JP2017049184A - Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody - Google Patents

Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody Download PDF

Info

Publication number
JP2017049184A
JP2017049184A JP2015174075A JP2015174075A JP2017049184A JP 2017049184 A JP2017049184 A JP 2017049184A JP 2015174075 A JP2015174075 A JP 2015174075A JP 2015174075 A JP2015174075 A JP 2015174075A JP 2017049184 A JP2017049184 A JP 2017049184A
Authority
JP
Japan
Prior art keywords
antibody
group
fluorescent
antigen
variable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015174075A
Other languages
Japanese (ja)
Inventor
上田 宏
Hiroshi Ueda
上田  宏
熙陳 鄭
Hee-Jin Jeong
熙陳 鄭
金華 董
Kinka Kaoru
金華 董
亮二 阿部
Ryoji Abe
亮二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Ushio Denki KK
Ushio Inc
Original Assignee
Tokyo Institute of Technology NUC
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Ushio Denki KK, Ushio Inc filed Critical Tokyo Institute of Technology NUC
Priority to JP2015174075A priority Critical patent/JP2017049184A/en
Priority to PCT/JP2016/075620 priority patent/WO2017038926A1/en
Publication of JP2017049184A publication Critical patent/JP2017049184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a fluorescently-labeled antibody, the fluorescence intensity of which varies depending on antigen-binding by a photochemical modification method with use of a nucleotide binding site in a variable region of the antibody, and the fluorescently-labeled antibody obtained.SOLUTION: A labeled antibody for fluoroimmunoassay in which a compound for labeling a nucleotide binding site (NBS) of an antibody is conjugated to a nucleotide binding site in the antibody, the compound having indolebutyric acid (IBA) and a fluorescent group being bound, the compound represented by the following formula (1), wherein F is a fluorescent group and R is an optionally substituted linker group selected from the group consisting of alkyl groups, alkenyl groups, alkynyl groups, C4 to C10 cycloalkyl groups, C4 to C10 heterocyclyl groups, C4 to C10 aryl groups, C4 to C10 heteroaryl groups, arylene groups, ether groups, ester groups, PEG groups, sulfide groups, amido groups, ketone groups, sulfamide groups and a combination thereof.SELECTED DRAWING: None

Description

本発明は、抗体のヌクレオチド結合部位を利用して、抗体を蛍光標識する方法、及び該方法により蛍光標識された蛍光免疫測定用標識抗体に関する。   The present invention relates to a method of fluorescently labeling an antibody using the nucleotide binding site of the antibody, and a labeled antibody for fluorescent immunoassay that is fluorescently labeled by the method.

抗体のN末端部分に蛍光分子を結合させることで、抗原の結合を蛍光の変化により検出できる手法が開発されている(特許文献1及び特許文献2を参照)。この手法に用いる蛍光分子を結合させた、抗原の結合により蛍光強度が変化する抗体をQuenchbody(Q-body(登録商標))と呼ぶ。その開示においては、一例として無細胞翻訳系を用いて、蛍光分子を結合させたアミノ酸を抗体のN末端部分に導入することで、蛍光分子を結合させた抗体の合成を行っている。   A technique has been developed that can detect the binding of an antigen by a change in fluorescence by binding a fluorescent molecule to the N-terminal part of an antibody (see Patent Document 1 and Patent Document 2). An antibody that binds a fluorescent molecule used in this technique and whose fluorescence intensity changes due to antigen binding is called Quenchbody (Q-body (registered trademark)). In the disclosure, as an example, using a cell-free translation system, an amino acid to which a fluorescent molecule is bound is introduced into the N-terminal portion of the antibody to synthesize an antibody to which the fluorescent molecule is bound.

これらの例に限らず、従来の手法においては、蛍光分子を結合させた抗体を合成する際に、手間と時間が掛かり、合成量も低いという問題点があった。それは、その合成に無細胞翻訳系を用いて蛍光分子を結合させたアミノ酸を抗体のN末端部分に導入する、という工程が必要となるためである。
また、抗体のN末端はタンパク質に翻訳された後に修飾を受ける可能性があり、もし修飾を受けた後はN末端に標識を適用できないという制約がある。
In addition to these examples, the conventional methods have problems that it takes time and effort to synthesize an antibody to which a fluorescent molecule is bound, and the amount of synthesis is low. This is because a step of introducing an amino acid having a fluorescent molecule bound thereto into the N-terminal portion of the antibody using a cell-free translation system is necessary for the synthesis.
In addition, there is a possibility that the N-terminus of the antibody may be modified after being translated into a protein, and there is a restriction that a label cannot be applied to the N-terminus after modification.

一方、別の抗体特異的化学修飾法として紫外線照射による光化学修飾(UVクロスリンク)によって抗体のNBS(Nucleotide binding site)とインドール酪酸(IBA, indolebutyric acid)誘導体を結合させる方法が報告されている(特許文献3及び非特許文献1を参照)。抗体中の主にリジン残基に存在するアミノ基をターゲットとしてランダムに標識する従来の方法では抗体の機能を損ねることもあったが、光化学修飾を利用する方法では抗体の機能を損ねることなく、部位特異的に機能基(ビオチン、蛍光色素、iRGDペプチドや抗癌剤など)を結合することができるようになると報告されている。   On the other hand, another antibody-specific chemical modification method has been reported that binds NBS (Nucleotide binding site) of antibody and indolebutyric acid (IBA) derivative by photochemical modification by UV irradiation (UV cross-linking) ( (See Patent Literature 3 and Non-Patent Literature 1). In the conventional method of randomly labeling the amino group mainly present in the lysine residue in the antibody as a target, the function of the antibody may be impaired, but in the method using photochemical modification, the function of the antibody is not impaired. It has been reported that functional groups (biotin, fluorescent dyes, iRGD peptides, anticancer agents, etc.) can be bound in a site-specific manner.

特許第5043237号公報Japanese Patent No. 5043237 国際公開第2013/065314号International Publication No.2013 / 065314 国際公開第2014/152801号International Publication No. 2014/152801

Alves,N,J et al.,Biomaterials, 34, 5700〜5710(2013)Alves, N, J et al., Biomaterials, 34, 5700-5710 (2013)

抗原の結合により蛍光強度が変化する抗体であるQ-bodyを合成するためには、組換え抗体技術の利用が一般的であった。本発明は、多くの抗体の可変領域内部に存在するヌクレオチド結合部位を利用して、光化学修飾法により、抗原の結合により蛍光強度が変化する抗体であるQ-bodyを作製する方法、及び得られたQ-bodyの提供を目的とする。   In order to synthesize Q-body, an antibody whose fluorescence intensity changes due to antigen binding, it has been common to use recombinant antibody technology. The present invention provides a method for producing a Q-body that is an antibody whose fluorescence intensity changes due to antigen binding by photochemical modification using nucleotide binding sites present in the variable regions of many antibodies, and obtained The purpose is to provide a Q-body.

本発明者らは、特許第5043237号公報及び国際公開第2013/065314号に記載のQ-bodyを開発し、抗原検出に利用していた。Q-bodyは抗体に抗原が結合していないときに、抗体の抗原結合部位から可変領域内部にわたり存在するトリプトファン残基の多い部位(以下抗原ポケットと呼ぶ)の近傍に位置しクエンチされている蛍光色素が、抗原が結合したときに蛍光を発するようになるか、あるいはよりクエンチされ、蛍光強度が変化することを利用して抗原を検出する。   The present inventors have developed the Q-body described in Japanese Patent No. 5043237 and International Publication No. 2013/065314 and used it for antigen detection. Q-body is a fluorescence that is located in the vicinity of a site with many tryptophan residues (hereinafter referred to as an antigen pocket) that exists from the antigen-binding site of the antibody to the inside of the variable region when no antigen is bound to the antibody. The antigen is detected by utilizing the fact that the dye becomes fluorescent when the antigen is bound or is more quenched and the fluorescence intensity changes.

Q-bodyは遺伝子組換えの手法を利用して、抗体の軽鎖可変領域及び/又は重鎖可変領域のN末端に付加したペプチド中のアミノ酸を蛍光色素により標識するため、製造にコストと時間がかかっていた。   Q-body uses a genetic recombination technique to label the amino acid in the peptide added to the N-terminus of the light chain variable region and / or heavy chain variable region of the antibody with a fluorescent dye. It was over.

本発明者らは、より簡便にQ-bodyを製造する方法について検討を行い、抗体の可変領域に存在するヌクレオチド結合部位(NBS)にインドール基が光化学修飾により結合することを利用し、抗体を蛍光色素で標識できることを見出した。この方法を利用することにより遺伝子組換えの手法によることなくあらかじめ作製された抗体可変領域を蛍光色素で簡便に標識することができた。   The present inventors have examined a method for producing Q-body more simply, utilizing the fact that an indole group binds to a nucleotide binding site (NBS) present in the variable region of an antibody by photochemical modification, It was found that it can be labeled with a fluorescent dye. By using this method, antibody variable regions prepared in advance could be easily labeled with a fluorescent dye without using a genetic recombination technique.

また、抗体のヌクレオチド結合部位と抗原ポケットは近接して存在するため、光化学修飾を利用して製造したQ-bodyは、抗原が結合していないときによりクエンチされ、その結果、抗原が結合したときの蛍光強度の変化が大きくなり、従来のQ-bodyよりも、より高感度で抗原を検出することができることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
In addition, since the nucleotide binding site of the antibody and the antigen pocket are close to each other, the Q-body produced using photochemical modification is more quenched when the antigen is not bound. As a result, the present inventors have found that the antigen can be detected with higher sensitivity than the conventional Q-body, and have completed the present invention.
That is, the present invention is as follows.

[1]
下記式(1):

Figure 2017049184
[1]
Following formula (1):
Figure 2017049184

(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物が抗体内のヌクレオチド結合部位にコンジュゲートされている蛍光免疫測定用標識抗体。 Wherein F is a fluorescent group, R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof. A labeled antibody for fluorescent immunoassay in which a compound for labeling a nucleotide binding site (NBS) of an antibody in which butyric acid (IBA) and a fluorescent group are bound is conjugated to a nucleotide binding site in the antibody.

[2] 前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、[1]の蛍光免疫測定用標識抗体。 [2] The fluorescent group may be rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue and The labeled antibody for fluorescent immunoassay according to [1], which is at least one selected from the group consisting of these derivatives.

[3] 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、[2]の蛍光免疫測定用標識抗体。
[4] 抗体がscFv型抗体、Fab型抗体及び完全型抗体からなる群から選択される、[1]〜[3]のいずれかの蛍光免疫測定用標識抗体。
[3] The labeled antibody for fluorescent immunoassay according to [2], wherein the fluorescent group contains at least one selected from the group consisting of tetramethylrhodamine, rhodamine 110 and ATTO655 (registered trademark).
[4] The labeled antibody for fluorescence immunoassay according to any one of [1] to [3], wherein the antibody is selected from the group consisting of an scFv type antibody, a Fab type antibody and a complete type antibody.

[5] 蛍光免疫測定用標識抗体の製造方法であって、
下記式(1):

Figure 2017049184
[5] A method for producing a labeled antibody for fluorescence immunoassay,
Following formula (1):
Figure 2017049184

(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物と抗体を含む溶液に、中心波長254nmの紫外線を照射することにより、前記化合物のインドール基と抗体のヌクレオチド結合部位の間で光架橋反応を生じさせ、前記化合物と抗体をコンジュゲートする工程を含む、蛍光免疫測定用標識抗体の製造方法。 Wherein F is a fluorescent group, R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof. By irradiating ultraviolet light with a central wavelength of 254 nm to a solution containing an antibody nucleotide binding site (NBS) labeling compound in which butyric acid (IBA) and a fluorescent group are bound, an indole group of the compound and the antibody A method for producing a labeled antibody for fluorescent immunoassay, comprising a step of causing a photocrosslinking reaction between nucleotide binding sites and conjugating the compound with an antibody.

[6] 前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、[5]の製造方法。 [6] The fluorescent group includes rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue, and The production method of [5], which is at least one selected from the group consisting of these derivatives.

[7] 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、[6]の製造方法。
[8] 抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、[5]〜[7]のいずれかの製造方法。
[9] [1]〜[4]のいずれかの蛍光免疫測定用標識抗体と抗原を接触させ、蛍光強度の変化を測定することを含む、抗原の検出方法。
[7] The method according to [6], wherein the fluorescent group includes at least one selected from the group consisting of tetramethylrhodamine, rhodamine 110, and ATTO655 (registered trademark).
[8] The production method of any one of [5] to [7], wherein the antibody is selected from the group consisting of scFv type antibodies, Fab type antibodies, and complete antibodies.
[9] A method for detecting an antigen, comprising bringing the labeled antibody for fluorescent immunoassay according to any one of [1] to [4] into contact with an antigen and measuring a change in fluorescence intensity.

本発明の蛍光免疫測定用試薬は、あらかじめ合成された抗体を用いて、短工程で短時間のうちに紫外線照射により翻訳後修飾を受けない抗原ポケット近傍の部位であるヌクレオチド結合部位を蛍光色素やクエンチャーにより特異的に修飾することができるので、あらゆる抗体に適用可能になる。そのため、材料である抗体の入手が容易になり、遺伝子解析も不要となる。これにより、抗原の結合を蛍光の変化により検出できる抗体の作成の簡便化と生産の効率化が可能になる。   The reagent for fluorescent immunoassay of the present invention uses a pre-synthesized antibody, and a nucleotide binding site that is a site in the vicinity of an antigen pocket that is not subjected to post-translational modification by ultraviolet irradiation in a short time in a short time. Since it can be specifically modified by a quencher, it can be applied to any antibody. Therefore, it is easy to obtain the antibody as a material, and genetic analysis is not necessary. As a result, it becomes possible to simplify the production of an antibody capable of detecting the binding of an antigen by a change in fluorescence and to improve the production efficiency.

さらに、本発明においては、蛍光色素又はクエンチャーを含むヌクレオチド結合部位標識用化合物が抗原ポケットに近接したヌクレオチド結合部位に結合する。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体に比べ、蛍光色素又はクエンチャーはより抗原ポケットに近い位置に存在し、抗原ポケット内に入り易いので、抗原が結合していないときによりクエンチされやすくなる。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体を用いた場合よりも、抗原が結合したときの蛍光強度の変化が大きくなるので、より高感度で抗原を測定することができる。   Furthermore, in the present invention, a nucleotide binding site labeling compound containing a fluorescent dye or a quencher binds to a nucleotide binding site adjacent to the antigen pocket. Therefore, compared to the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the fluorescent dye or quencher is located closer to the antigen pocket and easily enters the antigen pocket. It becomes easier to be quenched when not. Therefore, since the change in fluorescence intensity when the antigen is bound is larger than when using the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the antigen is measured with higher sensitivity. be able to.

