテリコントローラ15は、単電池3aに対応する電圧バランス回路4をオンする。このオンにより、単電池3aの電荷が接点6aおよび抵抗器5を通して放電し、単電池3aのセル電圧Vcellが低下方向に変化していく。単電池3aのセル電圧Vcellが上記最低値に一致すると、セルモニタ7は、単電池3aに対応する電圧バランス回路4をオフする。こうして、バッテリ電源10における全ての単電池のセル電圧Vcellが上記最低値に調整される。   Further, the battery controller 15 monitors the cell voltage Vcell of all the single cells in the battery power supply 10 through the cell monitor 7 of each assembled battery 2, and when a predetermined difference occurs between the cell voltages Vcell, The cell monitor 7 of each assembled battery 2 is instructed to perform voltage adjustment processing for making the other cell voltage Vcell coincide with the lowest value of the voltages Vcell. Upon receiving this instruction, the cell monitor 7 selects a single cell whose cell voltage Vcell is not the above-mentioned minimum value among the cell voltages Vcell in the assembled battery 2, and the cell voltage Vcell of the selected single cell becomes the above-mentioned minimum value. The voltage balance circuit 4 corresponding to the unit cell is turned on (contact 6a is closed) until they match. For example, when the cell voltage Vcell of the single battery 3a is not the lowest value, the battery controller 15 turns on the voltage balance circuit 4 corresponding to the single battery 3a. By this turning on, the electric charge of the unit cell 3a is discharged through the contact 6a and the resistor 5, and the cell voltage Vcell of the unit cell 3a changes in the decreasing direction. When the cell voltage Vcell of the unit cell 3a matches the minimum value, the cell monitor 7 turns off the voltage balance circuit 4 corresponding to the unit cell 3a. In this way, the cell voltage Vcell of all the single cells in the battery power supply 10 is adjusted to the minimum value.

バッテリ電源10の正側端子(+)に正側通電路Pを介してインバータ20の正側入力端が接続され、バッテリ電源10の負側端子(−)に負側通電路Nを介してインバータ20の負側入力端が接続される。そして、正側通電路Pに正側接点11aが挿入接続され、負側通電路Nに負側接点12aが挿入接続される。さらに、正側接点11aに対し、充電用接点13aを介して電流制限用抵抗器14が並列接続される。   The positive input terminal of the inverter 20 is connected to the positive terminal (+) of the battery power supply 10 via the positive conduction path P, and the inverter is connected to the negative terminal (−) of the battery power supply 10 via the negative conduction path N. Twenty negative input ends are connected. The positive contact 11a is inserted and connected to the positive energizing path P, and the negative contact 12a is inserted and connected to the negative energizing path N. Furthermore, a current limiting resistor 14 is connected in parallel to the positive contact 11a via a charging contact 13a.

インバータ20は、コンデンサ21、スイッチング回路22、および電圧検出部23を含む。コンデンサ21は、バッテリ電源10から供給されるバッテリ電圧Vbを平滑する。スイッチング回路22は、複数のスイッチング素子たとえばIGBTを含み、これらIGBTのスイッチングにより、コンデンサ21の電圧Vcをメインコントローラ40からの指令に応じた周波数およびレベルの交流電圧に変換し、その交流電圧を電動車両の動力源であるモータ30への駆動電力として出力する。電圧検出部23は、コンデンサ21の電圧Vcを検出する。この電圧検出部23の検出結果がメインコントローラ40に通知される。モータ30は、例えばACシンクロナスモータである。   Inverter 20 includes a capacitor 21, a switching circuit 22, and a voltage detection unit 23. Capacitor 21 smoothes battery voltage Vb supplied from battery power supply 10. The switching circuit 22 includes a plurality of switching elements such as IGBTs, and by switching these IGBTs, the voltage Vc of the capacitor 21 is converted to an AC voltage having a frequency and level according to a command from the main controller 40, and the AC voltage is electrically driven. It is output as drive power to the motor 30 that is the power source of the vehicle. The voltage detector 23 detects the voltage Vc of the capacitor 21. The detection result of the voltage detector 23 is notified to the main controller 40. The motor 30 is, for example, an AC synchronous motor.

メインコントローラ40に、パワースイッチ41、ブレーキスイッチ42、レディランプ43、異常表示ランプ44が接続される。パワースイッチ41は、電動車両の運転を開始する場合および終了する場合に操作される。ブレーキスイッチ42は、電動車両のブレーキ操作があった場合にオンし、そのブレーキ操作が解除された場合にオフする。レディランプ43は、例えば発光ダイオード(LED)であり、運転席近傍のインストゥルメントパネルなどに配置され、走行可能状態(走行準備完了)を発光により報知する。異常表示ランプ44は、例えば発光ダイオード(LED)であり、運転席近傍のインストゥルメントパネルなどに配置され、正側接点11a、負側接点12a、充電用接点13aの溶着等の異常を発光により報知する。   A power switch 41, a brake switch 42, a ready lamp 43, and an abnormality display lamp 44 are connected to the main controller 40. The power switch 41 is operated when starting and ending the operation of the electric vehicle. The brake switch 42 is turned on when the brake operation of the electric vehicle is performed, and is turned off when the brake operation is released. The ready lamp 43 is, for example, a light emitting diode (LED), and is disposed on an instrument panel or the like in the vicinity of the driver's seat. The abnormality display lamp 44 is, for example, a light emitting diode (LED), and is disposed on an instrument panel or the like in the vicinity of the driver's seat, and emits an abnormality such as welding of the positive side contact 11a, the negative side contact 12a, and the charging contact 13a. Inform.

