JP2017045634A - Method for producing substrate with transparent conductive film and substrate with transparent conductive film - Google Patents

Method for producing substrate with transparent conductive film and substrate with transparent conductive film Download PDF

Info

Publication number
JP2017045634A
JP2017045634A JP2015167561A JP2015167561A JP2017045634A JP 2017045634 A JP2017045634 A JP 2017045634A JP 2015167561 A JP2015167561 A JP 2015167561A JP 2015167561 A JP2015167561 A JP 2015167561A JP 2017045634 A JP2017045634 A JP 2017045634A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
substrate
specific resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015167561A
Other languages
Japanese (ja)
Inventor
伊村 正明
Masaaki Imura
正明 伊村
圭市 北村
Keiichi Kitamura
圭市 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015167561A priority Critical patent/JP2017045634A/en
Publication of JP2017045634A publication Critical patent/JP2017045634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for producing a substrate with a transparent conductive film, the substrate being low in specific resistance and excellent in surface flatness; and a substrate with a transparent conductive film.SOLUTION: In a method for producing a substrate 10 with a transparent conductive film, a first transparent conductive film 2 is formed on a substrate 1, and a second transparent conductive film 3 is formed on the first transparent conductive film. The first transparent conductive film is formed at a temperature lower than the crystallization temperature of a material constituting the first transparent conductive film, and the second transparent conductive film is formed at a temperature higher than the crystallization temperature of a material constituting the second transparent conductive film.SELECTED DRAWING: Figure 1

Description

本発明は、透明導電膜付き基板の製造方法及び透明導電膜付き基板に関し、特にOLED(Organic Light Emitted Diode)照明に好適な透明導電膜付き基板の製造方法及び透明導電膜付き基板に関する。   The present invention relates to a method for manufacturing a substrate with a transparent conductive film and a substrate with a transparent conductive film, and more particularly to a method for manufacturing a substrate with a transparent conductive film suitable for OLED (Organic Light Emitted Diode) illumination and a substrate with a transparent conductive film.

OLED照明は自発光型の照明であり、照明装置やディスプレイの用途に用いられる。OLED照明は、軽量であり、かつ薄いため、従来の照明では実現できなかった形状を実現できる可能性を持っている。   OLED illumination is self-luminous illumination and is used for lighting devices and displays. Since OLED illumination is lightweight and thin, it has a possibility of realizing a shape that cannot be realized by conventional illumination.

OLED照明は、ガラス基板等の基板と、陽極である透明導電膜と(以下、透明導電膜を配した基板を透明導電膜付き基板と言う。)、電流の入力によって発光する有機化合物からなる一層または複数層の発光層を含む有機EL層と、陰極とを備えている。OLED照明の有機EL層には、低分子色素系材料や共役高分子系材料などの有機化合物が用いられており、有機EL層は、発光層と、ホール注入層、ホール輸送層、電子輸送層、電子注入層などとの積層構造と形成している。このような積層構造を有する有機EL層を、陽極と陰極の間に配置し、陽極と陰極に電界を印加することにより、陽極である透明電極から注入された正孔と、陰極から注入された電子とが、発光層内で再結合する。再結合エネルギーによって発光中心が励起され、励起状態から基底状態に戻る際に有機EL層が発光する。   OLED illumination is a single layer composed of a substrate such as a glass substrate, a transparent conductive film as an anode (hereinafter, a substrate provided with a transparent conductive film is referred to as a substrate with a transparent conductive film), and an organic compound that emits light when current is input. Alternatively, an organic EL layer including a plurality of light emitting layers and a cathode are provided. An organic compound such as a low molecular dye material or a conjugated polymer material is used for the organic EL layer of OLED illumination. The organic EL layer includes a light emitting layer, a hole injection layer, a hole transport layer, and an electron transport layer. And a laminated structure with an electron injection layer or the like. An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode Electrons recombine in the light emitting layer. The emission center is excited by the recombination energy, and the organic EL layer emits light when returning from the excited state to the ground state.