本発明の蛍光標識抗体の構造のパターンを示す図である。It is a figure which shows the pattern of the structure of the fluorescence labeled antibody of this invention. 本発明の蛍光標識抗体の標識パターンを示す図である。It is a figure which shows the labeling pattern of the fluorescence labeled antibody of this invention. 本発明の蛍光標識抗体の蛍光が変化する原理を示す図である。It is a figure which shows the principle that the fluorescence of the fluorescence labeled antibody of this invention changes. 本発明の蛍光標識抗体とBGPペプチドとを反応させ、蛍光を検出した結果を示す図である。It is a figure which shows the result of having made the fluorescence labeled antibody and BGP peptide of this invention react, and detecting fluorescence. アンバーサプレッション法で蛍光標識した蛍光標識抗体とBGPペプチドとを反応させ、蛍光を検出した結果を示す図である。It is a figure which shows the result of having detected the fluorescence by making the fluorescence labeled antibody and the BGP peptide fluorescently labeled by the amber suppression method react.

以下、本発明を詳細に説明する。
本発明は、蛍光色素で標識した抗体を用いて抗原抗体反応を利用して、検査試料中に含まれる抗原である検査対象物質を測定する方法において用いる、蛍光色素で標識した蛍光免疫測定用抗体を作製する方法、及び蛍光色素で標識した蛍光免疫測定用抗体である。
Hereinafter, the present invention will be described in detail.
The present invention relates to a fluorescent immunoassay antibody labeled with a fluorescent dye, which is used in a method for measuring a test substance, which is an antigen contained in a test sample, using an antigen-antibody reaction using an antibody labeled with a fluorescent dye. And a fluorescent immunoassay antibody labeled with a fluorescent dye.

本発明の抗体を作製する方法においては、蛍光色素を抗体のヌクレオチド結合部位(Nucleotide binding site; NBS)に対して親和性を有するインドール基を介して光化学修飾法等により結合させる。   In the method for producing the antibody of the present invention, a fluorescent dye is bound by a photochemical modification method or the like via an indole group having affinity for a nucleotide binding site (NBS) of the antibody.

1.本発明で用いる抗体
本発明においては、抗体として、抗体軽鎖可変領域(VL)を含むポリペプチドと抗体重鎖可変領域(VH)を含むポリペプチドの複合体を用いる。
1. Antibody used in the present invention In the present invention, a complex of a polypeptide containing an antibody light chain variable region (VL) and a polypeptide containing an antibody heavy chain variable region (VH) is used as an antibody.

抗体軽鎖可変領域は、抗体軽鎖遺伝子のV領域及びJ領域のエクソンによりコードされる抗体軽鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体軽鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体軽鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第35番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。抗体軽鎖可変領域を含むポリペプチドは、抗体軽鎖可変領域を含有していればよく、抗体軽鎖や、抗体軽鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体軽鎖可変領域に、抗体軽鎖定常領域(Cκ)や、さらにヒンジ部分を付与したポリペプチドとすることができ、中でも抗体軽鎖可変領域にCκを付与したポリペプチド等が好ましい。検出対象の抗原に応じて、抗原を認識し得る抗体軽鎖可変領域を含むポリペプチドを適宜作製することができる。   The antibody light chain variable region is not particularly limited as long as it contains an amino acid sequence specific to the antibody light chain variable region encoded by exons of the V region and J region of the antibody light chain gene. An arbitrary amino acid sequence may be further added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the light chain variable region. The amino acid sequence specific to the antibody light chain variable region is preferably an amino acid sequence in which the 35th amino acid is tryptophan in the Kabat numbering system. A polypeptide containing an antibody light chain variable region only needs to contain an antibody light chain variable region, and can include an antibody light chain and a peptide consisting of any amino acid sequence in the antibody light chain. The chain variable region can be an antibody light chain constant region (Cκ) or a polypeptide further having a hinge portion. Among them, a polypeptide having an antibody light chain variable region with Cκ is preferred. Depending on the antigen to be detected, a polypeptide comprising an antibody light chain variable region capable of recognizing the antigen can be appropriately prepared.

抗体重鎖可変領域は、抗体重鎖遺伝子のV領域、D領域、及びJ領域のエクソンによりコードされる抗体重鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体重鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体重鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第36番目、第47番目、又は第103番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。抗体重鎖可変領域を含むポリペプチドは、抗体重鎖可変領域を含有していればよく、抗体重鎖や、抗体重鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体重鎖可変領域に、抗体重鎖定常領域(CH1)や、さらにヒンジ部分やFc領域を付与したポリペプチドとすることができ、中でも抗体重鎖可変領域にCH1を付与したポリペプチド等が好ましい。検出対象の抗原に応じて、抗原を認識し得る抗体重鎖可変領域を含むポリペプチドを適宜作製することができる。   The antibody heavy chain variable region is not particularly limited as long as it contains an amino acid sequence specific to the antibody heavy chain variable region encoded by exons of the V region, D region, and J region of the antibody heavy chain gene. Alternatively, an arbitrary amino acid sequence may be added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the antibody heavy chain variable region. The amino acid sequence specific to the antibody heavy chain variable region is an amino acid sequence in which the 36th, 47th, or 103rd amino acid is tryptophan in the Kabat numbering system. preferable. The polypeptide including the antibody heavy chain variable region only needs to contain the antibody heavy chain variable region, and can include an antibody heavy chain or a peptide consisting of any amino acid sequence in the antibody heavy chain. A polypeptide having an antibody heavy chain constant region (CH1) added to the chain variable region and a hinge region or Fc region can be used, and a polypeptide having CH1 added to the antibody heavy chain variable region is preferred. Depending on the antigen to be detected, a polypeptide containing an antibody heavy chain variable region capable of recognizing the antigen can be appropriately prepared.

抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドは、複合体を形成することが好ましく、抗体軽鎖可変領域及び抗体重鎖可変領域に、それぞれ複合体を形成するアミノ酸配列を含むペプチドが結合されたものであれば特に制限されるものではない。複合体を形成するペプチドとしては、上記抗体定常領域(CH1やCκなど)の他、2量体を形成する一方を抗体軽鎖可変領域に他方を抗体重鎖可変領域に付与することもできる。また、相互作用してこれらの複合体形成に寄与する2種類のタンパク質を選択することもできる。   Preferably, the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region form a complex, and the amino acids that form a complex in the antibody light chain variable region and the antibody heavy chain variable region, respectively. There is no particular limitation as long as the peptide containing the sequence is bound thereto. As a peptide that forms a complex, in addition to the antibody constant region (CH1 and Cκ, etc.), one that forms a dimer can be imparted to the antibody light chain variable region and the other can be imparted to the antibody heavy chain variable region. It is also possible to select two types of proteins that interact to contribute to the formation of these complexes.

本発明において、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる、抗原と特異的に結合する複合体を抗体と呼ぶ。また、該複合体は抗原に結合するという抗体が有する特性を有しているので、抗原結合タンパク質と呼ぶこともできる。本発明の抗体は、後述のVH+VL型の抗体、scFv型抗体(一本鎖抗体:single chain variable fragment)、Fab型抗体、F(ab')2型抗体、完全体型抗体(完全抗体)等を含む。 In the present invention, a complex consisting of a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region, which specifically binds to an antigen, is called an antibody. In addition, since the complex has the property of an antibody that binds to an antigen, it can also be called an antigen-binding protein. The antibodies of the present invention include VH + VL type antibodies, scFv type antibodies (single chain antibody: single chain variable fragment), Fab type antibodies, F (ab ′) type 2 antibodies, complete type antibodies (complete antibodies), etc. Including.

本発明の抗体は、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドとを構成要素として含み、複合体を形成するものであればよく、本発明の蛍光標識された抗体の機能を損なわない限りは、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドに加え、さらにペプチドやタンパク質、脂質、金属その他化合物等を構成要素として含んでもよい。   The antibody of the present invention is not limited as long as it comprises a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region as components and forms a complex. As long as the function of the antibody is not impaired, in addition to the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region, it may further contain a peptide, protein, lipid, metal or other compound as a constituent element. .

また、本発明の抗体は、前記ポリペプチド同士が組み合わさって一体として機能し得る構造体であればよく、前記ポリペプチド間の化学結合の有無は特に問題とされない。前記結合としては、前記ポリペプチド同士による、ジスルフィド結合や、架橋剤を用いて形成された結合等を挙げることができ、これらの結合は1つの複合体において複数組み合わせて使用されてもよい。これらの中でもジスルフィド結合を好適に例示することができる。本発明の抗体は前記ポリペプチド同士が互いに近い距離となる複合体を形成することが好ましく、このような機能をもつペプチドを含む、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が好ましい。抗体分子において抗体軽鎖定常領域と抗体重鎖定常領域はその相互作用により抗体軽鎖可変領域と抗体重鎖可変領域をより近い距離とし、強固な抗原結合ポケットを形成する補助的役割を果たしている。このことから、本発明の抗原結合タンパク質としては、抗体軽鎖可変領域と抗体軽鎖定常領域からなるポリペプチドと、抗体重鎖可変領域と抗体重鎖定常領域からなるポリペプチドが、ジスルフィド結合で結合した1分子の抗体タンパク質であるFab型抗体や、Fab型抗体2つがヒンジを介してジスルフィド結合で結合したF(ab')2型抗体や、完全型抗体が好ましい。この場合、抗体軽鎖可変領域と抗体軽鎖定常領域からなるポリペプチドは、抗体軽鎖可変領域を含むポリペプチドであり、抗体重鎖可変領域と抗体重鎖定常領域からなるポリペプチドは、抗体重鎖可変領域を含むポリペプチドである。また、本発明の抗体は、抗体軽鎖可変領域と抗体重鎖可変領域とからなるVH+VL型抗体又はscFv型抗体(一本鎖抗体:single chain variable region fragment)であってもよい。 In addition, the antibody of the present invention may be a structure that can function as a combination of the polypeptides, and the presence or absence of a chemical bond between the polypeptides is not particularly problematic. Examples of the bond include a disulfide bond between the polypeptides, a bond formed using a cross-linking agent, and the like. These bonds may be used in combination in a single complex. Among these, a disulfide bond can be preferably exemplified. The antibody of the present invention preferably forms a complex in which the polypeptides are close to each other. A polypeptide containing an antibody light chain variable region containing a peptide having such a function and an antibody heavy chain variable region A complex comprising the polypeptide comprising is preferred. In the antibody molecule, the antibody light chain constant region and the antibody heavy chain constant region interact with each other to make the antibody light chain variable region and the antibody heavy chain variable region closer to each other, thereby forming a strong antigen-binding pocket. . Therefore, as the antigen-binding protein of the present invention, a polypeptide comprising an antibody light chain variable region and an antibody light chain constant region and a polypeptide comprising an antibody heavy chain variable region and an antibody heavy chain constant region are disulfide bonds. A Fab type antibody that is a single molecule antibody protein bound, an F (ab ′) 2 type antibody in which two Fab type antibodies are linked by a disulfide bond via a hinge, and a complete type antibody are preferable. In this case, the polypeptide consisting of the antibody light chain variable region and the antibody light chain constant region is a polypeptide containing the antibody light chain variable region, and the polypeptide consisting of the antibody heavy chain variable region and the antibody heavy chain constant region is anti-antibody. A polypeptide comprising a weight chain variable region. The antibody of the present invention may be a VH + VL type antibody or scFv type antibody (single chain antibody: single chain variable region fragment) comprising an antibody light chain variable region and an antibody heavy chain variable region.

VH+VL型抗体、scFv型抗体及びFab型抗体は、抗体軽鎖可変領域を含むポリペプチド1つと抗体重鎖可変領域を含むポリペプチド1つからなり、F(ab')2型抗体及び完全体型抗体は、抗体軽鎖可変領域を含むポリペプチド2つと抗体重鎖可変領域を含むポリペプチド2つからなる。 VH + VL antibody, scFv antibodies and Fab type antibody consists polypeptide one comprising a polypeptide with one antibody heavy chain variable region comprising an antibody light chain variable region, F (ab ') 2 type antibodies and full The somatic antibody consists of two polypeptides containing an antibody light chain variable region and two polypeptides containing an antibody heavy chain variable region.

本発明の抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる抗体において、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が1つの蛍光色素で標識されている場合をシングルラベル(例えば、Fab型シングルラベル等)と呼ぶ。また、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が2つの蛍光色素で標識されていてもよく、同じ種類の蛍光色素で標識されていてもよいし、別の種類の蛍光色素で標識されていてもよい。本発明において、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が2つの蛍光色素により標識され、両方の蛍光色素が同じ種類である場合を同色ダブルラベル(例えば、Fab型同色ダブルラベル)と呼び、異なる場合を異色ダブルラベル(例えば、Fab型異色ダブルラベル)と呼ぶ。さらに、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分を、1つの蛍光色素と該蛍光色素に対する1つのクエンチャー(消光色素)の2つの色素で標識してもよく、このような抗体を蛍光+クエンチャーダブルラベルと呼ぶ。   In the antibody comprising the polypeptide comprising the antibody light chain variable region of the present invention and the polypeptide comprising the antibody heavy chain variable region, the complex part comprising the antibody light chain variable region and the antibody heavy chain variable region is labeled with one fluorescent dye. This case is called a single label (for example, Fab type single label). In addition, the complex part composed of the antibody light chain variable region and the antibody heavy chain variable region may be labeled with two fluorescent dyes, may be labeled with the same type of fluorescent dye, or another type of fluorescent dye. It may be labeled with a dye. In the present invention, when a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region is labeled with two fluorescent dyes and both fluorescent dyes are of the same type, the same color double label (for example, Fab type same color double label) A different case is called a different color double label (for example, a Fab type different color double label). Furthermore, the complex part composed of the antibody light chain variable region and the antibody heavy chain variable region may be labeled with two dyes, one fluorescent dye and one quencher (quenching dye) for the fluorescent dye. Such an antibody is called fluorescence + quencher double label.