メインコントローラ40は、車両統合ECUとも称し、電動車両の走行に関わる種々の制御を実行するもので、主要な機能として次の(1)〜(8)の手段を有する。   The main controller 40 is also referred to as a vehicle integrated ECU, and executes various controls related to running of the electric vehicle, and has the following means (1) to (8) as main functions.

(1)パワースイッチ41およびブレーキスイッチ42の同時オンによる運転開始操作があった場合、正側接点11a、負側接点12a、充電用接点13aを共に開き、この状態(初期状態)から充電用接点13aを閉じたときのコンデンサ21の電圧Vcの変化に基づいて負側接点12aの溶着の有無を診断する第1制御手段。   (1) When an operation start operation is performed by simultaneously turning on the power switch 41 and the brake switch 42, the positive side contact 11a, the negative side contact 12a, and the charging contact 13a are all opened, and the charging contact is started from this state (initial state). First control means for diagnosing the presence or absence of welding of the negative contact 12a based on a change in the voltage Vc of the capacitor 21 when 13a is closed.

(2)上記第1制御手段の診断結果が異常なしの場合に、充電用接点13aを開いて負側接点12aを閉じ、そのときのコンデンサ21の電圧Vcの変化に基づいて充電用接点13aの溶着の有無を診断する第2制御手段。   (2) When the diagnosis result of the first control means is normal, the charging contact 13a is opened and the negative contact 12a is closed. Based on the change in the voltage Vc of the capacitor 21 at that time, the charging contact 13a Second control means for diagnosing the presence or absence of welding.

(3)上記第2制御手段の診断結果が異常なしの場合に、正側接点11aが開いて負側接点12aが閉の状態のまま、充電用接点13aを閉じてコンデンサ21を充電する第3制御手段。   (3) When the diagnosis result of the second control means is normal, the charging contact 13a is closed and the capacitor 21 is charged with the positive contact 11a open and the negative contact 12a closed. Control means.

(4)上記第3制御手段による充電開始に伴い、上記電圧低減用の電圧バランス回路4がオンした場合に低減し得るバッテリ電圧Vbの値(低減値)を、バッテリ電源10の状態(バッテリ電圧Vbおよびバッテリ温度Tbなど)に応じて、実際の所定値Vbとして検出(予測)する第4制御手段。   (4) The value (reduced value) of the battery voltage Vb that can be reduced when the voltage reduction circuit 4 for voltage reduction is turned on with the start of charging by the third control means is set to the state of the battery power supply 10 (battery voltage). 4th control means which detects (predicts) as actual predetermined value Vb according to Vb, battery temperature Tb, etc.).

(5)上記第3制御手段による充電開始に伴い、バッテリ電圧Vbより上記検出した所定値ΔVbだけ低い値(=Vb−ΔVb)を充電目標値Vbsとして定め、コンデンサ21の電圧Vcが上昇してそのコンデンサ電圧Vcが充電目標値Vbsに達したところで、電圧低減用の電圧バランス回路4をバッテリコントローラ15を介してオンしこれによりバッテリ電圧Vbを上記所定値ΔVbだけ低減する第5制御手段。   (5) With the start of charging by the third control means, a value (= Vb−ΔVb) lower than the battery voltage Vb by the detected predetermined value ΔVb is set as the charging target value Vbs, and the voltage Vc of the capacitor 21 increases. When the capacitor voltage Vc reaches the charging target value Vbs, fifth control means for turning on the voltage reduction circuit 4 for voltage reduction via the battery controller 15 and thereby reducing the battery voltage Vb by the predetermined value ΔVb.

(6)上記第5制御手段による電圧低減後のバッテリ電圧Vbとコンデンサ21の電圧Vcとの差ΔV(=Vb−Vc)が設定値ΔVx未満であることを条件に、正側接点11aを閉じることによりバッテリ電源10からインバータ20への直接的なバッテリ電圧供給を開始し、かつ充電用接点13aを開くとともに、電圧低減用の電圧バランス回路4をオフして上記電圧低減を解除し、これにより車両を走行可能状態とする第6制御手段。   (6) The positive contact 11a is closed on condition that the difference ΔV (= Vb−Vc) between the battery voltage Vb after the voltage reduction by the fifth control means and the voltage Vc of the capacitor 21 is less than the set value ΔVx. Thus, direct battery voltage supply from the battery power source 10 to the inverter 20 is started, and the charging contact 13a is opened, and the voltage reduction circuit 4 for voltage reduction is turned off to cancel the voltage reduction. Sixth control means for bringing the vehicle into a travelable state;

(7)上記第6制御手段による電圧低減解除に伴い、車両が走行可能状態である旨をレディランプ43の発光により報知する第7制御手段。   (7) Seventh control means for notifying that the vehicle is in a travelable state by light emission of the ready lamp 43 in accordance with the voltage reduction cancellation by the sixth control means.