従来、透明導電膜には、OLED照明に用いるのに十分に低い比抵抗を有することが求められており、そのために、透明導電膜は結晶化されている必要があった。しかし、結晶化した透明導電膜の表面には突起が形成されやすく、その様な透明導電膜を基板に配した透明導電膜付き基板をOLED照明に用いた場合、ダークスポット不良による寿命の低下という問題が起こる。ダークスポット不良とは、OLED照明を長時間使用した場合に、非発光点(黒点)が現れ、OLED照明の品質を劣化させることをいう。ダークスポット不良の原因の一つは、透明導電膜の表面の突起部分で電流が集中して、素子が破壊されるためである。そのため、透明導電膜を形成した後に、当該透明導電膜を研磨して突起を除去している。しかし、透明導電膜の形成後に研磨を行うことは、工程数を増加させ、コストアップにつながるため、研磨を行わずとも突起の無い透明導電膜付き基板が得られる方法の開発が望まれていた。   Conventionally, a transparent conductive film has been required to have a sufficiently low specific resistance for use in OLED illumination. For this reason, the transparent conductive film has to be crystallized. However, protrusions are likely to be formed on the surface of the crystallized transparent conductive film, and when a substrate with a transparent conductive film in which such a transparent conductive film is arranged on the substrate is used for OLED illumination, the life is reduced due to dark spot defects. Problems arise. The dark spot defect means that when OLED illumination is used for a long time, non-light emitting points (black spots) appear and the quality of the OLED illumination is deteriorated. One cause of the dark spot failure is that current concentrates on the protrusions on the surface of the transparent conductive film, and the device is destroyed. Therefore, after forming a transparent conductive film, the said transparent conductive film is grind | polished and the protrusion is removed. However, polishing after the formation of the transparent conductive film increases the number of steps and leads to an increase in cost. Therefore, it has been desired to develop a method for obtaining a substrate with a transparent conductive film having no protrusion without polishing. .

このような問題を解決する手段として、酸化インジウムスズ(ITO)に第3元素を添加したり、酸化インジウムにSn以外の元素を添加して透明導電膜表面の突起を減らす試みがなされてきた(例えば特許文献1〜7)。しかし上記方法はいずれもインジウム、スズ以外の元素を使用しているため、有機EL層中へ異種元素が拡散することによる悪影響が懸念された。また添加した元素によっては、透明導電膜に回路を形成するためにアルカリ性溶液でエッチング処理する際に、透明導電膜が剥がれるという問題があった。更に、第3元素添加により正孔やホールの移動が妨げられるため、透明導電膜の比抵抗が十分に低くならなかった。また、透明導電膜の突起も十分に減少しなかった。   As means for solving such problems, attempts have been made to reduce the protrusions on the surface of the transparent conductive film by adding a third element to indium tin oxide (ITO) or adding an element other than Sn to indium oxide ( For example, Patent Documents 1 to 7). However, since any of the above methods uses elements other than indium and tin, there is a concern about the adverse effects caused by diffusion of different elements into the organic EL layer. In addition, depending on the added element, there is a problem that the transparent conductive film is peeled off when etching with an alkaline solution to form a circuit in the transparent conductive film. Furthermore, since the addition of the third element hinders the movement of holes and holes, the specific resistance of the transparent conductive film was not sufficiently lowered. Moreover, the protrusion of the transparent conductive film was not sufficiently reduced.

そこで、第3元素を添加せずに、上記問題を解決する方法として、多結晶質の透明導電性膜の上に非晶質の透明導電性膜を形成した2層構成の透明導電膜を有する透明電極が提案されている(例えば特許文献8)。   Therefore, as a method for solving the above problem without adding a third element, a transparent conductive film having a two-layer structure in which an amorphous transparent conductive film is formed on a polycrystalline transparent conductive film is provided. A transparent electrode has been proposed (for example, Patent Document 8).

特開2000−129432号公報JP 2000-129432 A 特開2000−169219号公報JP 2000-169219 A 特開2000−169220号公報JP 2000-169220 A 特開2000−185968号公報JP 2000-185968 A 特開2001−151572号公報JP 2001-151572 A 特開2001−307553号公報JP 2001-307553 A 特開2002−050231号公報Japanese Patent Laid-Open No. 2002-050231 特開2002−100483号公報JP 2002-1000048 A

しかしながら、特許文献8の透明電極は、表面に非晶質の透明導電性膜が形成されていることにより、突起が形成されにくくなるものの、比抵抗が高くなる傾向にある。   However, although the transparent electrode of Patent Document 8 has an amorphous transparent conductive film formed on the surface, it is difficult to form protrusions, but the specific resistance tends to increase.

