JP2017050325A - Thermoelectric transducer and manufacturing method therefor - Google Patents

Thermoelectric transducer and manufacturing method therefor Download PDF

Info

Publication number
JP2017050325A
JP2017050325A JP2015170485A JP2015170485A JP2017050325A JP 2017050325 A JP2017050325 A JP 2017050325A JP 2015170485 A JP2015170485 A JP 2015170485A JP 2015170485 A JP2015170485 A JP 2015170485A JP 2017050325 A JP2017050325 A JP 2017050325A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
oxide
glass
conversion element
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015170485A
Other languages
Japanese (ja)
Other versions
JP6635288B2 (en
Inventor
安盛 敦雄
Atsuo Yasumori
敦雄 安盛
努 飯田
Tsutomu Iida
努 飯田
杏 大関
An Ozeki
杏 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Yasunaga Corp
Original Assignee
Tokyo University of Science
Yasunaga Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Yasunaga Corp filed Critical Tokyo University of Science
Priority to JP2015170485A priority Critical patent/JP6635288B2/en
Publication of JP2017050325A publication Critical patent/JP2017050325A/en
Application granted granted Critical
Publication of JP6635288B2 publication Critical patent/JP6635288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric transducer excellent in long-term high-temperature durability and a manufacturing method therefor.SOLUTION: A thermoelectric transducer includes a thermoelectric conversion part and is covered with oxide crystallized glass.SELECTED DRAWING: Figure 1

Description

本発明は、高温耐久性に優れた熱電変換素子とその製造方法に関する。   The present invention relates to a thermoelectric conversion element excellent in high temperature durability and a method for producing the same.

熱電変換素子は、温度差を利用して熱エネルギーを電気エネルギーに変換する機能を有し、熱電変換材料を熱電変換部としその両端に電極部が設けられてなるものであり、それを1個又は複数設置して作製されたものが熱電変換モジュールである。   A thermoelectric conversion element has a function of converting thermal energy into electric energy using a temperature difference, and is formed by using a thermoelectric conversion material as a thermoelectric conversion portion and having electrode portions at both ends thereof. Or what is produced by installing two or more is a thermoelectric conversion module.

熱電変換素子及びそれに用いる熱電変換材料は古くから研究開発され、例えば、ビスマス・テルル、鉛・テルル、亜鉛・アンチモナイドなどが知られている。しかしながら、これらの材料は、有害元素や希少元素が含まれるために、実用化の障害になっている。   Thermoelectric conversion elements and thermoelectric conversion materials used therefor have been researched and developed for a long time, and for example, bismuth tellurium, lead tellurium, zinc antimonide and the like are known. However, these materials are a hindrance to practical use because they contain harmful elements and rare elements.

近年、高変換効率、環境低負荷など優れた特徴を持つシリサイド系化合物、特に多結晶性マグネシウムシリサイド(ドーピング元素を含むものと含まないものを総称する)が特に注目されている。(例えば、特許文献1、特許文献2参照)   In recent years, silicide-based compounds having excellent characteristics such as high conversion efficiency and low environmental load, particularly polycrystalline magnesium silicide (collectively including those containing and not containing a doping element) have attracted particular attention. (For example, see Patent Document 1 and Patent Document 2)

特開2011−029632号公報JP 2011-029632 A 国際公開第2014/084163号International Publication No. 2014/084163

熱電変換素子は、無次元性能指数(ZT)をはじめ、優れた各種の熱電変換特性を有するものであることが要求されるが、実用化には長期高温耐久性が必要である。多結晶性マグネシウムシリサイドをはじめ、様々な熱電変換材料を用いた多くの熱電変換素子については、含有させるドーパントの種類を選択して高温耐久性の向上を図っているが、稼働温度域(約600℃程度の高温領域)において長期高温耐久性が不充分なため、耐久性の改善が求められている。   Thermoelectric conversion elements are required to have various thermoelectric conversion characteristics including dimensionless figure of merit (ZT), but long-term high-temperature durability is required for practical use. For many thermoelectric conversion elements using various thermoelectric conversion materials such as polycrystalline magnesium silicide, the type of dopant to be included is selected to improve the high temperature durability. Since long-term high-temperature durability is insufficient in a high-temperature region of about 0 ° C., improvement in durability is required.

本発明は上記課題を解決し、長期高温耐久性に優れた熱電変換素子およびその製法を提供することを目的とする。   The object of the present invention is to solve the above problems and to provide a thermoelectric conversion element excellent in long-term high-temperature durability and a method for producing the same.

本発明者等は、熱電変換部用の代表的材料である多結晶性マグネシウムシリサイドについて、その焼結体にアンチモンを0.5at%ドープしたものを試料とし、大気雰囲気中で約600℃に加熱し、10時間、100時間、1000時間の各経過時点で観察した。その結果、焼結体表面の酸素濃度が高くなっていることを確認し、また焼結時の粒界を起点に表面全体に黒い粒が生成して酸化が進んでいることがわかった。このため、熱電変換部の表面を保護する必要があることを認識した。
本発明者等は、上記課題を解決するために、鋭意研究を重ね、その結果、高温下でも酸化を防止でき、ボイドや亀裂を発生させない、酸化物結晶化ガラスを開発することができ、本発明を創出するに至った。具体的には、本発明は以下の(C1)〜(C16)のとおりである。
The inventors of the present invention used polycrystalline magnesium silicide, which is a representative material for the thermoelectric conversion part, as a sample in which the sintered body is doped with 0.5 at% of antimony and heated to about 600 ° C. in an air atmosphere. And observed at each of 10 hours, 100 hours, and 1000 hours. As a result, it was confirmed that the oxygen concentration on the surface of the sintered body was high, and it was found that black grains were formed on the entire surface starting from the grain boundary during sintering, and oxidation progressed. For this reason, it recognized that it was necessary to protect the surface of a thermoelectric conversion part.
In order to solve the above problems, the present inventors have conducted extensive research, and as a result, can develop an oxide crystallized glass that can prevent oxidation even at high temperatures and does not generate voids or cracks. Invented the invention. Specifically, the present invention is as the following (C1) to (C16).