図1に抗体の構造を抗体パターンとして示す。図1においては、VH+VL型抗体、scFv型抗体、Fab型抗体、F(ab')2型抗体及び完全型抗体の構造を示す。各型の抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分は1つの色素で標識されているシングルラベルである。 FIG. 1 shows the antibody structure as an antibody pattern. FIG. 1 shows the structures of VH + VL type antibody, scFv type antibody, Fab type antibody, F (ab ′) type 2 antibody and complete type antibody. The complex part consisting of the antibody light chain variable region and the antibody heavy chain variable region of each type of antibody is a single label labeled with one dye.

本発明においては、抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチドや、これらのポリペプチドからなる複合体である抗体や、その構成要素等は、公知の化学合成法、遺伝子組換え技術、抗体分子のタンパク質分解酵素による分解方法等を用いて調製することができる。完全型抗体は、ハイブリドーマが産生したモノクローナル抗体をそのまま用いることができる。また、完全型抗体をパパインやペプシン等のタンパク質分解酵素で分解することにより、Fab型抗体やscFv型抗体を得ることができる。また、抗体を遺伝子組換え技術により調製してもよい。遺伝子組換え技術により前記ポリペプチドを調製する場合には、かかるポリペプチドをコードする塩基配列を含むDNAを好適な発現ベクターに導入して組換えベクターを作製し、バクテリア、酵母、昆虫、動植物細胞などを宿主として用いた発現系や、無細胞翻訳系により目的のポリペプチドを発現させることができる。無細胞翻訳系において目的のポリペプチドの発現を行う場合は、例えば、大腸菌、小麦胚芽、ウサギ網状赤血球等の無細胞抽出液に、ヌクレオチド3リン酸や各種アミノ酸を加えた反応液中で、目的のポリペプチドを発現させることができる。この際、抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチドはProXタグやFLAGタグ、Hisタグ等のタグが付加されていてもよく、これらのタグはポリペプチドの精製等に利用することができる。このようにして得た抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチド同士は、蛍光色素による標識の前後に、適当な溶媒中で複合体を形成させることができ、ジスルフィド結合又は架橋剤により結合させ、複合体を形成させる例を挙げることができる。例えば、前記抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドをコードする遺伝子を、大腸菌無細胞合成系で共発現後、4℃で16時間インキュベーションすることによりジスルフィド結合を形成させ複合体を形成することができる。また、大腸菌無細胞合成反応系にタンパク質ジスルフィドイソメラーゼやプロリンシストランスイソメラーゼなどの分子シャペロンを添加することによりジスルフィド結合を促進することができる。また、前記架橋剤としては、ポリペプチド同士を架橋し結合させうる化合物であればよく、例えば、アルデヒド類(例えば、グルタルアルデヒド)、カルボジイミド類、イミドエステル類など挙げることができ、適宜市販品を入手し常法により使用することができる。また、本発明の複合体は、抗体を酵素などで切断して作製することもでき、例えばパパインや、ペプシンを用いて抗体を処理することにより、それぞれFab型抗体や、F(ab’)2型抗体を作製することもできる。 In the present invention, a polypeptide containing an antibody light chain variable region, a polypeptide containing an antibody heavy chain variable region, an antibody that is a complex composed of these polypeptides, its constituents, etc. are known chemical synthesis. It can be prepared using a method, a gene recombination technique, a method for degrading antibody molecules with proteolytic enzymes, and the like. As a complete antibody, a monoclonal antibody produced by a hybridoma can be used as it is. Further, Fab-type antibodies and scFv-type antibodies can be obtained by degrading complete antibodies with proteolytic enzymes such as papain and pepsin. In addition, antibodies may be prepared by gene recombination techniques. When the polypeptide is prepared by genetic recombination technology, a recombinant vector is prepared by introducing DNA containing a base sequence encoding such a polypeptide into a suitable expression vector, so that bacteria, yeast, insects, animal and plant cells The target polypeptide can be expressed by an expression system using the above as a host or a cell-free translation system. When expressing a target polypeptide in a cell-free translation system, for example, in a reaction solution in which nucleotide triphosphates and various amino acids are added to a cell-free extract such as E. coli, wheat germ, rabbit reticulocyte, etc. Of the polypeptide can be expressed. At this time, a polypeptide containing the antibody light chain variable region or a polypeptide containing the antibody heavy chain variable region may be added with a tag such as a ProX tag, a FLAG tag, or a His tag. It can be used for purification and the like. The polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region thus obtained can form a complex in an appropriate solvent before and after labeling with a fluorescent dye. An example of forming a complex by bonding with a disulfide bond or a crosslinking agent can be given. For example, the gene encoding the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region is co-expressed in an E. coli cell-free synthesis system and then incubated at 4 ° C. for 16 hours to form disulfide bonds. To form a complex. Furthermore, disulfide bonds can be promoted by adding molecular chaperones such as protein disulfide isomerase and proline cis-trans isomerase to the E. coli cell-free synthesis reaction system. The crosslinking agent may be any compound that can crosslink and bond polypeptides together. Examples thereof include aldehydes (for example, glutaraldehyde), carbodiimides, imide esters, and the like. It can be obtained and used in a conventional manner. The complex of the present invention can also be prepared by cleaving an antibody with an enzyme or the like. For example, by treating the antibody with papain or pepsin, an Fab type antibody or F (ab ′) 2 Type antibodies can also be produced.

本発明の蛍光色素で標識された抗体は、抗体が抗原に結合したときに、抗体が抗原に結合していないときに対して、蛍光の発生の有無や、蛍光強度が変化するように設計されている。すなわち、標識抗体が抗原に結合していないときには、標識に用いた蛍光色素がクエンチ(消光)されて蛍光を発しないか、特定の波長の蛍光を発生する状態にあり、抗体に抗原が結合した場合に、蛍光色素の蛍光の発生状態が変化する。例えば、抗体と抗原が結合していない状態でクエンチ状態にあった蛍光色素が抗体と抗原が結合することにより蛍光を発するようになるか、あるいは抗体と抗原が結合していない状態で蛍光を発していた蛍光色素が抗体と抗原が結合することにより発生する蛍光の波長がシフトする。このような抗体として、クエンチャー(消光色素)により蛍光強度の変化が生じる抗体、蛍光共鳴エネルギー移動(FRET)により蛍光色素の発光状態が変化する抗体が挙げられる。すなわち、本発明においては、検出対象物質である抗原と該検出対象物質に対する抗体が複合体を形成したときの蛍光強度が変化し得る抗体を用いる。   The antibody labeled with the fluorescent dye of the present invention is designed so that the presence or absence of fluorescence and the fluorescence intensity change when the antibody binds to the antigen, compared to when the antibody does not bind to the antigen. ing. That is, when the labeled antibody is not bound to the antigen, the fluorescent dye used for labeling is quenched (quenched) and does not emit fluorescence, or is in a state of generating fluorescence of a specific wavelength, and the antigen is bound to the antibody. In some cases, the fluorescence generation state of the fluorescent dye changes. For example, a fluorescent dye that has been in a quenched state when the antibody and the antigen are not bound to emit fluorescence when the antibody and the antigen are bound, or emits fluorescence when the antibody and the antigen are not bound. The wavelength of the fluorescence generated by the binding of the fluorescent dye and the antibody to the antigen shifts. Examples of such antibodies include antibodies that cause a change in fluorescence intensity due to a quencher (quenching dye), and antibodies that change the emission state of the fluorescence dye due to fluorescence resonance energy transfer (FRET). That is, in the present invention, an antibody that can change the fluorescence intensity when an antigen as a detection target substance and an antibody against the detection target substance form a complex is used.

蛍光強度が変化し得る抗体として、(1)抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときにクエンチが解消されて蛍光強度が増加する抗体と(2)前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときに、該抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、該抗原と前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドの複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する抗体が挙げられる。前者の抗体を用いた場合、検出対象である抗原濃度と蛍光色素の蛍光強度が正の相関関係にあり、該抗体を検出対象である抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体という。該抗体により、検査試料中の検出対象物質である抗原の濃度と前記抗体が抗原に結合したときに発する蛍光強度とが正の相関にあることを指標として、抗原を検出することができる。後者の抗体を用いた場合、検出対象である抗原濃度と蛍光色素の蛍光強度が負の相関関係にあり、該抗体を検出対象である抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体という。該抗体により、検査試料中の検出対象物質である抗原の濃度と前記抗体が抗原に結合したときに発する蛍光強度とが負の相関にあることを指標として、抗原を検出することができる。   As an antibody whose fluorescence intensity can be changed, (1) quenching is resolved when an antibody comprising a polypeptide containing an antibody heavy chain variable region and a polypeptide containing an antibody light chain variable region binds to an antigen to form a complex. And (2) an antibody comprising a polypeptide containing the antibody heavy chain variable region and a polypeptide containing the antibody light chain variable region bound to an antigen to form a complex, When the complex of the antigen and the antibody becomes a quencher of the fluorescent dye, and the complex of the polypeptide including the antigen and the antibody heavy chain variable region and the polypeptide including the antibody light chain variable region is formed, the fluorescent dye An antibody whose fluorescence intensity decreases by being more strongly quenched can be mentioned. When the former antibody is used, the concentration of the antigen to be detected and the fluorescence intensity of the fluorescent dye have a positive correlation, and the concentration of the antigen to be detected and the fluorescence intensity of the fluorescent dye have a positive correlation. It is called an antibody. With the antibody, the antigen can be detected using as an indicator that the concentration of the antigen as the detection target substance in the test sample and the fluorescence intensity emitted when the antibody binds to the antigen are positively correlated. When the latter antibody is used, the antigen concentration to be detected and the fluorescence intensity of the fluorescent dye have a negative correlation, and the antigen concentration to be detected and the fluorescence intensity of the fluorescent dye have a negative correlation. It is called an antibody. With the antibody, the antigen can be detected by using as an indicator that the concentration of the antigen as the detection target substance in the test sample and the fluorescence intensity emitted when the antibody binds to the antigen have a negative correlation.

特に抗体のVH領域に存在するトリプトファン残基をクエンチャー(消光色素)として利用する蛍光標識抗体が挙げられる。抗体のVH領域の第36番目、第47番目、第103番目(Kabatの番号付け系による)にはトリプトファン(W)残基が存在し、これらのトリプトファン残基はクエンチャーとして作用している(特許第5043237号公報)。蛍光色素で標識した抗体が抗原に結合したときに、蛍光色素は抗原ポケット内に位置するか近傍に位置することにより蛍光色素がトリプトファン残基の近傍に位置しトリプトファン残基と相互作用して蛍光色素がクエンチするように設計されている。すなわち、該蛍光標識抗体は抗原に結合していない状態では、クエンチされており、蛍光を発しない。   In particular, fluorescently labeled antibodies that use tryptophan residues present in the VH region of the antibody as quenchers (quenching dyes) can be mentioned. There are tryptophan (W) residues at the 36th, 47th, and 103rd positions of the antibody VH region (according to the Kabat numbering system), and these tryptophan residues act as quenchers ( Patent No. 5043237). When an antibody labeled with a fluorescent dye binds to an antigen, the fluorescent dye is located in or near the antigen pocket, so that the fluorescent dye is located near the tryptophan residue and interacts with the tryptophan residue to fluoresce. Designed to quench the dye. That is, when the fluorescently labeled antibody is not bound to the antigen, it is quenched and does not emit fluorescence.

抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体を用いた場合、抗体に抗原が結合すると、抗体の立体構造が変化し、トリプトファンの近傍に位置していた蛍光色素はトリプトファンから離れ、トリプトファンと相互作用しなくなり、クエンチが解除され、蛍光を発するようになる。さらに、抗体が2つの蛍光色素で標識されている場合、(おそらく両方の蛍光色素が抗体の抗原結合ポケットに入り込み、)2つの蛍光色素の間でも相互作用が生じ、蛍光色素間のクエンチング効果(H-dimer形成)が得られるが、抗体に抗原が結合すると、抗体の立体構造が変化し、2つの蛍光色素が離れ、クエンチング効果が消失する。すなわち、抗原が存在する場合、抗体と抗原が結合し、抗体の立体構造が変化し、蛍光色素のクエンチが解除され、蛍光を発するようになる。さらに、抗体が1つの蛍光色素と1つのクエンチャーで標識されている場合、抗原がない場合には蛍光色素とクエンチャーが相互作用し、クエンチャーにより蛍光色素がクエンチされる。抗体に抗原が結合すると、抗体の立体構造が変化し、クエンチャーと蛍光標識抗体の蛍光色素が離れて相互作用しなくなり、クエンチが解除され、蛍光を発するようになる。この蛍光を測定することにより、抗原の存在を検出することができ、また蛍光強度により抗原を定量することもできる。   When an antibody with a positive correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye is used, when the antigen binds to the antibody, the three-dimensional structure of the antibody changes, and the fluorescent dye located near tryptophan moves away from tryptophan. , No longer interacts with tryptophan, the quench is released and fluorescence is emitted. Furthermore, if the antibody is labeled with two fluorescent dyes (perhaps both fluorescent dyes enter the antibody's antigen-binding pocket), an interaction occurs between the two fluorescent dyes, and the quenching effect between the fluorescent dyes. (H-dimer formation) is obtained, but when the antigen binds to the antibody, the three-dimensional structure of the antibody changes, the two fluorescent dyes are separated, and the quenching effect disappears. That is, when an antigen is present, the antibody and the antigen are combined, the three-dimensional structure of the antibody is changed, the quenching of the fluorescent dye is released, and fluorescence is emitted. Further, when the antibody is labeled with one fluorescent dye and one quencher, the fluorescent dye and the quencher interact when there is no antigen, and the fluorescent dye is quenched by the quencher. When the antigen is bound to the antibody, the three-dimensional structure of the antibody changes, the quencher and the fluorescent dye of the fluorescently labeled antibody are separated and do not interact, the quench is released, and fluorescence is emitted. By measuring this fluorescence, the presence of the antigen can be detected, and the antigen can also be quantified by the fluorescence intensity.

このように、抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体を用いて抗原濃度を測定し、又は抗原を検出する場合、抗原結合タンパク質に結合する抗原が多くなるほど、蛍光強度が増加する。   Thus, when the antigen concentration is measured using an antibody having a positive correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye, or when detecting the antigen, the more the antigen bound to the antigen-binding protein, the more the fluorescence intensity becomes. To increase.

