JP2017048443A - Extra thick steel sheet and manufacturing method therefor - Google Patents

Extra thick steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2017048443A
JP2017048443A JP2015174561A JP2015174561A JP2017048443A JP 2017048443 A JP2017048443 A JP 2017048443A JP 2015174561 A JP2015174561 A JP 2015174561A JP 2015174561 A JP2015174561 A JP 2015174561A JP 2017048443 A JP2017048443 A JP 2017048443A
Authority
JP
Japan
Prior art keywords
less
thick steel
heating
content
heating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015174561A
Other languages
Japanese (ja)
Other versions
JP6447426B2 (en
Inventor
彰彦 谷澤
Akihiko Tanizawa
彰彦 谷澤
敦士 田中
Atsushi Tanaka
敦士 田中
孝平 古米
Kohei Furumai
孝平 古米
亮 長尾
Akira Nagao
亮 長尾
隆一 近藤
Ryuichi Kondo
隆一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015174561A priority Critical patent/JP6447426B2/en
Publication of JP2017048443A publication Critical patent/JP2017048443A/en
Application granted granted Critical
Publication of JP6447426B2 publication Critical patent/JP6447426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extra thick steel sheet having excellent internal quality and HIC resistance performance even with sheet thickness of 50 mm or more, and a manufacturing method capable of manufacturing the extra thick steel sheet at high productivity.SOLUTION: An extra thick steel sheet excellent in HIC resistance performance has a specific component composition. The extra thick steel sheet has a micro structure having area percentage of ferrite, pearlite and bainite of 95% or more in total, hardness of center segregation part of 300 or less, major axis of gap existing in the center segregation part, a MnS-based inclusion, an inclusion consisting of Nb and/or Ti and an inclusion cluster consisting of Al and/or Ca of less than 200 μm, number percentage of oxide with AlO/CaO in oxide containing Al and Ca of 0.7 to 1.3 by molar ratio of 30% or more, and sheet thickness of 50 mm or more.SELECTED DRAWING: None

Description

本発明は、石油精製プラン卜などの圧力容器、プロセス配管に代表される湿潤硫化水素環境で使用される極厚鋼板及びその製造方法、特に、優れた耐HIC(Hydrogen Induced Cracking、水素誘起割れ)性能が要求される部材に用いられる極厚鋼板及びその製造方法に関する。   The present invention relates to a very thick steel plate used in a wet hydrogen sulfide environment typified by pressure vessels such as petroleum refining planners and process pipes, and a method for producing the same, and particularly, excellent HIC resistance (Hydrogen Induced Cracking). The present invention relates to an extra-thick steel plate used for a member that requires performance and a method for manufacturing the same.

世界的なエネルギ需要の高まりを背景に、原油採掘量も年々増加しており、従来のような高品質な原油が徐々に枯渇し、硫化水素濃度の高い低品位の原油の使用が必要に迫られている。このため、石油精製プラン卜に用いられる圧力容器やプロセス配管においても、水素誘起割れ(HIC:Hydrogen Induced Cracking)や硫化物応力腐食割れ(SSC:Sulfide Stress corrosion Cracking)の起こらない湿潤硫化水素環境に対する抵抗力、すなわち、耐サワー性能(耐HIC性能や耐SSC性能)を有する鋼板を適用することが多くなっている。HICについては、比較的低強度の鋼板でも起こることが知られており、特に問題となっている。   Crude oil extraction is increasing year by year on the back of rising global energy demand, and high-quality crude oil like the conventional one is gradually depleted, and it is necessary to use low-grade crude oil with high hydrogen sulfide concentration. It has been. For this reason, even in pressure vessels and process piping used for petroleum refining plan droughts, it is not suitable for wet hydrogen sulfide environments where hydrogen induced cracking (HIC) or sulfide stress corrosion cracking (SSC) does not occur. Steel plates having resistance, i.e., sour resistance (HIC resistance or SSC resistance) are often used. HIC is known to occur even in a relatively low strength steel sheet, which is a particular problem.

鋼板の耐HIC性能を確保するための検討は、主にラインパイプ分野において盛んに行われており、例えば、1)Mn、Pなどの連続鋳造スラブの中心偏析部に濃化する元素の低減や、鋳造条件の最適化による中心偏析部の軽減、2)S、Oの低減およびCaの最適量添加によるMnSの生成抑制およびCa添加により生じるCaクラスタの生成抑制、3)TMCPにおける加速冷却や熱処理プロセスにおける焼入れの適用によるミクロ組織の均一化により、フェライト生成に伴う中心偏析部へのCの分配の抑制、および、HIC伝播経路となる複合組織化の抑制、4)高強度材で生成するMA(Martensite−Austenite constituent、島状マルテンサイト)などの硬質第2相の生成抑制、再加熱による分解、などが行われている。   Studies to ensure the HIC resistance performance of steel sheets are actively conducted mainly in the field of line pipes. For example, 1) Reduction of elements concentrated in the central segregation part of continuous cast slabs such as Mn and P Reduction of center segregation part by optimization of casting conditions, 2) Reduction of S and O, and suppression of generation of MnS and addition of Ca cluster caused by addition of Ca by addition of optimum amount of Ca, 3) Accelerated cooling and heat treatment in TMCP By homogenizing the microstructure by applying quenching in the process, the distribution of C to the central segregation part due to the formation of ferrite and the suppression of the complex structure that becomes the HIC propagation path are suppressed. 4) MA generated with high-strength material Suppression of formation of hard second phase such as (Martensite-Austenite constituent, island martensite), decomposition by reheating Such as has been carried out.

しかしながら、これらの知見は、いずれも、板厚が50mm未満のラインパイプ用鋼板や鋼管に関する知見である。したがって、板厚が50mm以上となる極厚板において、上述した手法を適用しても、必ずしも目標の性能が得られない。特に、板厚が大きくなるほど、ザクやポロシティなどと呼ばれる未圧着部が圧延後も残存し、HICの起点となるという問題がある。また、所望の強度を得るために多量の合金元素を添加する必要があるため、中心偏析部がさらに硬化してHICが発生しやすくなるという問題がある。   However, all of these findings are findings relating to steel plates and steel pipes for line pipes having a plate thickness of less than 50 mm. Therefore, even if the above-described method is applied to an extremely thick plate having a plate thickness of 50 mm or more, the target performance cannot always be obtained. In particular, there is a problem that as the plate thickness increases, an uncompressed portion called zaku or porosity remains after rolling and becomes the starting point of HIC. Further, since it is necessary to add a large amount of alloy elements to obtain a desired strength, there is a problem that the center segregation portion is further hardened and HIC is likely to occur.

このような問題に対して、特許文献1では、造塊スラブを用いて分塊圧延から仕上げ圧延までの総圧下比を大きくとることと、鋼板に含まれる水素量を少なくすることを組み合わせて、耐HIC性能と内部品質を両立する極厚鋼板の製造方法が開示されている。特許文献2では、造塊法で鋳型下部から上部にかけて一方向凝固させ、Sなどの化学成分が所望の値となる部分のみを使用することにより耐HIC性能を確保する厚鋼板の製造方法が開示されている。特許文献3では、連続鋳造スラブから100mm以上の極厚鋼板を製造するに際し、連続鋳造スラブを高温で20〜40時間保持し、その後、強圧下鍛造を行うことにより中心偏析部の合金元素の拡散および粉砕を行い、さらに、再加熱し、熱間圧延を行うことで、優れた耐HIC性能と内部品質を両立する極厚鋼板の製造方法が開示されている。特許文献4〜7では、通常の熱間圧延に先立って、化学成分から求められる所定の加熱温度で所定時間以上保持した後、大圧下で熱間圧延を行うことにより、中心偏析部の合金元素の拡散を行い、さらに、再加熱し、最適なTMCP(Thermo Mechanical Control Process)条件を適用することで、優れた耐HIC性能と内部品質を両立する厚鋼板の製造方法が開示されている。特許文献8では、特許文献4〜7と同様の手法で中心偏析部を低減した後、焼ならしで鋼板の特性を調整することにより、優れた耐HIC性能と内部品質を両立する厚鋼板の製造方法が開示されている。   For such a problem, Patent Document 1 uses a combination of taking a large total rolling reduction ratio from split rolling to finish rolling using an ingot slab and reducing the amount of hydrogen contained in the steel sheet, A method for manufacturing a very thick steel plate that satisfies both HIC resistance and internal quality is disclosed. Patent Document 2 discloses a method for producing a thick steel plate that secures HIC resistance by using only a portion in which a chemical component such as S becomes a desired value by unidirectionally solidifying from the lower part of the mold to the upper part by an ingot forming method. Has been. In Patent Document 3, when producing an extremely thick steel plate of 100 mm or more from a continuous cast slab, the continuous cast slab is held at a high temperature for 20 to 40 hours, and then subjected to strong pressure forging to diffuse the alloy elements in the central segregation part. In addition, a method for producing an extremely thick steel sheet that achieves both excellent HIC resistance and internal quality by performing pulverization, reheating, and hot rolling is disclosed. In Patent Documents 4 to 7, the alloy element of the central segregation part is obtained by performing hot rolling under a large pressure after holding for a predetermined time or more at a predetermined heating temperature obtained from a chemical component prior to normal hot rolling. A method of manufacturing a thick steel plate that achieves both excellent HIC resistance and internal quality is disclosed by performing diffusion, reheating, and applying optimal TMCP (Thermo Mechanical Control Process) conditions. In Patent Document 8, after reducing the central segregation part by the same method as Patent Documents 4 to 7, the steel sheet is adjusted by adjusting the properties of the steel sheet by normalization, thereby obtaining a steel sheet that achieves both excellent HIC resistance and internal quality. A manufacturing method is disclosed.

特開平4−329826号公報JP-A-4-329826 特開昭62−176601号公報Japanese Patent Laid-Open No. 62-176601 特開2001−89812号公報JP 2001-89812 A 特開平2−173208号公報Japanese Patent Laid-Open No. 2-173208 特開平4−263017号公報Japanese Patent Laid-Open No. 4-263017 特開平5−125441号公報Japanese Patent Laid-Open No. 5-125441 特開平5−295435号公報JP-A-5-295435 特開平4−143217号公報JP-A-4-143217

しかしながら、特許文献1及び2で開示されている方法は、いずれも造塊スラブを用いており、生産性が著しく悪い。一方、特許文献3で開示されている方法は、連続鋳造スラブを長時間加熱保持後、強圧下で鍛造するため、中心偏析度、内部品質とも良好で優れた耐HIC性能を確保できる。しかしながら、特許文献3に開示の方法では、加熱保持の時聞が長すぎるため、生産性が悪い。また、特許文献4〜8で開示されている方法は、連続鋳造スラブを用いて極厚鋼板を製造する場合、十分な内部品質が確保できず、内部品質異常およびザクやポロシティを起点としたHICの発生を抑制できないことがある。なお、本明細書において、十分な内部品質を確保する、とは、鋼材の表面近傍のみならず、鋼材の厚さ方向の中央部近傍まで、ザクやポロシティのような空洞や欠陥を実質的に無害のレベルにまで低減させることを意味する。   However, the methods disclosed in Patent Documents 1 and 2 both use ingot slabs, and the productivity is extremely poor. On the other hand, in the method disclosed in Patent Document 3, since the continuous casting slab is heated and held for a long time and then forged under strong pressure, the center segregation degree and the internal quality are good and excellent HIC resistance can be ensured. However, in the method disclosed in Patent Document 3, productivity is poor because the heating and holding time is too long. In addition, in the methods disclosed in Patent Documents 4 to 8, when producing an extremely thick steel plate using a continuous cast slab, sufficient internal quality cannot be ensured, and the HIC is based on abnormal internal quality and zaku or porosity. May not be suppressed. In this specification, ensuring sufficient internal quality means that not only the vicinity of the surface of the steel material but also the vicinity of the center part in the thickness direction of the steel material substantially eliminates cavities and defects such as zaku and porosity. It means reducing to a harmless level.