(C1) 熱電変換部を備える熱電変換素子であって、熱電変換部が酸化物結晶化ガラスによって被覆されている、熱電変換素子。
(C2) 熱電変換部の熱膨張係数と、酸化物結晶化ガラスの熱膨張係数とが0.5×10−5/K〜2.0×10−5/Kであり、かつ熱電変換部の熱膨張係数と酸化物結晶化ガラスの熱膨張係数との差が0.5×10−5/K以下である、(C1)の熱電変換素子。
(C3) 酸化物結晶化ガラスがガラス相と結晶相とを含有し、該ガラス相が以下の(1)、(2)及び(3)の金属酸化物を含む、(C1)又は(C2)の熱電変換素子。
(1)Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種
(2)Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種
(3)Siの酸化物
(C4) ガラス相が以下の(4)の金属酸化物をさらに含む、(C3)の熱電変換素子。
(4)Al、B及びZnから選択される金属元素の酸化物の少なくとも1種
(C5) 酸化物結晶化ガラスは、ガラス相がNaO、KO、CaO、Al及びSiOを含有し、かつ、結晶相がアルカリ金属酸化物及び/又はアルカリ土類金属酸化物を含有するケイ酸塩結晶相を含む、(C3)又は(C4)の熱電変換素子。
(C6) 酸化物結晶化ガラスの膜厚が20〜150μmである、(C1)〜(C6)のいずれかの熱電変換素子。
(C7) 熱電変換部が多結晶性マグネシウムシリサイドを含有する、(C1)〜(C6)のいずれかの熱電変換素子。
(C8) (C1)〜(C7)のいずれかの熱電変換素子を備える熱電変換モジュール。
(C9) (C1)〜(C7)のいずれかの熱電変換素子を構成し、酸化物結晶化ガラスの膜によって被覆された熱電変換部材。
(C10) 酸化物ガラス粉末を含むスラリーに熱電変換部を浸漬させる工程と、スラリーで被覆された熱電変換部を焼成する工程と、
を含む、酸化物結晶化ガラスによって被覆された熱電変換部を備える熱電変換素子の製造方法。
(C11) 該酸化物ガラス粉末は、Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種、Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種、並びにSiの酸化物、である金属酸化物を含む、(C10)の熱電変換素子の製造方法。
(C12) 金属酸化物の組成が、以下の(1a)、(2a)又は(3a)である、(C11)の熱電変換素子の製造方法。
(1a)10〜20mol%のNaO、10〜20mol%のKO、5〜15mol%のCaO、5〜15mol%のAl及び40〜70mol%のSiO
(2a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO、2.5〜7.5mol%のAl及び50〜60mol%のSiO
(3a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO及び55〜65mol%のSiO
(C13) スラリーにおける酸化物ガラス粉末の濃度が45〜60質量%であり、酸化物ガラス粉末の平均粒径が3〜15μmである、(C10)〜(C12)のいずれかの熱電変換素子の製造方法。
(C14) スラリーに浸漬された熱電変換部を前記スラリーから引き上げる速度が5〜25mm/秒である、(C10)〜(C13)のいずれかの熱電変換素子の製造方法。
(C15) 熱電変換部を焼成する工程において、5〜15℃/分の速度で昇温し、650〜750℃で50〜70分間焼成した後、1〜5℃/分の速度で降温する、(C10)〜(C14)のいずれかの熱電変換素子の製造方法。
(C16) 下記(1a)(2a)又は(3a)の組成を有する金属酸化物を備える、熱電変換部を被覆する酸化物ガラス。
(1a)10〜20mol%のNaO、10〜20mol%のKO、5〜15mol%のCaO、5〜15mol%のAl及び40〜70mol%のSiO
(2a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO、2.5〜7.5mol%のAl及び50〜60mol%のSiO
(3a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO及び55〜65mol%のSiO
(C1) A thermoelectric conversion element including a thermoelectric conversion part, wherein the thermoelectric conversion part is covered with oxide crystallized glass.
(C2) and the thermal expansion coefficient of the thermoelectric conversion portion, a thermal expansion coefficient of the oxide crystallized glass 0.5 × 10 -5 /K~2.0×10 -5 / K , and the thermoelectric conversion portion The thermoelectric conversion element according to (C1), wherein the difference between the thermal expansion coefficient and the thermal expansion coefficient of the oxide crystallized glass is 0.5 × 10 −5 / K or less.
(C3) The oxide crystallized glass contains a glass phase and a crystal phase, and the glass phase contains the following metal oxides (1), (2) and (3) (C1) or (C2) Thermoelectric conversion element.
(1) At least one oxide of an alkali metal element selected from Na and K (2) At least one oxide of an alkaline earth metal element selected from Mg, Ca, Sr and Ba (3) Si Oxide (C4) The thermoelectric conversion element of (C3), wherein the glass phase further contains the following metal oxide of (4).
(4) At least one kind of metal element oxide selected from Al, B and Zn (C5) The oxide crystallized glass has a glass phase of Na 2 O, K 2 O, CaO, Al 2 O 3 and SiO. The thermoelectric conversion element of (C3) or (C4) containing the silicate crystal phase containing 2 and a crystal phase containing an alkali metal oxide and / or an alkaline-earth metal oxide.
(C6) The thermoelectric conversion element according to any one of (C1) to (C6), wherein the thickness of the oxide crystallized glass is 20 to 150 μm.
(C7) The thermoelectric conversion element according to any one of (C1) to (C6), wherein the thermoelectric conversion part contains polycrystalline magnesium silicide.
(C8) A thermoelectric conversion module including the thermoelectric conversion element according to any one of (C1) to (C7).
(C9) A thermoelectric conversion member constituting the thermoelectric conversion element of any one of (C1) to (C7) and covered with a film of oxide crystallized glass.
(C10) a step of immersing the thermoelectric conversion part in a slurry containing oxide glass powder, a step of firing the thermoelectric conversion part coated with the slurry,
The manufacturing method of a thermoelectric conversion element provided with the thermoelectric conversion part coat | covered with the oxide crystallized glass containing.
(C11) The oxide glass powder is at least one oxide of an alkali metal element selected from Na and K, and at least one oxide of an alkaline earth metal element selected from Mg, Ca, Sr and Ba. The manufacturing method of the thermoelectric conversion element of (C10) containing the metal oxide which is an oxide of seed | species and Si.
(C12) The method for producing a thermoelectric conversion element according to (C11), wherein the composition of the metal oxide is the following (1a), (2a), or (3a).
(1a) 10 to 20% of Na 2 O, 10~20mol% of K 2 O, 5~15mol% of CaO, 5 to 15 mol% of Al 2 O 3 and 40~70Mol% of SiO 2
(2a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, 5~15mol% of CaO, 2.5~7.5mol% of Al 2 O 3 and 50~60Mol% of SiO 2
(3a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, SiO 2 of 5 to 15 mol% of CaO and 55~65Mol%
(C13) The thermoelectric conversion element according to any one of (C10) to (C12), wherein the concentration of the oxide glass powder in the slurry is 45 to 60% by mass and the average particle diameter of the oxide glass powder is 3 to 15 μm. Production method.
(C14) The method for producing a thermoelectric conversion element according to any one of (C10) to (C13), wherein a speed at which the thermoelectric conversion part immersed in the slurry is pulled up from the slurry is 5 to 25 mm / second.
(C15) In the step of firing the thermoelectric conversion part, the temperature is increased at a rate of 5 to 15 ° C./minute, and after baking at 650 to 750 ° C. for 50 to 70 minutes, the temperature is decreased at a rate of 1 to 5 ° C./minute. The manufacturing method of the thermoelectric conversion element in any one of (C10)-(C14).
(C16) An oxide glass that covers a thermoelectric conversion portion, which includes a metal oxide having the following composition (1a), (2a), or (3a).
(1a) 10 to 20% of Na 2 O, 10~20mol% of K 2 O, 5~15mol% of CaO, 5 to 15 mol% of Al 2 O 3 and 40~70Mol% of SiO 2
(2a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, 5~15mol% of CaO, 2.5~7.5mol% of Al 2 O 3 and 50~60Mol% of SiO 2
(3a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, SiO 2 of 5 to 15 mol% of CaO and 55~65Mol%

本発明によれば、長期高温耐久性に優れた熱電変換素子およびその製法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion element excellent in long-term high temperature durability and its manufacturing method can be provided.

(a)熱電変換素子の外観を示す概略図であり、(b)熱電変換モジュールの外観を示す概略図である。(A) It is the schematic which shows the external appearance of a thermoelectric conversion element, (b) It is the schematic which shows the external appearance of a thermoelectric conversion module. 組成が20mol%のNaO、10mol%のKO、10mol%のCaO及び60mol%のSiOからなる酸化物ガラスの焼成後のX線回折(XRD)曲線図である。The composition is an X-ray diffraction (XRD) curves after firing of 20 mol% of Na 2 O, 10mol% of K 2 O, 10mol% of CaO and 60 mol% of the oxide glass composed of SiO 2. 組成が20mol%のNaO、10mol%のKO、10mol%のCaO、5mol%のAl及び55mol%のSiOからなる酸化物ガラスの焼成後のXRD曲線図である。Composition is an XRD curves after firing of 20 mol% of Na 2 O, 10mol% of K 2 O, 10mol% of CaO, 5 mol% of Al 2 O 3 and 55 mol% of the oxide glass composed of SiO 2. 組成が15mol%のNaO、15mol%のKO、10mol%のCaO、10mol%のAlおよび50mol%のSiOからなる酸化物ガラスの焼成後のXRD曲線図である。Composition is an XRD curves after firing of 15 mol% of Na 2 O, 15mol% of K 2 O, 10mol% of CaO, 10 mol% of Al 2 O 3 and 50 mol% of the oxide glass composed of SiO 2. 図4に示す酸化物ガラスを用いたコーティング試料とガラス焼成試料のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the coating sample using the oxide glass shown in FIG. 4, and a glass baking sample. 図4に示す酸化物ガラス(徐冷ガラス)とガラス焼成試料(酸化物結晶化ガラス)、及び多結晶性マグネシウムシリサイドの焼結体の熱膨張曲線を示す図である。It is a figure which shows the thermal expansion curve of the sintered compact of the oxide glass (annealed glass) shown in FIG. 4, a glass baking sample (oxide crystallized glass), and a polycrystalline magnesium silicide.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の実施形態によって限定的に解釈されるものではない。   Embodiments of the present invention will be described below. In addition, this invention is not limitedly interpreted by the following embodiment.

本発明は、熱電変換部を備える熱電変換素子であって、熱電変換部が酸化物結晶化ガラスによって被覆されている、熱電変換素子である。   This invention is a thermoelectric conversion element provided with the thermoelectric conversion part, Comprising: The thermoelectric conversion part is a thermoelectric conversion element coat | covered with the oxide crystallized glass.

図1(a)は、熱電変換素子の外観を示す概略図であり、図1(b)は熱電変換モジュールの外観を示す概略図である。熱電変換素子3は、酸化物結晶化ガラスで被覆された熱電変換部1と端部2を備えている。   FIG. 1A is a schematic diagram illustrating an external appearance of a thermoelectric conversion element, and FIG. 1B is a schematic diagram illustrating an external appearance of a thermoelectric conversion module. The thermoelectric conversion element 3 includes a thermoelectric conversion portion 1 and an end portion 2 covered with oxide crystallized glass.

熱電変換部1に用いられる熱電変換材料としては、特に限定されず、従来から知られているビスマス・テルル、鉛・テルル、亜鉛・アンチモナイドなどをはじめ、マグネシウムシリサイド、マンガンシリサイド、鉄シリサイド、バリウムガリウムシリサイドなどのシリサイド系材料、およびハーフホイスラー系材料、フイルドスクッテルダイド系材料、カーボンナノチューブなどの炭素系材料、ポリアニリン、ポリチオフェンなどの有機高分子系材料などが適用可能である。この中でも、多結晶性のマグネシウムシリサイドは変換効率が高く、酸化物結晶化ガラスでコーティングされることによって長期耐久性を備えることから、特に好ましい材料である。   The thermoelectric conversion material used for the thermoelectric conversion part 1 is not particularly limited, and includes conventionally known bismuth / tellurium, lead / tellurium, zinc / antimonide, magnesium silicide, manganese silicide, iron silicide, barium gallium. Silicide-based materials such as silicide, half-Heusler-based materials, filled skutterudide-based materials, carbon-based materials such as carbon nanotubes, and organic polymer-based materials such as polyaniline and polythiophene are applicable. Among these, polycrystalline magnesium silicide is a particularly preferable material because of its high conversion efficiency and long-term durability provided by coating with oxide crystallized glass.

熱電変換部の形状は特に限定されず、例えば図1(a)に示すような柱状体であってもよく、平板状であってもよい。柱状体とは三角柱、四角柱、六角柱等の角柱体や、円柱、楕円柱等を含む。   The shape of the thermoelectric conversion part is not particularly limited, and for example, it may be a columnar body as shown in FIG. The columnar body includes a prismatic body such as a triangular pillar, a quadrangular pillar, and a hexagonal pillar, a cylinder, an elliptical pillar, and the like.