一方、抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体を用いた場合、抗原と抗体の複合体が蛍光色素にクエンチャーとして作用し、蛍光色素はさらにクエンチされ、蛍光色素が発生する蛍光の蛍光強度は弱くなる。この際、抗体の標識に用いられた蛍光色素は、抗体の抗原結合ポケット中に位置し、重鎖可変領域のトリプトファンとより近接した位置に存在し、トリプトファンとの相互作用がより強くなり、クエンチされる。抗体が2つの蛍光色素で標識されている場合、両方の蛍光色素が抗体の抗原結合ポケットに入り込み、2つの蛍光色素の間でも相互作用が生じ、蛍光色素間のクエンチング効果(H-dimer形成)が得られる。この際、2つの蛍光色素を用いて抗体を標識しており、2つの蛍光色素が異なる蛍光色素であり、蛍光共鳴エネルギー移動のエネルギー供与体(ドナー)となる供与体色素とエネルギー受容体(アクセプター)となる受容体色素の組み合わせとなる場合、抗体が抗原と結合したとき、両方の蛍光色素すなわちエネルギー供与体とエネルギー受容体の向きが変化し、エネルギー供与体が発するエネルギーからのエネルギー受容体への蛍光共鳴エネルギー移動(FRET)が生じなくなり、発生する蛍光の蛍光強度が弱くなる。すなわち、抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドからなり、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドが1つ又は2つの蛍光色素により標識されている抗体を用いて抗原を測定、検出する場合、トリプトファン残基によるクエンチング、蛍光色素間のクエンチングに加え、蛍光共鳴エネルギー転移(FRET)効果によるクエンチングの効果が得られ、クエンチがより大きくなる。蛍光色素は抗原と抗体の複合体と疎水的相互作用や静電的相互作用等により相互作用し、クエンチの程度が強くなる。   On the other hand, when an antibody in which the antigen concentration and the fluorescence intensity of the fluorescent dye have a negative correlation is used, the complex of the antigen and antibody acts as a quencher on the fluorescent dye, and the fluorescent dye is further quenched to generate a fluorescent dye. The fluorescence intensity of the fluorescence to be weakened. At this time, the fluorescent dye used to label the antibody is located in the antigen-binding pocket of the antibody and is located closer to the tryptophan of the heavy chain variable region, resulting in stronger interaction with tryptophan and quenching. Is done. When an antibody is labeled with two fluorescent dyes, both fluorescent dyes enter the antigen-binding pocket of the antibody, causing an interaction between the two fluorescent dyes, and the quenching effect between the fluorescent dyes (H-dimer formation) ) Is obtained. At this time, the antibody is labeled using two fluorescent dyes, the two fluorescent dyes are different fluorescent dyes, and a donor dye and an energy acceptor (acceptor) that serve as an energy donor (donor) for fluorescence resonance energy transfer. When the antibody binds to the antigen, the orientation of both fluorescent dyes, ie the energy donor and the energy acceptor, changes from the energy emitted by the energy donor to the energy acceptor. Fluorescence resonance energy transfer (FRET) no longer occurs, and the fluorescence intensity of the generated fluorescence is weakened. An antibody comprising an antibody light chain variable region polypeptide and an antibody heavy chain variable region polypeptide, wherein the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide are labeled with one or two fluorescent dyes In the case of measuring and detecting an antigen by using a quenching effect due to fluorescence resonance energy transfer (FRET) effect in addition to quenching by tryptophan residues and quenching between fluorescent dyes, quenching becomes larger. The fluorescent dye interacts with the antigen-antibody complex by hydrophobic interaction, electrostatic interaction, or the like, and the degree of quenching is increased.

このように、抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体を用いて抗原濃度を測定し、又は抗原を検出する場合、抗原結合タンパク質に結合する抗原が多くなるほど、蛍光色素から発生する蛍光がクエンチされ、蛍光強度が低下する。すなわち、前記抗体が検出対象の抗原と結合して複合体を形成したときに、抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、液相中の抗原濃度と上記蛍光色素の蛍光強度とが負の相関関係にあり、抗原と抗体の複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する。   As described above, when the antigen concentration is measured using an antibody having a negative correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye, or when the antigen is detected, the more antigen bound to the antigen binding protein, the more The generated fluorescence is quenched and the fluorescence intensity decreases. That is, when the antibody binds to the antigen to be detected to form a complex, the antigen-antibody complex becomes a quencher of the fluorescent dye, and the antigen concentration in the liquid phase and the fluorescence intensity of the fluorescent dye Are negatively correlated, and when the complex of antigen and antibody is formed, the fluorescent dye is more strongly quenched, thereby reducing the fluorescence intensity.

抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体の例として、ハイブリドーマA-04が産生するモノクローナル抗体が挙げられ、該ハイブリドーマA-04は、2014年11月20日付で、独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(NITE Patent Microorganisms Depository)(日本国 千葉県木更津市かずさ鎌足2-5-8 122号室)に受託番号NITE BP-01970(「識別の表示」は、「A-04」)で国際寄託されている。   An example of an antibody having a negative correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye is a monoclonal antibody produced by hybridoma A-04. NITE BP-01970 (“Indication of identification”) at NITE Patent Microorganisms Depository (Room 2-5-8 Kazusa-Kamashita, Kisarazu-shi, Chiba, Japan) Is deposited internationally in "A-04").

本発明の抗体を構成する抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドは、モノクローナル抗体由来のものを用いることができる。すなわち、検査対象物質である抗原を免疫原として用いて常法でモノクローナル抗体を産生するハイブリドーマを得て該ハイブリドーマが産生するモノクローナル抗体の抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドを利用することができる。また、前記ハイブリドーマが産生したモノクローナル抗体を完全体型抗体として用いることもできる。さらに、前記ハイブリドーマより、抗体軽鎖可変領域をコードするDNA及び抗体重鎖可変領域をコードするDNAを得て、該DNAを用いてリコンビナントタンパク質として、抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドからなる抗体を製造することもできる。   As the polypeptide comprising the antibody light chain variable region and the polypeptide comprising the antibody heavy chain variable region constituting the antibody of the present invention, those derived from monoclonal antibodies can be used. That is, a polypeptide containing an antibody light chain variable region of a monoclonal antibody produced by the hybridoma using a antigen to be tested as an immunogen using an antigen as an immunogen, and an antibody heavy chain variable region produced by the hybridoma Polypeptides containing can be utilized. In addition, a monoclonal antibody produced by the hybridoma can be used as a complete antibody. Furthermore, DNA encoding the antibody light chain variable region and DNA encoding the antibody heavy chain variable region are obtained from the hybridoma, and the polypeptide and antibody heavy chain containing the antibody light chain variable region are used as recombinant proteins using the DNA. Antibodies consisting of a polypeptide containing a chain variable region can also be produced.

本発明において抗体軽鎖可変領域(VL)を含むポリペプチドと抗体重鎖可変領域(VH)を含むポリペプチドからなり、1つ又は2つの蛍光色素により標識されている抗体をQ-body(登録商標)と呼ぶ。   In the present invention, an antibody comprising a polypeptide containing an antibody light chain variable region (VL) and a polypeptide containing an antibody heavy chain variable region (VH) is labeled with one or two fluorescent dyes. Trademark).

2.光化学修飾法等による抗体の蛍光標識
本発明においては、抗体の可変領域の内部に存在する、芳香族アミノ酸により形成されたヌクレオチド結合部位(Nucleotide binding site; NBS)を利用し、光化学修飾法等の結合方法により抗体を蛍光色素で標識し、蛍光免疫測定用抗体(Q-body)を作製する。
2. Fluorescent labeling of antibody by photochemical modification method etc. In the present invention, a nucleotide binding site (NBS) formed by an aromatic amino acid, which exists inside the variable region of an antibody, is used, photochemical modification method etc. The antibody is labeled with a fluorescent dye by a binding method to produce an antibody for fluorescence immunoassay (Q-body).

抗体の可変領域中のヌクレオチド結合部位は、軽鎖可変領域と重鎖可変領域の4つの芳香族アミノ酸により形成されている。4つの芳香族アミノ酸は、軽鎖可変領域の位置42のチロシン又はフェニルアラニン、軽鎖可変領域の位置103のチロシン又はフェニルアラニン、重鎖可変領域の位置103のチロシン、及び重鎖可変領域の位置118のトリプトファンである(位置は、IMGT(登録商標)(the international ImmunoGeneTics database)の番号付による)(Alves,N,J et al.,Biomaterials, 34, 5700〜5710(2013))。抗体のヌクレオチド結合部位は、抗原が結合する抗原ポケットの近傍に位置する。   The nucleotide binding site in the variable region of an antibody is formed by four aromatic amino acids, a light chain variable region and a heavy chain variable region. The four aromatic amino acids are tyrosine or phenylalanine at position 42 of the light chain variable region, tyrosine or phenylalanine at position 103 of the light chain variable region, tyrosine at position 103 of the heavy chain variable region, and position 118 of the heavy chain variable region. Tryptophan (location is numbered by IMGT® (the international ImmunoGeneTics database)) (Alves, N, J et al., Biomaterials, 34, 5700-5710 (2013)). The nucleotide binding site of an antibody is located near the antigen pocket to which the antigen binds.

蛍光色素による抗体の標識は、ヌクレオチド結合部位に親和性を有するインドール基を介して抗体に蛍光色素を結合させればよい。具体的には、インドール酪酸(Indolebutyric acid; IBA)に蛍光色素を結合させ、抗体のヌクレオチド結合部位標識用化合物を作製し、該ヌクレオチド結合部位標識用化合物と抗体を混合し、光化学修飾法により抗体のヌクレオチド結合部位にインドール基を結合させればよい。また、光化学修飾法によらなくても、ヌクレオチド結合部位とインドール基の相互作用により両者は結合し得る。
ヌクレオチド結合部位標識用化合物に結合させる蛍光色素を蛍光基ともいう。
For labeling an antibody with a fluorescent dye, the fluorescent dye may be bound to the antibody via an indole group having affinity for the nucleotide binding site. Specifically, a fluorescent dye is bound to indolebutyric acid (IBA) to produce a compound for labeling the nucleotide binding site of an antibody, the compound for labeling the nucleotide binding site and the antibody are mixed, and the antibody is prepared by a photochemical modification method. An indole group may be bonded to the nucleotide binding site. Further, even if not using a photochemical modification method, both can be bound by the interaction between the nucleotide binding site and the indole group.
A fluorescent dye to be bound to a compound for labeling a nucleotide binding site is also referred to as a fluorescent group.

1分子のヌクレオチド結合部位標識用化合物は、1つの蛍光色素を有していてもよいし、複数の蛍光色素を有していてもよい。また、1つの蛍光色素と1つのクエンチャーを有していてもよい。1つの蛍光色素を有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンをシングルラベルといい、2つの蛍光色素を有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンをダブルラベルという。2つの蛍光色素が同じ種類である場合、同色ダブルラベルといい、2つの蛍光色素が異なる種類である場合、異色ダブルラベルという。さらに、1つの蛍光色素と1つのクエンチャーを有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンを蛍光+クエンチャーダブルラベルという。   One molecule of the nucleotide binding site labeling compound may have one fluorescent dye or a plurality of fluorescent dyes. Moreover, you may have one fluorescent dye and one quencher. A labeling pattern when a compound for labeling a nucleotide binding site having one fluorescent dye is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region of an antibody is called a single label, and two fluorescent dyes are The labeling pattern in the case where the compound for labeling a nucleotide binding site is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region is called a double label. When two fluorescent dyes are the same type, it is called the same color double label, and when two fluorescent dyes are different types, it is called a different color double label. Furthermore, the labeling pattern when a compound for labeling a nucleotide binding site having one fluorescent dye and one quencher is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region of the antibody is fluorescence + quencher. This is called a char double label.

図2に抗体としてFab型抗体を用いた場合の各標識パターンを示す。図中、NBSはヌクレオチド結合部位を示し、IBAはインドール酪酸を示す。図には、シングルラベル、同色ダブルラベル、異色ダブルラベル及び蛍光+クエンチャーダブルラベルの各標識パターンを示してある。   FIG. 2 shows each labeling pattern when a Fab type antibody is used as the antibody. In the figure, NBS represents a nucleotide binding site, and IBA represents indolebutyric acid. In the figure, each label pattern of a single label, the same color double label, a different color double label, and a fluorescence + quencher double label is shown.

インドール酪酸と蛍光色素との間にはリンカーを存在させることにより、蛍光色素とインドール酪酸との間の距離を調節することができる。リンカーが1本である場合、ヌクレオチド結合部位標識用化合物に結合する蛍光色素は1つであるが、リンカーを分岐させることによりヌクレオチド結合部位標識用化合物に2つの蛍光色素あるいは1つの蛍光色素と1つのクエンチャーを結合させることができる。インドール酪酸と蛍光色素との結合は公知の化学合成法により行うことができる。   By providing a linker between indolebutyric acid and the fluorescent dye, the distance between the fluorescent dye and indolebutyric acid can be adjusted. When there is one linker, there is one fluorescent dye that binds to the nucleotide binding site labeling compound. However, two fluorescent dyes or one fluorescent dye and 1 fluorescent dye can be added to the nucleotide binding site labeling compound by branching the linker. Two quenchers can be combined. Binding of indolebutyric acid and the fluorescent dye can be performed by a known chemical synthesis method.

ヌクレオチド結合部位標識用化合物を抗体に結合させた場合、ヌクレオチド結合部位標識用化合物の蛍光色素やクエンチャーは疎水的であるため、蛍光色素やクエンチャーは自発的に抗体内の疎水的な環境である抗原ポケット内に位置するか、あるいは抗原ポケットの近傍に位置するようになり、構造的に安定化する。この結果、抗原ポケットを構成しているトリプトファンと蛍光色素が近接し、蛍光色素がクエンチされる。また、蛍光色素が複数ある場合、それらが抗原ポケット内又はその近傍に集まるため、H-dimer形成等の蛍光色素どうしの相互作用によりクエンチされる。さらに、蛍光色素とクエンチャーの組合せの場合、蛍光色素とクエンチャーが抗原ポケット内又はその近傍に集まるために、クエンチャーにより蛍光色素がクエンチされる。   When the compound for labeling the nucleotide binding site is bound to the antibody, the fluorescent dye or quencher of the compound for labeling the nucleotide binding site is hydrophobic. It is located in a certain antigen pocket or in the vicinity of the antigen pocket and is structurally stabilized. As a result, the tryptophan constituting the antigen pocket and the fluorescent dye come close to each other, and the fluorescent dye is quenched. In addition, when there are a plurality of fluorescent dyes, they gather in the antigen pocket or in the vicinity thereof, and therefore are quenched by the interaction of fluorescent dyes such as H-dimer formation. Further, in the case of a combination of a fluorescent dye and a quencher, the fluorescent dye and the quencher are collected in the antigen pocket or in the vicinity thereof, so that the fluorescent dye is quenched by the quencher.