上述したように、従来の技術では、生産性の低下、内部品質の劣化およびそれに起因した耐HIC性能の劣化が起こらない、耐HIC性能に優れた極厚鋼板を製造することは困難である。そこで、本発明は、板厚が50mm以上であっても優れた内部品質および耐HIC性能を有する極厚鋼板及びその極厚鋼板を高い生産性で製造可能な製造方法を提供することを目的とする。   As described above, with the conventional technology, it is difficult to produce a very thick steel plate with excellent HIC resistance that does not cause a decrease in productivity, deterioration in internal quality, and deterioration in HIC resistance caused thereby. Therefore, an object of the present invention is to provide a very thick steel plate having excellent internal quality and HIC resistance even if the plate thickness is 50 mm or more, and a manufacturing method capable of manufacturing the very thick steel plate with high productivity. To do.

本発明者らは、上記の課題を解決するために、スラブ内部品質に影響を及ぼす鍛造条件と、中心偏析部硬さや介在物の状態に影響を及ぼす化学成分(成分組成)、鍛造条件および圧延条件について、鋭意検討し、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors have developed forging conditions that affect the internal quality of the slab, chemical components (component composition) that affect the center segregation hardness and inclusions, forging conditions, and rolling. As a result of intensive studies, the following findings were obtained.

まず、連続鋳造スラブの内部品質に影響を及ぼす鍛造条件について検討した結果、1パスあたりの圧下率を5%以上、全圧下率Rを10%以上確保することで、ザクやポロシティが圧着された、内部品質に優れた圧延素材を得ることができ、その結果、熱間圧延後に優れた耐HIC性が得られることがわかった。   First, as a result of examining forging conditions that affect the internal quality of continuous cast slabs, zaku and porosity were pressure-bonded by securing a reduction rate per pass of 5% or more and a total reduction rate R of 10% or more. It was found that a rolled material excellent in internal quality can be obtained, and as a result, excellent HIC resistance can be obtained after hot rolling.

次に、中心偏析部でHICの起点となるMnS系およびNbCN系介在物の低減について検討を行った。中心偏析部のMnSおよびNbCNは、いずれも鋳造の最終凝固部に濃化した元素が晶出したものであり、通常のバルク部の成分と溶解度積から理論的に求められる介在物の溶解温度まで加熱、保持しても、介在物は固溶しない。一方で、中心偏析部の合金元素の濃化を考慮することで、介在物の固溶温度をより正確に求めることができることがわかった。上記の考え方に基づき、SMNS(後述の式(3))およびSNBCN(後述の式(4))を考案した。これらがともに0以上になったときに中心偏析部のMnSおよびNbCNの大半を固溶でき、これらがHICの起点になることを抑える。なお、NbCNについては、鋼中にTiが添加されている場合に、TiNと複合し、固溶しにくくなる。しかしながら、SNBCNを0以上にすることで、NbCNのクラスタ径を小さくでき、後述する中心偏析部硬さを一定以下に抑えることにより優れた耐HIC性能を確保することができる。   Next, the reduction of MnS-based and NbCN-based inclusions, which are the origin of HIC at the central segregation part, was examined. Both MnS and NbCN in the central segregation part are crystallized elements concentrated in the final solidification part of the casting, and up to the melting temperature of inclusions theoretically determined from the components and solubility products of the normal bulk part Even when heated and held, the inclusions do not dissolve. On the other hand, it was found that the solid solution temperature of inclusions can be obtained more accurately by considering the concentration of the alloy element in the central segregation part. Based on the above idea, SMNS (formula (3) described later) and SNBCN (formula (4) described later) were devised. When both of these become 0 or more, most of MnS and NbCN in the central segregation part can be dissolved, and these are prevented from becoming the starting point of HIC. NbCN, when Ti is added to the steel, is complexed with TiN and hardly dissolves. However, by setting SNBCN to 0 or more, the cluster diameter of NbCN can be reduced, and excellent HIC resistance can be ensured by suppressing the center segregation portion hardness described below to a certain level or less.

また、Al−Ca系酸化物のクラスタに起因したHICの発生を抑制するための介在物組成について検討した。その結果、Al−Ca系酸化物のAl:CaO組成比を1:1付近に制御することで介在物を低融点化させることができ、溶鋼中でのCa−Al系介在物の凝集を抑制し、クラスタ化を抑制できることがわかった。 Moreover, the inclusion composition for suppressing generation | occurrence | production of HIC resulting from the cluster of an Al-Ca type oxide was examined. As a result, it is possible to lower the melting point of the inclusion by controlling the Al 2 O 3 : CaO composition ratio of the Al—Ca-based oxide to about 1: 1, and the Ca—Al-based inclusion in the molten steel can be lowered. It was found that aggregation can be suppressed and clustering can be suppressed.

次に、中心偏析部に濃化した元素の鍛造加熱および圧延加熱時の拡散挙動について調査を行った。その結果、Mn、Pについては、鍛造加熱で通常行われる1200℃以上の加熱において、保持時間を長くするほど中心偏析部での濃化を軽減できることがわかった。また、Cは非常に容易に拡散する元素であるため、鍛造後の空冷時にミクロ組織が2相組織化し、鍛造で拡散したCが再び中心偏析部に濃化することがわかった。さらに、Cは圧延加熱で通常行われる1200℃以下の加熱においても容易に拡散し、圧延加熱時の温度、保持時間および鍛造圧下率が大きくなるほど、中心偏析部での濃化を低減できることがわかった。一方で、Cu、Ni、Cr、Mo、Vなどの元素はこれらの加熱によってほとんど拡散しないこともわかった。以上の結果をもとに、中心偏析部硬さの指標として、PCCTを提案するに到った。PCCTは、中心偏析部硬さに及ぼす合金元素、鍛造条件、圧延加熱条件の影響を定量化した指標である(後述の式(2))。焼ならしで製造した場合、この値を0.95以下にすることで、中心偏析部の硬さを下げることができ、大きさが200μm未満の微細な介在物およびその集積帯がある場合においても、NACE TM0284−A溶液のHIC試験で優れた性能を得ることができることがわかった。PCCTを用いることで従来に比べてより合理的なスラブ成分設計および鋼板製造条件の選択ができるようになる。   Next, the diffusion behavior during forging heating and rolling heating of the element concentrated in the center segregation portion was investigated. As a result, it was found that for Mn and P, in heating at 1200 ° C. or higher, which is usually performed by forging heating, the concentration at the center segregation part can be reduced as the holding time is increased. Further, since C is an element that diffuses very easily, it was found that the microstructure became a two-phase structure during air cooling after forging, and C diffused by forging again concentrated in the central segregation part. Furthermore, it is found that C diffuses easily even when heating at 1200 ° C. or less, which is usually performed in rolling heating, and that concentration at the center segregation part can be reduced as the temperature during heating and holding, and the forging reduction ratio increase. It was. On the other hand, it was also found that elements such as Cu, Ni, Cr, Mo, and V hardly diffuse by these heating. Based on the above results, PCCT was proposed as an index of central segregation hardness. PCCT is an index that quantifies the influence of alloy elements, forging conditions, and rolling heating conditions on the center segregation hardness (formula (2) described later). When manufactured by normalization, by setting this value to 0.95 or less, the hardness of the central segregation part can be lowered, and there are fine inclusions having a size of less than 200 μm and their accumulation bands. It was also found that excellent performance can be obtained in the HIC test of the NACE TM0284-A solution. By using PCCT, it becomes possible to select a more rational slab component design and steel plate manufacturing conditions than in the past.

本発明は上記知見に基づき完成されたものであり、具体的には以下の通りである。   The present invention has been completed based on the above findings, and is specifically as follows.

[1]質量%で、C:0.030〜0.200%、Si:0.50%以下、Mn:0.60〜1.60%、P:0.020%以下、S:0.0015%以下、Al:0.060%以下、Ca:0.0010〜0.0040%、N:0.0050%以下、O:0.0030%以下を含有し、さらに、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、Nb:0.050%以下、V:0.100%以下、Ti:0.020%以下、B:0.0030%以下の1種もしくは2種以上を含有し、式(1)で示されるPcmが0.280以下を満たし、残部がFeおよび不可避的不純物からなる成分組成と、フェライト、パーライトおよびベイナイトの面積率が合計で95%以上であり、中心偏析部のビッカース硬さが300以下であり、中心偏析部に存在する空隙、MnS系介在物、Nb及び/又はTiからなる介在物、Al及び/又はCaからなる介在物クラスタの長径が200μm未満であり、Al及びCaを含む酸化物におけるAl/CaOがモル比で0.7〜1.3の酸化物の個数割合が30%以上であるミクロ組織と、を有し、板厚が50mm以上であることを特徴とする耐HIC性能に優れた極厚鋼板。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B (1)
式(1)における元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする。
[1] By mass%, C: 0.030 to 0.200%, Si: 0.50% or less, Mn: 0.60 to 1.60%, P: 0.020% or less, S: 0.0015 %: Al: 0.060% or less, Ca: 0.0010 to 0.0040%, N: 0.0050% or less, O: 0.0030% or less, and Cu: 0.50% or less Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, Nb: 0.050% or less, V: 0.100% or less, Ti: 0.020% or less, B : 0.0030% or less of one type or two or more types, Pcm represented by the formula (1) satisfies 0.280 or less, the balance is composed of Fe and unavoidable impurities, ferrite, pearlite and The area ratio of bainite is 95% or more in total, and the bit at the center segregation part is The hardness of the source is 300 or less, and the major axis of the voids present in the central segregation part, MnS inclusions, inclusions consisting of Nb and / or Ti, inclusion clusters consisting of Al and / or Ca is less than 200 μm And a microstructure in which the number ratio of the oxide having an Al 2 O 3 / CaO molar ratio of 0.7 to 1.3 in the oxide containing Al and Ca is 30% or more, and the plate thickness is 50 mm Extra heavy steel plate with excellent HIC resistance characterized by the above.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
The element symbol in the formula (1) means the content (% by mass) of each element, and 0 is not included.