熱電変換部1に用いる熱電変換材料の作製方法は特に限定されない。例えば、多結晶性マグネシウムシリサイドを用いる場合は、特許文献1に記載されるように、ほぼ化学量論量の割合のマグネシウムとケイ素を、必要に応じて約0.1〜2.0at%の一種以上のドーパント元素(例えば、Sb、Bi、Al、Zn、Sn、Taなど)とを混合し、その混合物を全ての原材料が溶融する程度の温度で加熱し反応させた後徐冷し、次いで、得られたインゴットAを粉砕して形成した粒子を放電プラズマ焼結することによってインゴットBを得る。インゴットBを、ワイヤーソーなどを用いて所定の大きさの柱状体に切り出して、熱電変換素子の熱電変換部材として用いられることができる。またインゴットAが、ボイドなどの少ない均質なものである場合には、インゴットAから柱状体を直接切り出して熱電変換部材とすることもできる。   The production method of the thermoelectric conversion material used for the thermoelectric conversion part 1 is not specifically limited. For example, in the case of using polycrystalline magnesium silicide, as described in Patent Document 1, approximately stoichiometric proportions of magnesium and silicon can be used, if necessary, a kind of about 0.1 to 2.0 at%. The above dopant elements (for example, Sb, Bi, Al, Zn, Sn, Ta, etc.) are mixed, the mixture is heated and reacted at a temperature at which all raw materials are melted, and then gradually cooled. The ingot B is obtained by subjecting the particles formed by pulverizing the obtained ingot A to spark plasma sintering. The ingot B can be cut into a columnar body of a predetermined size using a wire saw or the like and used as a thermoelectric conversion member of a thermoelectric conversion element. Moreover, when the ingot A is a homogeneous thing with few voids etc., a columnar body can be directly cut out from the ingot A, and it can also be set as a thermoelectric conversion member.

端部2は、電極層として機能することが好ましく、例えば金属シリサイドや金属材料などを用いて構成されてもよく、熱電変換部1との接触抵抗が低い材料で構成されることが好ましい。   The end 2 preferably functions as an electrode layer, and may be configured using, for example, metal silicide or a metal material, and is preferably configured of a material having low contact resistance with the thermoelectric conversion unit 1.

熱電変換部1に端部2を設ける方法は限定されないが、例えば、焼結用装置に収容したインゴットAの粉砕粒子集合体の両側に、端部2を構成する金属粒子を積重した後、一体に焼結させてインゴットCを作製し、柱状体の形状に切り出して、熱電変換部1と端部2とが設けられた熱電変換素子3として製造することができる。また、熱電変換部である柱状体の端側にガラス粉末の膜が付着しない方法でスラリーに浸漬塗布するか、あるいは酸化物結晶化ガラスが被覆された柱状体の端側の酸化物結晶化ガラスを取り除き、そこに導電性ペーストを塗ることや、導電材料を蒸着する方法などもある。   The method of providing the end 2 in the thermoelectric conversion unit 1 is not limited. For example, after the metal particles constituting the end 2 are stacked on both sides of the pulverized particle aggregate of the ingot A accommodated in the sintering apparatus, The ingot C is manufactured by sintering integrally, and is cut into a columnar shape, and can be manufactured as the thermoelectric conversion element 3 provided with the thermoelectric conversion portion 1 and the end portion 2. Moreover, the oxide crystallized glass on the end side of the columnar body coated with oxide crystallized glass is dip-coated in the slurry by a method in which the glass powder film does not adhere to the end side of the columnar body which is the thermoelectric conversion part There are also methods such as removing conductive material and applying a conductive paste thereto, or depositing a conductive material.

また、先述した一体焼結法などによって、熱電変換部1と端部2を有する熱電変換素子を予め準備し、後述の酸化物ガラス粉末スラリーに浸漬して、あるいはスプレーコーティングなどにより均一塗布し焼成することによって、酸化物結晶化ガラスが被覆されてなる、熱電変換部1と端部2を有する熱電変換素子3を作製できる。   In addition, a thermoelectric conversion element having the thermoelectric conversion portion 1 and the end portion 2 is prepared in advance by the above-described integrated sintering method, and is immersed in an oxide glass powder slurry to be described later, or uniformly applied by spray coating or the like and fired. By doing so, the thermoelectric conversion element 3 having the thermoelectric conversion portion 1 and the end portion 2 which is covered with the oxide crystallized glass can be produced.

熱電変換部1を被覆する酸化物結晶化ガラスは、耐熱性に優れており、熱電変換部1を被覆することによって、熱電変換部1の表面を保護する。本発明者らは、熱膨張係数が上述の焼結体とほぼ同じ結晶化ガラスに着目し、熱電変換部の周囲を該結晶化ガラスでコーティングすることによって酸化を防止できることを見出したものである。
結晶化ガラスは、ガラスを結晶化させたもので結晶相及びガラス相からなる。酸化物結晶化ガラスにおける「酸化物」とは、ガラス中に陰イオンとしてハロゲン元素やカルコゲン元素等を含まないことを意味する。
The oxide crystallized glass covering the thermoelectric conversion part 1 is excellent in heat resistance, and protects the surface of the thermoelectric conversion part 1 by covering the thermoelectric conversion part 1. The present inventors have focused on crystallized glass having the same thermal expansion coefficient as that of the above-mentioned sintered body, and found that oxidation can be prevented by coating the periphery of the thermoelectric conversion part with the crystallized glass. .
Crystallized glass is obtained by crystallizing glass and consists of a crystal phase and a glass phase. “Oxide” in the oxide crystallized glass means that the glass does not contain a halogen element or a chalcogen element as an anion.

熱電変換部の材料、例えばマグネシウムシリサイドの熱膨張係数は、一般的に安定性の高いケイ酸塩系酸化物ガラスに対して比較的大きいものである。これに対し、酸化物ガラスは、熱膨張係数を大きくできる組成にすると、軟化温度が下がり高温で形状を維持できなくなるという問題がある。また化学的耐久性(特に耐水性)や強度が低下するという問題がある。さらに、ガラスは準安定相のため、組成によっては高温・長時間での使用で徐々に結晶化し、亀裂や剥離が生じる可能性がある。また、高温・長時間のコーティングプロセスが必要な場合には、熱電素子部材や電極に劣化などの悪影響を与える可能性がある。これらの問題を解決するために、本発明者らは、コーティングの熱処理時に軟化・焼結(緻密化)を進ませると同時に結晶(高温安定相)を生じさせることで結晶化ガラスとし、緻密化、熱膨張係数、高温安定性(軟化や結晶化による変形・亀裂・剥離の防止)、化学耐久性、高強度を同時に達成できる酸化物結晶化ガラスを見出したものである。   The thermal expansion coefficient of the material of the thermoelectric conversion part, for example, magnesium silicide, is generally relatively large compared to a highly stable silicate-based oxide glass. On the other hand, when the oxide glass has a composition capable of increasing the thermal expansion coefficient, there is a problem that the softening temperature is lowered and the shape cannot be maintained at a high temperature. Moreover, there exists a problem that chemical durability (especially water resistance) and intensity | strength fall. Furthermore, since glass is a metastable phase, depending on the composition, it may gradually crystallize when used at a high temperature and for a long time, causing cracks and peeling. In addition, when a high-temperature and long-time coating process is required, there is a possibility of adverse effects such as deterioration on thermoelectric element members and electrodes. In order to solve these problems, the present inventors proceeded with softening and sintering (densification) during the heat treatment of the coating, and at the same time produced crystals (high-temperature stable phase) to produce crystallized glass, which was densified. The present inventors have found an oxide crystallized glass capable of simultaneously achieving a thermal expansion coefficient, high-temperature stability (preventing deformation, cracking and peeling due to softening and crystallization), chemical durability, and high strength.

酸化物結晶化ガラスからなる膜の膜厚は、20〜150μmであることが好ましく、40〜100μmであることがより好ましい。酸化物結晶化ガラスの膜は150μm以下であると、剥離が発生しにくくなり好ましい。   The film thickness of the oxide crystallized glass is preferably 20 to 150 μm, and more preferably 40 to 100 μm. It is preferable that the oxide crystallized glass film has a thickness of 150 μm or less because peeling hardly occurs.

酸化物結晶化ガラスの熱膨張係数と、熱電変換部1の熱膨張係数とは、0.5×10−5/K〜2.0×10−5/Kであることが好ましく、1.3×10−5/K〜1.8×10−5/Kであることがより好ましい。また、酸化物結晶化ガラスの熱膨張係数と熱電変換部の熱膨張係数との差は小さければ小さいほど好ましく、0.5×10−5/K以下であることが好ましく、0.3×10−5/K以下であることがより好ましい。熱膨張係数の差が小さいことによって、結晶化ガラスにボイドや亀裂が発生しにくくなり、熱電変換素子3の長期耐久性がより向上する。 The thermal expansion coefficient of the oxide crystallized glass, the thermal expansion coefficient of the thermoelectric conversion unit 1, preferably from 0.5 × 10 -5 /K~2.0×10 -5 / K , 1.3 × and more preferably 10 -5 /K~1.8×10 -5 / K. The difference between the thermal expansion coefficient of the oxide crystallized glass and the thermal expansion coefficient of the thermoelectric conversion part is preferably as small as possible, preferably 0.5 × 10 −5 / K or less, and 0.3 × 10 6. More preferably, it is −5 / K or less. Since the difference in thermal expansion coefficient is small, voids and cracks are hardly generated in the crystallized glass, and the long-term durability of the thermoelectric conversion element 3 is further improved.