本発明は、上記課題を解決するためになされたものであり、比抵抗が低く、かつ突起の少ない透明導電膜を有する透明導電膜付き基板の製造方法及び透明導電膜付き基板を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a method for manufacturing a substrate with a transparent conductive film having a transparent conductive film having a low specific resistance and a small number of protrusions, and a substrate with a transparent conductive film. Objective.

本発明者等は、上記課題を解決するために種々検討した結果、透明導電膜を形成する温度条件を調整することにより、透明導電膜に突起が形成されにくく、透明導電膜の比抵抗が低くなることを見出し、本発明を提案するに至った。   As a result of various studies to solve the above problems, the present inventors have adjusted the temperature conditions for forming the transparent conductive film, so that protrusions are hardly formed on the transparent conductive film, and the specific resistance of the transparent conductive film is low. As a result, the present invention has been proposed.

本発明の透明導電膜付き基板の製造方法は、基板上に第1透明導電膜を形成し、前記第1透明導電膜上に第2透明導電膜を形成する透明導電膜付き基板の製造方法であって、前記第1透明導電膜を構成する材料の結晶化温度よりも低い温度で第1透明導電膜を形成し、
前記第2透明導電膜を構成する材料の結晶化温度よりも高い温度で第2透明導電膜を形成することを特徴とする。
The manufacturing method of the board | substrate with a transparent conductive film of this invention is a manufacturing method of the board | substrate with a transparent conductive film which forms a 1st transparent conductive film on a board | substrate, and forms a 2nd transparent conductive film on the said 1st transparent conductive film. And forming the first transparent conductive film at a temperature lower than the crystallization temperature of the material constituting the first transparent conductive film,
The second transparent conductive film is formed at a temperature higher than the crystallization temperature of the material constituting the second transparent conductive film.

このように、第1透明導電膜を構成する材料の結晶化温度よりも低い温度で第1透明導電膜を形成し、第2透明導電膜を構成する材料の結晶化温度よりも高い温度で第2透明導電膜を形成することにより、透明導電膜に突起が形成されにくく、かつ、比抵抗が低くなる。これは、形成された第1透明導電膜は結晶性が低いため、表面が平滑となっており、平滑面上に、第2透明導電膜が形成されるためである。また、第2透明導電膜を形成する際に、結晶性の低い第1透明導電膜も加熱され、第1透明導電膜の結晶化も進行するためと考えられる。第1透明導電膜の結晶化の進行と、第2透明導電膜の形成が同時に起こることにより、第2透明導電膜が第1透明導電膜表面の影響を受け、配向性の良い第2透明導電膜が得られ、突起が形成されにくくなると考えられる。また第2透明導電膜は配向性が良いために、比抵抗が低くなると考えられる。   Thus, the first transparent conductive film is formed at a temperature lower than the crystallization temperature of the material constituting the first transparent conductive film, and the first transparent conductive film is formed at a temperature higher than the crystallization temperature of the material constituting the second transparent conductive film. By forming the two transparent conductive films, protrusions are hardly formed on the transparent conductive film, and the specific resistance is reduced. This is because the formed first transparent conductive film has low crystallinity and thus has a smooth surface, and the second transparent conductive film is formed on the smooth surface. Moreover, when forming a 2nd transparent conductive film, it is thought that the 1st transparent conductive film with low crystallinity is also heated, and crystallization of a 1st transparent conductive film also advances. Due to the simultaneous progress of crystallization of the first transparent conductive film and the formation of the second transparent conductive film, the second transparent conductive film is affected by the surface of the first transparent conductive film, and the second transparent conductive film having good orientation. It is considered that a film is obtained, and it becomes difficult to form protrusions. In addition, since the second transparent conductive film has good orientation, it is considered that the specific resistance is lowered.

上記の構成において、前記第1透明導電膜及び前記第2透明導電膜はITO膜であり、前記第1透明導電膜は、50〜140℃で形成されることが好ましい。   Said structure WHEREIN: It is preferable that the said 1st transparent conductive film and the said 2nd transparent conductive film are ITO films | membranes, and the said 1st transparent conductive film is formed at 50-140 degreeC.