[2]溶製された溶鋼を連続鋳造して得られた[1]に記載の成分組成からなる連続鋳造スラブを、1000〜1350℃の加熱温度T(℃)、300min以上の加熱保持時間t(min)で再加熱し、1パスあたりの圧下率が5%以上、全圧下率Rが10%以上、式(2)で示されるPCCTが0.95以下、式(3)で示されるSMNSが0以上および式(4)で示されるSNBCNが0以上となる条件で熱間鍛造を行った後に空冷し、その後、880〜1300℃の加熱温度T、10min以上の加熱保持時間tで再加熱を行い、熱間圧延を行った後、空冷し、さらに、880℃以上1100℃以下の温度に再加熱した後、空冷することを特徴とする板厚50mm以上の耐HIC性能に優れた極厚鋼板の製造方法。
PCCT=CP+MnP/6+0.116Cu+0.113Ni+0.236Cr+0.390Mo+0.348V+2PP・・・(2)
SMNS=T+273−5560/(0.72−log[1.2Mn][S])・・・(3)
SNBCN=T+273−6770/(2.26−log[5Nb][C+12N/14])・・・(4)
ただし、CP、MnPおよびPPは、以下の式(2−1)〜(2−3)で計算される値である。また、上記式(2)〜(4)において、Cu、Ni、Cr、Mo、V、Mn、S、Nb、C、Nは、各元素の含有量(質量%)であり、含有しない場合は0とする。また、Taは熱間鍛造時の加熱温度である。
CP=C+(0.77−C)erf(795・R/400000000/(((0.000023exp(−17800/(T+273)))60t0.5))・・・(2−1)
MnP=Mn+1.702Mn・erf(795/4000000/(((0.00004exp(−31511/(T+273)))60t0.5))・・・(2−2)
PP=P+10.18P・erf(795/4000000/(((0.00087exp(−0.4406/(T+273)))60t0.5))・・・(2−3)
ただし、上記式(2−1)〜(2−3)において、C、Mn、Pは各元素の含有量(質量%)で含有しない場合は0とする。Taは熱間鍛造時の加熱温度(℃)、tは熱間鍛造時の加熱保持時間(min)、Rは熱間鍛造時の全圧下率(%)、Tは熱間圧延時の加熱温度(℃)、tは熱間圧延時の加熱保持時間(min)である。なお、erfは誤差関数である。
[2] A continuous casting slab composed of the component composition according to [1] obtained by continuously casting molten steel is heated at 1000 to 1350 ° C. at a heating temperature T a (° C.) and at least 300 minutes. Reheating at t a (min), the rolling reduction per pass is 5% or more, the total rolling reduction R is 10% or more, the PCCT represented by the formula (2) is 0.95 or less, and the formula (3) After performing hot forging under the condition that the SMNS is 0 or more and the SNBCN represented by the formula (4) is 0 or more, air cooling is performed, and then a heating temperature T b of 880 to 1300 ° C. and a heating holding time t of 10 min or more. b. Reheating at b , hot rolling, air cooling, and further reheating to a temperature of 880 ° C. or higher and 1100 ° C. or lower, followed by air cooling. An excellent method for manufacturing extremely thick steel plates.
PCCT = CP + MnP / 6 + 0.116Cu + 0.113Ni + 0.236Cr + 0.390Mo + 0.348V + 2PP (2)
SMNS = T a + 273-5560 / (0.72-log [1.2Mn] [S]) (3)
SNBCN = T a + 273-6770 / (2.26-log [5Nb] [C + 12N / 14]) (4)
However, CP, MnP and PP are values calculated by the following formulas (2-1) to (2-3). Moreover, in said formula (2)-(4), Cu, Ni, Cr, Mo, V, Mn, S, Nb, C, and N are content (mass%) of each element, and when not containing 0. Ta is the heating temperature during hot forging.
CP = C + (0.77−C) erf (795 · R / 400000000 / (((0.000023exp (−17800 / (T b +273))) 60t b ) 0.5 )) (2-1) )
MnP = Mn + 1.702 Mn · erf (795 / 4000,000 / (((0.00004exp (−31511 / (T a +273))) 60 t a ) 0.5 )) (2-2)
PP = P / 10.18P · erf (795 / 4000,000 / (((0.00087exp (−0.4406 / (T a +273))) 60 t a ) 0.5 )) (2-3)
However, in the above formulas (2-1) to (2-3), C, Mn, and P are set to 0 when not contained in the content (mass%) of each element. Ta is heating temperature at the time of hot forging (℃), t a heating holding time at the time of hot forging (min), R is the total reduction ratio during hot forging (%), T b is the time of hot rolling the heating temperature (℃), t b is the heating holding time at the time of hot rolling (min). Note that erf is an error function.

[3]880℃以上1100℃以下の温度に再加熱した後の空冷後に、480〜720℃の温度範囲に焼戻し熱処理を行うことを特徴とする[2]に記載の極厚鋼板の製造方法。   [3] The method for producing an extra-thick steel plate according to [2], wherein a tempering heat treatment is performed in a temperature range of 480 to 720 ° C. after air cooling after reheating to a temperature of 880 ° C. or more and 1100 ° C. or less.

[4]前記溶鋼のInsol.Alを分析し、その分析結果をもとに、前記溶鋼中のAl/CaOがモル比で0.7〜1.3になるようにCaを添加することを特徴とする[2]又は[3]に記載の極厚鋼板の製造方法。 [4] Insol. Analyzing Al, and adding Ca so that Al 2 O 3 / CaO in the molten steel has a molar ratio of 0.7 to 1.3 based on the analysis result [2] Or the manufacturing method of the extra-thick steel plate as described in [3].

本発明により、内部品質およびHIC性能に優れた極厚鋼板を高い生産性で製造することが可能となり、産業上極めて有効である。   According to the present invention, it is possible to produce an extremely thick steel plate excellent in internal quality and HIC performance with high productivity, which is extremely effective industrially.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

本発明の極厚鋼板は、質量%で、C:0.030〜0.200%、Si:0.50%以下、Mn:0.60〜1.60%、P:0.020%以下、S:0.0015%以下、Al:0.060%以下、Ca:0.0010〜0.0040%、N:0.0050%以下、O:0.0030%以下を含有し、さらに、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、Nb:0.050%以下、V:0.100%以下、Ti:0.020%以下、B:0.0030%以下の1種もしくは2種以上を含有し、(1)式で示されるPcmが0.280以下を満たし、残部がFeおよび不可避的不純物からなる成分組成を有する。下記の成分組成の説明において「%」は「質量%」を意味する。   The extra-thick steel plate of the present invention is, in mass%, C: 0.030 to 0.200%, Si: 0.50% or less, Mn: 0.60 to 1.60%, P: 0.020% or less, S: 0.0015% or less, Al: 0.060% or less, Ca: 0.0010 to 0.0040%, N: 0.0050% or less, O: 0.0030% or less, and Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, Nb: 0.050% or less, V: 0.100% or less, Ti: 0.00. A component composition containing 020% or less, B: 0.0030% or less, Pcm represented by the formula (1) satisfying 0.280 or less, and the balance being Fe and inevitable impurities Have. In the following description of the component composition, “%” means “% by mass”.

C:0.030〜0.200%
Cは安価で高強度化に寄与する。一方で、Cは中心偏析度を悪化させる元素であり、耐HIC性能確保の観点からは、その含有量を低減した方がよい。しかしながら、C含有量が0.030%よりも低くなると、焼入れ性が低くなり過ぎて所望の強度が得られないため、下限を0.030%とする。また、C含有量が0.200%を超えると偏析度が悪くなり、耐HIC性能を確保できないため上限を0.200%とする。より好ましくは、0.030〜0.180%である。
C: 0.030 to 0.200%
C is inexpensive and contributes to high strength. On the other hand, C is an element that deteriorates the degree of central segregation. From the viewpoint of securing the HIC resistance, it is better to reduce the content thereof. However, if the C content is lower than 0.030%, the hardenability becomes too low to obtain the desired strength, so the lower limit is made 0.030%. On the other hand, when the C content exceeds 0.200%, the degree of segregation deteriorates and the HIC resistance cannot be ensured, so the upper limit is made 0.200%. More preferably, it is 0.030 to 0.180%.

Si:0.50%以下
Siは脱酸元素であり、不可避的にスラブに含まれる。また、Siは、中心偏析部の焼入れ性を高くするといった考慮をせずに高強度化することができる元素である。Si含有量が0.50%以下であれば、溶接性や溶接熱影響部靭性をあまり劣化させることがないので、上限を0.50%とする。より好ましくは0.40%以下である。
Si: 0.50% or less Si is a deoxidizing element and is inevitably contained in the slab. Further, Si is an element that can be increased in strength without taking into consideration that the hardenability of the center segregation portion is increased. If the Si content is 0.50% or less, the weldability and weld heat affected zone toughness are not deteriorated so much, so the upper limit is made 0.50%. More preferably, it is 0.40% or less.

Mn:0.60〜1.60%
Mnは、焼入れ性を高くする元素である。しかしながら、Mnは、中心偏析部に濃化しやすく、耐HIC性能を劣化させる。Mn含有量が1.60%を超えると、化学成分や鍛造条件などの他の条件を調整してもHICの発生を十分に抑制できないため、上限を1.60%とする。また、Mn含有量が0.60%を下回ると極厚鋼板の強度を確保できないため、下限を0.60%とする。より好ましくは、0.80〜1.50%、さらに好ましくは0.90〜1.40%である。
Mn: 0.60 to 1.60%
Mn is an element that enhances hardenability. However, Mn tends to concentrate in the center segregation part, and deteriorates the HIC resistance. If the Mn content exceeds 1.60%, the occurrence of HIC cannot be sufficiently suppressed even if other conditions such as chemical components and forging conditions are adjusted, so the upper limit is made 1.60%. Moreover, since the intensity | strength of a very thick steel plate cannot be ensured when Mn content is less than 0.60%, a minimum is made into 0.60%. More preferably, it is 0.80-1.50%, More preferably, it is 0.90-1.40%.

P:0.020%以下
Pは、不可避的に含まれる元素であり、焼入れ性も高くする。しかしながら、Pは、中心偏析部に非常に濃化しやすく、耐HIC性能に対して極めて悪い影響を及ぼす。そのため、製鋼工程において脱P処理などを強化して、できるだけその含有量を低減した方が好ましいものの、P含有量を低減することには非常に多くのコストを要する。また、本発明では鍛造加熱時の中心偏析部でのPの濃化を緩和することができ、P含有量が0.020%以下であればその効果により耐HIC性能が確保できる。そこで、P含有量の上限を0.020%とする。より好ましくは、0.015%以下、さらに好ましくは、0.010%以下である。
P: 0.020% or less P is an element that is inevitably contained, and enhances hardenability. However, P is very easy to concentrate in the center segregation part, and has a very bad influence on the HIC resistance. Therefore, although it is preferable to strengthen the de-P treatment in the steelmaking process and reduce its content as much as possible, reducing the P content requires a great deal of cost. Moreover, in this invention, the concentration of P in the center segregation part at the time of forging heating can be relieved, and if the P content is 0.020% or less, the HIC resistance performance can be secured by the effect. Therefore, the upper limit of the P content is 0.020%. More preferably, it is 0.015% or less, More preferably, it is 0.010% or less.