抗原の結合により蛍光色素からの蛍光の強度が変化する原理を図3に示す。図では抗体がscFv型抗体の場合を示してある。インドール酪酸と蛍光色素が結合したヌクレオチド結合部位標識用化合物を抗体と混合するとインドール基がヌクレオチド結合部位(NBS)に結合し、ヌクレオチド結合部位標識用化合物の蛍光色素が抗体のヌクレオチド結合部位内に位置し、クエンチされる。抗原が抗体に結合すると、蛍光色素がヌクレオチド結合部位から離れクエンチが解除され、蛍光を発するようになる。   The principle that the intensity of the fluorescence from the fluorescent dye changes due to the binding of the antigen is shown in FIG. In the figure, the antibody is an scFv type antibody. When a compound for labeling a nucleotide binding site in which indolebutyric acid and a fluorescent dye are combined with an antibody, the indole group binds to the nucleotide binding site (NBS), and the fluorescent dye of the compound for labeling the nucleotide binding site is located within the nucleotide binding site of the antibody. And quenched. When the antigen binds to the antibody, the fluorescent dye is released from the nucleotide binding site, the quench is released, and fluorescence is emitted.

本発明においては、蛍光色素又はクエンチャーを含むヌクレオチド結合部位標識用化合物が抗原ポケットに近接したヌクレオチド結合部位に結合する。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体に比べ、蛍光色素又はクエンチャーはより抗原ポケットに近い位置に存在するため、抗原ポケット内に入り易いので、抗原が結合していないときのクエンチ効果が大きくなる。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体を用いた場合よりも、抗原が結合したときの蛍光強度の変化が大きくなるので、より高感度で抗原を測定することができる。   In the present invention, a nucleotide binding site labeling compound containing a fluorescent dye or a quencher binds to a nucleotide binding site adjacent to the antigen pocket. Therefore, compared to the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, since the fluorescent dye or quencher is located closer to the antigen pocket, the antigen is more likely to enter the antigen pocket. The quenching effect when not bonded is increased. Therefore, since the change in fluorescence intensity when the antigen is bound is larger than when using the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the antigen is measured with higher sensitivity. be able to.

抗体の種類により、ヌクレオチド結合部位から抗原ポケットまでの距離には違いがある。従って、蛍光色素が抗原ポケット内又はその近傍に位置するように、ヌクレオチド結合部位と抗原ポケットまでの距離に応じて、ヌクレオチド結合部位標識用化合物のヌクレオチド結合部位から蛍光色素又はクエンチャーまでの長さを調節する必要がある。このためには、ヌクレオチド結合部位標識用化合物中のヌクレオチド結合部位に結合するインドール基部分から蛍光色素又はクエンチャーまでの長さをリンカーの長さにより調節すればよい。リンカーとしては、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基を用いることができる。   Depending on the type of antibody, there is a difference in the distance from the nucleotide binding site to the antigen pocket. Therefore, depending on the distance from the nucleotide binding site to the antigen pocket, the length from the nucleotide binding site of the nucleotide binding site labeling compound to the fluorescent dye or quencher so that the fluorescent dye is located in or near the antigen pocket. Need to be adjusted. For this purpose, the length from the indole group moiety bound to the nucleotide binding site in the compound for labeling the nucleotide binding site to the fluorescent dye or quencher may be adjusted by the length of the linker. As the linker, a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C10 heteroaryl group, arylene group, ether group A linker group selected from the group consisting of ester groups, PEG groups, sulfide groups, amide groups, ketone groups, sulfamide groups and combinations thereof can be used.

蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、1つの蛍光色素を結合させた化合物としては、以下の化合物が挙げられる。   Examples of the compound for labeling a nucleotide binding site in which a fluorescent dye and indolebutyric acid are combined, and in which one fluorescent dye is combined, include the following compounds.

下記式(1):

Figure 2017049184
Following formula (1):
Figure 2017049184

(式中、Fは蛍光色素であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。 Wherein F is a fluorescent dye, R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof. A compound for labeling the nucleotide binding site (NBS) of an antibody, wherein butyric acid (IBA) and a fluorescent dye are bound.

蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、2つの蛍光色素を結合させた化合物としては、以下の化合物が挙げられる。   Examples of the nucleotide binding site labeling compound in which a fluorescent dye and indolebutyric acid are combined and the two fluorescent dyes are combined include the following compounds.

下記式(2):

Figure 2017049184
Following formula (2):
Figure 2017049184

(式中、F1及びF2は蛍光色素であり、F1とF2は同じ種類の蛍光色素であっても、異なる種類の蛍光色素であってもよく、R、R’及びR’’は、独立に置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。 (Wherein F1 and F2 are fluorescent dyes, F1 and F2 may be the same type of fluorescent dyes or different types of fluorescent dyes, and R, R ′ and R ″ are independently Substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C10 heteroaryl group, arylene group, ether group, ester group, A nucleotide of an antibody in which indolebutyric acid (IBA) and a fluorescent dye are bound to each other, which is represented by a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and a combination thereof. Compound for binding site (NBS) labeling.

蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、1つの蛍光色素と1つのクエンチャーを結合させた化合物としては、以下の化合物が挙げられる。   Examples of the compound for labeling a nucleotide binding site in which a fluorescent dye and indolebutyric acid are bound and in which one fluorescent dye and one quencher are bound include the following compounds.

下記式(3):

Figure 2017049184
Following formula (3):
Figure 2017049184

(式中、Fは蛍光色素であり、Qはクエンチャーであり、R、R’及びR’’は、独立に置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。 Wherein F is a fluorescent dye, Q is a quencher, R, R ′ and R ″ are independently substituted or unsubstituted alkyl, alkenyl, alkynyl, C4 to C10 cycloalkyl. Group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C10 heteroaryl group, arylene group, ether group, ester group, PEG group, sulfide group, amide group, ketone group, sulfamide group and combinations thereof A compound for labeling a nucleotide binding site (NBS) of an antibody, wherein indolebutyric acid (IBA) and a fluorescent dye are bound to each other.

抗体の蛍光標識に用いる蛍光色素としては、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系の蛍光色素やその蛍光色素の誘導体を例示することができる。ここで、例えば、ローダミン系の蛍光色素とは、ローダミン骨格を有する蛍光色素をいう。具体的には、TAMRA(カルボキシテトラメチルローダミン:carbocytetremethlrhodamine)、CR6G(カルボキシローダミン6G:Carboxyrhodamine 6G)、ATTO655(商標名)、CR110(カルボキシローダミン110:carboxyrhodamine 110)(ローダミン110)、Rhodamine Green(商標名)、BODIPY FL(商標名)、4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 493/503(商標名)、4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indancene-8-propionicacid、BODIPY R6G(商標名)、4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 558/568(商標名)、4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 564/570(商標名)、4,4-difluoro-5-styryl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 576/589(商標名)、4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 581/591(商標名)、4,4-difluoro-5-(4-phenyl-1, 3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、Cy3(商標名)、Cy3B(商標名)、Cy3.5(商標名)、Cy5(商標名)、Cy5.5(商標名)、EvoBlue10(商標名)、EvoBlue30(商標名)、MR121、ATTO 390(商標名)、ATTO 425(商標名)、ATTO 465(商標名)、ATTO488(商標名)、ATTO 495(商標名)、ATTO 520(商標名)、ATTO 532(商標名)、ATTO Rho6G(商標名)、ATTO 550(商標名)、ATTO 565(商標名)、ATTO Rho3B(商標名)、ATTO Rho11(商標名)、ATTO Rho12(商標名)、ATTO Thio12(商標名)、ATTO 610(商標名)、ATTO 611X(商標名)、ATTO 620(商標名)、ATTO Rho14(商標名)、ATTO 633(商標名)、ATTO 647(商標名)、ATTO 647N(商標名)、ATTO 655(商標名)、ATTO Oxa12(商標名)、ATTO 700(商標名)、ATTO 725(商標名)、ATTO 740(商標名)、Alexa Fluor 350(商標名)、Alexa Fluor 405(商標名)、Alexa Fluor 430(商標名)、Alexa Fluor 488(商標名)、Alexa Fluor 532(商標名)、Alexa Fluor 546(商標名)、Alexa Fluor 555(商標名)、Alexa Fluor 568(商標名)、Alexa Fluor 594(商標名)、Alexa Fluor 633(商標名)、Alexa Fluor 647(商標名)、Alexa Fluor 680(商標名)、Alexa Fluor 700(商標名)、Alexa Fluor 750(商標名)、Alexa Fluor 790(商標名)、Rhodamine Red-X(商標名)、Texas Red-X(商標名)、5(6)-TAMRA-X(商標名)、5TAMRA(商標名)、SFX(商標名)を挙げることができるが、中でも、Cy3、EvoBlue10、ローダミン系蛍光色素であるTAMRAやCR110、及びオキサジン系蛍光色素であるATTO655を特に好適に例示することができる。   As fluorescent dyes used for fluorescent labeling of antibodies, rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, Examples thereof include EVOblue-based fluorescent dyes and derivatives of the fluorescent dyes. Here, for example, a rhodamine-based fluorescent dye refers to a fluorescent dye having a rhodamine skeleton. Specifically, TAMRA (carboxytetramethylrhodamine: CR6G (carboxyrhodamine 6G), ATTO655 (trade name), CR110 (carboxyrhodamine 110) (rhodamine 110), Rhodamine Green (trade name) ), BODIPY FL (trade name), 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indancene-3-propionic acid, BODIPY 493/503 (trade name), 4 , 4-difluoro-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indancene-8-propionicacid, BODIPY R6G (trade name), 4,4-difluoro-5- (4 -phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indancene-3-propionic acid, BODIPY 558/568 (trade name), 4,4-difluoro-5- (2-thienyl ) -4-bora-3a, 4a-diaza-s-indancene-3-propionic acid, BODIPY 564/570 (trade name), 4,4-difluoro-5-styryl-4-bora-3a, 4a-diaza- s-indancene-3-propionic acid, BODIPY 576/589 (trade name), 4,4-difluoro-5- (2-pyrrolyl) -4-bora-3a, 4a-diaza-s-indancene-3-propionic acid , BODIPY 581/591 (trade name), 4,4-difluoro-5- (4-phe nyl-1, 3-butadienyl) -4-bora-3a, 4a-diaza-s-indancene-3-propionic acid, Cy3 (trade name), Cy3B (trade name), Cy3.5 (trade name), Cy5 ( Trade name), Cy5.5 (trade name), EvoBlue 10 (trade name), EvoBlue 30 (trade name), MR121, ATTO 390 (trade name), ATTO 425 (trade name), ATTO 465 (trade name), ATTO 488 (trade name) Name), ATTO 495 (trade name), ATTO 520 (trade name), ATTO 532 (trade name), ATTO Rho6G (trade name), ATTO 550 (trade name), ATTO 565 (trade name), ATTO Rho3B (trade name) ), ATTO Rho11 (trade name), ATTO Rho12 (trade name), ATTO Thio12 (trade name), ATTO 610 (trade name), ATTO 611X (trade name), ATTO 620 (trade name), ATTO Rho 14 (trade name) , ATTO 633 (trade name), ATTO 647 (trade name), ATTO 647N (trade name), ATTO 655 (trade name), ATTO Oxa12 (trade name), ATTO 700 (trade name), ATTO 725 (trade name), ATTO 740 (trade name), Alexa Fluor 350 (trade name), Alexa Fluor 405 (trade name), Alexa Fluor 430 (trade name) Trade name), Alexa Fluor 488 (trade name), Alexa Fluor 532 (trade name), Alexa Fluor 546 (trade name), Alexa Fluor 555 (trade name), Alexa Fluor 568 (trade name), Alexa Fluor 594 (trade name) ), Alexa Fluor 633 (trade name), Alexa Fluor 647 (trade name), Alexa Fluor 680 (trade name), Alexa Fluor 700 (trade name), Alexa Fluor 750 (trade name), Alexa Fluor 790 (trade name), Examples include Rhodamine Red-X (trade name), Texas Red-X (trade name), 5 (6) -TAMRA-X (trade name), 5TAMRA (trade name), and SFX (trade name). Cy3, EvoBlue10, rhodamine-based fluorescent dyes TAMRA and CR110, and oxazine-based fluorescent dye ATTO655 can be particularly preferably exemplified.

上記蛍光色素中、同色ダブルラベルに対しては、TAMRAとTAMRAの組合せが特に好ましく、異色ダブルラベルに対しては、TAMRAとCR110の組合せ及びTAMRAとATTO 655の組合せが特に好ましい。   Among the fluorescent dyes, the combination of TAMRA and TAMRA is particularly preferable for the same color double label, and the combination of TAMRA and CR110 and the combination of TAMRA and ATTO 655 are particularly preferable for the different color double label.

なお、蛍光色素によっては、極性に応じ蛍光強度を変化させる極性感受性を有するものがある(M. Renard et al., J. Mol. Biol. (2002) 318, 429-442)。例えば、IANBD、CNBD、Acrylodan、5-IAF等が挙げられる。これらの蛍光色素で標識した抗体を用いて蛍光クエンチングに基づく測定を行う場合、抗原が結合することにより蛍光色素が溶媒から遮蔽され、蛍光色素がクエンチャーと接触する機会が減少することによりさらにクエンチが進む。本発明においては、上記のような極性感受性を有する蛍光色素は除外され、極性感受性に基づかないクエンチの原理により抗原を測定し又は検出する。   Some fluorescent dyes have polarity sensitivity that changes fluorescence intensity according to polarity (M. Renard et al., J. Mol. Biol. (2002) 318, 429-442). For example, IANBD, CNBD, Acrylodan, 5-IAF and the like can be mentioned. When performing measurements based on fluorescence quenching using antibodies labeled with these fluorescent dyes, the binding of the antigen shields the fluorescent dye from the solvent and further reduces the chance of the fluorescent dye contacting the quencher. The quench progresses. In the present invention, the fluorescent dye having polarity sensitivity as described above is excluded, and the antigen is measured or detected by the quench principle not based on polarity sensitivity.