酸化物結晶化ガラスは、熱膨張係数が熱電変換部1とほぼ同じものになるように、次のようにして作製することが好ましい。すなわち、酸化物結晶化ガラスは、母ガラスから熱処理によって析出した結晶相と、残存成分によるガラス相からなり、該母ガラス相が後述の金属酸化物群から選択される複数の金属酸化物から構成されるものであるが、この複数の金属酸化物はそれぞれ個別の係数因子(αi)を有するので、下記のAppenの式(1)を用いて、熱電変換部材の熱膨張係数とほぼ同じ値になるように、組成(mol%)を変えながら、酸化物結晶化ガラスの熱膨張係数(α)を見積って、母ガラスである酸化物ガラスの処方を決めることができる。
α=0.1×Σαipi 式(1)
(αi:係数因子、pi:組成(mol%)、0≦pi≦100)
The oxide crystallized glass is preferably produced as follows so that the thermal expansion coefficient is substantially the same as that of the thermoelectric conversion part 1. That is, the oxide crystallized glass is composed of a crystal phase precipitated by heat treatment from the mother glass and a glass phase due to the remaining components, and the mother glass phase is composed of a plurality of metal oxides selected from the metal oxide group described later. However, since each of the plurality of metal oxides has an individual coefficient factor (αi), the coefficient of thermal expansion of the thermoelectric conversion member is approximately the same value using the following Appen equation (1). Thus, while changing the composition (mol%), the thermal expansion coefficient (α) of the oxide crystallized glass can be estimated to determine the prescription of the oxide glass that is the mother glass.
α = 0.1 × Σαipi Formula (1)
(Αi: coefficient factor, pi: composition (mol%), 0 ≦ pi ≦ 100)

本発明における酸化物ガラス作製に用いる金属酸化物は、主要な成分としては、(1)Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種、(2)Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種、並びに(3)Siの酸化物であり、任意成分として(4)Al、B及びZnから選択される金属元素の酸化物の少なくとも1種であることが好ましい。   The main component of the metal oxide used for producing the oxide glass in the present invention is (1) at least one alkali metal element oxide selected from Na and K, (2) Mg, Ca, Sr and At least one oxide of an alkaline earth metal element selected from Ba, and (3) an oxide of Si, and (4) an oxide of a metal element selected from Al, B and Zn as an optional component It is preferable that there is at least one.

酸化物結晶化ガラスは、ガラス相がNaO、KO、CaO、Al及びSiOを含有し、かつ、結晶相がアルカリ金属酸化物及び/又はアルカリ土類金属酸化物を含有するケイ酸塩結晶相を含むことが好ましい。アルカリ金属酸化物及び/又はアルカリ土類金属酸化物を含有するケイ酸塩結晶相としては、例えば、アノーサイトを含む長石類やカルシライトが挙げられる。 In the oxide crystallized glass, the glass phase contains Na 2 O, K 2 O, CaO, Al 2 O 3 and SiO 2 , and the crystal phase contains an alkali metal oxide and / or an alkaline earth metal oxide. It is preferable to contain the containing silicate crystal phase. Examples of the silicate crystal phase containing an alkali metal oxide and / or an alkaline earth metal oxide include feldspar containing anorthite and calcilite.

酸化物ガラスは、Appenの式(1)を用いて決めた処方に基づいて、上述の(1)〜(4)の各グループの金属酸化物から選択したものを所定の配合割合で混合し、該混合物を溶融した後急冷したガラスを粉砕して、酸化物ガラス粉末を作製することができる。また、急冷したガラスをさらに徐冷し(該徐冷により得られるガラスを徐冷ガラスという)、該徐冷ガラスを粉砕して酸化物ガラス粉末を作製することも好ましい態様である。   Based on the prescription determined using Appen's formula (1), the oxide glass is a mixture of metal oxides selected from the groups (1) to (4) described above in a predetermined blending ratio. Oxide glass powder can be produced by pulverizing the rapidly cooled glass after melting the mixture. It is also a preferred embodiment that the rapidly cooled glass is further gradually cooled (the glass obtained by the slow cooling is referred to as gradually cooled glass), and the slowly cooled glass is pulverized to produce an oxide glass powder.

酸化物ガラスの組成は、以下の(1a)、(2a)又は(3a)のいずれかであることが好ましい。
(1a)10〜20mol%のNaO、10〜20mol%のKO、5〜15mol%のCaO、5〜15mol%のAl及び40〜70mol%のSiO
(2a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO、2.5〜7.5mol%のAlおよび50〜60mol%のSiO
(3a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaOおよび55〜65mol%のSiO
The composition of the oxide glass is preferably any of the following (1a), (2a) or (3a).
(1a) 10 to 20% of Na 2 O, 10~20mol% of K 2 O, 5~15mol% of CaO, 5 to 15 mol% of Al 2 O 3 and 40~70Mol% of SiO 2
(2a) 15 to 25% the Na 2 O, 5~15mol% for K 2 O, 5~15mol% for CaO, 2.5~7.5mol% for Al 2 O 3 and 50~60Mol% for SiO 2
(3a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, 5~15mol% of CaO and 55~65Mol% of SiO 2

この酸化物ガラスの組成の具体例として、以下のものを挙げることができる。
(1a−1)15mol%のNaO、15mol%のKO、10mol%のCaO、10mol%のAlおよび50mol%のSiOからなる(図4にガラス焼成試料のXRD曲線を示す)。
(2a−1)20mol%のNaO、10mol%のKO、10mol%のCaO、5mol%のAlおよび55mol%のSiOからなる(図3にガラス焼成試料のXRD曲線を示す)。
(3a−1)20mol%のNaO、10mol%のKO、10mol%のCaO、60mol%のSiOからなる(図2にガラス焼成試料のXRD曲線を示す)。
Specific examples of the composition of the oxide glass include the following.
(1a-1) 15 mol% Na 2 O, 15 mol% K 2 O, 10 mol% CaO, 10 mol% Al 2 O 3 and 50 mol% SiO 2 (FIG. 4 shows the XRD curve of the glass fired sample. Show).
(2a-1) consisting of 20 mol% Na 2 O, 10 mol% K 2 O, 10 mol% CaO, 5 mol% Al 2 O 3 and 55 mol% SiO 2 (FIG. 3 shows the XRD curve of the glass fired sample. Show).
(3a-1) 20 mol% Na 2 O, 10 mol% K 2 O, 10 mol% CaO, 60 mol% SiO 2 (FIG. 2 shows the XRD curve of the glass fired sample).

次に、この粉末を含むスラリーに熱電変換部材である柱状体を浸漬した後、スラリーから引き上げて焼成し、被覆対象物である柱状体表面に酸化物結晶化ガラスの被膜を形成できる。すなわち、本発明は、酸化物ガラス粉末を含むスラリーに熱電変換部を浸漬させる工程と、前記スラリーで被覆された熱電変換部を焼成する工程と、を含む、酸化物結晶化ガラスによって被覆された熱電変換部を備える熱電変換素子の製造方法である。   Next, after the columnar body that is the thermoelectric conversion member is immersed in the slurry containing the powder, the columnar body that is the object to be coated can be formed on the surface of the columnar body that is the object to be coated. That is, the present invention is coated with an oxide crystallized glass including a step of immersing a thermoelectric conversion unit in a slurry containing oxide glass powder and a step of firing the thermoelectric conversion unit coated with the slurry. It is a manufacturing method of a thermoelectric conversion element provided with a thermoelectric conversion part.

酸化物ガラス粉末は、Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種、Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種、並びにSiの酸化物、である金属酸化物を含むことが好ましい。   The oxide glass powder includes at least one oxide of an alkali metal element selected from Na and K, at least one oxide of an alkaline earth metal element selected from Mg, Ca, Sr and Ba, and Si. It is preferable that the metal oxide which is an oxide of this is included.

使用するスラリーは、平均粒径が約3〜15μmの酸化物ガラス粉末をエタノールなどに分散させたもの(ガラススラリー)であることが好ましい。スラリー中の酸化物ガラス粉末の濃度は、後述するように、熱電変換部1である柱状体のスラリー中からの引き上げ速度との兼ね合いで決まるが、約45〜60質量%が好ましく、約50〜55質量%がより好ましい。
スラリー中の酸化物ガラス粉末の分散性が良い状態で浸漬塗布(ディップコート)を行うと、熱電変換部の表面にガラス粉末が付着しやすくなり、また付着が均一になって、焼成後形成された結晶化ガラスからなる膜の密着性は良くなる傾向が出てくるため、超音波などを使って分散状態を向上させることが好ましい。またスラリー作製後できるだけ早期に使用することが好ましく、さらに、ガラス粉末の沈降を防止するために分散剤を含有させることもできる。
The slurry to be used is preferably a slurry (glass slurry) in which an oxide glass powder having an average particle size of about 3 to 15 μm is dispersed in ethanol or the like. As will be described later, the concentration of the oxide glass powder in the slurry is determined by the balance with the pulling speed of the columnar body as the thermoelectric conversion unit 1 from the slurry, but is preferably about 45 to 60% by mass, and about 50 to 50% by mass. 55 mass% is more preferable.
If dip coating (dip coating) is performed in a state where the dispersibility of the oxide glass powder in the slurry is good, the glass powder tends to adhere to the surface of the thermoelectric conversion part, and the adhesion becomes uniform and is formed after firing. Since the adhesion of a film made of crystallized glass tends to be improved, it is preferable to improve the dispersion state using ultrasonic waves or the like. Moreover, it is preferable to use it as soon as possible after slurry preparation, and also a dispersing agent can be contained in order to prevent sedimentation of the glass powder.