(8)パワースイッチ41のオンによる運転停止操作があった場合、正側接点11aを開いてコンデンサ21へのバッテリ電圧供給を終了し、かつその正側接点11aを開いた時点のコンデンサ21の電圧Vcの変化に基づいて正側接点11aの溶着の有無を診断し、この診断後に負側接点12aを開く第8制御手段。   (8) When an operation stop operation is performed by turning on the power switch 41, the voltage of the capacitor 21 at the time when the positive side contact 11a is opened to end the battery voltage supply to the capacitor 21 and the positive side contact 11a is opened. 8th control means which diagnoses the presence or absence of welding of the positive side contact 11a based on the change of Vc, and opens the negative side contact 12a after this diagnosis.

なお、上記(4)の第4制御手段は、具体的には、上記電圧低減用の電圧バランス回路4がオンした場合に低減し得るバッテリ電圧Vbの値(低減値)を、現状のバッテリ電圧(バッテリ残量)Vbおよび現状のバッテリ温度Tbに基づく演算により、あるいは予め記憶している電圧低減データテーブルを現状のバッテリ電圧(バッテリ残量)Vbおよび現状のバッテリ温度Tbに基づいて参照することにより、実際の所定値Vbとして検出(予測)する。電圧低減用の電圧バランス回路4はもともとバッテリ電圧Vbを所定値ΔVbだけ低減させるべく選定されたものであるが、実際に低減するバッテリ電圧Vbの値はバッテリ電源10の状態の影響を受ける。この点を考慮し、実際の所定値Vbを第4制御手段により検出している。   Note that the fourth control unit (4) specifically sets the value (reduced value) of the battery voltage Vb that can be reduced when the voltage reduction circuit 4 for voltage reduction is turned on to the current battery voltage. (Battery remaining amount) By calculation based on Vb and current battery temperature Tb, or refer to a voltage reduction data table stored in advance based on current battery voltage (battery remaining amount) Vb and current battery temperature Tb. Thus, the actual predetermined value Vb is detected (predicted). The voltage balance circuit 4 for voltage reduction is originally selected to reduce the battery voltage Vb by the predetermined value ΔVb, but the value of the battery voltage Vb that is actually reduced is affected by the state of the battery power supply 10. Considering this point, the actual predetermined value Vb is detected by the fourth control means.

電圧低減データテーブルは、電圧低減用の電圧バランス回路4がオンした場合に低減するバッテリ電圧Vbの値をバッテリ電圧Vbおよびバッテリ温度Tbを変化させながら逐次に確かめる試験を実施し、求めた低減値をパラメータであるバッテリ電圧Vbおよびバッテリ温度Tbに対応付けたもので、メインコントローラ40の内部メモリに記憶される。   The voltage reduction data table carries out a test for sequentially checking the value of the battery voltage Vb to be reduced when the voltage balance circuit 4 for voltage reduction is turned on while changing the battery voltage Vb and the battery temperature Tb, and the obtained reduction value Is associated with the battery voltage Vb and the battery temperature Tb, which are parameters, and is stored in the internal memory of the main controller 40.

つぎに、上記メインコントローラ40およびバッテリコントローラ15が実行する制御を図2のフローチャートおよび図3のタイムチャートを参照しながら説明する。   Next, the control executed by the main controller 40 and the battery controller 15 will be described with reference to the flowchart of FIG. 2 and the time chart of FIG.

パワースイッチ41およびブレーキスイッチ42の同時オンによる運転開始操作があった場合(ステップS1のYES)、メインコントローラ40は、負側接点12aおよび充電用接点13aの溶着診断処理を実行する(ステップS2)。   When there is an operation start operation by simultaneously turning on the power switch 41 and the brake switch 42 (YES in Step S1), the main controller 40 executes a welding diagnosis process for the negative contact 12a and the charging contact 13a (Step S2). .

この溶着診断処理において、メインコントローラ40は、正側接点11a、負側接点12a、充電用接点13aを共に開く初期状態をセットする(ステップS2a)。そして、メインコントローラ40は、バッテリ電圧Vbとコンデンサ21の電圧Vcとの差ΔV(=Vb−Vc)が溶着診断に十分な設定値ΔVs以上の状態にあるか否かを判定する(ステップS2b)。   In this welding diagnosis process, the main controller 40 sets an initial state in which both the positive contact 11a, the negative contact 12a, and the charging contact 13a are opened (step S2a). Then, the main controller 40 determines whether or not the difference ΔV (= Vb−Vc) between the battery voltage Vb and the voltage Vc of the capacitor 21 is equal to or larger than a set value ΔVs sufficient for welding diagnosis (step S2b). .

差ΔVが設定値ΔVs以上の場合(ステップS2bのYES)、メインコントローラ40は、充電用接点13aを閉じ(ステップS2c)、コンデンサ21の電圧Vcが上昇するか否かを監視する(ステップS2d)。   When the difference ΔV is equal to or larger than the set value ΔVs (YES in step S2b), the main controller 40 closes the charging contact 13a (step S2c) and monitors whether the voltage Vc of the capacitor 21 increases (step S2d). .