消光色素(クエンチャー)としては、NBD:7-nitrobenzofurazan、DABCYL、BHQ、ATTO、QXL、QSY、Cy、Lowa Black、IRDYE等を基本骨格とする消光色素やその消光色素の誘導体が挙げられる。具体的には、NBD、DABCYL、BHQ-1(商標)、BHQ-2(商標)、BHQ-3(商標)、ATTO540Q(商標)、ATTO580Q(商標)、ATTO612Q(商標)、QXL490(商標)、QXL520(商標)、QXL570(商標)、QXL610(商標)、QXL670(商標)、QXL680(商標)、QSY-35(商標)、QSY-7(商標)、QSY-9(商標)、QSY-21(商標)、Cy5Q(商標)、Cy7Q(商標)、Lowa Black FQ(商標)、LowaBlack RQ(商標)、IRDYE QC-1(商標)等を用いることできる。これらの中でも、NBDが好ましい。   Examples of the quenching dye (quencher) include quenching dyes having a basic skeleton such as NBD: 7-nitrobenzofurazan, DABCYL, BHQ, ATTO, QXL, QSY, Cy, Lowa Black, IRDYE, and derivatives of the quenching dye. Specifically, NBD, DABCYL, BHQ-1 (trademark), BHQ-2 (trademark), BHQ-3 (trademark), ATTO540Q (trademark), ATTO580Q (trademark), ATTO612Q (trademark), QXL490 (trademark), QXL520 (TM), QXL570 (TM), QXL610 (TM), QXL670 (TM), QXL680 (TM), QSY-35 (TM), QSY-7 (TM), QSY-9 (TM), QSY-21 ( (Trademark), Cy5Q (trademark), Cy7Q (trademark), Lowa Black FQ (trademark), LowaBlack RQ (trademark), IRDYE QC-1 (trademark), etc. can be used. Among these, NBD is preferable.

本発明の標識抗体のうち、標識パターンが蛍光+クエンチャーダブルラベルである抗体の蛍光色素とクエンチャーの組み合わせとして、例えば、TAMRAとNBDの組み合わせを挙げることができる。   Among the labeled antibodies of the present invention, examples of combinations of fluorescent dyes and quenchers of antibodies whose labeling pattern is fluorescence + quencher double label include a combination of TAMRA and NBD.

ヌクレオチド結合部位標識用化合物と抗体のヌクレオチド結合部位とのインドール基を介した結合は、光化学修飾法を利用して行う。具体的には、ヌクレオチド結合部位標識用化合物と抗体を混合し、中心波長254nmの紫外線を照射し、前記化合物と抗体の間で光架橋反応を生じさせればよい。   The coupling | bonding via the indole group of the compound for labeling a nucleotide binding site and the nucleotide binding site of an antibody is performed using a photochemical modification method. Specifically, a compound for labeling a nucleotide binding site and an antibody may be mixed and irradiated with ultraviolet light having a central wavelength of 254 nm to cause a photocrosslinking reaction between the compound and the antibody.

光化学修飾法には、ピーク波長が254nmの紫外光光源を用いればよく、例えば、UVクロスリンカーCL-1000シリーズ(UVP LLC社)等のUV照射装置を用いることができる。   For the photochemical modification method, an ultraviolet light source having a peak wavelength of 254 nm may be used. For example, a UV irradiation apparatus such as a UV crosslinker CL-1000 series (UVP LLC) can be used.

照射する光量は、処理する化合物の量にもよるが、例えば、照射面で0.5〜10J/cm2程度である。また、所要照射時間も限定されないが、数十秒〜数分程度照射すればよい。 The amount of light to be irradiated depends on the amount of the compound to be treated, but is, for example, about 0.5 to 10 J / cm 2 on the irradiation surface. Further, the required irradiation time is not limited, but irradiation may be performed for several tens of seconds to several minutes.

本発明は、上記の1つの蛍光色素を有するヌクレオチド結合部位標識用化合物、2つの蛍光色素を有するヌクレオチド結合部位標識用化合物、及び1つの蛍光色素と1つのクエンチャーを有するヌクレオチド結合部位標識用化合物を包含する。   The present invention relates to a nucleotide binding site labeling compound having one fluorescent dye, a nucleotide binding site labeling compound having two fluorescent dyes, and a nucleotide binding site labeling compound having one fluorescent dye and one quencher. Is included.

さらに、本発明はこれらのヌクレオチド結合部位標識用化合物により標識された抗体(V+L型抗体、scFv型抗体、Fab型抗体、F(ab')2型抗体及び完全型抗体)を包含する。ヌクレオチド結合部位標識用化合物により標識された抗体をヌクレオチド結合部位(NBS)標識用化合物を抗体内のヌクレオチド結合部位にコンジュゲートされた蛍光免疫測定用標識抗体ともいう。 Furthermore, the present invention includes antibodies (V + L type antibody, scFv type antibody, Fab type antibody, F (ab ') type 2 antibody and complete type antibody) labeled with these nucleotide binding site labeling compounds. An antibody labeled with a nucleotide binding site labeling compound is also referred to as a labeled antibody for fluorescent immunoassay in which a nucleotide binding site (NBS) labeling compound is conjugated to a nucleotide binding site in the antibody.

なお、蛍光色素又はクエンチャーを有するヌクレオチド結合部位標識用化合物を抗体に結合させることをコンジュゲートするともいい、ヌクレオチド結合部位標識用化合物により標識された抗体をヌクレオチド結合部位標識用化合物と抗体とのコンジュゲートともいう。ここでコンジュゲートするとは共有結合により結合させることも、静電相互作用等の相互作用により非共有的に結合させることも含む。   It is also possible to conjugate the binding of a compound for labeling a nucleotide binding site having a fluorescent dye or a quencher to an antibody. An antibody labeled with a compound for labeling a nucleotide binding site may be combined with a compound for labeling a nucleotide binding site and an antibody. Also called a conjugate. Conjugation includes binding by a covalent bond and non-covalent binding by an interaction such as electrostatic interaction.

3.蛍光免疫測定用標識抗体を用いた抗原の測定
本発明の蛍光免疫測定用標識抗体と抗原を接触させ、抗原を接触させる前と接触させた後の蛍光色素が発する蛍光強度の変化を測定することにより、抗原を検出することができる。抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときにクエンチが解消されて蛍光強度が増加する抗体を用いた場合、抗原が抗体に結合することにより、蛍光強度は増加する。一方、抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドが抗原と結合して複合体を形成したときに、該抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、該抗原と前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドの複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する抗体を用いた場合、抗原が抗体に結合することにより、蛍光強度は減少する。
3. Measurement of antigen using labeled antibody for fluorescent immunoassay Contacting the labeled antibody for fluorescent immunoassay of the present invention with an antigen, and measuring a change in fluorescence intensity emitted by a fluorescent dye before and after contacting the antigen Thus, the antigen can be detected. When an antibody consisting of a polypeptide containing an antibody heavy chain variable region and an antibody consisting of a polypeptide containing an antibody light chain variable region binds to an antigen to form a complex and the quenching is canceled and the fluorescence intensity increases As the antigen binds to the antibody, the fluorescence intensity increases. On the other hand, when a polypeptide comprising an antibody heavy chain variable region and a polypeptide comprising an antibody light chain variable region bind to an antigen to form a complex, the complex of the antigen and antibody serves as a quencher for the fluorescent dye. An antibody whose fluorescence intensity decreases when a complex of a polypeptide comprising the antigen and the antibody heavy chain variable region and a polypeptide comprising the antibody light chain variable region is formed and the fluorescent dye is more strongly quenched. When used, the fluorescence intensity decreases as the antigen binds to the antibody.

この際、予め蛍光免疫測定用標識抗体と既知の量の抗原が含まれる被験試料を混合接触させ、その際の蛍光の変化を測定し、検量線を作成しておくことが好ましい。あるいは、検出を行う際に、複数の既知の量の抗原を含むコントロール試料を準備しておき、コントロール試料についても同時に測定を行い検量線を作成してもよい。測定された蛍光と検量線から被験試料中の抗原の量を算出することができる。   At this time, it is preferable to prepare a calibration curve in advance by bringing a test sample containing a fluorescent immunoassay labeled antibody and a known amount of antigen into contact with each other and measuring the change in fluorescence at that time. Alternatively, when performing detection, a control sample containing a plurality of known amounts of antigen may be prepared, and a calibration curve may be created by simultaneously measuring the control sample. The amount of antigen in the test sample can be calculated from the measured fluorescence and calibration curve.

本発明の蛍光免疫測定用標識抗体を用いた抗原の検出方法における蛍光の測定には、通常、蛍光検出に用いる光源や測定装置を用いることができる。光源としては励起光波長を照射できるものであればよく、具体的には水銀ランプ、キセノンランプ、LED(発光ダイオード)、レーザー光等が挙げられる。この際、適当な蛍光フィルターを用いて特定の波長の励起光を得ることができる。蛍光測定装置としては、例えば、励起光の光源及びその照射システム、蛍光画像取得システム等を備えた蛍光顕微鏡等を利用することができ、例えば、MF20/FluoroPoint-Light(オリンパス社製)やFMBIO-III(日立ソフトウェアエンジニアリング社製)等が挙げられる。また、光源、照射システム、測定システムを備えた小型で持ち運び可能な蛍光検出装置を用いてもよい。このような小型の装置を用いることにより、被験試料を採取して実験室に運んで測定することなく、採取現場で抗原を検出することが可能になる。なお蛍光の検出は、蛍光スペクトルの検出であっても、特定の波長の蛍光強度の検出であってもよい。   For the measurement of fluorescence in the method for detecting an antigen using the labeled antibody for fluorescence immunoassay of the present invention, a light source or a measurement device used for fluorescence detection can be usually used. Any light source may be used as long as it can irradiate an excitation light wavelength. Specific examples include a mercury lamp, a xenon lamp, an LED (light emitting diode), and a laser beam. At this time, excitation light having a specific wavelength can be obtained using an appropriate fluorescent filter. As the fluorescence measuring apparatus, for example, a fluorescence microscope equipped with a light source of excitation light and its irradiation system, a fluorescence image acquisition system, and the like can be used. For example, MF20 / FluoroPoint-Light (manufactured by Olympus) or FMBIO- III (manufactured by Hitachi Software Engineering). Moreover, you may use the small and portable fluorescence detection apparatus provided with the light source, the irradiation system, and the measurement system. By using such a small device, it is possible to detect the antigen at the collection site without collecting the test sample and carrying it to the laboratory for measurement. The fluorescence detection may be a fluorescence spectrum detection or a fluorescence intensity detection at a specific wavelength.

また、本発明の蛍光免疫測定用標識抗体を用いた抗原の検出方法において、照射する励起光及び、測定及び/又は検出する蛍光の波長は、使用する蛍光色素の種類に応じて適宜選択すればよい。例えば蛍光色素にCR110を用いた場合は励起光波長480nmと蛍光波長530nmを用い、TAMRAを用いた場合は励起光波長530nmと蛍光波長580nmを用い、ATTO655を用いた場合は励起光波長630nmと蛍光波長680nmを用いればよい。また、2種類の異なる蛍光色素を用いる場合も、抗原濃度を測定及び/又は抗原を検出することができる、励起光波長及び蛍光波長の組み合わせを適宜選択して使用すればよい。   Moreover, in the method for detecting an antigen using the labeled antibody for fluorescent immunoassay of the present invention, the excitation light to be irradiated and the wavelength of the fluorescence to be measured and / or detected can be appropriately selected according to the type of fluorescent dye used. Good. For example, when CR110 is used as the fluorescent dye, an excitation light wavelength of 480 nm and a fluorescence wavelength of 530 nm are used, when TAMRA is used, an excitation light wavelength of 530 nm and a fluorescence wavelength of 580 nm are used, and when ATTO655 is used, an excitation light wavelength of 630 nm and fluorescence are used. A wavelength of 680 nm may be used. Also, when two different fluorescent dyes are used, a combination of excitation light wavelength and fluorescence wavelength that can measure the antigen concentration and / or detect the antigen may be appropriately selected and used.

本発明の蛍光免疫測定用標識抗体を用いた抗原の検出における検出対象物質は抗原抗体反応により検出し得る抗原であり、抗原としては、抗体重鎖可変領域を含むポリペプチド及び上記抗体軽鎖可変領域を含むポリペプチドにより特異的に認識される抗原であれば特に制限されず、例えば、タンパク質、ペプチド、糖質、脂質、糖脂質、低分子化合物等を挙げることができる。すなわち、本発明の方法において、検出対象物質である抗原はイムノアッセイ、すなわち抗原抗体反応を利用したアッセイで測定し得る抗原又は抗体である。抗原としては抗体を作製し得るものなら如何なる抗原でもよく、例えば、タンパク質、多糖類、脂質、糖脂質等が挙げられる。これらの物質を含む原生動物、真菌、細菌、マイコプラズマ、リケッチア、クラミジア、ウイルス、動物組織等も検出し得る。また、麻薬、爆薬、農薬、香料、公害物質等の低分子化合物を含む化学物質も測定対象となり得る。このような物質として、例えば、テトラヒドロカンナビノール(THC)、テトラヒドロカンナビノール酸(THC-A)、カンナビノール(CBN)、カンナビジオール(CBD)等のカンナビノイドと呼ばれる大麻成分、アンフェタミン、メタンフェタミン、モルヒネ、ヘロイン、コデインなどの覚せい剤や麻薬類;アフラトキシン、ステリグマトシスチン、ネオソラニオール、ニバレノール、フモニシン、オクラトキシン、エンドファイト産生毒素などのカビ毒;テストステロンやエストラジオールなどの性ホルモン;クレンブテロールやラクトパミンなどの飼料に不正に用いられる添加物;PCB、ゴシポール、ヒスタミン、ベンツピレン、メラミン、アクリルアミド、ダイオキシンなどの有害物質;アセタミプリド、イミダクロプリド、クロルフェナピル、マラチオン、カルバリル、クロチアニジン、トリフルミゾール、クロロタロニル、スピノサド、ランネート、メタミドホス、クロルピリホスなどの残留農薬;ビスフェノールAなどの環境ホルモンなどが挙げることができる。テトラヒドロカンナビノール(THC)には、二重結合の位置異性体があり、Δ8-THCとΔ9-THCがある。THCという場合、Δ8-THCもΔ9-THCも含まれる。上記の物質は各物質の誘導体も含む。 The detection target substance in the detection of an antigen using the labeled antibody for fluorescent immunoassay of the present invention is an antigen that can be detected by an antigen-antibody reaction, and the antigen includes a polypeptide containing an antibody heavy chain variable region and the above antibody light chain variable. The antigen is not particularly limited as long as it is an antigen specifically recognized by a polypeptide containing a region, and examples thereof include proteins, peptides, carbohydrates, lipids, glycolipids, low molecular compounds, and the like. That is, in the method of the present invention, the antigen to be detected is an antigen or antibody that can be measured by an immunoassay, that is, an assay utilizing an antigen-antibody reaction. The antigen may be any antigen that can produce an antibody, and examples thereof include proteins, polysaccharides, lipids, glycolipids and the like. Protozoa, fungi, bacteria, mycoplasma, rickettsia, chlamydia, viruses, animal tissues and the like containing these substances can also be detected. In addition, chemical substances including low-molecular compounds such as narcotics, explosives, agricultural chemicals, fragrances, and pollutants can also be measured. Examples of such substances include cannabinoids called cannabinoids such as tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THC-A), cannabinol (CBN), and cannabidiol (CBD), amphetamine, methamphetamine, morphine, Stimulants and narcotics such as heroin and codeine; mold toxins such as aflatoxin, sterigmatocystin, neosolaniol, nivalenol, fumonisin, ochratoxin, and endophyte-producing toxin; sex hormones such as testosterone and estradiol; clenbuterol and ractopamine Additives illegally used in animal feeds; harmful substances such as PCB, gossypol, histamine, benzpyrene, melamine, acrylamide, dioxin; acetamiprid, imidacloprid, chlorfenapyr, ma It can be like that include environmental hormones such as bisphenol A; thiones, carbaryl, clothianidin, triflumizole, chlorothalonil, spinosad, Ran'neto, methamidophos, pesticide residues, such as chlorpyrifos. Tetrahydrocannabinol (THC) has double bond regioisomers, Δ 8 -THC and Δ 9 -THC. Reference to THC includes Δ 8 -THC and Δ 9 -THC. The above substances also include derivatives of each substance.