所望の酸化物結晶化ガラスの膜を形成するためには、熱電変換部の表面に付着するガラス粉末の厚さと密度が可能な限り均一であることが重要であり、それはスラリー中での浸漬時間とスラリーからの熱電変換部である柱状体の引き上げ速度が大きく影響する。
浸漬は、1.0秒間前後の短時間で行うことが好ましい。浸漬時間を長くするとガラス粒子の沈降が進み、均質性に悪影響が出るためである。この引き上げ速度が一定であることが重要であり、5〜25mm/秒が好ましく、15〜20mm/秒がより好ましい。引き上げる速度を25mm/秒以下にすると、付着するガラス粒子からなる膜は薄くなる反面、最終的に形成される結晶化ガラス膜に亀裂が発生しにくく、熱電変換部から結晶化ガラス膜が剥離しにくい傾向となる。また、引き上げる速度を5mm/秒以上にすると、膜厚が厚くなったり付着量が多くなったりする傾向にあり、量産時の生産性も上がる傾向にある。
In order to form a desired oxide crystallized glass film, it is important that the thickness and density of the glass powder adhering to the surface of the thermoelectric conversion part be as uniform as possible, which is the immersion time in the slurry. The pulling speed of the columnar body that is the thermoelectric conversion part from the slurry is greatly affected.
The immersion is preferably performed in a short time of about 1.0 second. This is because if the immersion time is increased, the settling of the glass particles proceeds and the homogeneity is adversely affected. It is important that the pulling speed is constant, 5 to 25 mm / second is preferable, and 15 to 20 mm / second is more preferable. If the pulling speed is 25 mm / second or less, the film made of the adhering glass particles becomes thin, but the crystallized glass film finally formed is hardly cracked, and the crystallized glass film peels off from the thermoelectric conversion part. It tends to be difficult. Further, when the pulling speed is 5 mm / second or more, the film thickness tends to increase or the amount of adhesion tends to increase, and the productivity during mass production tends to increase.

スラリー中から引き上げた後、熱電変換部である柱状体を大気中で10分間前後乾燥させた後、焼成を行う。焼成は、5〜20Paの真空中で、約5〜15℃/minの速度で昇温し、650〜750℃で50〜70分間焼成した後、1〜5℃/minの速度で降温し行うのが好ましい。このような降温する速度では、残留歪が残りにくく、結晶化ガラス膜に亀裂が発生しにくく、熱電変換部から結晶化ガラス膜が剥離しにくい傾向となる。これにより、熱電変換素子として使用する、酸化物結晶化ガラスで被覆された熱電変換部である柱状体が形成される。   After pulling up from the slurry, the columnar body as the thermoelectric conversion part is dried in the atmosphere for about 10 minutes, and then fired. Firing is performed at a rate of about 5 to 15 ° C./min in a vacuum of 5 to 20 Pa, and after firing at 650 to 750 ° C. for 50 to 70 minutes, the temperature is lowered at a rate of 1 to 5 ° C./min. Is preferred. At such a temperature lowering rate, residual strain hardly remains, cracks do not easily occur in the crystallized glass film, and the crystallized glass film tends not to peel from the thermoelectric conversion part. Thereby, the columnar body which is a thermoelectric conversion part coat | covered with the oxide crystallized glass used as a thermoelectric conversion element is formed.

焼成によって形成された酸化物結晶化ガラスには、結晶相の存在が認められる。結晶相の存在する酸化物結晶化ガラスと前記徐冷ガラスと熱電変換部のそれぞれの熱膨張係数の差が小さいことに依り、所期の目的の高耐酸化性及び高温耐久性が達成されていると本発明者らは推察している。
また、本発明の酸化物結晶化ガラスで被覆された熱電変換部である柱状体を、稼働領域の約600℃より高温に長時間晒しても被膜は、亀裂や剥離は発生せず、耐酸化性のある高温耐久性の高いコーティングである。
Presence of a crystal phase is recognized in the oxide crystallized glass formed by firing. Due to the small difference in coefficient of thermal expansion between the oxide crystallized glass with crystal phase and the slow-cooled glass and the thermoelectric conversion part, the desired high oxidation resistance and high temperature durability are achieved. The present inventors infer that.
Further, even when the columnar body, which is the thermoelectric conversion part coated with the oxide crystallized glass of the present invention, is exposed to a temperature higher than about 600 ° C. in the operating region for a long time, the coating does not crack or peel off and is resistant to oxidation. It is a high temperature durable coating.

以上説明した、酸化物結晶化ガラスが被覆された熱電変換部1である柱状体は、図1(a)のとおり端部2が電極層として設けられているが、該熱電変換部1の端側からも電流を取り出すことはできるため、電極部である端部2を設けなくても柱状体である熱電変換部1自体を熱電変換素子3として機能させることはできる。従って、本発明においては、酸化物結晶化ガラスが被覆された熱電変換部1自体を熱電変換素子と称することもできる。しかしながら、効率的に電流を取り出すために、熱電変換部である柱状体の材質によっては、電極部である端部2を別途設ける方が好ましい。   The columnar body which is the thermoelectric conversion part 1 covered with the oxide crystallized glass described above is provided with an end 2 as an electrode layer as shown in FIG. Since current can be taken out also from the side, the thermoelectric conversion part 1 itself that is a columnar body can function as the thermoelectric conversion element 3 without providing the end part 2 that is an electrode part. Therefore, in the present invention, the thermoelectric conversion part 1 itself coated with the oxide crystallized glass can be referred to as a thermoelectric conversion element. However, in order to take out an electric current efficiently, it is preferable to provide the edge part 2 which is an electrode part separately depending on the material of the columnar body which is a thermoelectric conversion part.

図1(b)は、熱電変換モジュールの外観を示す概略図である。図1(b)に示すように、熱電変換モジュール5は、熱電変換素子3が接続配線4によって他の熱電変換素子3と接続している。熱電変換モジュール5は、熱電変換素子3を複数接続することによって高出力化を図ることができる。   FIG. 1B is a schematic diagram showing the appearance of the thermoelectric conversion module. As shown in FIG. 1B, in the thermoelectric conversion module 5, the thermoelectric conversion element 3 is connected to another thermoelectric conversion element 3 by a connection wiring 4. The thermoelectric conversion module 5 can achieve high output by connecting a plurality of thermoelectric conversion elements 3.

熱電変換モジュール5は、熱電変換部1と端部2を有する熱電変換素子3を予め複数準備し、複数の熱電変換素子3を電極板に挟持した構造体をガラス粉末スラリーに浸漬し、あるいはスプレーコーティングなどにより均一塗布し焼成することによって、酸化物結晶化ガラスに被覆された熱電変換モジュールを作製することができる。   The thermoelectric conversion module 5 prepares a plurality of thermoelectric conversion elements 3 each having a thermoelectric conversion part 1 and an end 2 in advance, and immerses a structure in which the plurality of thermoelectric conversion elements 3 are sandwiched between electrode plates in a glass powder slurry or sprays them. A thermoelectric conversion module coated with oxide crystallized glass can be produced by uniformly applying and baking by coating or the like.

次に、本発明について、実施例に基づいて説明する。なお、本発明は該実施例によって何ら限定されるものではない。   Next, the present invention will be described based on examples. In addition, this invention is not limited at all by this Example.

(実施例1)
<酸化物ガラスの熱膨張係数・見積り値と処方>
作製目標とする酸化物ガラスを構成する金属酸化物として、NaO、KO、CaO、Al、SiOを選択し、これらの金属酸化物の係数因子(先述のAppenの式におけるα)がNaO:39.5、KO:42.0、CaO:13、Al:−3.0、SiO:3.8なので、酸化物ガラスの熱膨張係数・見積り値を算出すると1.51×10−5/Kになり、熱電変換部の多結晶性マグネシウムシリサイドの熱膨張係数値である1.6×10−5/Kに近い値となった。
こうして得られた、酸化物ガラスの処方は15NaO−15KO−10CaO−10Al−50SiO(mol%)である。
Example 1
<Coefficient of thermal expansion, estimated value and prescription of oxide glass>
Na 2 O, K 2 O, CaO, Al 2 O 3 , SiO 2 are selected as the metal oxides constituting the oxide glass to be produced, and the coefficient factors of these metal oxides (Appen's formula described above) Α i ) in Na 2 O: 39.5, K 2 O: 42.0, CaO: 13, Al 2 O 3 : -3.0, SiO 2 : 3.8, the thermal expansion coefficient of the oxide glass When the estimated value was calculated, it was 1.51 × 10 −5 / K, which was close to 1.6 × 10 −5 / K, which is the thermal expansion coefficient value of polycrystalline magnesium silicide in the thermoelectric conversion part.
Thus obtained, the formulation of the oxide glass is 15Na 2 O-15K 2 O- 10CaO-10Al 2 O 3 -50SiO 2 (mol%).