S:0.0015%以下
Sは、不可避的に含まれる元素である。また、Sは、MnSを形成してHICの起点となるため、耐HIC性能に悪影響を及ぼす。したがって、S含有量は、できるだけ低減した方がよい。しかしながら、脱硫を強化することはコストの増大を招く。このため、Ca添加によるMnSの生成抑制効果が期待できる上限である0.0015%まではSの含有を許容する。より好ましくは0.0010%以下、さらに好ましくは、0.0008%以下である。
S: 0.0015% or less S is an element inevitably included. Further, since S forms MnS and becomes the starting point of HIC, it adversely affects the HIC resistance performance. Therefore, it is better to reduce the S content as much as possible. However, strengthening desulfurization leads to an increase in cost. For this reason, the content of S is allowed up to 0.0015%, which is the upper limit at which the effect of suppressing the formation of MnS by adding Ca can be expected. More preferably, it is 0.0010% or less, More preferably, it is 0.0008% or less.

Al:0.060%以下
Alは脱酸元素であり、不可避的にスラブに含有している。Al含有量が0.060%を超えるとAlクラスタ起因のHICが発生するため、上限を0.060%とする。好ましくは、0.050%以下、より好ましくは0.040%以下である。
Al: 0.060% or less Al is a deoxidizing element and is unavoidably contained in the slab. When the Al content exceeds 0.060%, HIC due to Al 2 O 3 clusters is generated, so the upper limit is made 0.060%. Preferably, it is 0.050% or less, More preferably, it is 0.040% or less.

Ca:0.0010〜0.0040%
Caは、鋳造時にMnよりも先にSと結合しCaOSやCaSを生成することで、伸長したMnSの生成を抑制できる。その効果は、Ca含有量を0.0010%以上にしないと現れないため、Ca含有量の下限を0.0010%とする。また、Ca含有量が0.0040%を超えるとCaOやCaOSが過剰に生成し、クラスタを形成しHIC起点となり耐HIC性能が劣化する。そこで、Ca含有量の上限を0.0040%とする。
Ca: 0.0010 to 0.0040%
Ca can suppress the production | generation of the extended MnS by couple | bonding with S ahead of Mn at the time of casting, and producing | generating CaOS and CaS. Since the effect does not appear unless the Ca content is 0.0010% or more, the lower limit of the Ca content is set to 0.0010%. On the other hand, when the Ca content exceeds 0.0040%, CaO and CaOS are excessively generated, and a cluster is formed to serve as an HIC starting point, resulting in a deterioration in anti-HIC performance. Therefore, the upper limit of the Ca content is set to 0.0040%.

N:0.0050%以下
Nは鋼中に不可避的に含まれる元素であり、Tiと結合しTiNが生成される。Tiを添加した場合、N含有量が0.0050%を超えると晶出したTiNがHICの起点になる可能性がある。一方、Tiを添加しない場合は、固溶状態のNが多く、スラブの表面割れが発生する。このため、N含有量の上限を0.0050%とする。より好ましくは、0.0045%以下である。
N: 0.0050% or less N is an element inevitably contained in the steel, and combines with Ti to produce TiN. When Ti is added, if the N content exceeds 0.0050%, the crystallized TiN may become the starting point of HIC. On the other hand, when Ti is not added, there are many solid solution N, and the surface crack of a slab generate | occur | produces. For this reason, the upper limit of the N content is set to 0.0050%. More preferably, it is 0.0045% or less.

O:0.0030%以下
Oは鋼中に不可避的に含まれる元素であり、その大部分が酸化物として存在する。O含有量が0.0030%を超えると介在物量が多く、内部品質や耐HIC性能を確保できないため、その上限を0.0030%とする。
O: 0.0030% or less O is an element inevitably contained in steel, and most of it exists as an oxide. If the O content exceeds 0.0030%, the amount of inclusions is large, and internal quality and HIC resistance cannot be ensured, so the upper limit is made 0.0030%.

Pcm:0.280以下
Pcmは、鋼材の焼入れ性を定量化する指標である。この値が0.280%を超えると焼入れ性が高くなりすぎて、耐HIC性能が確保できないため、上限を0.280%とする。より好ましくはPcmが0.250以下である。なお、Pcmは下記式(1)で表される。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B・・・(1)
ただし、上記式(1)において、各元素記号は含有量(質量%)であり、含有しない場合は0とする。
Pcm: 0.280 or less Pcm is an index for quantifying the hardenability of the steel material. If this value exceeds 0.280%, the hardenability becomes too high and the HIC resistance cannot be secured, so the upper limit is made 0.280%. More preferably, Pcm is 0.250 or less. Pcm is represented by the following formula (1).
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
However, in said formula (1), each element symbol is content (mass%), and is set to 0 when not containing.

本発明では、上記成分組成以外に、強度や靭性を得るために、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、Nb:0.050%以下、V:0.100%以下、Ti:0.020%以下、B:0.0030%以下の1種もしくは2種以上を含有する。   In the present invention, in addition to the above component composition, in order to obtain strength and toughness, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, One or more of Nb: 0.050% or less, V: 0.100% or less, Ti: 0.020% or less, and B: 0.0030% or less are contained.

Cu:0.50%以下
Cuは、固溶強化により鋼板を高強度化する。一方で、Cuを過剰に添加すると溶接性、靭性が劣化し、コストの増大も招く。このため、Cuを含有する場合は含有量の上限を0.50%とする。なお、高強度化のためにはCu含有量は0.10%以上であることが好ましい。
Cu: 0.50% or less Cu increases the strength of a steel sheet by solid solution strengthening. On the other hand, when Cu is added excessively, weldability and toughness deteriorate, and the cost increases. For this reason, when it contains Cu, the upper limit of content shall be 0.50%. In order to increase the strength, the Cu content is preferably 0.10% or more.

Ni:1.00%以下
Niは、固溶強化により鋼板を高強度化し、さらにマトリックス組織を高靭性化する。一方で、Niを過剰に添加すると溶接性が劣化し、コストの増大も招く。このため、Niを含有する場合は含有量の上限を1.00%とする。なお、上記高強度化等のためにはNi含有量を0.10%以上にすることが好ましい。
Ni: 1.00% or less Ni increases the strength of the steel sheet by solid solution strengthening and further increases the toughness of the matrix structure. On the other hand, if Ni is added excessively, the weldability deteriorates and the cost increases. For this reason, when it contains Ni, the upper limit of content shall be 1.00%. In order to increase the strength and the like, the Ni content is preferably 0.10% or more.

Cr:0.50%以下
Crは、焼入れ性を高め鋼板を高強度化する。一方で、Crを過剰に添加すると溶接性、靭性が劣化し、コストの増大も招く。このため、Crを含有する場合は含有量の上限を0.50%とする。なお、高強度化のためにはCr含有量は0.10%以上であることが好ましい。
Cr: 0.50% or less Cr increases the hardenability and increases the strength of the steel sheet. On the other hand, when Cr is added excessively, weldability and toughness deteriorate, and the cost increases. For this reason, when it contains Cr, the upper limit of content is made into 0.50%. In order to increase the strength, the Cr content is preferably 0.10% or more.

Mo:0.50%以下
Moは、焼入れ性を高め鋼板を高強度化する。一方で、Moを過剰に添加すると溶接性、靭性が劣化し、コストの増大も招く。このため、Moを含有する場合は、含有量の上限を0.50%とする。なお、高強度化のためにはMo含有量は0.05%以上であることが好ましい。
Mo: 0.50% or less Mo increases the hardenability and increases the strength of the steel sheet. On the other hand, when Mo is added excessively, weldability and toughness deteriorate, and the cost increases. For this reason, when it contains Mo, the upper limit of content shall be 0.50%. In order to increase the strength, the Mo content is preferably 0.05% or more.

Nb:0.050%以下
Nbは、制御圧延時に未再結晶域温度を拡大し、圧延時の組織微細化に寄与する。一方で、Nb含有量が0.050%を超えると、析出脆化を引き起こす。さらに、中心偏析部に生成した粗大なNbCNの存在は耐HIC性能を劣化させる。このため、Nbを含有する場合は、その含有量の上限を0.050%とする。より好ましくは0.040%以下である。なお、組織微細化のためにはNb含有量は0.005%以上が好ましい。
Nb: 0.050% or less Nb expands the non-recrystallization region temperature during controlled rolling, and contributes to refinement of the structure during rolling. On the other hand, if the Nb content exceeds 0.050%, precipitation embrittlement is caused. Furthermore, the presence of coarse NbCN generated in the center segregation part deteriorates the HIC resistance. For this reason, when it contains Nb, the upper limit of the content is made 0.050%. More preferably, it is 0.040% or less. In order to refine the structure, the Nb content is preferably 0.005% or more.

V:0.100%以下
Vは、主に析出強化により鋼板を高強度化する。一方で、Vを過剰に添加すると靭性を著しく損なう。このため、Vを含有する場合は、その含有量の上限を0.100%とする。なお、高強度化のためにはV含有量は0.010%以上であることが好ましい。
V: 0.100% or less V increases the strength of the steel sheet mainly by precipitation strengthening. On the other hand, when V is added excessively, toughness is remarkably impaired. For this reason, when it contains V, the upper limit of the content is made 0.100%. In order to increase the strength, the V content is preferably 0.010% or more.

Ti:0.020%以下
Tiは、TiNを形成することで組織を微細化する。特に、Tiは、溶接した際の粗粒域幅を低減し、溶接熱影響部靭性を著しく向上させる。一方で、Tiを過剰に添加すると凝固時に粗大なTiNが晶出して耐HIC性能が劣化する。このため、Tiを含有する場合は、その含有量の上限を0.020%とする。なお、組織微細化等のためにはTi含有量は0.005%以上が好ましい。
Ti: 0.020% or less Ti refines the structure by forming TiN. In particular, Ti reduces the coarse grain region width when welding and significantly improves the weld heat affected zone toughness. On the other hand, when Ti is added excessively, coarse TiN is crystallized during solidification and the HIC resistance is deteriorated. For this reason, when it contains Ti, the upper limit of the content shall be 0.020%. Note that the Ti content is preferably 0.005% or more in order to refine the structure.

B:0.0030%以下
Bは、焼入性を増大させる元素であり、高強度化に非常に有効な元素である。一方で、B含有量が0.0030%を超えると焼入性が高くなりすぎて、鋼板表層や溶接熱影響部の硬さが上昇し、耐SSC性能が劣化する。このため、Bを含有する場合は含有量の上限を0.0030%とする。なお、高強度化等のためにはB含有量は0.0005%以上が好ましい。
B: 0.0030% or less B is an element that increases hardenability, and is an element that is very effective for increasing the strength. On the other hand, if the B content exceeds 0.0030%, the hardenability becomes too high, the hardness of the steel sheet surface layer and the weld heat affected zone increases, and the SSC resistance is deteriorated. For this reason, when it contains B, the upper limit of content is made into 0.0030%. In order to increase the strength, the B content is preferably 0.0005% or more.