コンデンサ21の電圧Vcが上昇した場合(ステップS2dのNO)、メインコントローラ40は、負側接点12aが溶着しているとの判断の下に、充電用接点13aを開き(ステップS3)、かつ異常の旨を異常表示ランプ44の発光により運転者に報知する(ステップS4)。コンデンサ21の電圧Vcが上昇しない場合(ステップS2dのYES)、メインコントローラ40は、負側接点12aは溶着していないとの判断の下に、充電用接点13aを開き(ステップS2e)、続いて負側接点12aを閉じ(ステップS2f)、コンデンサ21の電圧Vcが上昇するか否かを監視する(ステップS2g)。   When the voltage Vc of the capacitor 21 is increased (NO in step S2d), the main controller 40 opens the charging contact 13a (step S3) and determines that the negative contact 12a is welded. Is notified to the driver by the emission of the abnormality display lamp 44 (step S4). When the voltage Vc of the capacitor 21 does not increase (YES in step S2d), the main controller 40 opens the charging contact 13a based on the determination that the negative contact 12a is not welded (step S2e). The negative contact 12a is closed (step S2f), and it is monitored whether or not the voltage Vc of the capacitor 21 increases (step S2g).

コンデンサ21の電圧Vcが上昇した場合(ステップS2gのNO)、メインコントローラ40は、充電用接点13aが溶着しているとの判断の下に、負側接点12aを開き(ステップS3)、かつ異常の旨を異常表示ランプ44の発光により運転者に報知する(ステップS4)。コンデンサ21の電圧Vcが上昇しない場合(ステップS2gのYES)、メインコントローラ40は、充電用接点13aは溶着していないとの判断の下に、溶着診断処理を終了して次の処理に移行する。   When the voltage Vc of the capacitor 21 rises (NO in step S2g), the main controller 40 opens the negative contact 12a (step S3) and determines that the charging contact 13a is welded. Is notified to the driver by the emission of the abnormality display lamp 44 (step S4). When the voltage Vc of the capacitor 21 does not increase (YES in step S2g), the main controller 40 ends the welding diagnosis process and proceeds to the next process based on the determination that the charging contact 13a is not welded. .

次の処理として、メインコントローラ40は、正側接点11aが開で負側接点12aが閉の状態のまま、充電用接点13aを閉じる(ステップS5)。充電用接点13aが閉じると、バッテリ電圧Vbが電流制限用抵抗器14を介してコンデンサ21に印加され、コンデンサ21の充電が開始される。このとき、コンデンサ21への通電路に電流制限用抵抗器14が介在するので、コンデンサ21の電圧Vcが零に近い状態であっても、過大な突入電流がコンデンサ21に流れない。   As the next processing, the main controller 40 closes the charging contact 13a while the positive contact 11a is open and the negative contact 12a is closed (step S5). When the charging contact 13a is closed, the battery voltage Vb is applied to the capacitor 21 via the current limiting resistor 14, and charging of the capacitor 21 is started. At this time, since the current limiting resistor 14 is interposed in the energization path to the capacitor 21, an excessive inrush current does not flow to the capacitor 21 even when the voltage Vc of the capacitor 21 is close to zero.

この充電開始に伴い、メインコントローラ40は、電圧低減用の電圧バランス回路4がオンした場合に低減し得るバッテリ電圧Vbの値(低減値)を、現状のバッテリ電圧Vbおよび現状のバッテリ温度Tbに基づく演算または電圧低減データテーブルの参照により、実際の所定値Vbとして検出(予測)する(ステップS6)。そして、メインコントローラ40は、バッテリ電圧Vbより上記検出した所定値ΔVbだけ低い値(=Vb−ΔVb)を充電目標値Vbsとして定め、コンデンサ21の電圧Vcが上昇してその充電目標値Vbsに達したところで(ステップS7のYES)、電圧低減用の電圧バランス回路4をオンし、これによりバッテリ電圧Vbを所定値ΔVbだけ低減する(ステップS8)。   With the start of charging, the main controller 40 changes the value (reduced value) of the battery voltage Vb that can be reduced when the voltage reduction circuit 4 for voltage reduction is turned on to the current battery voltage Vb and the current battery temperature Tb. It is detected (predicted) as the actual predetermined value Vb by calculation based on it or referring to the voltage reduction data table (step S6). Then, the main controller 40 determines a value (= Vb−ΔVb) lower than the battery voltage Vb by the detected predetermined value ΔVb as the charging target value Vbs, and the voltage Vc of the capacitor 21 increases to reach the charging target value Vbs. When this occurs (YES in step S7), the voltage balance circuit 4 for voltage reduction is turned on, thereby reducing the battery voltage Vb by a predetermined value ΔVb (step S8).