<酸化物ガラス粉末の作製(15NaO−15KO−10CaO−10Al−50SiO(mol%))>
NaCO(15mol%)、KCO(15mol%)、CaCO(10mol%)、Al(10mol%)及びSiO(50mol%)を乾式混合した後、大気中1400℃で60分間溶融し、急冷して、ただちに600℃で60分間保持した後、100℃まで1℃/分の降温速度で徐冷して、徐冷ガラスを作製した。
該徐冷ガラスを粉砕し、45μmの粒子が通過できる篩を使って分級し、次いで、メノウ製の遊星ボールミルを用いて湿式粉砕(400rpm、60分を2回)して、平均粒径10μmの酸化物ガラス粉末を得た。
<Preparation of oxide glass powder (15Na 2 O-15K 2 O -10CaO-10Al 2 O 3 -50SiO 2 (mol%))>
Na 2 CO 3 (15 mol%), K 2 CO 3 (15 mol%), CaCO 3 (10 mol%), Al 2 O 3 (10 mol%) and SiO 2 (50 mol%) were dry mixed and then 1400 ° C. in the atmosphere. The glass was melted for 60 minutes, rapidly cooled, immediately held at 600 ° C. for 60 minutes, and then gradually cooled to 100 ° C. at a rate of 1 ° C./min to produce a slowly cooled glass.
The slowly cooled glass is pulverized and classified using a sieve through which particles of 45 μm can pass, and then wet-pulverized using an agate planetary ball mill (400 rpm, twice for 60 minutes) to obtain an average particle size of 10 μm. An oxide glass powder was obtained.

該徐冷ガラスの諸物性は、以下のとおりであった。
熱膨張係数(TMAで測定):1.5×10−5/K(MgSi焼結体:1.6×10−5/K)
ガラス転移点(熱膨張測定による):530℃
屈伏点(熱膨張測定による):584℃
結晶化温度(XRD測定による):620℃
Various physical properties of the annealed glass were as follows.
Thermal expansion coefficient (measured with TMA): 1.5 × 10 −5 / K (Mg 2 Si sintered body: 1.6 × 10 −5 / K)
Glass transition point (by thermal expansion measurement): 530 ° C
Sag point (by thermal expansion measurement): 584 ° C
Crystallization temperature (according to XRD measurement): 620 ° C.

<ガラス粉末・スラリーの準備>
平均粒径10μmの前記ガラス粉末をエタノールに分散して、濃度が48.7〜50.3重量%のスラリーを準備した。
<Preparation of glass powder and slurry>
The glass powder having an average particle size of 10 μm was dispersed in ethanol to prepare a slurry having a concentration of 48.7 to 50.3% by weight.

<ガラス粉末・スラリーの焼成による酸化物結晶化ガラス被膜の形成>
(株)安永製のマグネシウムシリサイドの焼結体(Sb(0.5at%)とZn(0.5at%)がドープされたもの)から切り出して、3mm×3mm×6mmの熱電変換部用の柱状体を準備した。
時間の制御機構を備えたディップコーティング用装置を用いて、該柱状体をスラリーに1.0秒間浸漬した後、20mm/秒の速度で引き上げ、次いで、大気雰囲気中室温で10分間乾燥させた後、5〜20Paの真空下で、10℃/minの速度で700℃まで昇温し、700℃で60分間焼成した後、2℃/minの速度で降温させて、酸化物結晶化ガラスで被覆した柱状体を作製した。
<Formation of oxide crystallized glass film by firing glass powder / slurry>
Cut out from a sintered body of magnesium silicide (doped with Sb (0.5 at%) and Zn (0.5 at%)) manufactured by Yasunaga Co., Ltd., 3 mm x 3 mm x 6 mm column for thermoelectric conversion part Prepared the body.
Using a dip coating apparatus equipped with a time control mechanism, the columnar body was immersed in the slurry for 1.0 second, then pulled up at a speed of 20 mm / second, and then dried at room temperature in air for 10 minutes. The temperature was raised to 700 ° C. at a rate of 10 ° C./min under a vacuum of 5 to 20 Pa, baked at 700 ° C. for 60 minutes, and then cooled at a rate of 2 ° C./min, and covered with oxide crystallized glass. A columnar body was prepared.

<焼成によって結晶化ガラス中に形成される結晶相について>
徐冷ガラス粉末を700℃で焼成すると結晶相が形成され、析出結晶相の熱膨張係数はガラス相より一般に大きいことから、結晶化ガラスの熱膨張係数は、徐冷ガラスより大きい値を示す。
前述のように、該結晶化ガラスの結晶化温度は620℃であるが、620℃、650℃および700℃の3点でそれぞれ1時間加熱後、XRD測定をした結果、この結晶相がいずれもカルシライト(KAlSiO)であることを確認した。
<Crystal phase formed in crystallized glass by firing>
When the annealed glass powder is fired at 700 ° C., a crystal phase is formed, and the thermal expansion coefficient of the crystallized crystal phase is generally larger than that of the glass phase. Therefore, the thermal expansion coefficient of the crystallized glass is larger than that of the annealed glass.
As described above, the crystallization temperature of the crystallized glass is 620 ° C. However, after heating for 1 hour at each of three points of 620 ° C., 650 ° C. and 700 ° C., as a result of XRD measurement, all of the crystal phases are It was confirmed to be calcilite (KAlSiO 4 ).

<結晶化ガラスの高温耐久性試験>
次に、酸化物結晶化ガラスで被覆した柱状体を、大気雰囲気中で10℃/分の昇温速度で加熱し、700℃で1時間、700℃で100時間および600℃で500時間加熱する3つのケースの高温耐久試験行い、XRD測定と走査型電子顕微鏡(SEM)観察による結晶化挙動、及び電子線マクロアナライザ(EPMA)分析による相互拡散の有無を調べた。
また、参考試料として、上記の酸化物ガラス粉末を成形後、700℃で1時間焼成して得たバルク状のガラス焼成試料を作製し、結晶化状態の比較観察及び熱膨張係数を測定に使用した。
<High-temperature durability test of crystallized glass>
Next, the columnar body covered with the oxide crystallized glass is heated in the air atmosphere at a heating rate of 10 ° C./min, heated at 700 ° C. for 1 hour, 700 ° C. for 100 hours, and 600 ° C. for 500 hours. Three cases were subjected to a high-temperature endurance test to examine crystallization behavior by XRD measurement and scanning electron microscope (SEM) observation, and the presence or absence of mutual diffusion by electron beam macroanalyzer (EPMA) analysis.
Also, as a reference sample, a bulk glass fired sample obtained by molding the above oxide glass powder and firing at 700 ° C. for 1 hour is prepared, and the comparative observation of the crystallization state and the thermal expansion coefficient are used for the measurement. did.

図5にXRD測定結果を示す。バルク状のガラス焼成試料では結晶相としてKAlSiOの他に、CaSiOと思われるピークが観察されたが、3つのケースはいずれも主たる結晶相がKAlSiOのみでCaSiOは確認されず、また、3つのケース共に結晶化状態の変化は観察されず、ほぼ同じものと推察される。
さらに、SEM観察結果によると、700℃での熱耐久試験後のコーティング表面は、サイクル数が増えるにつれて表面粗さが増したが、顕著な亀裂や剥離は見られなかった。
さらに、EPMA観察によって、元素の相互拡散の有無を調べたところ、マグネシウムシリサイドと酸化物結晶化ガラスのそれぞれの構成元素(Mg、Si、Na、K、CaとAl)およびOの拡散が確認されなかった。このことは、高温領域でも熱電変換部と結晶化ガラス被膜が安定でかつ大気中の酸素に対してガラス被膜がバリヤーになって熱電変換部の耐酸化性能が向上したことを示している。
FIG. 5 shows the XRD measurement results. In the bulk glass fired sample, a peak considered to be Ca 2 SiO 4 was observed in addition to KAlSiO 4 as a crystal phase, but in all three cases, the main crystal phase was only KAlSiO 4 and Ca 2 SiO 4 was confirmed. In addition, in all three cases, no change in the crystallization state is observed, and it is assumed that they are almost the same.
Furthermore, according to the SEM observation results, the surface of the coating after the heat endurance test at 700 ° C. increased in surface roughness as the number of cycles increased, but no remarkable cracking or peeling was observed.
Furthermore, when the presence or absence of interdiffusion of elements was examined by EPMA observation, diffusion of constituent elements (Mg, Si, Na, K, Ca and Al) and O of magnesium silicide and oxide crystallized glass was confirmed. There wasn't. This indicates that the thermoelectric conversion part and the crystallized glass film are stable even in a high temperature region, and the oxidation resistance of the thermoelectric conversion part is improved because the glass film becomes a barrier against oxygen in the atmosphere.

図6は、高温耐久性試験に用いた各試料の熱膨張曲線を示している。ガラス焼成試料、MgSi焼結体、徐冷ガラスの熱膨張係数(×10−5/K)はそれぞれ1.8、1.6、1.5であった。
熱電変換部材表面に形成されたコーティング層は、主な析出結晶相であるKAlSiOとガラス相との複合化された酸化物結晶化ガラスからなるものであるが、該コーティング層が極めて薄膜で熱膨張係数を測定できなかった。しかし、図2のXRDチャートで分かるように、ガラス焼成試料に観られる数多くの結晶相(KAlSiO4とCaSiO)がコーティング試料には観られず、結晶相が少なければ熱膨張係数の値も低くなるとの知見から、ガラス焼成試料の値の1.8より低いものと想定し、ガラス焼成試料の熱膨張係数の値を該コーティング層の値とした。
従って、該コーティング層とMgSi焼結体のそれぞれの熱膨張係数の値の差が小さく、700℃での長時間耐久試験の結果、上記のように、亀裂、剥離などが生じず、拡散も観察されないのは、「熱膨張係数値の差が少ない」ことに依るものであり、該コーティング層は耐酸化膜として極めて有効に機能するものである。
FIG. 6 shows the thermal expansion curve of each sample used in the high temperature durability test. The thermal expansion coefficients (× 10 −5 / K) of the glass fired sample, the Mg 2 Si sintered body, and the slowly cooled glass were 1.8, 1.6, and 1.5, respectively.
The coating layer formed on the surface of the thermoelectric conversion member is composed of oxide crystallized glass in which KAlSiO 4 as a main precipitated crystal phase and a glass phase are combined. The expansion coefficient could not be measured. However, as can be seen from the XRD chart in FIG. 2, many crystal phases (KAlSiO 4 and Ca 2 SiO 4 ) observed in the glass fired sample are not observed in the coating sample. Therefore, the value of the thermal expansion coefficient of the glass fired sample was assumed to be lower than 1.8, and the value of the coating layer was taken as the value of the coating layer.
Therefore, the difference in thermal expansion coefficient between the coating layer and the Mg 2 Si sintered body is small, and as a result of a long-term durability test at 700 ° C., as described above, cracks, peeling, etc. do not occur and diffusion Also, the reason for not being observed is that “the difference in thermal expansion coefficient value is small”, and the coating layer functions extremely effectively as an oxidation resistant film.