上記成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

続いて、本発明の極厚鋼板のミクロ組織について説明する。本発明のミクロ組織は、フェライト、パーライトおよびベイナイトの面積率が合計で95%以上であり、中心偏析部のビッカース硬さが300以下であり、中心偏析部に存在する空隙、MnS系介在物、Nb及び/又はTiからなる介在物、Al及び/又はCaからなる介在物クラスタの長径が200μm未満であり、Al及びCaを含む酸化物におけるAl/CaOがモル比で0.7〜1.3の酸化物の個数割合が30%以上である。以下、ミクロ組織について具体的に説明する。 Subsequently, the microstructure of the extra-thick steel plate of the present invention will be described. In the microstructure of the present invention, the total area ratio of ferrite, pearlite, and bainite is 95% or more, the Vickers hardness of the center segregation part is 300 or less, voids present in the center segregation part, MnS inclusions, The major axis of the inclusion cluster composed of Nb and / or Ti, the inclusion cluster composed of Al and / or Ca is less than 200 μm, and Al 2 O 3 / CaO in the oxide containing Al and Ca has a molar ratio of 0.7 to The number ratio of the 1.3 oxide is 30% or more. Hereinafter, the microstructure will be specifically described.

フェライト、パーライトおよびベイナイトの合計:95%以上
本発明の極厚鋼板は、焼ならしで製造するため、ミクロ組織はフェライトを不可避的に含む。フェライトがミクロ組織における第1相であり、その含有量は面積率で60〜95%であることが好ましい。耐HIC性能確保の観点からは、硬質なミクロ組織であることは望ましくない。本発明では、フェライト以外の相として、パーライトのような軟質相やベイナイトのように比較的硬質ではあるが靭性のある相を含むことが必要である。パーライトの含有量は面積率で5〜40%好ましく、ベイナイトの含有量は面積率で40%以下が好ましい。そこで、本発明では、フェライト、パーライトおよびベイナイトの面積率を合計で95%以上とする。なお、本発明ではパーライト、ベイナイトの少なくとも一方を含めばよい。これら以外が面積率で5%を超えて含まれる場合、HICの発生、伝播源となり耐HIC性能が劣化する。フェライト、パーライトおよびベイナイト以外の相としては、マルテンサイトおよび粗大なセメンタイトのことを意味し、ベイナイト中に存在する微小なセメンタイトやMAはベイナイトの一部としてみなす。
Total of ferrite, pearlite and bainite: 95% or more Since the extra-thick steel sheet of the present invention is manufactured by normalization, the microstructure inevitably contains ferrite. Ferrite is the first phase in the microstructure, and its content is preferably 60 to 95% in terms of area ratio. From the viewpoint of securing the HIC resistance, it is not desirable to have a hard microstructure. In the present invention, as a phase other than ferrite, it is necessary to include a soft phase such as pearlite and a relatively hard but tough phase such as bainite. The pearlite content is preferably 5 to 40% by area ratio, and the bainite content is preferably 40% or less by area ratio. Therefore, in the present invention, the total area ratio of ferrite, pearlite, and bainite is 95% or more. In the present invention, at least one of pearlite and bainite may be included. When other than these are included in an area ratio exceeding 5%, HIC is generated and propagated and the HIC resistance is deteriorated. As phases other than ferrite, pearlite and bainite, it means martensite and coarse cementite, and minute cementite and MA present in bainite are regarded as a part of bainite.

中心偏析部のビッカース硬さ:300以下
中心偏析部は、MnSやNbCN、TiN、Al、CaOSなどのHICの起点となる介在物が生成する。本発明では、鍛造時の加熱によりMnSとNbCNについては固溶させることができる。しかし、TiN、Al、CaOSは、固溶しないため、これらがHICの発生起点となる。これらの起点が存在した場合においてもHICの発生、伝播を抑制するためには、中心偏析部のビッカース硬さを300以下にする必要がある。そこで、その上限を300とする。より好ましい中心偏析部のビッカース硬さは280以下である。なお、偏析硬さの測定方法としては、偏析部よりも圧痕が小さくなる荷重で5点以上測定したマイクロビッカース硬さの最大値を用いることが望ましい。
Vickers hardness of the center segregation part: 300 or less In the center segregation part, inclusions that are the origin of HIC such as MnS, NbCN, TiN, Al 2 O 3 , and CaOS are generated. In the present invention, MnS and NbCN can be dissolved by heating during forging. However, since TiN, Al 2 O 3 , and CaOS do not form a solid solution, these serve as starting points for generating HIC. Even when these starting points exist, in order to suppress the generation and propagation of HIC, it is necessary to make the Vickers hardness of the central segregation part 300 or less. Therefore, the upper limit is set to 300. The Vickers hardness of the center segregation part is more preferably 280 or less. As a method for measuring the segregation hardness, it is desirable to use the maximum value of micro Vickers hardness measured at 5 or more points with a load that makes the indentation smaller than the segregation part.

中心偏析部に存在する空隙等の長径:200μm未満
中心偏析部のビッカース硬さを300以下に抑えた場合、HICの起点となるような空隙や介在物の長径を200μm未満にすればHICの発生、伝播を抑制できる。そのため長径の上限を200μmとする。ここで、HIC起点となる空隙等とは、空隙、MnS系介在物、Nb、Tiあるいはその両方からなる介在物およびAl、Caあるいはその両方からなる介在物クラスタである。これらが中心偏析部に存在する場合には、実施例の記載の方法で確認したときに、その全ての長径が200μm未満である必要がある。
Long diameter of voids and the like existing in the center segregation part: less than 200 μm When the Vickers hardness of the center segregation part is suppressed to 300 or less, generation of HIC occurs if the long diameter of voids and inclusions that are the starting point of HIC is less than 200 μm , Can suppress the propagation. Therefore, the upper limit of the major axis is set to 200 μm. Here, the voids and the like serving as HIC starting points are voids, MnS inclusions, inclusions composed of Nb, Ti or both, and inclusion clusters composed of Al, Ca, or both. When these are present in the center segregation part, all the major diameters need to be less than 200 μm when confirmed by the method described in the examples.

Al/CaOがモル比で0.7〜1.3の酸化物の個数割合:30%以上
Al−Ca系酸化物は溶鋼中に生成し、溶鋼中に保持されることで凝集し、クラスタ化する。このAl−Ca系酸化物のクラスタはHICの起点となり耐HIC性能を劣化させる。Al−Ca系酸化物のクラスタの生成を抑制するためには、酸化物の低融点化が有効であり、AlとCaOがモル比(Al/CaO)で1.0のときに最もクラスタ化を抑制できる。AlとCaを含む酸化物のうち、Al/CaOのモル比が0.7〜1.3の酸化物の個数割合が30%を下回ると、AlあるいはCaOが過剰となり溶鋼中でクラスタを形成し、耐HIC性能を劣化させる。このため、Al及びCaを含む酸化物におけるAl/CaOがモル比で0.7〜1.3の酸化物の個数割合を30%以上とする。より好適には40%以上である。
Al 2 O 3 / CaO is a ratio of the number of oxides having a molar ratio of 0.7 to 1.3: 30% or more Al—Ca-based oxides are formed in molten steel and aggregated by being retained in the molten steel. To cluster. This cluster of Al—Ca-based oxide serves as a starting point of HIC and deteriorates the HIC resistance. In order to suppress the formation of Al—Ca-based oxide clusters, it is effective to lower the melting point of the oxide, and Al 2 O 3 and CaO have a molar ratio (Al 2 O 3 / CaO) of 1.0. Sometimes clustering can be most suppressed. Among the oxides containing Al and Ca, when the number ratio of the oxide having an Al 2 O 3 / CaO molar ratio of 0.7 to 1.3 is less than 30%, Al 2 O 3 or CaO becomes excessive and the molten steel A cluster is formed therein, and the HIC resistance is deteriorated. Therefore, Al 2 O 3 / CaO in the oxide containing Al and Ca is the number of oxides of 0.7 to 1.3 with 30% or more by molar ratio. More preferably, it is 40% or more.

続いて、本発明の極厚鋼板の製造方法について説明する。本発明の極厚鋼板は、上記成分組成からなる連続鋳造スラブを、1000〜1350℃の加熱温度T(℃)、300min以上の加熱保持時間t(min)で再加熱し、1パスあたりの圧下率が5%以上、全圧下率Rが10%以上でなおかつPCCTが0.95以下、SMNSが0以上およびSNBCNが0以上となる条件で熱間鍛造を行った後に空冷し、その後、880〜1300℃の加熱温度T、10min以上の加熱保持時間tで再加熱を行い、熱間圧延を行った後、空冷し、さらに、880℃以上1100℃以下の温度に再加熱した後、空冷する方法で製造できる。以下、製造条件について説明する。 Then, the manufacturing method of the extra-thick steel plate of this invention is demonstrated. The extra-thick steel plate of the present invention reheats a continuously cast slab having the above composition at a heating temperature T a (° C.) of 1000 to 1350 ° C. and a heating holding time t a (min) of 300 min or more per pass. After performing hot forging under conditions where the rolling reduction ratio is 5% or more, the total rolling reduction R is 10% or more, PCCT is 0.95 or less, SMNS is 0 or more, and SNBCN is 0 or more, After reheating at a heating temperature T b of 880 to 1300 ° C. and a heating holding time t b of 10 min or more, hot rolling, air cooling, and further reheating to a temperature of 880 ° C. or more and 1100 ° C. or less It can be manufactured by air cooling. Hereinafter, manufacturing conditions will be described.

熱間鍛造の際の加熱温度T:1000〜1350℃
鍛造は高温で行う方が、1パスあたりの圧下率を大きくしやすく、合金元素の拡散も促進できる。一方、加熱温度Tが1350℃を超えるとγ粒が粗大化し靭性の劣化を招く。そこで、上記加熱温度Tの上限を1350℃とする。また、加熱温度Tが1000℃を下回ると鍛造での圧下率を確保できず、長時間保持しても合金元素の拡散の効果が期待できない。そこで、加熱温度Tの下限を1000℃とする。
Heating temperature T a during hot forging: 1000 to 1350 ° C.
If forging is performed at a high temperature, the rolling reduction per pass can be easily increased, and the diffusion of alloy elements can be promoted. On the other hand, the heating temperature T a is lead by weight, the γ grains are deteriorated in toughness coarsened the 1350 ° C.. Therefore, the 1350 ° C. The upper limit of the heating temperature T a. Furthermore, can not be secured rolling reduction in forging and a heating temperature T a is below 1000 ° C., it can not be expected the effect of diffusion of the alloying elements be held for a long time. Therefore, the lower limit of the heating temperature T a and 1000 ° C..

熱間鍛造の際の加熱保持時間t:300min以上
鍛造加熱の高温保持によって、中心偏析のMnSおよびNbCNを固溶させることで耐HIC性能が向上する。固溶する条件は、後述する式(3)、後述する式(4)で定義する。これらの式はいずれも加熱保持時間tが300min以上でないとMnSやNbCNの固溶状態を担保できないため、下限を300minとする。なお、加熱保持時間tは生産性の観点から1440min以下であることが好ましい。
Heating retention time t a during the hot forging: the high temperature holding of 300min or more forging heating, HIC resistance is improved by making a solid solution of MnS and NbCN of center segregation. The conditions for solid solution are defined by equation (3) described later and equation (4) described later. Since these equations also heated holding time eventually t a is unable to ensure the solid solution state of the MnS or NbCN not more than 300 min, the lower limit and 300 min. It is preferable heating holding time t a is less 1440min from the viewpoint of productivity.