上記の温度で第1透明導電膜を形成することにより、第1透明導電膜を形成する段階において、非晶質構造となる。そのため、透明導電膜に突起が形成されにくい。   By forming the first transparent conductive film at the above temperature, an amorphous structure is obtained in the stage of forming the first transparent conductive film. Therefore, it is difficult to form protrusions on the transparent conductive film.

上記の構成において、前記第1透明導電膜及び前記第2透明導電膜は、不活性ガスと酸素ガスを含む混合ガスを用いたスパッタリング法により形成され、前記第1透明導電膜の形成時における酸素分圧は、前記第2透明導電膜の形成時における酸素分圧よりも低いことが好ましい。   In the above configuration, the first transparent conductive film and the second transparent conductive film are formed by a sputtering method using a mixed gas containing an inert gas and an oxygen gas, and oxygen at the time of forming the first transparent conductive film The partial pressure is preferably lower than the oxygen partial pressure during the formation of the second transparent conductive film.

第1透明導電膜の形成時における酸素分圧が、第2透明導電膜の形成時における酸素分圧よりも低いことにより、透明導電膜に突起が形成されにくくなりやすい。   Since the oxygen partial pressure at the time of forming the first transparent conductive film is lower than the oxygen partial pressure at the time of forming the second transparent conductive film, it is difficult to form protrusions on the transparent conductive film.

本発明の透明導電膜付き基板は、基板と、前記基板上に配された第1透明導電膜と、前記第1透明導電膜上に配された、前記第1透明導電膜よりも比抵抗の低い第2透明導電膜とを備えることを特徴とする。   The substrate with a transparent conductive film of the present invention has a specific resistance higher than that of the first transparent conductive film disposed on the substrate, the first transparent conductive film disposed on the substrate, and the first transparent conductive film. And a low second transparent conductive film.

このような透明導電膜付き基板は、第1透明導電膜と、第1透明導電膜よりも結晶化が進行しており、比抵抗の低い第2透明導電膜を有するため、突起が少なく、かつ比抵抗が低い。   Such a substrate with a transparent conductive film has a first transparent conductive film and a second transparent conductive film having a lower specific resistance because crystallization has progressed more than the first transparent conductive film, and there are few protrusions, and Low specific resistance.

上記の構成において、前記第2透明導電膜の外表面の表面粗さRが30nm以下であることが好ましい。 Said structure WHEREIN: It is preferable that the surface roughness Rz of the outer surface of a said 2nd transparent conductive film is 30 nm or less.

第2透明導電膜の外表面の表面粗さRが30nm以下であれば、この透明導電膜付きガラス基板を用いて作製したOLED照明において、ダークスポットが形成されることを効率的に抑制できる。 If the surface roughness Rz of the outer surface of the second transparent conductive film is 30 nm or less, it is possible to efficiently suppress the formation of dark spots in OLED illumination produced using this glass substrate with a transparent conductive film. .

以上のように、本発明によれば、比抵抗が低く、かつ突起の少ない透明導電膜を有する透明導電膜付き基板の製造方法及び透明導電膜付き基板を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a method for manufacturing a substrate with a transparent conductive film and a substrate with a transparent conductive film having a transparent conductive film having a low specific resistance and few protrusions.

本発明の第一の実施形態に係る透明導電膜付き基板の模式的断面図である。It is a typical sectional view of a substrate with a transparent conductive film concerning a first embodiment of the present invention. 図1の透明導電膜付き基板に有機EL層及び金属陰極が順次積層された模式的断面図である。FIG. 2 is a schematic cross-sectional view in which an organic EL layer and a metal cathode are sequentially stacked on the substrate with a transparent conductive film in FIG. 1.

以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and is based on ordinary knowledge of a person skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

図1は、本発明の第一の実施形態に係る透明導電膜付き基板の模式的断面図である。OLED照明として使用される場合、透明導電膜付き基板10上には、図2に示す通り、有機EL層11、及び金属陰極12が順次積層される。   FIG. 1 is a schematic cross-sectional view of a substrate with a transparent conductive film according to the first embodiment of the present invention. When used as OLED illumination, an organic EL layer 11 and a metal cathode 12 are sequentially laminated on the substrate 10 with a transparent conductive film as shown in FIG.