この電圧低減に伴い、メインコントローラ40は、バッテリ電圧(低減後のバッテリ電圧)Vbとコンデンサ21の電圧Vcとの差ΔV(=Vb−Vc)が、設定値ΔVx未満であるか否かを判定する(ステップS9)。差ΔVが設定値ΔVx以上の場合(ステップS9のNO)、コンデンサ21の電圧Vcの上昇を待つ。差ΔVが設定値ΔVx未満の場合(ステップS9のYES)、メインコントローラ40は、正側接点11aを閉じてもコンデンサ21に過大電流が流れる心配はないとの判断の下に、正側接点11aを閉じる(ステップS10)。正側接点11aが閉じると、コンデンサ21に対する充電経路が、電流制限用抵抗器14を介した経路から、電流制限用抵抗器14を介さない経路に切換わる。つまり、バッテリ電圧Vbがコンデンサ21に直接的に供給される。   Along with this voltage reduction, the main controller 40 determines whether or not the difference ΔV (= Vb−Vc) between the battery voltage (battery voltage after reduction) Vb and the voltage Vc of the capacitor 21 is less than the set value ΔVx. (Step S9). When the difference ΔV is equal to or larger than the set value ΔVx (NO in step S9), the process waits for the voltage Vc of the capacitor 21 to increase. When the difference ΔV is less than the set value ΔVx (YES in step S9), the main controller 40 determines that there is no concern that an excessive current flows through the capacitor 21 even when the positive side contact 11a is closed. Is closed (step S10). When the positive contact 11a is closed, the charging path for the capacitor 21 is switched from the path via the current limiting resistor 14 to the path not via the current limiting resistor 14. That is, the battery voltage Vb is directly supplied to the capacitor 21.

続いて、メインコントローラ40は、充電用接点13aを開き(ステップS11)、かつ電圧低減用の電圧バランス回路4をオフして上記所定値Vbの電圧低減を解除する(ステップS12)。この電圧低減の解除に伴い、コンデンサ21の電圧Vcは成り行きで上昇していく。   Subsequently, the main controller 40 opens the charging contact 13a (step S11) and turns off the voltage reduction circuit 4 for voltage reduction to cancel the voltage reduction of the predetermined value Vb (step S12). Along with the cancellation of this voltage reduction, the voltage Vc of the capacitor 21 increases as a result.

なお、図3のタイムチャートでは、充電用接点13aを開いた後に電圧低減を解除しているが、正側接点11aを閉じた後であれば、充電用接点13aを開く前に電圧低減を解除してもよいし、充電用接点13aを開くと同時に電圧低減を解除してもよい。   In the time chart of FIG. 3, the voltage reduction is released after opening the charging contact 13a. However, if the positive side contact 11a is closed, the voltage reduction is released before the charging contact 13a is opened. Alternatively, the voltage reduction may be canceled simultaneously with opening the charging contact 13a.

上記所定値Vbの電圧低減の解除に伴い、メインコントローラ40は、車両を走行可能状態としてその旨のいわゆるレディオンをレディランプ43の発光により運転者に報知する(ステップS13)。すなわち、メインコントローラ40は、モータ30に駆動電力を供給するためのインバータ20のスイッチング制御を運転操作などに応じて適宜に実行し、これによりモータ30の駆動による車両の走行を可能とする。   With the cancellation of the voltage reduction of the predetermined value Vb, the main controller 40 informs the driver of the so-called ready-on to that effect by the light emission of the ready lamp 43 with the vehicle in a travelable state (step S13). That is, the main controller 40 appropriately executes switching control of the inverter 20 for supplying driving power to the motor 30 according to a driving operation or the like, thereby enabling the vehicle to travel by driving the motor 30.

レディランプ43の発光時、コンデンサ21の電圧Vcは少なくとも充電目標値Vbs以上の状態にあり、しかもバッテリ電圧Vbが電流制限用抵抗器14を介さずインバータ20に直接的に供給される状態にあるので、モータ30の駆動に十分な電力をインバータ20から出力することができる。   When the ready lamp 43 emits light, the voltage Vc of the capacitor 21 is at least equal to or higher than the charge target value Vbs, and the battery voltage Vb is directly supplied to the inverter 20 without passing through the current limiting resistor 14. Therefore, electric power sufficient for driving the motor 30 can be output from the inverter 20.

その後、パワースイッチ41のオンによる運転停止操作があった場合(ステップS14のYES)、メインコントローラ40は、正側接点11aを開いてインバータ20へのバッテリ電圧供給を終了し(ステップS15)、かつ走行可能状態ではない旨のいわゆるレディオフをレディランプ43の消光により運転者に報知する(ステップS16)。続いて、メインコントローラ40は、正側接点11aの溶着診断処理を実行する(ステップS17)。   Thereafter, when there is an operation stop operation by turning on the power switch 41 (YES in Step S14), the main controller 40 opens the positive contact 11a to end the battery voltage supply to the inverter 20 (Step S15), and A so-called ready-off indicating that the vehicle is not ready to travel is notified to the driver by extinguishing the ready lamp 43 (step S16). Subsequently, the main controller 40 executes a welding diagnosis process for the positive side contact 11a (step S17).

この溶着診断処理において、メインコントローラ40は、コンデンサ21の電圧Vcが下降したか否かを監視する(ステップS17a)。コンデンサ21の電圧Vcが下降しない場合(ステップS17aのNO)、メインコントローラ40は、正側接点11aが溶着しているとの判断の下に、異常の旨を異常表示ランプ44の発光により運転者に報知し(ステップS17b)、かつ負側接点12aを開く(ステップS18)。コンデンサ21の電圧Vcが下降した場合(ステップS17aのYES)、メインコントローラ40は、正側接点11aが溶着していないとの判断の下に、負側接点12aを開く(ステップS18)。   In this welding diagnosis process, the main controller 40 monitors whether or not the voltage Vc of the capacitor 21 has dropped (step S17a). When the voltage Vc of the capacitor 21 does not decrease (NO in step S17a), the main controller 40 determines that the positive side contact 11a is welded and indicates that an abnormality has occurred by light emission of the abnormality display lamp 44. (Step S17b) and the negative contact 12a is opened (step S18). When the voltage Vc of the capacitor 21 decreases (YES in Step S17a), the main controller 40 opens the negative contact 12a based on the determination that the positive contact 11a is not welded (Step S18).