熱間鍛造の際の1パスあたりの圧下率:5%以上
鍛造における圧下率の確保は、ザクなどの圧着のために必要である。スラブ厚中央に発生するザクを圧着するためには、スラブ厚中央を圧下する必要があり、1パスあたりの圧下率が大きいほど、スラブ厚中央に加わる圧下が大きくなる。ザクなどを十分に圧着するためには、1パスあたりの圧下率を5%以上にする必要があるため、下限を5%とする。
Rolling rate per pass during hot forging: 5% or more Securing the rolling rate in forging is necessary for crimping such as zaku. In order to press-fit the zaku generated at the center of the slab thickness, it is necessary to reduce the center of the slab thickness, and as the rolling reduction per pass increases, the reduction applied to the center of the slab thickness increases. In order to sufficiently crimp zaku or the like, the rolling reduction per pass needs to be 5% or more, so the lower limit is set to 5%.

熱間鍛造の際の全圧下率R:10%以上
熱間鍛造における圧下率の確保は、ザクと呼ばれる未圧着部などの圧着のために必要である。スラブ厚中央に発生するザクを圧着するためには、スラブ厚中央を圧下する必要がある。全圧下率Rが大きいほど、ザクなどを圧着効果が大きく、十分にザクなどを圧着するためには、全圧下率Rを10%以上にする必要がある。このため、全圧下率Rの下限を10%とする。全圧下率Rの上限は特に限定されないが、全圧下率Rが大きくなりすぎると、その後の熱間圧延段階で、形状制御が困難となり歩留低下を招くため、40%以下が好ましい。
Total reduction ratio R in hot forging: 10% or more Securement of the reduction ratio in hot forging is necessary for pressure bonding of uncompressed parts called zaku. In order to press-fit the zaku generated at the center of the slab thickness, it is necessary to reduce the center of the slab thickness. The larger the total rolling reduction R is, the greater the effect of crimping zaku etc. is. In order to sufficiently crimp zaku etc., the total rolling reduction R needs to be 10% or more. For this reason, the lower limit of the total rolling reduction R is set to 10%. The upper limit of the total rolling reduction R is not particularly limited. However, if the total rolling reduction R is too large, shape control becomes difficult at the subsequent hot rolling stage, resulting in a decrease in yield.

PCCT:0.95以下
本発明では、鍛造時の加熱および鍛造圧下により中心偏析に濃化した元素を拡散、粉砕して中心偏析硬さを低減し、耐HIC性能を確保する。所望の中心偏析硬さに抑えるためには、式(2)で示されるPCCTを0.95以下にする必要がある。
PCCT=CP+MnP/6+0.116Cu+0.113Ni+0.236Cr+0.390Mo+0.348V+2PP・・・(2)
ただし、CP、MnPおよびPPは、以下の式(2−1)〜(2−3)で計算される値である。また、上記式(2)において、Cu、Ni、Cr、Mo、Vは、各元素の含有量(質量%)であり、含有しない場合は0とする。
CP=C+(0.77−C)erf(795・R/400000000/(((0.000023exp(−17800/(T+273)))60t0.5))・・・(2−1)
MnP=Mn+1.702Mn・erf(795/4000000/(((0.00004exp(−31511/(T+273)))60t0.5))・・・(2−2)
PP=P+10.18P・erf(795/4000000/(((0.00087exp(−0.4406/(T+273)))60t0.5))・・・(2−3)
ただし、上記式(2−1)〜(2−3)において、C、Mn、Pは各元素の含有量(質量%)で含有しない場合は0とする。Tは熱間鍛造時の加熱温度(℃)、tは熱間鍛造時の加熱保持時間(min)、Rは熱間鍛造時の全圧下率(%)、Tは熱間圧延時の加熱温度(℃)、tは熱間圧延時の加熱保持時間(min)である。なお、erfは誤差関数である。
PCCT: 0.95 or less In the present invention, the element concentrated in the center segregation is diffused and pulverized by heating and forging pressure during forging to reduce the center segregation hardness and ensure the HIC resistance. In order to suppress the center segregation hardness to a desired value, the PCCT represented by the formula (2) needs to be 0.95 or less.
PCCT = CP + MnP / 6 + 0.116Cu + 0.113Ni + 0.236Cr + 0.390Mo + 0.348V + 2PP (2)
However, CP, MnP and PP are values calculated by the following formulas (2-1) to (2-3). Moreover, in said formula (2), Cu, Ni, Cr, Mo, and V are content (mass%) of each element, and set it as 0 when not containing.
CP = C + (0.77−C) erf (795 · R / 400000000 / (((0.000023exp (−17800 / (T b +273))) 60t b ) 0.5 )) (2-1) )
MnP = Mn + 1.702 Mn · erf (795 / 4000,000 / (((0.00004exp (−31511 / (T a +273))) 60 t a ) 0.5 )) (2-2)
PP = P / 10.18P · erf (795 / 4000,000 / (((0.00087exp (−0.4406 / (T a +273))) 60 t a ) 0.5 )) (2-3)
However, in the above formulas (2-1) to (2-3), C, Mn, and P are set to 0 when not contained in the content (mass%) of each element. T a is the heating temperature (° C.) during hot forging, t a is the heating holding time (min) during hot forging, R is the total reduction ratio (%) during hot forging, and T b is during hot rolling. The heating temperature (° C.) and t b are the heating holding time (min) during hot rolling. Note that erf is an error function.

SMNS:0以上
耐HIC性能を確保するためには、中心偏析での伸長MnSの生成を抑制することが有効である。本発明では、鍛造時の加熱によって晶出したMnSを固溶させることにより耐HIC性能を確保する。式(3)で示されるSMNSが0以上のときに、スラブ中心偏析のMnSは固溶し耐HIC性能を劣化させなくなる。
SMNS=T+273−5560/(0.72−log[1.2Mn][S])・・・(3)
上記式(3)において、Mn、Sは、各元素の含有量(質量%)であり、含有しない場合は0とする。また、Tは熱間鍛造時の加熱温度である。なお、「log[1.2Mn][S]」はlog([1.2Mn]×[S])を意味する。
SMNS: 0 or more In order to ensure anti-HIC performance, it is effective to suppress the generation of elongated MnS due to center segregation. In the present invention, HIC resistance is ensured by dissolving MnS crystallized by heating during forging. When the SMNS represented by the formula (3) is 0 or more, the slab center segregated MnS is dissolved and does not deteriorate the HIC resistance.
SMNS = T a + 273-5560 / (0.72-log [1.2Mn] [S]) (3)
In said Formula (3), Mn and S are content (mass%) of each element, and set it as 0 when not containing. Further, T a is the heating temperature at the time of hot forging. “Log [1.2Mn] [S]” means log ([1.2Mn] × [S]).

SNBCN:0以上
耐HIC性能を確保するためには、中心偏析部でのNbCNの生成を抑制することが有効である。本発明では、熱間鍛造時の加熱によって晶出したNbCNを固溶させることにより、耐HIC性能を確保する。SNBCNが0以上のときに、スラブ中心偏析部のNbCNは固溶し耐HIC性能を確保することができる。このため、SNBCNは0以上とする。なお、NbCNについては、鋼中にTiが添加されている場合に、TiNと複合し、固溶しにくくなる。しかしながら、SNBCNを0以上にすることで、NbCNのクラスタ径を小さくでき、さらに上述した中心偏析部硬さを一定以下に抑えることにより優れた耐HIC性能を確保することができる。
SNBCN=T+273−6770/(2.26−log[5Nb][C+12N/14])・・・(4)
上記式(4)において、Nb、C、Nは、各元素の含有量(質量%)であり、含有しない場合は0とする。また、Tは熱間鍛造時の加熱温度である。なお、「log[5Nb][C+12N/14]」はlog([5Nb]×[C+12N/14])を意味する。
SNBCN: 0 or more In order to ensure anti-HIC performance, it is effective to suppress the generation of NbCN at the center segregation part. In the present invention, NbCN crystallized by heating at the time of hot forging is dissolved to ensure HIC resistance. When SNBCN is 0 or more, NbCN in the slab center segregation part can be solid-dissolved to ensure HIC resistance. For this reason, SNBCN is 0 or more. NbCN, when Ti is added to the steel, is complexed with TiN and hardly dissolves. However, by setting SNBCN to 0 or more, the cluster diameter of NbCN can be reduced, and further, excellent HIC resistance can be secured by suppressing the above-mentioned center segregation portion hardness to a certain level or less.
SNBCN = T a + 273-6770 / (2.26-log [5Nb] [C + 12N / 14]) (4)
In said formula (4), Nb, C, and N are content (mass%) of each element, and set it as 0 when not containing. Further, T a is the heating temperature at the time of hot forging. Note that “log [5Nb] [C + 12N / 14]” means log ([5Nb] × [C + 12N / 14]).

上記熱間鍛造を行った後、空冷する。空冷とは1℃/s以下の冷却速度で、200℃以下の温度域まで冷却することを意味する。   After performing the above hot forging, air cooling is performed. Air cooling means cooling to a temperature range of 200 ° C. or less at a cooling rate of 1 ° C./s or less.

熱間圧延の際の加熱温度T:880〜1300℃
熱間圧延時の加熱温度Tは、焼ならし前の組織を制御するために条件である。加熱温度Tが880℃未満になると、加熱段階で凝固まま組織が未変態で残り粗大化することで焼ならし後の靭性が下がる。そこで、加熱温度Tの下限を880℃とする。一方で、加熱温度Tが1300℃を超えると焼ならし後のミクロ組織が粗大となり靭性を確保できない。そこで、加熱温度Tは1300℃以下とする。
Heating temperature T b at the time of hot rolling: 880 to 1300 ° C.
Heating temperature T b at the time of hot rolling, a condition for controlling the normalizing previous tissue. When the heating temperature Tb is less than 880 ° C., the toughness after normalization is lowered because the structure remains untransformed in the heating stage and remains coarse. Therefore, the lower limit of the heating temperature T b and 880 ° C.. On the other hand, the heating temperature T b is the microstructure after normalizing baked exceeds 1300 ° C. can not secure the toughness becomes coarse. Therefore, the heating temperature Tb is set to 1300 ° C. or lower.

熱間圧延の際の加熱保持時間t:10min以上
熱間圧延時の加熱保持時間tは、長いほど合金元素の拡散効果が大きくなるため、長い方が好ましい。一方で、加熱保持時間tが10minを下回るとスラブが均一に加熱されず強度、靭性のばらつきが大きくなり、かつ、合金元素の拡散による中心偏析の改善効果も得られない。そのため、下限を10minとする。なお、生産性の観点からは加熱保持時間tは、720min以下が好ましい。
Heat holding time t b at the time of hot rolling: 10 min or longer The heat holding time t b at the time of hot rolling is preferably longer because the diffusion effect of the alloy element becomes larger as it is longer. On the other hand, the heating retention time t b is not heated slab uniformly below the 10min intensity, variation in toughness increases, and not be obtained the effect of improving the center segregation caused by the diffusion of alloying elements. Therefore, the lower limit is 10 min. The heating retention time t b from the viewpoint of productivity, less preferred 720Min.

上記熱間圧延の後、空冷する。「空冷」の意味は、上記熱間鍛造後の「空冷」と同様であるため説明を省略する。   After the hot rolling, air cooling is performed. Since the meaning of “air cooling” is the same as “air cooling” after the hot forging, the description thereof is omitted.