検査試料も限定されず、血液、血清、血漿、尿、唾液、髄液等の生体由来体液試料、培養上清、細胞抽出液、菌体抽出液、廃水や、アレルゲン等の動物組織由来物質、麻薬等が付着している可能性がある物質を紙等で拭った試料等が挙げられる。
本発明の検出は液系で行うので、上記試料は適宜生理食塩水や緩衝液に懸濁、溶解又は液浸させて検出すればよい。
本発明は、上記の蛍光免疫測定用標識抗体を用いて抗原を検出する方法を包含する。
さらに、本発明は上記の蛍光免疫測定用標識抗体を含む抗原を検出するためのキットも包含する。
The test sample is also not limited, biological fluid samples such as blood, serum, plasma, urine, saliva, spinal fluid, culture supernatant, cell extract, fungal extract, waste water, animal tissue derived substances such as allergen, Examples include a sample obtained by wiping with a paper or the like a substance to which a drug or the like may adhere.
Since the detection of the present invention is performed in a liquid system, the sample may be detected by suspending, dissolving, or immersing the sample in a physiological saline or buffer as appropriate.
The present invention includes a method for detecting an antigen using the labeled antibody for fluorescent immunoassay.
Furthermore, the present invention also includes a kit for detecting an antigen containing the above labeled antibody for fluorescent immunoassay.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1 光架橋法によるQbodyの調製
(1) 5(6)-TAMRA-C8-IBA(TAMRA-IBA)の作製
Example 1 Preparation of Qbody by photocrosslinking method (1) Preparation of 5 (6) -TAMRA-C8-IBA (TAMRA-IBA)

(i) Boc-C8-NH2合成

Figure 2017049184
(i) Boc-C8-NH 2 synthesis
Figure 2017049184

Diaminooctane(Sigma-Aldrich)(500mg, 3.5mmol)をMethylene chloride 5mLに溶解させ、さらに4℃にてBoc anhydride(151mg, 0.69mmol, 1mL in CH2Cl2)溶液を滴下混合した。4℃で30分間放置後に、室温にて終夜反応を続けた。反応後エバポレーターにて溶媒を乾燥後に、飽和Na2CO3水溶液で洗浄し、NaSO4にて脱水することでBoc-C8-NH2(式I)を得た。 Diaminooctane (Sigma-Aldrich) (500 mg, 3.5 mmol) was dissolved in 5 mL of Methylene chloride, and a Boc anhydride (151 mg, 0.69 mmol, 1 mL in CH 2 Cl 2 ) solution was added dropwise at 4 ° C. After standing at 4 ° C. for 30 minutes, the reaction was continued overnight at room temperature. After the reaction, the solvent was dried by an evaporator, washed with a saturated aqueous Na 2 CO 3 solution, and dehydrated with NaSO 4 to obtain Boc-C8-NH 2 (formula I).

(ii) Boc-C8-IBAの合成

Figure 2017049184
(ii) Synthesis of Boc-C8-IBA
Figure 2017049184

Indole-3-butanoic acid, IBA(43mg, 0.24mmol)と1,1'-Carbonyldiimidazole, CDI(59mg, 0.36mmol)をanhydrous THF (150mL)で溶解させ、1.5h, 室温にて放置した後に、Boc-C8-NH2(119mg, 049mmol)を混合し、室温にて終夜反応させた。反応後にエバポレーターにて溶媒を乾燥後、酢酸エチルに溶かし、4% NaHCO3及び5% KHSO4にてそれぞれ洗浄を行い、NaSO4にて脱水し、エバポレーターにて乾燥させることでBoc-C8-IBA(式II)を得た。 Indole-3-butanoic acid, IBA (43 mg, 0.24 mmol) and 1,1'-Carbonyldiimidazole, CDI (59 mg, 0.36 mmol) were dissolved in anhydrous THF (150 mL) and allowed to stand at room temperature for 1.5 h. -C8-NH 2 (119 mg, 049 mmol) was mixed and allowed to react overnight at room temperature. After the reaction, the solvent was dried with an evaporator, dissolved in ethyl acetate, washed with 4% NaHCO 3 and 5% KHSO 4 , dehydrated with NaSO 4, and dried with an evaporator to give Boc-C8-IBA (Formula II) was obtained.

(iii) NH2-C8-IBAの合成

Figure 2017049184
(iii) Synthesis of NH 2 -C8-IBA
Figure 2017049184

Boc-C8-IBA 30mgにTFA200μLを氷上で混合し15分間放置し、エバポレーターにより乾燥させることでNH2-C8-IBA(式III)を得た。 Boc-C8-IBA (30 mg) was mixed with TFA (200 μL) on ice, allowed to stand for 15 minutes, and dried by an evaporator to obtain NH 2 —C8-IBA (formula III).

(iv) 5(6)-TAMRA-C8-IBAの合成

Figure 2017049184
(iv) Synthesis of 5 (6) -TAMRA-C8-IBA
Figure 2017049184

20μL NH2-C8-IBA/DMSO(100mM)、20μL 5(6)-TAMRA-SE(Setareh biotech)/DMSO、40μLの100mM NaHCO3水溶液を1.5mLチューブに加え、氷上で混和することで反応させた。この溶液から高速液体クロマトグラフィー(HPLC)により合成物を分取し、乾燥させることで5(6)-TARMAR-C8-IBA(式IV)を得た。この乾燥物を所定の濃度となるようにDMSOに溶かした。 Add 20 μL NH 2 -C8-IBA / DMSO (100 mM), 20 μL 5 (6) -TAMRA-SE (Setareh biotech) / DMSO, 40 μL of 100 mM NaHCO 3 aqueous solution to a 1.5 mL tube, and mix by mixing on ice. It was. The synthesized product was separated from this solution by high performance liquid chromatography (HPLC) and dried to obtain 5 (6) -TARMAR-C8-IBA (formula IV). This dried product was dissolved in DMSO to a predetermined concentration.

(2) 抗BGP(ヒトオステオカルシン:human Bone Gla Protein)抗体(scFv)の作製
(i) 材料
KOD-Plus、T4 DNAポリメラーゼ及びLigation-high ligationキットは、東洋紡社から入手した。制限酵素及びE coli SHuffle T7 Express lysYは、New England Biolabs社から入手した。オリゴヌクレオチドは、Operon-Eurofins社から入手した。PureYield plasmid miniprepキットは、プロメガ社から入手した。タロン金属親和性樹脂とタロンディスポーザブル重力カラムは、タカラバイオ社から入手した。限外濾過装置(遠心フィルターチューブ Ultra-4、MWCO 3 k)はMillipore社から入手した。TCEP固定化TCEPジスルフィド還元ゲル及びZebaスピン脱塩カラム(MWCO 7 k)はThermo Pierce社から入手した。His Mag Sepharose Niは、GEヘルスケアから入手した。アンチDYKDDDDKタグ抗体磁気ビーズ、DYKDDDDK(配列番号1)ペプチド、Supersep PAGEゲル及び銀染色キットは、和光純薬工業から入手した。Nanosep centrifugal-3K限外濾過装置は、ポール・コーポレーション社から入手した。
(2) Preparation of anti-BGP (human Bone Gla Protein) antibody (scFv)
(i) Material
KOD-Plus, T4 DNA polymerase and Ligation-high ligation kit were obtained from Toyobo. Restriction enzymes and E. coli SHuffle T7 Express lysY were obtained from New England Biolabs. Oligonucleotides were obtained from Operon-Eurofins. The PureYield plasmid miniprep kit was obtained from Promega. Talon metal affinity resin and Talon disposable gravity column were obtained from Takara Bio Inc. The ultrafiltration device (centrifugal filter tube Ultra-4, MWCO 3 k) was obtained from Millipore. TCEP-immobilized TCEP disulfide reducing gel and Zeba spin desalting column (MWCO 7 k) were obtained from Thermo Pierce. His Mag Sepharose Ni was obtained from GE Healthcare. Anti-DYKDDDDK tag antibody magnetic beads, DYKDDDDK (SEQ ID NO: 1) peptide, Supersep PAGE gel and silver staining kit were obtained from Wako Pure Chemical Industries. The Nanosep centrifugal-3K ultrafiltration device was obtained from Pall Corporation.

(ii) scFv型Q-体遺伝子の構築
抗BGP抗体の重鎖可変領域及び軽鎖可変領域をコードするDNAを含むFab型Q-body発現ベクターpUQ1H(KTM219)(Abe R. et al., SCientific Reports, 4: 4640)をEcoRV及びBamHIで消化し、T4 DNAポリメラーゼで平滑化した後、ライゲーションを行いL鎖フラグメントを削除した。H鎖フラグメントを削除するために、AgeI及びEagIによって消化し、Ligation-high ligationキットを用いてAgeI及びEagIで消化したKTM219のscFvフラグメントとライゲーションした。次いで、プライマーKTMAgeBack(5'-GGAATTCACCGGTCAAGTAAAGCTGCAGCAGTC-3')(配列番号2)及びT7term(5'-TGCTAGTTATTGCTCAGCGG-3')(配列番号3)により、鋳型としてのPROX-FL92.1amber(KTM219)及びKOD plus DNAポリメラーゼを用いて増幅した。Flagタグを挿入するために、ライゲーションした遺伝子を、プライマーKTMAgeBackとpROXHis6Bamfor(5'-GTCGGATCCGCCATGATGATGATGATGATGATAAC-3')(配列番号4)で増幅し、次いでAgeI及びBamHIにより消化し、その後AgeI及びEagIで消化したpUQ1H(KTM219)とライゲーションし、pSQ(KTM219)を得た。得られたプラスミドをPureYield plasmid miniprepシステムで調製し、コード領域の全体の配列を同定した。
(ii) Construction of scFv type Q-body gene Fab type Q-body expression vector pUQ1H (KTM219) containing DNA encoding heavy chain variable region and light chain variable region of anti-BGP antibody (Abe R. et al., SCientific Reports, 4: 4640) was digested with EcoRV and BamHI, blunted with T4 DNA polymerase, and then ligated to remove the L chain fragment. In order to delete the heavy chain fragment, it was digested with AgeI and EagI and ligated with the scFv fragment of KTM219 digested with AgeI and EagI using the Ligation-high ligation kit. Next, with the primers KTMAgeBack (5′-GGAATTCACCGGTCAAGTAAAGCTGCAGCAGTC-3 ′) (SEQ ID NO: 2) and T7term (5′-TGCTAGTTATTGCTCAGCGG-3 ′) (SEQ ID NO: 3), PROX-FL92.1amber (KTM219) as a template and KOD plus Amplified using DNA polymerase. To insert the Flag tag, the ligated gene was amplified with primers KTMAgeBack and pROXHis6Bamfor (5'-GTCGGATCCGCCATGATGATGATGATGATGATAAC-3 ') (SEQ ID NO: 4), then digested with AgeI and BamHI, then digested with AgeI and EagI Ligation with pUQ1H (KTM219) gave pSQ (KTM219). The resulting plasmid was prepared with the PureYield plasmid miniprep system and the entire sequence of the coding region was identified.