以上のように、運転開始操作に応じてバッテリ電圧Vbを電流制限用抵抗器14を介してインバータ20に供給し、これによりコンデンサ21の充電を開始し、コンデンサ21の電圧Vcがバッテリ電圧Vbより所定値ΔVb低い充電目標値Vbsまで上昇したところで、バッテリ電圧Vbをその所定値ΔVbだけ低減してコンデンサ21に大電流が流れ込まないようにし、この状態で正側接点11aを閉じることによりバッテリ電源10からインバータ20への直接的なバッテリ電圧供給を開始し、かつ所定値ΔVbの電圧低減を解除して走行可能状態(レディオン)とすることにより、図3に一点鎖線で示すようにコンデンサ21の電圧Vcがバッテリ電圧Vbの定格値に近い値まで上昇してから正側接点11aをオンする場合に比べ、走行可能状態となるまでの時間を短縮できる。運転開始操作から走行可能状態となるまでの時間が短縮されるので、運転者の苛立ちやストレスを抑制できる。   As described above, the battery voltage Vb is supplied to the inverter 20 via the current limiting resistor 14 in accordance with the operation start operation, thereby starting charging of the capacitor 21, and the voltage Vc of the capacitor 21 is changed from the battery voltage Vb. When the battery voltage Vb is reduced to the predetermined value ΔVb so that a large current does not flow into the capacitor 21 when the charging target value Vbs is lowered by the predetermined value ΔVb, the battery power source 10 is closed by closing the positive contact 11a in this state. 3 starts the direct battery voltage supply to the inverter 20 and cancels the voltage reduction of the predetermined value ΔVb so that the vehicle can run (ready on), whereby the voltage of the capacitor 21 is shown as shown by a one-dot chain line in FIG. Compared to when the positive contact 11a is turned on after Vc rises to a value close to the rated value of the battery voltage Vb. It can be possible to shorten the time of the state and until. Since the time from the driving start operation until the vehicle is ready to run is shortened, the driver's irritation and stress can be suppressed.

[4]変形例
上記実施形態では、電圧調整手段である電圧バランス回路4を用いてバッテリ電圧Vbを所定値Vb低減する構成としたが、同様の電圧低減機能を有するものであれば、電圧バランス回路4に限らず他の機器を用いてもよい。
[4] Modification
In the above embodiment, the battery voltage Vb is reduced by the predetermined value Vb by using the voltage balance circuit 4 that is a voltage adjustment means. However, the voltage balance circuit 4 is not limited to the voltage balance circuit 4 as long as it has a similar voltage reduction function. Other devices may be used.

その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, the said embodiment and modification are shown as an example and are not intending limiting the range of invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

1…バッテリパック、2…組電池、3a〜3n…単電池、4…電圧バランス回路、5…放電用の抵抗器、6…開閉器、6a…接点、6c…励磁コイル、7…セルモニタ、8…温度検出部、10…バッテリ電源、11…開閉器、11a…正側接点、11c…励磁コイル、12…開閉器、12a…負側接点、12c…励磁コイル、13…開閉器、13a…充電用接点、13c…励磁コイル、14…電流制限用抵抗器、15…バッテリコントローラ、20…インバータ、21…コンデンサ、22…スイッチング回路、30…モータ、40…メインコントローラ、41…パワースイッチ、42…ブレーキスイッチ、43…レディランプ、44…異常表示ランプ   DESCRIPTION OF SYMBOLS 1 ... Battery pack, 2 ... Assembly battery, 3a-3n ... Single cell, 4 ... Voltage balance circuit, 5 ... Resistor for discharge, 6 ... Switch, 6a ... Contact, 6c ... Excitation coil, 7 ... Cell monitor, 8 DESCRIPTION OF SYMBOLS ... Temperature detection part, 10 ... Battery power supply, 11 ... Switch, 11a ... Positive side contact, 11c ... Excitation coil, 12 ... Switch, 12a ... Negative side contact, 12c ... Excitation coil, 13 ... Switch, 13a ... Charging Contact point, 13c ... excitation coil, 14 ... current limiting resistor, 15 ... battery controller, 20 ... inverter, 21 ... capacitor, 22 ... switching circuit, 30 ... motor, 40 ... main controller, 41 ... power switch, 42 ... Brake switch, 43 ... Ready lamp, 44 ... Abnormal indicator lamp

Claims (5)