焼ならし加熱温度:880℃以上1100℃以下
上記熱間圧延後の、880℃以上1100℃以下への再加熱は焼ならしのための加熱に相当する。焼ならし加熱温度は組織を制御する条件である。焼ならし加熱温度が880℃未満になると加熱段階で圧延まま組織が未変態で残り粗大化することで靭性が下がる。このため、焼ならし加熱温度の下限を880℃とする。一方で、焼ならし加熱温度が1100℃を超えるとミクロ組織が粗大となり靭性を確保できない。このため、焼ならし加熱温度の上限を1100℃とする。
Normalizing heating temperature: 880 ° C. or higher and 1100 ° C. or lower Reheating to 880 ° C. or higher and 1100 ° C. or lower after the hot rolling corresponds to heating for normalizing. Normalizing heating temperature is a condition for controlling the structure. When the normalized heating temperature is less than 880 ° C., the structure remains untransformed as it is rolled in the heating stage, and the toughness decreases due to coarsening. For this reason, the lower limit of the normalizing heating temperature is set to 880 ° C. On the other hand, if the normalizing heating temperature exceeds 1100 ° C., the microstructure becomes coarse and toughness cannot be ensured. For this reason, the upper limit of the normalizing heating temperature is set to 1100 ° C.

上記焼ならしのための再加熱後、空冷する。「空冷」の意味は、上記熱間鍛造後の「空冷」と同様であるため説明を省略する。   After reheating for normalization, air-cool. Since the meaning of “air cooling” is the same as “air cooling” after the hot forging, the description thereof is omitted.

本発明では、必要な強度、靭性を得るために、焼ならし後に焼戻しを行うことができる。以下にその規定理由を述べる。   In the present invention, tempering can be performed after normalization in order to obtain the required strength and toughness. The reasons for the provision are described below.

焼戻し温度:480〜720℃
空冷後、焼戻し熱処理を行ってもよい。焼戻しは、強度調整や靭性の改善、さらにはSR(Stress Relief、歪取り)熱処理やPWHT(Post Welding Heat Treatment、溶接後熱処理)を行った際の強度、靭性変化を小さくするために実施する。480℃未満の温度では、焼戻しの効果が得られないため、下限を480℃とする。一方で、720℃を超える温度では、強度低下が大きく所望の強度を得られないため上限を720℃とする。
Tempering temperature: 480-720 ° C
A tempering heat treatment may be performed after air cooling. Tempering is performed to improve strength and toughness, and to reduce changes in strength and toughness when performing SR (Stress Relief) heat treatment or PWHT (Post Welding Heat Treatment). At a temperature lower than 480 ° C., the tempering effect cannot be obtained, so the lower limit is set to 480 ° C. On the other hand, at temperatures exceeding 720 ° C., the strength is greatly reduced and the desired strength cannot be obtained, so the upper limit is set to 720 ° C.

次に、鋼の溶製方法のうち、Caの添加方法について説明する。   Next, the addition method of Ca is demonstrated among the melting methods of steel.

本発明で規定されるAlとCaからなる酸化物の組成比を適正範囲に制御するためには、Caの添加量を厳密に制御することが好ましい。本発明においては、溶鋼のInsol.Alを分析し、その分析結果をもとに、溶鋼中のAl/CaOが、モル比で0.7〜1.3になるようにCa源を添加することが好ましい。なお、Insol.Alとは、insuluble Alのことで、鋼中の全Al量のうち、酸不溶性のAl量を指す。 In order to control the composition ratio of Al and Ca oxides defined in the present invention within an appropriate range, it is preferable to strictly control the amount of Ca added. In the present invention, molten steel Insol. It is preferable to analyze Al and add a Ca source so that Al 2 O 3 / CaO in the molten steel has a molar ratio of 0.7 to 1.3 based on the analysis result. Insol. Al is insulable Al, and refers to the amount of acid-insoluble Al in the total amount of Al in steel.

従来のプロセスでは、一般に、溶鋼中のAl量が未知の状態でCa源を添加していた。その原因は、O量を分析するためには、燃焼分析を行う必要があり、Ca源の添加までにO量分析が間に合わなかったためである。本発明では、発光分光分析法によりInsol.Al量を分析して、溶鋼中のAl量を推定することが好ましい。Ca添加量の狙いは、Al:CaOを1:1に近づける点であり、それを満足するためには、溶鋼中のAl/CaOがモル比で0.7〜1.3になるように、Caを添加することが好ましい。 In the conventional process, the Ca source is generally added in a state where the amount of Al 2 O 3 in the molten steel is unknown. The cause is that in order to analyze the amount of O, it is necessary to perform a combustion analysis, and the amount of O analysis was not in time until the addition of the Ca source. In the present invention, Insol. It is preferable to estimate the amount of Al 2 O 3 in the molten steel by analyzing the amount of Al. The aim of the Ca addition amount is to bring Al 2 O 3 : CaO close to 1: 1, and in order to satisfy it, Al 2 O 3 / CaO in the molten steel has a molar ratio of 0.7 to 1. It is preferable to add Ca so as to be 3.

Ca添加前にInsol.Alを迅速分析し、Al/CaOを種々変化させた表1に示す溶鋼を、鋳造速度0.6mm/minで連続鋳造し(スラブ厚300mm)、表2に示す条件で熱間鍛造、空冷、空冷後加熱し熱間圧延、空冷、焼ならし、空冷、必要に応じてその後焼戻しを行った。Ca添加はCa−Siワイヤを用い、ワイヤ重量とCa含有率との関係より添加Ca量を管理して添加した。Ca歩留りは過去のデータをもとに0.3%として添加した。 Before adding Ca, Insol. The molten steel shown in Table 1 with a rapid analysis of Al and various changes in Al 2 O 3 / CaO was continuously cast at a casting speed of 0.6 mm / min (slab thickness 300 mm), and hot forging under the conditions shown in Table 2 Then, air-cooling, air-cooling, heating and hot rolling, air-cooling, normalizing, air-cooling, and subsequent tempering as necessary. Ca was added using a Ca—Si wire by controlling the amount of added Ca based on the relationship between the wire weight and the Ca content. Ca yield was added as 0.3% based on past data.

Figure 2017048443
Figure 2017048443

Figure 2017048443
Figure 2017048443

得られた鋼板について、引張試験、HIC試験を行った。   About the obtained steel plate, the tension test and the HIC test were done.

引張試験は、C方向板厚方向1/4位置から直径12.7mmの丸棒引張試験片を採取し、引張強度を測定した。目標値は、ASTM−A516−65の下限値である450MPaとした。   In the tensile test, a round bar tensile test piece having a diameter of 12.7 mm was sampled from a 1/4 position in the thickness direction of the C direction, and the tensile strength was measured. The target value was 450 MPa, which is the lower limit value of ASTM-A516-65.

HIC試験は、NACE TM0284−2003に従って行い、溶液は同規格で規定されているA液を用いた。なお、同規格では、板厚が30mmを超えると板厚方向に複数の試験片を採取するように求められているため、板厚方向の規定本数×3(例えば、板厚100mmでは5×3=15本)試験を実施し、その最大CLR(3断面の平均値)を求めた。目標値は、CLRで15%以下とした。   The HIC test was performed according to NACE TM0284-2003, and the solution A used was the same standard. In the same standard, when the plate thickness exceeds 30 mm, it is required to collect a plurality of test pieces in the plate thickness direction. Therefore, the specified number in the plate thickness direction × 3 (for example, 5 × 3 at the plate thickness of 100 mm). = 15) The test was carried out, and the maximum CLR (average value of three cross sections) was obtained. The target value was 15% or less in CLR.

ミクロ組織は、鋼板L方向(圧延方向)断面を5%ナイタールでエッチングした後、光学顕微鏡でフェライト分率を求めた。また、電子顕微鏡でフェライト相以外の箇所の観察を行い、パーライト、ベイナイト、その他の組織(セメンタイト、MAなど)の3種類に分類し、パーライトとベイナイトの分率を求めた。観察位置は、HICとの相関を考慮して、中心偏析部で行った。   The microstructure was obtained by etching the steel plate L direction (rolling direction) cross section with 5% nital and then obtaining the ferrite fraction with an optical microscope. Moreover, the part other than a ferrite phase was observed with the electron microscope, and it classified into three types, pearlite, bainite, and other structures (cementite, MA, etc.), and calculated | required the fraction of pearlite and bainite. The observation position was performed at the center segregation part in consideration of the correlation with HIC.

中心偏析硬さはミクロ組織観察に用いた試験片を用い、荷重50gのマイクロビッカース硬度試験で中心偏析部の20点のビッカース硬さを測定し、最高値を用いた。   The center segregation hardness was determined by measuring the 20-point Vickers hardness of the center segregation part in a micro Vickers hardness test with a load of 50 g using the specimen used for the microstructure observation, and using the highest value.

中心偏析部での空隙、MnS系介在物、Nb、Tiあるいはその両方からなる介在物、Al、Caあるいはその両方からなる介在物クラスタの長径の測定は、鋼板L方向断面を5%ナイタールでエッチングし、光学顕微鏡で観察することで行った。中心偏析部でみられる最大長径のものを測定した。   To measure the major axis of voids at the center segregation part, inclusions made of MnS inclusions, inclusions made of Nb, Ti or both, inclusion clusters made of Al, Ca or both, the steel sheet L direction section was etched with 5% nital. And by observing with an optical microscope. The one with the longest major axis seen at the center segregation part was measured.

酸化物中のAl/CaO比率は、鏡面研磨したサンプルを電子顕微鏡で観察し、球状介在物に対してEDX(エネルギー分散型X線分析法)で介在物組成分析を行うことにより求めた。介在物の組成比は、ばらつきを考慮して、1つの鋼板に対して100個以上測定し、その平均値を求めた。 The Al 2 O 3 / CaO ratio in the oxide is obtained by observing a mirror-polished sample with an electron microscope and performing inclusion composition analysis on the spherical inclusion by EDX (energy dispersive X-ray analysis). It was. The composition ratio of inclusions was measured for 100 or more per steel plate in consideration of variation, and the average value was obtained.

試験結果を表3に示す。本発明例ではいずれの特性も満足しているのに対し、比較例は引張強度、HIC性能のいずれか劣化していることがわかる。   The test results are shown in Table 3. In the example of the present invention, all the characteristics are satisfied, while in the comparative example, it is understood that either the tensile strength or the HIC performance is deteriorated.