図1に示すように、本発明の透明導電膜付き基板10は、基板1を備えている。基板1は、有機EL層11から発生した光を取り出す側に配置され、可視光に対する光透過性が高い材料により構成される。基板1は、屈折率が1.4〜1.7であることが好ましく、1.45〜1.65であることがより好ましい。   As shown in FIG. 1, a substrate 10 with a transparent conductive film of the present invention includes a substrate 1. The substrate 1 is disposed on the side from which the light generated from the organic EL layer 11 is extracted, and is made of a material having high light transmittance with respect to visible light. The substrate 1 preferably has a refractive index of 1.4 to 1.7, and more preferably 1.45 to 1.65.

基板1は、上記の条件を概ね満たす材料により構成されていれば、ガラス、石英、透明樹脂等の材料により構成できる。基板1は、強度やコストの面に鑑みると、例えば、ソーダ石灰ガラスや、無アルカリガラスなどのガラスにより構成されることが好ましい。   If the board | substrate 1 is comprised with the material which satisfy | fills said conditions substantially, it can comprise with materials, such as glass, quartz, and transparent resin. In view of strength and cost, the substrate 1 is preferably made of glass such as soda lime glass or non-alkali glass.

基板1の平均厚みは、強度やOLED照明の軽量化の点を考慮に入れると、0.1〜2mmであることが好ましく、0.1〜1mmであることがより好ましい。なお、基板1の縦及び横の寸法は、OLED照明の大きさに応じて適宜設定される。また、基板1の形状は、矩形、円形など、OLED照明の形状によって適宜設定される。   The average thickness of the substrate 1 is preferably 0.1 to 2 mm, and more preferably 0.1 to 1 mm, taking into consideration strength and weight reduction of OLED illumination. In addition, the vertical and horizontal dimensions of the substrate 1 are appropriately set according to the size of the OLED illumination. Further, the shape of the substrate 1 is appropriately set according to the shape of the OLED illumination, such as a rectangle or a circle.

第1透明導電膜2は、基板1上における、有機EL層11等が積層される面に配される。第1透明導電膜2は、例えば、主として非晶質構造を有する透明導電膜である。ここで、非晶質構造とは、構成原子が周期的な配列を持たず、ランダムに存在している状態のことをいう。なお、第1透明導電膜2は、一部に微結晶構造を含んでいてもよい。   The first transparent conductive film 2 is disposed on the surface of the substrate 1 on which the organic EL layer 11 and the like are stacked. The first transparent conductive film 2 is, for example, a transparent conductive film mainly having an amorphous structure. Here, the amorphous structure means a state in which constituent atoms do not have a periodic arrangement and exist randomly. Note that the first transparent conductive film 2 may partially include a microcrystalline structure.

第1透明導電膜2を構成する材料は、透光性及び導電性を有するものであれば、特に限定されない。第1透明導電膜2は、例えば、酸化インジウムスズ(ITO)、フッ素ドープ酸化錫(FTO)、酸化インジウム亜鉛(IZO)、アルミニウムドープ酸化亜鉛(AZO)、酸化錫、酸化亜鉛、酸化インジウム、酸化チタンなどにより構成できる。第1透明導電膜2を構成する材料は、比抵抗の点を考慮すると、ITOにより構成されることが好ましく、非晶質構造を容易に形成する点を考慮すると、IZOにより構成されることが好ましい。   The material which comprises the 1st transparent conductive film 2 will not be specifically limited if it has translucency and electroconductivity. The first transparent conductive film 2 includes, for example, indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), tin oxide, zinc oxide, indium oxide, and oxide. It can be composed of titanium or the like. The material constituting the first transparent conductive film 2 is preferably composed of ITO in consideration of the specific resistance, and is preferably composed of IZO in consideration of the point of easily forming an amorphous structure. preferable.

第1透明導電膜2の厚みは、可視光に対する光透過性、突起を形成しにくくする点を考慮すると、2〜25nmであることが好ましい。   The thickness of the first transparent conductive film 2 is preferably 2 to 25 nm in consideration of light transmittance with respect to visible light and difficulty in forming protrusions.