バッテリ電源により駆動されるモータを動力源として備えた車両の車両制御装置であって、
前記バッテリ電源の電圧を平滑するコンデンサを含み、このコンデンサの電圧をスイッチングにより交流電圧に変換し前記モータへの駆動電力として出力するインバータと、
前記バッテリ電源と前記インバータとの間の正側通電路を開閉する正側接点と、
前記バッテリ電源と前記インバータとの間の負側通電路を開閉する負側接点と、
前記正側接点に充電用接点を介して並列接続された電流制限用抵抗器と、
前記車両の運転開始操作に際し、前記正側接点を開き前記負側接点を閉じた状態で前記充電用接点を閉じることにより前記コンデンサを前記電流制限用抵抗器を介して充電し、この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより所定値ΔVb低い値に達した場合に前記バッテリ電源の電圧Vbを前記所定値ΔVbだけ低減し、この電圧低減後に前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧低減を解除して前記車両を走行可能状態とする制御手段と、
を備えることを特徴とする車両制御装置。
A vehicle control device for a vehicle including a motor driven by a battery power source as a power source,
An inverter that includes a capacitor that smoothes the voltage of the battery power supply, converts the voltage of the capacitor into an AC voltage by switching, and outputs the AC power as drive power;
A positive contact for opening and closing a positive current path between the battery power source and the inverter;
A negative contact that opens and closes a negative energization path between the battery power source and the inverter;
A current limiting resistor connected in parallel to the positive contact via a charging contact;
When starting operation of the vehicle, the capacitor is charged via the current limiting resistor by closing the charging contact in a state where the positive contact is opened and the negative contact is closed, and the charging causes the capacitor to When the voltage Vc of the capacitor reaches a value lower than the voltage Vb of the battery power supply by a predetermined value ΔVb, the voltage Vb of the battery power supply is reduced by the predetermined value ΔVb, and the positive side contact is closed after the voltage reduction. Control means for starting direct voltage supply from the battery power source to the inverter and opening the charging contact and releasing the voltage reduction to make the vehicle ready to travel;
A vehicle control device comprising:
前記バッテリ電源は、複数の単電池を直列接続してなる組電池を複数備え、かつこれら組電池を直列接続してなり、直流電圧Vbを出力するとともに、その出力電圧Vbを必要に応じて低減するための電圧調整手段を含んでおり、
前記制御手段は、
前記車両の運転開始操作に際し、前記正側接点を開き前記負側接点を閉じた状態で前記充電用接点を閉じることにより前記コンデンサを前記電流制限用抵抗器を介して充電し、
この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより前記所定値ΔVb低い値に達した場合に、前記バッテリ電源の電圧Vbを前記電圧調整手段により前記所定値ΔVbだけ低減し、
この電圧低減後の前記バッテリ電源の電圧Vbと前記コンデンサの電圧Vcとの差ΔVが前記設定値ΔVx未満であることを条件に、前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧調整手段による電圧低減を解除して前記車両を走行可能状態とする、
ことを特徴とする請求項1に記載の車両制御装置。
The battery power source includes a plurality of assembled batteries formed by connecting a plurality of single cells in series, and these assembled batteries are connected in series to output a DC voltage Vb and reduce the output voltage Vb as necessary. Voltage adjusting means for
The control means includes
When starting operation of the vehicle, the capacitor is charged via the current limiting resistor by closing the charging contact in a state where the positive contact is opened and the negative contact is closed,
When the voltage Vc of the capacitor reaches a value lower than the voltage Vb of the battery power supply by the charging, the voltage Vb of the battery power supply is reduced by the predetermined value ΔVb by the voltage adjusting means,
On the condition that the difference ΔV between the voltage Vb of the battery power supply after the voltage reduction and the voltage Vc of the capacitor is less than the set value ΔVx, the battery power supply to the inverter is closed by closing the positive contact. Starting the direct voltage supply and opening the charging contact and releasing the voltage reduction by the voltage adjusting means to make the vehicle ready to travel;
The vehicle control device according to claim 1.
前記電圧調整手段は、前記複数の単電池にそれぞれ並列接続されその各単電池の電圧を調整するための複数の電圧バランス回路であり、放電用の抵抗器および放電路形成用の接点を含み、前記複数の単電池に対して前記抵抗器を介した放電路を形成することにより前記各単電池の電圧をそれぞれ低減させる
ことを特徴とする請求項2に記載の車両制御装置。
The voltage adjusting means is a plurality of voltage balance circuits that are connected in parallel to the plurality of single cells and adjust the voltage of each single cell, and include a discharge resistor and a discharge path forming contact, The vehicle control device according to claim 2, wherein the voltage of each single cell is reduced by forming a discharge path via the resistor for the plurality of single cells.
前記制御手段は、前記複数の電圧バランス回路のうち所定のバランス回路がオンした場合に低減し得る前記バッテリ電源の電圧Vbの値を、前記バッテリ電源の状態に応じて前記所定値ΔVbとして検出する
ことを特徴とする請求項3に記載の車両制御装置。
The control means detects, as the predetermined value ΔVb, a value of the voltage Vb of the battery power supply that can be reduced when a predetermined balance circuit is turned on among the plurality of voltage balance circuits, according to the state of the battery power supply. The vehicle control device according to claim 3.
前記制御手段は、
前記車両の運転開始操作があった場合、前記正側接点、前記負側接点、前記充電用接点を共に開き、この状態で前記充電用接点を閉じたときの前記コンデンサの電圧変化から前記負側接点の溶着の有無を診断し、
この診断結果が異常なしの場合に前記充電用接点を開いて前記負側接点を閉じ、そのときの前記コンデンサの電圧変化から前記充電用接点の溶着の有無を診断し、
この診断結果が異常なしの場合に、前記正側接点が開で前記負側接点が閉の状態のまま前記充電用接点を閉じて前記コンデンサを充電し、
この充電により前記コンデンサの電圧Vcが前記バッテリ電源の電圧Vbより前記所定値ΔVb低い値に達した場合に前記バッテリ電源の電圧Vbを前記電圧調整手段により前記所定値ΔVbだけ低減し、
この電圧低減後の前記バッテリ電源の電圧Vbと前記コンデンサの電圧Vcとの差ΔVが前記設定値ΔVx未満であることを条件に、前記正側接点を閉じることにより前記バッテリ電源から前記インバータへの直接的な電圧供給を開始し且つ前記充電用接点を開くとともに前記電圧調整手段による電圧低減を解除して前記車両を走行可能状態とし、
前記車両の運転停止操作があった場合、前記正側接点を開いて前記バッテリ電源から前記インバータへの電圧供給を終了し、かつその正側接点を開いた時点の前記コンデンサの電圧変化から前記正側接点の溶着の有無を診断し、この診断後に前記負側接点を開く
ことを特徴とする請求項2に記載の車両制御装置。
The control means includes
When there is a driving start operation of the vehicle, the positive side contact, the negative side contact, and the charging contact are both opened, and the charging side is closed from the voltage change of the capacitor when the charging contact is closed in this state. Diagnose contact welding,
When the diagnosis result is normal, the charging contact is opened and the negative contact is closed, and the presence or absence of the charging contact is diagnosed from the voltage change of the capacitor at that time,
When the diagnosis result is normal, the positive contact is open and the negative contact is closed to close the charging contact and charge the capacitor.
When the voltage Vc of the capacitor reaches a value lower than the voltage Vb of the battery power supply by the charging, the voltage Vb of the battery power supply is reduced by the predetermined value ΔVb by the voltage adjusting means.
On the condition that the difference ΔV between the voltage Vb of the battery power supply after the voltage reduction and the voltage Vc of the capacitor is less than the set value ΔVx, the battery power supply to the inverter is closed by closing the positive contact. Start direct voltage supply and open the charging contact and cancel the voltage reduction by the voltage adjusting means to make the vehicle ready to travel,
When the operation of the vehicle is stopped, the positive contact is opened, the voltage supply from the battery power supply to the inverter is terminated, and the positive voltage is changed from the voltage change of the capacitor when the positive contact is opened. The vehicle control device according to claim 2, wherein the presence or absence of side contact welding is diagnosed, and the negative contact is opened after the diagnosis.
JP2015171276A 2015-08-31 2015-08-31 Vehicle control device Pending JP2017050938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171276A JP2017050938A (en) 2015-08-31 2015-08-31 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171276A JP2017050938A (en) 2015-08-31 2015-08-31 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2017050938A true JP2017050938A (en) 2017-03-09