(iii) 合成及びタンパク質の精製
SHuffle T7 Express lysY細胞をPSQ(KTM219)で形質転換し、LBA培地(100μg/mLのアンピシリンを含むLB培地)及び1.5%寒天中で30℃、16時間培養した。単一コロニーをとり、OD600が0.9に達するまで、4mLのLBA培地中で30℃で増殖させ、1.6mlを100mlのLBA培地に接種した。細胞をOD600が0.6に達するまで30℃で培養し、0.4mMのガラクトピラノシドイソプロピルを添加した。溶液をさらに16℃で16時間インキュベートし、次いで遠心分離(8,000×gで、20分間、4℃)した。ペレットを10mlのTalon洗浄緩衝液(50mMリン酸、0.3 M塩化ナトリウム(NaCl)、5mMイミダゾール、pH7.4)中に懸濁し、次いで、超音波処理した。遠心分離(8,000×gで、20分間、4℃)後、上清を25℃で30分間、回転ホイール上で0.2 mLのTalon金属樹脂と共にインキュベートした。ビーズを、8mLのTalon洗浄緩衝液で3回洗浄した。4mLのTalon溶出緩衝液(50mMリン酸塩、0.3M NaCl、0.5Mイミダゾール、pH7.4)を添加し30分間25℃でインキュベーションした後、溶離液をTalonディスポーザブル重力カラムを使用して回収した。溶離液を限外濾過装置にかけ、PBST(10mMリン酸塩、137mM塩化ナトリウム、2.7mM塩化カリウム、0.05%Tween 20、pH7.4)で平衡化し、250μLに濃縮した。タンパク質の発現及び精製は、SDS-PAGE分析を用いて確認し、タンパク質濃度を、標準として様々な濃度のウシ血清アルブミン(BSA)を用いて、ImageJソフトウェア(国立衛生研究所、ベセスダ、MD)を用いて決定した。
(iii) Synthesis and protein purification
SHuffle T7 Express lysY cells were transformed with PSQ (KTM219) and cultured in LBA medium (LB medium containing 100 μg / mL ampicillin) and 1.5% agar at 30 ° C. for 16 hours. A single colony was picked and grown at 30 ° C. in 4 mL LBA medium until OD 600 reached 0.9, and 1.6 ml was inoculated into 100 ml LBA medium. Cells were cultured at 30 ° C. until OD 600 reached 0.6, and 0.4 mM galactopyranoside isopropyl was added. The solution was further incubated at 16 ° C. for 16 hours and then centrifuged (8,000 × g, 20 minutes, 4 ° C.). The pellet was suspended in 10 ml Talon wash buffer (50 mM phosphoric acid, 0.3 M sodium chloride (NaCl), 5 mM imidazole, pH 7.4) and then sonicated. After centrifugation (8,000 × g, 20 minutes, 4 ° C.), the supernatant was incubated with 0.2 mL of Talon metal resin on a rotating wheel for 30 minutes at 25 ° C. The beads were washed 3 times with 8 mL Talon wash buffer. After adding 4 mL of Talon elution buffer (50 mM phosphate, 0.3 M NaCl, 0.5 M imidazole, pH 7.4) and incubating for 30 minutes at 25 ° C., the eluate was collected using a Talon disposable gravity column. The eluate was applied to an ultrafiltration device, equilibrated with PBST (10 mM phosphate, 137 mM sodium chloride, 2.7 mM potassium chloride, 0.05% Tween 20, pH 7.4) and concentrated to 250 μL. Protein expression and purification was confirmed using SDS-PAGE analysis, and protein concentrations were determined using ImageJ software (National Institutes of Health, Bethesda, MD) using various concentrations of bovine serum albumin (BSA) as a standard. Determined.

pSQ(KTM219)中のタグのついたscFvのアミノ酸配列を配列番号5に示す。配列番号5中、GGSHHHHHHGGSDYKDDDDK(配列番号6)で表される配列がタグ部分の配列である。   The amino acid sequence of the scFv with a tag in pSQ (KTM219) is shown in SEQ ID NO: 5. In SEQ ID NO: 5, the sequence represented by GGSHHHHHHGGSDYKDDDDK (SEQ ID NO: 6) is the tag portion sequence.

(3) 光架橋法による蛍光免疫測定用標識抗体の調製及び該抗体の検定
(1)で調製した3nmolのTAMRA-IBAと(2)で調製した0.2nmol(5μg)の抗BGP抗体(scFv)を10μLのPBSに入れ、25℃で1時間インキュベーションした。次いで、抗BGP抗体とTAMRA-IBAの混合溶液に波長254nmのUVを照射面で1J/cm2の光量となるよう2分40秒間照射した。この際、使用した照射装置はUVP CL-1000(UVP LLC社製)であった。
(3) Preparation of labeled antibody for fluorescence immunoassay by photocrosslinking method and assay of the antibody 3 nmol TAMRA-IBA prepared in (1) and 0.2 nmol (5 μg) anti-BGP antibody (scFv) prepared in (2) Was placed in 10 μL of PBS and incubated at 25 ° C. for 1 hour. Next, the mixed solution of anti-BGP antibody and TAMRA-IBA was irradiated with UV light having a wavelength of 254 nm for 2 minutes and 40 seconds so as to obtain a light amount of 1 J / cm 2 on the irradiated surface. At this time, the irradiation apparatus used was UVP CL-1000 (manufactured by UVP LLC).

次いで、His-tagを用いてタンパク質を精製し、Ultra filtration(メンブレンフィルタ)によりバッファー交換を行い、さらにFlag-tagを用いてタンパク質精製を行った。   Next, the protein was purified using His-tag, the buffer was exchanged by Ultra filtration (membrane filter), and the protein was further purified using Flag-tag.

抗原ペプチドBGP-C7(BGPのC末端アミノ酸配列NH2-RRFYGPV-COOH)(配列番号7)の濃度を0M〜1×10-5Mまで8段階に変えた抗原溶液と、精製した抗体を混合し、励起波長546nmで照射し、蛍光強度の変化を調べた。 Antigen peptide BGP-C7 (BGP C-terminal amino acid sequence NH 2 -RRFYGPV-COOH) (SEQ ID NO: 7) concentration of 0M to 1 × 10 -5 M in 8 steps was mixed with purified antibody Then, irradiation was performed at an excitation wavelength of 546 nm, and changes in fluorescence intensity were examined.

結果を図4に示す。図5には、アンバーサプレッション法(Ellman J et al., (1991) Methods Enzymol. 202: 301-36; 国際公開第2011/061944号)によりTAMRAで標識した抗BGP抗体(scFv)を用いたときの結果である。図5に結果を示す実験においては、スペーサーを含む又は含まないTAMRA標識抗BGP抗体(scFv)をBGP-C7と反応させた。G3S(1)、G3S(2)及びG3S(3)のスペーサー配列は、それぞれGGGS(配列番号8)、GGGSGGGS(配列番号9)及びGGGSGGGSGGGS(配列番号10)であった。図4に示すように、BGP-C7の濃度が増加するにつれて、蛍光強度が増加した。また、図5の結果と比較すると、光架橋法により標識した抗体(scFv)はアンバーサプレッション法により標識した抗体(scFv)よりも、蛍光の上昇が著しかった。この結果は、光架橋法により標識した抗体(scFv)はBGP-C7の存在を高感度で分析できる蛍光免疫測定用標識抗体であることを示す。   The results are shown in FIG. FIG. 5 shows the use of an anti-BGP antibody (scFv) labeled with TAMRA by the amber suppression method (Ellman J et al., (1991) Methods Enzymol. 202: 301-36; International Publication No. 2011/061944). Is the result of In the experiment whose results are shown in FIG. 5, a TAMRA-labeled anti-BGP antibody (scFv) with or without a spacer was reacted with BGP-C7. The spacer sequences of G3S (1), G3S (2) and G3S (3) were GGGS (SEQ ID NO: 8), GGGSGGGS (SEQ ID NO: 9) and GGGSGGGSGGGS (SEQ ID NO: 10), respectively. As shown in FIG. 4, the fluorescence intensity increased as the concentration of BGP-C7 increased. Compared with the results in FIG. 5, the antibody (scFv) labeled by the photocrosslinking method showed a significant increase in fluorescence as compared with the antibody (scFv) labeled by the amber suppression method. This result indicates that the antibody (scFv) labeled by the photocrosslinking method is a labeled antibody for fluorescence immunoassay capable of analyzing the presence of BGP-C7 with high sensitivity.

本発明の蛍光免疫測定用標識抗体を用いることにより、各種抗体を高感度で検出することができる。   By using the labeled antibody for fluorescent immunoassay of the present invention, various antibodies can be detected with high sensitivity.

Claims (9)

下記式(1):
Figure 2017049184
(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物が抗体内のヌクレオチド結合部位にコンジュゲートされている蛍光免疫測定用標識抗体。
Following formula (1):
Figure 2017049184
Wherein F is a fluorescent group, R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof. A labeled antibody for fluorescent immunoassay in which a compound for labeling a nucleotide binding site (NBS) of an antibody in which butyric acid (IBA) and a fluorescent group are bound is conjugated to a nucleotide binding site in the antibody.
前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、請求項1に記載の蛍光免疫測定用標識抗体。   The fluorescent group is rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue, and derivatives thereof. The labeled antibody for fluorescent immunoassay according to claim 1, which is at least one selected from the group consisting of: 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、請求項2に記載の蛍光免疫測定用標識抗体。   The labeled antibody for fluorescent immunoassay according to claim 2, wherein the fluorescent group contains at least one selected from the group consisting of tetramethylrhodamine, rhodamine 110 and ATTO655 (registered trademark). 抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、請求項1〜3のいずれか1項に記載の蛍光免疫測定用標識抗体。   The labeled antibody for fluorescence immunoassay according to any one of claims 1 to 3, wherein the antibody is selected from the group consisting of an scFv type antibody, a Fab type antibody and a complete antibody. 蛍光免疫測定用標識抗体の製造方法であって、
下記式(1):
Figure 2017049184
(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4〜C10シクロアルキル基、C4〜C10ヘテロシクリル基、C4〜C10アリール基、C4〜C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物と抗体を含む溶液に、中心波長254nmの紫外線を照射することにより、前記化合物のインドール基と抗体のヌクレオチド結合部位の間で光架橋反応を生じさせ、前記化合物と抗体をコンジュゲートする工程を含む、蛍光免疫測定用標識抗体の製造方法。
A method for producing a labeled antibody for fluorescent immunoassay, comprising:
Following formula (1):
Figure 2017049184
Wherein F is a fluorescent group, R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof. By irradiating ultraviolet light with a central wavelength of 254 nm to a solution containing an antibody nucleotide binding site (NBS) labeling compound in which butyric acid (IBA) and a fluorescent group are bound, an indole group of the compound and the antibody A method for producing a labeled antibody for fluorescent immunoassay, comprising a step of causing a photocrosslinking reaction between nucleotide binding sites and conjugating the compound with an antibody.
前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、請求項5に記載の製造方法。   The fluorescent group is rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue, and derivatives thereof. The manufacturing method of Claim 5 which is at least 1 sort (s) selected from the group which consists of. 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、請求項6に記載の製造方法。   The production method according to claim 6, wherein the fluorescent group contains at least one selected from the group consisting of tetramethylrhodamine, rhodamine 110 and ATTO655 (registered trademark). 抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、請求項5〜7のいずれか1項に記載の製造方法。   The production method according to any one of claims 5 to 7, wherein the antibody is selected from the group consisting of an scFv type antibody, a Fab type antibody and a complete antibody. 請求項1〜4のいずれか1項に記載の蛍光免疫測定用標識抗体と抗原を接触させ、蛍光強度の変化を測定することを含む、抗原の検出方法。   A method for detecting an antigen, comprising contacting the labeled antibody for fluorescent immunoassay according to any one of claims 1 to 4 with an antigen and measuring a change in fluorescence intensity.
JP2015174075A 2015-09-03 2015-09-03 Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody Pending JP2017049184A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015174075A JP2017049184A (en) 2015-09-03 2015-09-03 Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody
PCT/JP2016/075620 WO2017038926A1 (en) 2015-09-03 2016-09-01 Antibody subjected to fluorescent labeling using nucleotide binding site (nbs) of antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174075A JP2017049184A (en) 2015-09-03 2015-09-03 Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody

Publications (1)

Publication Number Publication Date
JP2017049184A true JP2017049184A (en) 2017-03-09

Family

ID=58188769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174075A Pending JP2017049184A (en) 2015-09-03 2015-09-03 Fluorescently labeled antibody with use of nucleotide binding site (nbs) of antibody

Country Status (2)

Country Link
JP (1) JP2017049184A (en)
WO (1) WO2017038926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713545A (en) * 2019-09-11 2020-01-21 潍坊医学院 Human-derived programmed cell death factor receptor protein-1 and production method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270338A1 (en) * 2009-11-19 2012-10-25 Proteinexpress Co., Ltd. Fluoroimmunoassay method
KR101603456B1 (en) * 2011-11-02 2016-03-14 우시오덴키 가부시키가이샤 Fluoroimmunoassay method using polypeptide complex containing fluorolabeled antibody-variable region
EP2970440B1 (en) * 2013-03-14 2019-11-20 University of Notre Dame du Lac Selective uv crosslinking of peptides and functional moieties to immunoglobulins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713545A (en) * 2019-09-11 2020-01-21 潍坊医学院 Human-derived programmed cell death factor receptor protein-1 and production method and application thereof
CN110713545B (en) * 2019-09-11 2021-10-22 潍坊医学院 Human-derived programmed cell death factor receptor protein-1 and production method and application thereof

Also Published As

Publication number Publication date
WO2017038926A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6070769B2 (en) Fluorescence immunoassay kit using polypeptide complex containing fluorescently labeled antibody variable region
Gruber et al. Anomalous fluorescence enhancement of Cy3 and Cy3. 5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin
US9849196B2 (en) Methods and compositions for altering photophysical properties of fluorophores via proximal quenching
Qin et al. Polarity-based fluorescence probes: properties and applications
JP2014156428A (en) Antibody binding protein
JP5949890B2 (en) Fluorescence immunoassay method using an antigen-binding protein comprising a polypeptide containing a fluorescently labeled antibody variable region
WO2013176625A1 (en) A microparticle assembly
Yi et al. Direct immobilization of oxyamine-modified proteins from cell lysates
Nakane et al. BODIPY Catalyzes Proximity‐Dependent Histidine Labelling
WO2017038926A1 (en) Antibody subjected to fluorescent labeling using nucleotide binding site (nbs) of antibody
JP2016200545A (en) Method of discriminately detecting test target substance
JP6983419B2 (en) Antigen detection or measurement kit
Manzoor et al. Nanoscale gizmos–the novel fluorescent probes for monitoring protein activity
WO2016208466A1 (en) Method for detecting substance of interest
WO2020246495A1 (en) Homogeneous immunoassay method using peptide having multiple fluorochromes joined thereto
JP2017020896A (en) N-terminal labeling reagent, fluorescence labeled protein using n-terminal labeling reagent, and method for manufacturing fluorescence labeled protein
WO2022118862A1 (en) Biomolecule structure detection probe, biomolecule structure detection kit, and method for detecting biomolecule structure
KR101547463B1 (en) Method for detection of antigen using fluorescence resonance energy transfer immunoassay
Seetharam et al. Long term storage of virus templated fluorescent materials for sensing applications
Bae Development of Functional Protein-based Target-specific Labeling Nanoplatforms for Biological Applications
WO2023235219A9 (en) Green excitable tandem dyes, and methods for making and using the same
WO2023215514A2 (en) Bioluminescence-triggered photocatalytic labeling
Gallagher Protein nanoparticle conjugates for use in bioanalytical applications