第2透明導電膜3は、第1透明導電膜2上に配される。第2透明導電膜3は、例えば、原子の主要構造が結晶構造である。ここで、結晶構造とは、構成原子が周期的な配列を有する状態をいう。結晶構造としては、例えば、Bixbyite構造が挙げられる。なお、第2透明導電膜3の一部に非晶質構造を含んでいてもよい。   The second transparent conductive film 3 is disposed on the first transparent conductive film 2. In the second transparent conductive film 3, for example, the main structure of atoms is a crystal structure. Here, the crystal structure means a state in which constituent atoms have a periodic arrangement. An example of the crystal structure is a Bixbyte structure. Note that an amorphous structure may be included in part of the second transparent conductive film 3.

第2透明導電膜3を構成する材料は、透光性及び導電性を有するものであれば、特に限定されない。第2透明導電膜3は、例えば、ITO、FTO、IZO、AZO、酸化錫、酸化亜鉛、酸化インジウム、酸化チタンなどにより構成できる。第2透明導電膜3を構成する材料は、比抵抗の点を考慮すると、ITOにより構成されることが好ましい。   The material which comprises the 2nd transparent conductive film 3 will not be specifically limited if it has translucency and electroconductivity. The second transparent conductive film 3 can be made of, for example, ITO, FTO, IZO, AZO, tin oxide, zinc oxide, indium oxide, titanium oxide, or the like. The material constituting the second transparent conductive film 3 is preferably composed of ITO in consideration of the specific resistance.

第2透明導電膜3の厚みは、可視光に対する光透過性、透明導電膜に突起を形成しにくくする点を考慮すると、30〜500nmであることが好ましい。   The thickness of the second transparent conductive film 3 is preferably 30 to 500 nm in consideration of light transmittance for visible light and difficulty in forming protrusions on the transparent conductive film.

また、第2透明導電膜3の外表面の表面粗さRが30nm以下であることが好ましい。これにより、ダークスポットが形成されることを効率的に抑制できる。
更に、第2透明導電膜3の外表面の表面粗さRが2nm以下であることが好ましい。
Moreover, it is preferable that surface roughness Rz of the outer surface of the 2nd transparent conductive film 3 is 30 nm or less. Thereby, it can suppress efficiently that a dark spot is formed.
Furthermore, it is preferable that the surface roughness R a of the outer surface of the second transparent conductive film 3 is 2nm or less.

第2透明導電膜3は、第1透明導電膜2よりも比抵抗が低い。なお、第1透明導電膜2と第2透明導電膜3の比抵抗は、エリプソメーターにより測定することができる。具体的には、初めに、第1,2透明導電膜の2層から構成されるモデルを形成する。これらの各層はキャリア密度、キャリアの移動度、厚み等を変数として有することができる。このモデルより計算される、反射した偏光ビームの相対的な位相の変化量と、エリプソメーターで実測される変化量が一致するように上記変数が最適化され、第1透明導電膜と第2透明導電膜の比抵抗が算出される。   The second transparent conductive film 3 has a lower specific resistance than the first transparent conductive film 2. In addition, the specific resistance of the 1st transparent conductive film 2 and the 2nd transparent conductive film 3 can be measured with an ellipsometer. Specifically, first, a model composed of two layers of first and second transparent conductive films is formed. Each of these layers can have carrier density, carrier mobility, thickness, and the like as variables. The above variables are optimized so that the relative phase variation of the reflected polarized beam calculated from this model matches the variation measured by the ellipsometer, and the first transparent conductive film and the second transparent The specific resistance of the conductive film is calculated.

次に、本発明の透明導電膜付き基板10の製造方法について説明する。   Next, the manufacturing method of the board | substrate 10 with a transparent conductive film of this invention is demonstrated.