Figure 2017048443
Figure 2017048443

Claims (4)

質量%で、C:0.030〜0.200%、Si:0.50%以下、Mn:0.60〜1.60%、P:0.020%以下、S:0.0015%以下、Al:0.060%以下、Ca:0.0010〜0.0040%、N:0.0050%以下、O:0.0030%以下を含有し、さらに、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、Nb:0.050%以下、V:0.100%以下、Ti:0.020%以下、B:0.0030%以下の1種もしくは2種以上を含有し、式(1)で示されるPcmが0.280以下を満たし、残部がFeおよび不可避的不純物からなる成分組成と、
フェライト、パーライトおよびベイナイトの面積率が合計で95%以上であり、中心偏析部のビッカース硬さが300以下であり、中心偏析部に存在する空隙、MnS系介在物、Nb及び/又はTiからなる介在物、Al及び/又はCaからなる介在物クラスタの長径が200μm未満であり、Al及びCaを含む酸化物におけるAl/CaOがモル比で0.7〜1.3の酸化物の個数割合が30%以上であるミクロ組織と、を有し、
板厚が50mm以上であることを特徴とする耐HIC性能に優れた極厚鋼板。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B (1)
式(1)における元素記号は各元素の含有量(質量%)を意味し、含まないものは0とする。
In mass%, C: 0.030 to 0.200%, Si: 0.50% or less, Mn: 0.60 to 1.60%, P: 0.020% or less, S: 0.0015% or less, Al: 0.060% or less, Ca: 0.0010 to 0.0040%, N: 0.0050% or less, O: 0.0030% or less, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, Nb: 0.050% or less, V: 0.100% or less, Ti: 0.020% or less, B: 0.00. A component composition containing one or more of 0030% or less, Pcm represented by the formula (1) satisfying 0.280 or less, and the balance comprising Fe and inevitable impurities;
The area ratio of ferrite, pearlite and bainite is 95% or more in total, the Vickers hardness of the center segregation part is 300 or less, and consists of voids, MnS inclusions, Nb and / or Ti present in the center segregation part. Inclusion, the major axis of the inclusion cluster composed of Al and / or Ca is less than 200 μm, and the oxide containing Al and Ca contains Al 2 O 3 / CaO in a molar ratio of 0.7 to 1.3. Having a microstructure with a number ratio of 30% or more,
An ultra-thick steel plate with excellent HIC resistance, characterized in that the plate thickness is 50 mm or more.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
The element symbol in the formula (1) means the content (% by mass) of each element, and 0 is not included.
溶製された溶鋼を連続鋳造して得られた請求項1に記載の成分組成からなる連続鋳造スラブを、1000〜1350℃の加熱温度T(℃)、300min以上の加熱保持時間t(min)で再加熱し、1パスあたりの圧下率が5%以上、全圧下率Rが10%以上、式(2)で示されるPCCTが0.95以下、式(3)で示されるSMNSが0以上および式(4)で示されるSNBCNが0以上となる条件で熱間鍛造を行った後に空冷し、
その後、880〜1300℃の加熱温度T、10min以上の加熱保持時間tで再加熱を行い、熱間圧延を行った後、空冷し、さらに、880℃以上1100℃以下の温度に再加熱した後、空冷することを特徴とする板厚50mm以上の耐HIC性能に優れた極厚鋼板の製造方法。
PCCT=CP+MnP/6+0.116Cu+0.113Ni+0.236Cr+0.390Mo+0.348V+2PP・・・(2)
SMNS=T+273−5560/(0.72−log[1.2Mn][S])・・・(3)
SNBCN=T+273−6770/(2.26−log[5Nb][C+12N/14])・・・(4)
ただし、CP、MnPおよびPPは、以下の式(2−1)〜(2−3)で計算される値である。また、上記式(2)〜(4)において、Cu、Ni、Cr、Mo、V、Mn、S、Nb、C、Nは、各元素の含有量(質量%)であり、含有しない場合は0とする。また、Taは熱間鍛造時の加熱温度である。
CP=C+(0.77−C)erf(795・R/400000000/(((0.000023exp(−17800/(T+273)))60t0.5))・・・(2−1)
MnP=Mn+1.702Mn・erf(795/4000000/(((0.00004exp(−31511/(T+273)))60t0.5))・・・(2−2)
PP=P+10.18P・erf(795/4000000/(((0.00087exp(−0.4406/(T+273)))60t0.5))・・・(2−3)
ただし、上記式(2−1)〜(2−3)において、C、Mn、Pは各元素の含有量(質量%)で含有しない場合は0とする。Taは熱間鍛造時の加熱温度(℃)、tは熱間鍛造時の加熱保持時間(min)、Rは熱間鍛造時の全圧下率(%)、Tは熱間圧延時の加熱温度(℃)、tは熱間圧延時の加熱保持時間(min)である。なお、erfは誤差関数である。
A continuous casting slab comprising the component composition according to claim 1 obtained by continuously casting molten steel, a heating temperature T a (° C.) of 1000 to 1350 ° C., a heating holding time t a (300 min or more). min)), the reduction rate per pass is 5% or more, the total reduction rate R is 10% or more, the PCCT represented by the equation (2) is 0.95 or less, and the SMNS represented by the equation (3) is After performing hot forging under the condition that 0 or more and SNBCN represented by formula (4) is 0 or more, air cooling,
Then, after reheating at a heating temperature T b of 880 to 1300 ° C. and a heating holding time t b of 10 min or longer, hot rolling is performed, and then air-cooled, and further reheated to a temperature of 880 ° C. or higher and 1100 ° C. or lower. After that, a method for producing an extra-thick steel plate having excellent HIC resistance with a thickness of 50 mm or more, which is air-cooled.
PCCT = CP + MnP / 6 + 0.116Cu + 0.113Ni + 0.236Cr + 0.390Mo + 0.348V + 2PP (2)
SMNS = T a + 273-5560 / (0.72-log [1.2Mn] [S]) (3)
SNBCN = T a + 273-6770 / (2.26-log [5Nb] [C + 12N / 14]) (4)
However, CP, MnP and PP are values calculated by the following formulas (2-1) to (2-3). Moreover, in said formula (2)-(4), Cu, Ni, Cr, Mo, V, Mn, S, Nb, C, and N are content (mass%) of each element, and when not containing 0. Ta is the heating temperature during hot forging.
CP = C + (0.77−C) erf (795 · R / 400000000 / (((0.000023exp (−17800 / (T b +273))) 60t b ) 0.5 )) (2-1) )
MnP = Mn + 1.702 Mn · erf (795 / 4000,000 / (((0.00004exp (−31511 / (T a +273))) 60 t a ) 0.5 )) (2-2)
PP = P / 10.18P · erf (795 / 4000,000 / (((0.00087exp (−0.4406 / (T a +273))) 60 t a ) 0.5 )) (2-3)
However, in the above formulas (2-1) to (2-3), C, Mn, and P are set to 0 when not contained in the content (mass%) of each element. Ta is heating temperature at the time of hot forging (℃), t a heating holding time at the time of hot forging (min), R is the total reduction ratio during hot forging (%), T b is the time of hot rolling the heating temperature (℃), t b is the heating holding time at the time of hot rolling (min). Note that erf is an error function.
880℃以上1100℃以下の温度に再加熱した後の空冷後に、480〜720℃の温度範囲に焼戻し熱処理を行うことを特徴とする請求項2に記載の極厚鋼板の製造方法。   The method for producing an extra-thick steel plate according to claim 2, wherein tempering heat treatment is performed in a temperature range of 480 to 720 ° C after air cooling after reheating to a temperature of 880 ° C to 1100 ° C. 前記溶鋼のInsol.Alを分析し、その分析結果をもとに、前記溶鋼中のAl/CaOがモル比で0.7〜1.3になるようにCaを添加することを特徴とする請求項2又は3に記載の極厚鋼板の製造方法。 Insol. The aluminum is analyzed, and Ca is added so that Al 2 O 3 / CaO in the molten steel has a molar ratio of 0.7 to 1.3 based on the analysis result. Or the manufacturing method of the extra-thick steel plate of 3.
JP2015174561A 2015-09-04 2015-09-04 Extra-thick steel plate and manufacturing method thereof Active JP6447426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174561A JP6447426B2 (en) 2015-09-04 2015-09-04 Extra-thick steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174561A JP6447426B2 (en) 2015-09-04 2015-09-04 Extra-thick steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017048443A true JP2017048443A (en) 2017-03-09
JP6447426B2 JP6447426B2 (en) 2019-01-09

Family

ID=58278927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174561A Active JP6447426B2 (en) 2015-09-04 2015-09-04 Extra-thick steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6447426B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733892A4 (en) * 2017-12-26 2021-01-06 Posco Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
EP3733904A4 (en) * 2017-12-26 2021-03-03 Posco Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
JP2022510933A (en) * 2018-11-29 2022-01-28 ポスコ Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP2023507946A (en) * 2019-12-16 2023-02-28 ポスコホールディングス インコーポレーティッド Structural steel and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089812A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Production method of continuously cast extremely thick steel plate excellent in hic resistance characteristic
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe
WO2013190750A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
JP2014201815A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor
JP2015178647A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Extra thick steel plate excellent in hic resistance performance and production method thereof
JP2016089187A (en) * 2014-10-30 2016-05-23 Jfeスチール株式会社 Super thin steel sheet excellent in hic resistance performance and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089812A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Production method of continuously cast extremely thick steel plate excellent in hic resistance characteristic
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe
WO2013190750A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
JP2014201815A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor
JP2015178647A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Extra thick steel plate excellent in hic resistance performance and production method thereof
JP2016089187A (en) * 2014-10-30 2016-05-23 Jfeスチール株式会社 Super thin steel sheet excellent in hic resistance performance and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733892A4 (en) * 2017-12-26 2021-01-06 Posco Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
EP3733904A4 (en) * 2017-12-26 2021-03-03 Posco Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
JP2021509436A (en) * 2017-12-26 2021-03-25 ポスコPosco Steel materials with excellent hydrogen-induced cracking resistance and their manufacturing methods
JP7221477B2 (en) 2017-12-26 2023-02-14 ポスコ カンパニー リミテッド Steel material excellent in resistance to hydrogen-induced cracking and method for producing the same
JP7221477B6 (en) 2017-12-26 2023-02-28 ポスコ カンパニー リミテッド Steel material excellent in resistance to hydrogen-induced cracking and method for producing the same
US11634785B2 (en) 2017-12-26 2023-04-25 Posco Co., Ltd Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
JP2022510933A (en) * 2018-11-29 2022-01-28 ポスコ Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP7221476B2 (en) 2018-11-29 2023-02-14 ポスコ カンパニー リミテッド Steel material excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7221476B6 (en) 2018-11-29 2023-02-28 ポスコ カンパニー リミテッド Steel material excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2023507946A (en) * 2019-12-16 2023-02-28 ポスコホールディングス インコーポレーティッド Structural steel and its manufacturing method
JP7395750B2 (en) 2019-12-16 2023-12-11 ポスコホールディングス インコーポレーティッド Structural steel materials and their manufacturing method

Also Published As

Publication number Publication date
JP6447426B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
US10358688B2 (en) Steel plate and method of producing same
JP5618036B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5733484B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP6086086B2 (en) Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
JP6222041B2 (en) Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
JP6447426B2 (en) Extra-thick steel plate and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2020012168A (en) Thick steel sheet for sour resistant linepipe, and manufacturing method therefor
WO2014141633A1 (en) Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
JPWO2018216665A1 (en) Thick steel plate and method of manufacturing the same
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507746B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP2005256115A (en) High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
WO2014073415A1 (en) Steel member and process for producing same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
WO2016060141A1 (en) Steel for high-energy-input welding
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
WO2017077967A1 (en) Steel member and steel plate, and production processes therefor
JP2017066516A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP6536459B2 (en) Thick steel plate and method of manufacturing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250