Family

ID=58280509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171276A Pending JP2017050938A (en) 2015-08-31 2015-08-31 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2017050938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138278A (en) * 2016-02-05 2017-08-10 富士通テン株式会社 Welding detection device and welding detection method
US11072242B2 (en) 2017-06-28 2021-07-27 Lg Chem, Ltd. Off-prevention circuit of contactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138278A (en) * 2016-02-05 2017-08-10 富士通テン株式会社 Welding detection device and welding detection method
US11072242B2 (en) 2017-06-28 2021-07-27 Lg Chem, Ltd. Off-prevention circuit of contactor

Similar Documents

Publication Publication Date Title
US10690724B2 (en) Power supply protective device, power supply device and switch failure diagnosing method
US9002558B2 (en) Abnormality diagnosis apparatus for power control system
KR101637768B1 (en) Method for Diagnosing Leakage of Electric Parts and Servicing Guide of Driving State for Vehicle in Battery Management System
US9520734B2 (en) Control apparatus
JP6201160B2 (en) Power supply control device and relay abnormality detection method
CN105984355B (en) Power-supply system for vehicle
US8655535B2 (en) Electric vehicle and method for controlling same
JP6417892B2 (en) Contactor failure determination method and contactor failure determination device
JP6448825B1 (en) Charge control device
EP2509186B1 (en) Power supply apparatus and method of controlling the same
JP6602638B2 (en) Vehicle parts dielectric breakdown diagnosis system and method
JP2010035350A (en) Method of controlling charge and discharge of battery in power supply device of hybrid car
US20200274385A1 (en) Precharge control apparatus
WO2017033411A1 (en) Power supply device, and electric vehicle provided with power supply device
JP5381820B2 (en) Power control device
JP6693350B2 (en) Voltage equalization method for multiple battery stacks
JP6086605B2 (en) Discharge circuit failure detection device and discharge circuit failure detection method
JP2017079496A (en) Contactor failure determining device and contactor failure determining method
JP6853797B2 (en) Battery monitoring device and relay status diagnostic method
JP2017050938A (en) Vehicle control device
JP2020099112A (en) Precharge control device
JP6220158B2 (en) Relay diagnostic device
JP2012178895A (en) Abnormality diagnostic device of power supply apparatus of electric motor
KR20090039891A (en) Control method for pre-charging of hybrid electric vehicle
JP2017093008A (en) Contactor failure determination device and contactor failure determination method