(実施例2)
実施例1と同様にしてAppenの式1により決めた下記の組成に基づいて、酸化物ガラス(徐冷ガラス)を作製し、実施例1に従い同じ工程で、酸化物結晶化ガラスで被覆した熱電変換部材を得た。
20mol%のNaO、10mol%のKO、10mol%のCaO、5mol%のAl及び55mol%のSiO
該酸化物結晶化ガラスのXRD測定チャートを図3に示す。得られた酸化物結晶化ガラスで被覆した熱電変換部材について、実施例と同じ試験を行った結果、高温耐久性が高いものであることを確認した。
(Example 2)
In the same manner as in Example 1, an oxide glass (annealed glass) was prepared based on the following composition determined by Appen's formula 1, and the thermoelectric film coated with oxide crystallized glass in the same process according to Example 1 A conversion member was obtained.
20 mol% of Na 2 O, 10mol% of K 2 O, 10mol% of CaO, 5 mol% of Al 2 O 3 and 55 mol% of SiO 2
An XRD measurement chart of the oxide crystallized glass is shown in FIG. About the thermoelectric conversion member coat | covered with the obtained oxide crystallized glass, as a result of performing the same test as an Example, it confirmed that high temperature durability was high.

(実施例3)
実施例1と同様にしてAppenの式1により決めた下記の組成に基づいて、酸化物ガラス(徐冷ガラス)を作製し、実施例1に従い同じ工程で、酸化物結晶化ガラスで被覆した熱電変換部材を得た。
20mol%のNaO、10mol%のKO、10mol%のCaOおよび60mol%のSiO2。
該酸化物結晶化ガラスのXRD測定チャートを図2に示す。得られた酸化物結晶化ガラスで被覆した熱電変換部材について、実施例と同じ試験を行った結果、高温耐久性が高いものであることを確認した。
Example 3
In the same manner as in Example 1, an oxide glass (annealed glass) was prepared based on the following composition determined by Appen's formula 1, and the thermoelectric film coated with oxide crystallized glass in the same process according to Example 1 A conversion member was obtained.
20 mol% of Na 2 O, 10mol% of K 2 O, 10mol% of CaO and 60 mol% of SiO 2.
An XRD measurement chart of the oxide crystallized glass is shown in FIG. About the thermoelectric conversion member coat | covered with the obtained oxide crystallized glass, as a result of performing the same test as an Example, it confirmed that high temperature durability was high.

<熱電変換素子としての機能>
上記実施例1〜3で作製され、結晶化ガラスで被覆された柱状体は、あらためて電極部が設けられたものではないが、該熱電変換部材である柱状体の端部から電流を取り出すことができ、該柱状体自体が熱電変換素子として機能するものであることを確認した。
また、実施例1〜3で作製された熱電変換素子を複数連結して構成した熱電変換モジュールも機能するものであることを確認した。
<Function as thermoelectric conversion element>
Although the columnar body manufactured in Examples 1 to 3 and covered with crystallized glass is not provided with an electrode part again, current can be taken out from the end of the columnar body that is the thermoelectric conversion member. It was confirmed that the columnar body itself functions as a thermoelectric conversion element.
Moreover, it confirmed that the thermoelectric conversion module comprised by connecting the thermoelectric conversion element produced in Examples 1-3 also functions.

1・・・酸化物結晶化ガラスで皮膜された熱電変換部、2・・・端部、3・・・熱電変換素子、4・・・接続配線、5・・・熱電変換モジュール。   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion part coat | covered with oxide crystallized glass, 2 ... End part, 3 ... Thermoelectric conversion element, 4 ... Connection wiring, 5 ... Thermoelectric conversion module.

Claims (16)

熱電変換部を備える熱電変換素子であって、
前記熱電変換部が酸化物結晶化ガラスによって被覆されている、熱電変換素子。
A thermoelectric conversion element including a thermoelectric conversion unit,
A thermoelectric conversion element in which the thermoelectric conversion part is covered with oxide crystallized glass.
前記熱電変換部の熱膨張係数と、前記酸化物結晶化ガラスの熱膨張係数とが0.5×10−5/K〜2.0×10−5/Kであり、かつ前記熱電変換部の熱膨張係数と前記酸化物結晶化ガラスの熱膨張係数との差が0.5×10−5/K以下である、請求項1記載の熱電変換素子。 The thermal expansion coefficient of the thermoelectric conversion unit, and the thermal expansion coefficient of the oxide crystallized glass is 0.5 × 10 -5 /K~2.0×10 -5 / K , and the thermoelectric conversion portion The thermoelectric conversion element of Claim 1 whose difference between a thermal expansion coefficient and the thermal expansion coefficient of the said oxide crystallized glass is 0.5 * 10 < -5 > / K or less. 前記酸化物結晶化ガラスがガラス相と結晶相とを含有し、該ガラス相が以下の(1)、(2)及び(3)の金属酸化物を含む、請求項1又は2記載の熱電変換素子。
(1)Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種
(2)Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種
(3)Siの酸化物
The thermoelectric conversion according to claim 1 or 2, wherein the oxide crystallized glass contains a glass phase and a crystal phase, and the glass phase contains the following metal oxides (1), (2) and (3). element.
(1) At least one oxide of an alkali metal element selected from Na and K (2) At least one oxide of an alkaline earth metal element selected from Mg, Ca, Sr and Ba (3) Si Oxides of
前記ガラス相が、以下の(4)の金属酸化物をさらに含む、請求項3に記載の熱電変換素子。
(4)Al、B及びZnから選択される金属元素の酸化物の少なくとも1種
The thermoelectric conversion element according to claim 3, wherein the glass phase further contains the following metal oxide (4).
(4) At least one metal element oxide selected from Al, B and Zn
前記酸化物結晶化ガラスは、前記ガラス相がNaO、KO、CaO、Al及びSiOを含有し、かつ、前記結晶相がアルカリ金属酸化物及び/又はアルカリ土類金属酸化物を含有するケイ酸塩結晶相を含む、請求項3又は4に記載の熱電変換素子。 In the oxide crystallized glass, the glass phase contains Na 2 O, K 2 O, CaO, Al 2 O 3 and SiO 2 , and the crystal phase is an alkali metal oxide and / or an alkaline earth metal. The thermoelectric conversion element of Claim 3 or 4 containing the silicate crystal phase containing an oxide. 前記酸化物結晶化ガラスの膜厚が20〜150μmである、請求項1乃至5のいずれか一項に記載の熱電変換素子。   The thermoelectric conversion element as described in any one of Claims 1 thru | or 5 whose film thickness of the said oxide crystallized glass is 20-150 micrometers. 前記熱電変換部が多結晶性マグネシウムシリサイドを含有する、請求項1乃至6のいずれか一項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 6, wherein the thermoelectric conversion portion contains polycrystalline magnesium silicide. 請求項1乃至7のいずれか一項に記載の熱電変換素子を備える熱電変換モジュール。   A thermoelectric conversion module provided with the thermoelectric conversion element as described in any one of Claims 1 thru | or 7. 請求項1乃至7のいずれか一項に記載の熱電変換素子を構成し、酸化物結晶化ガラスの膜によって被覆された熱電変換部材。   The thermoelectric conversion member which comprises the thermoelectric conversion element as described in any one of Claims 1 thru | or 7, and was coat | covered with the film | membrane of oxide crystallized glass. 酸化物ガラス粉末を含むスラリーに熱電変換部を浸漬させる工程と、
前記スラリーで被覆された前記熱電変換部を焼成する工程と、
を含む、酸化物結晶化ガラスによって被覆された前記熱電変換部を備える熱電変換素子の製造方法。
A step of immersing the thermoelectric converter in a slurry containing oxide glass powder;
Firing the thermoelectric converter coated with the slurry;
The manufacturing method of a thermoelectric conversion element provided with the said thermoelectric conversion part coat | covered with the oxide crystallized glass containing.
該酸化物ガラス粉末は、(1)Na及びKから選択されるアルカリ金属元素の酸化物の少なくとも1種、(2)Mg、Ca、Sr及びBaから選択されるアルカリ土類金属元素の酸化物の少なくとも1種、並びに(3)Siの酸化物、である金属酸化物を含む、請求項10に記載の熱電変換素子の製造方法。   The oxide glass powder includes (1) at least one alkali metal element oxide selected from Na and K, and (2) an alkaline earth metal element oxide selected from Mg, Ca, Sr and Ba. The manufacturing method of the thermoelectric conversion element of Claim 10 containing the metal oxide which is at least 1 sort (s) of (3), and the oxide of (3) Si. 前記金属酸化物の組成が、以下の(1a)、(2a)又は(3a)である、請求項11に記載の熱電変換素子の製造方法。
(1a)10〜20mol%のNaO、10〜20mol%のKO、5〜15mol%のCaO、5〜15mol%のAl及び40〜70mol%のSiO
(2a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO、2.5〜7.5mol%のAl及び50〜60mol%のSiO
(3a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO及び55〜65mol%のSiO
The manufacturing method of the thermoelectric conversion element of Claim 11 whose composition of the said metal oxide is the following (1a), (2a), or (3a).
(1a) 10 to 20% of Na 2 O, 10~20mol% of K 2 O, 5~15mol% of CaO, 5 to 15 mol% of Al 2 O 3 and 40~70Mol% of SiO 2
(2a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, 5~15mol% of CaO, 2.5~7.5mol% of Al 2 O 3 and 50~60Mol% of SiO 2
(3a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, SiO 2 of 5 to 15 mol% of CaO and 55~65Mol%
前記スラリーにおける前記酸化物ガラス粉末の濃度が45〜60質量%であり、前記酸化物ガラス粉末の平均粒径が3〜15μmである、請求項10乃至12のいずれか一項に記載の熱電変換素子の製造方法。   The thermoelectric conversion according to any one of claims 10 to 12, wherein a concentration of the oxide glass powder in the slurry is 45 to 60% by mass, and an average particle diameter of the oxide glass powder is 3 to 15 µm. Device manufacturing method. 前記スラリーに浸漬された前記熱電変換部を前記スラリーから引き上げる速度が5〜25mm/秒である、請求項10乃至13のいずれか一項に記載の熱電変換素子の製造方法。   The manufacturing method of the thermoelectric conversion element as described in any one of Claims 10 thru | or 13 whose speed | rate which pulls up the said thermoelectric conversion part immersed in the said slurry from the said slurry is 5-25 mm / sec. 前記熱電変換部を焼成する工程において、5〜15℃/分の速度で昇温し、650〜750℃で50〜70分間焼成した後、1〜5℃/分の速度で降温する、請求項10乃至14のいずれか一項に記載の熱電変換素子の製造方法。   In the step of firing the thermoelectric converter, the temperature is increased at a rate of 5 to 15 ° C / minute, baked at 650 to 750 ° C for 50 to 70 minutes, and then the temperature is decreased at a rate of 1 to 5 ° C / minute. The manufacturing method of the thermoelectric conversion element as described in any one of 10 thru | or 14. 下記(1a)(2a)又は(3a)の組成を有する金属酸化物を備える、熱電変換部を被覆する酸化物ガラス。
(1a)10〜20mol%のNaO、10〜20mol%のKO、5〜15mol%のCaO、5〜15mol%のAl及び40〜70mol%のSiO
(2a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO、2.5〜7.5mol%のAl及び50〜60mol%のSiO
(3a)15〜25mol%のNaO、5〜15mol%のKO、5〜15mol%のCaO及び55〜65mol%のSiO
The oxide glass which coat | covers the thermoelectric conversion part provided with the metal oxide which has a composition of following (1a) (2a) or (3a).
(1a) 10 to 20% of Na 2 O, 10~20mol% of K 2 O, 5~15mol% of CaO, 5 to 15 mol% of Al 2 O 3 and 40~70Mol% of SiO 2
(2a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, 5~15mol% of CaO, 2.5~7.5mol% of Al 2 O 3 and 50~60Mol% of SiO 2
(3a) 15 to 25% of Na 2 O, 5~15mol% of K 2 O, SiO 2 of 5 to 15 mol% of CaO and 55~65Mol%
JP2015170485A 2015-08-31 2015-08-31 Thermoelectric conversion element and method of manufacturing the same Active JP6635288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015170485A JP6635288B2 (en) 2015-08-31 2015-08-31 Thermoelectric conversion element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015170485A JP6635288B2 (en) 2015-08-31 2015-08-31 Thermoelectric conversion element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017050325A true JP2017050325A (en) 2017-03-09
JP6635288B2 JP6635288B2 (en) 2020-01-22

Family

ID=58280168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015170485A Active JP6635288B2 (en) 2015-08-31 2015-08-31 Thermoelectric conversion element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6635288B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004373A1 (en) * 2017-06-29 2019-01-03 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2019012828A (en) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
WO2020004617A1 (en) * 2018-06-28 2020-01-02 日本パーカライジング株式会社 Thermoelectric conversion element and thermoelectric conversion module having same
WO2020137205A1 (en) 2018-12-26 2020-07-02 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
WO2021132255A1 (en) 2019-12-24 2021-07-01 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958882A (en) * 1982-09-29 1984-04-04 Toshiba Corp Thermocouple
JPH11251647A (en) * 1998-02-27 1999-09-17 Ueki Corporation:Kk Thermoelectric converter element, thermoelectric converter and their manufacture
WO2008075789A1 (en) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
JP2010080521A (en) * 2008-09-24 2010-04-08 Denso Corp Thermoelectric converting element and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958882A (en) * 1982-09-29 1984-04-04 Toshiba Corp Thermocouple
JPH11251647A (en) * 1998-02-27 1999-09-17 Ueki Corporation:Kk Thermoelectric converter element, thermoelectric converter and their manufacture
WO2008075789A1 (en) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
US20100051081A1 (en) * 2006-12-20 2010-03-04 Showa Kde Co., Ltd. Thermoelectric conversion material, method for manufacturing the same, and thermoelectric conversion element
EP2400572A1 (en) * 2006-12-20 2011-12-28 Showa KDE Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
JP2013179322A (en) * 2006-12-20 2013-09-09 Tokyo Univ Of Science Thermoelectric conversion material, production method therefor and thermoelectric conversion element
JP2010080521A (en) * 2008-09-24 2010-04-08 Denso Corp Thermoelectric converting element and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176248B2 (en) 2017-06-29 2022-11-22 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP2019012828A (en) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
CN110366784A (en) * 2017-06-29 2019-10-22 三菱综合材料株式会社 The manufacturing method of thermo-electric converting material, thermoelectric conversion element, thermo-electric conversion module and thermo-electric converting material
WO2019004373A1 (en) * 2017-06-29 2019-01-03 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
CN110366784B (en) * 2017-06-29 2023-08-18 三菱综合材料株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
US11647674B2 (en) 2017-06-29 2023-05-09 Mitsubishi Materials Corporation Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
EP3648185A4 (en) * 2017-06-29 2021-03-24 Mitsubishi Materials Corporation Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
WO2020004617A1 (en) * 2018-06-28 2020-01-02 日本パーカライジング株式会社 Thermoelectric conversion element and thermoelectric conversion module having same
JPWO2020004617A1 (en) * 2018-06-28 2021-07-08 日本パーカライジング株式会社 Thermoelectric conversion element and thermoelectric conversion module provided with the thermoelectric conversion element
JP7075997B2 (en) 2018-06-28 2022-05-26 日本パーカライジング株式会社 A thermoelectric conversion element and a thermoelectric conversion module provided with the thermoelectric conversion element.
US11637230B2 (en) 2018-06-28 2023-04-25 Nihon Parkerizing Co., Ltd. Thermoelectric conversion element and thermoelectric conversion module having same
CN112385053A (en) * 2018-06-28 2021-02-19 日本帕卡濑精株式会社 Thermoelectric conversion element and thermoelectric conversion module having the same
WO2020137205A1 (en) 2018-12-26 2020-07-02 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
KR20220115801A (en) 2019-12-24 2022-08-18 미쓰비시 마테리알 가부시키가이샤 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
WO2021132255A1 (en) 2019-12-24 2021-07-01 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module

Also Published As

Publication number Publication date
JP6635288B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6635288B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP5690780B2 (en) Ag electrode forming paste composition, method for producing the same, and solar cell
JP5526104B2 (en) Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
CN100550431C (en) Composite cream and used its solar battery element
CN107089798B (en) Oxide crystal, method for preparing the same, and conductive coating material containing the same
TW201213265A (en) Conductive paste for a solar cell electrode
WO2006087914A1 (en) Chalcopyrite solar cell and manufacturing method thereof
TW201124551A (en) In-Ga-Zn-O-based oxide sintered body sputtering target with excellent stability during long-term deposition
TW200839901A (en) Method for producing an electronic component passivated by lead free glass
JP6374072B1 (en) Bonding structure
TW201202367A (en) Solar cell and electroconductive paste used to form electrode thereof
JPWO2005036661A1 (en) Conductive paste for thermoelectric conversion material connection
TW201232565A (en) Silicon-free aluminum paste composition for forming an aluminum back electrode with large silicon particles
TW201134780A (en) Glass for semiconductor coating and material for semiconductor coating using the same
TWI469927B (en) New compound semiconductors and their application
US10396263B2 (en) Thermoelectric powder and thermoelectric material prepared using the same
CN111689775A (en) Laminated piezoelectric ceramic, method for manufacturing same, piezoelectric element, and piezoelectric vibration device
US20180112081A1 (en) Composite thermoelectric material and its manufacturing method
JP6963413B2 (en) Glass composition for sealing
JP7021872B2 (en) Composite thermoelectric material and its manufacturing method
JP7226256B2 (en) Method for producing sulfide solid electrolyte material
KR20130037457A (en) Synthesis of zinc antimonide paste and p-type thermoelectric material forming method using paste
JP2009091215A (en) Composition for piezoelectric material and piezoelectric actuator element
JP2001185358A (en) Encapsulated fluorescent particle for electroluminescence and el display panel, and manufacturing method for the same
TWI314760B (en) Method for manufacturing transparent conductive thin films

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6635288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250