第1透明導電膜2は、第1透明導電膜2を構成する材料の結晶化温度よりも低い温度で基板1上に形成(成膜)される。そのため、主要構造が非晶質構造である。例えば、第1透明導電膜2を構成する材料がITOにより構成される場合、ITOの結晶化温度が約150℃であるため、第1透明導電膜2は、50〜140℃で形成されることが好ましい。 また、第1透明導電膜2は、70〜135℃で形成されることがより好ましく、90〜130℃で形成されることが更に好ましい。   The first transparent conductive film 2 is formed (deposited) on the substrate 1 at a temperature lower than the crystallization temperature of the material constituting the first transparent conductive film 2. Therefore, the main structure is an amorphous structure. For example, when the material constituting the first transparent conductive film 2 is made of ITO, the crystallization temperature of ITO is about 150 ° C., so the first transparent conductive film 2 is formed at 50 to 140 ° C. Is preferred. The first transparent conductive film 2 is more preferably formed at 70 to 135 ° C., and more preferably 90 to 130 ° C.

第1透明導電膜2は、不活性ガスと酸素ガスを含む混合ガスをスパッタリングガスとしてスパッタリングを行うことにより、基板1上に形成することが好ましい。   The first transparent conductive film 2 is preferably formed on the substrate 1 by performing sputtering using a mixed gas containing an inert gas and oxygen gas as a sputtering gas.

第1透明導電膜2の上に、第2透明導電膜3を構成する材料の結晶化温度よりも高い温度で第2透明導電膜3が形成(成膜)される。そのため、第2透明導電膜3は、第1透明導電膜2よりも結晶化している。なお、第2透明導電膜3は、主要構造が結晶構造であることが好ましい。例えば、第2透明導電膜3を構成する材料がITOにより構成される場合、ITOの結晶化温度が約150℃であるため、第2透明導電膜3は、200〜400℃で形成されることが好ましい。また、第2透明導電膜3は、220〜380℃で形成されることがより好ましく、250〜350℃で形成されることが更に好ましい。   The second transparent conductive film 3 is formed (film formation) on the first transparent conductive film 2 at a temperature higher than the crystallization temperature of the material constituting the second transparent conductive film 3. Therefore, the second transparent conductive film 3 is crystallized more than the first transparent conductive film 2. The second transparent conductive film 3 preferably has a crystal structure as a main structure. For example, when the material constituting the second transparent conductive film 3 is composed of ITO, the second transparent conductive film 3 is formed at 200 to 400 ° C. because the crystallization temperature of ITO is about 150 ° C. Is preferred. Further, the second transparent conductive film 3 is more preferably formed at 220 to 380 ° C, and further preferably at 250 to 350 ° C.

第1透明導電膜2の上への第2透明導電膜3の形成により、第1透明導電膜も加熱され、第1透明導電膜2の結晶化が進行する。   Formation of the second transparent conductive film 3 on the first transparent conductive film 2 also heats the first transparent conductive film, and crystallization of the first transparent conductive film 2 proceeds.

第2透明導電膜3は、不活性ガスと酸素ガスを含む混合ガスをスパッタリングガスとしてスパッタリングを行うことにより、第1透明導電膜2の上に形成することが好ましい。   The second transparent conductive film 3 is preferably formed on the first transparent conductive film 2 by performing sputtering using a mixed gas containing an inert gas and oxygen gas as a sputtering gas.

第1透明導電膜2の形成時における酸素分圧は、第2透明導電膜3の形成時における酸素分圧よりも低いことが好ましい。これにより、第1透明導電膜2の主要構造が非晶質構造となり、第2透明導電膜の主要構造が結晶構造となるように第1,2透明導電膜2,3を形成することが可能となる。なお、第1透明導電膜2の形成時における酸素分圧は1×10−4〜1×10−2Pa、第2透明導電膜の形成時における酸素分圧は2×10−4〜2×10−2Paであることが好ましい。 The oxygen partial pressure during the formation of the first transparent conductive film 2 is preferably lower than the oxygen partial pressure during the formation of the second transparent conductive film 3. As a result, the first and second transparent conductive films 2 and 3 can be formed so that the main structure of the first transparent conductive film 2 has an amorphous structure and the main structure of the second transparent conductive film has a crystal structure. It becomes. The oxygen partial pressure during the formation of the first transparent conductive film 2 is 1 × 10 −4 to 1 × 10 −2 Pa, and the oxygen partial pressure during the formation of the second transparent conductive film is 2 × 10 −4 to 2 ×. 10 −2 Pa is preferable.

以下、本発明を、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例1)
実施例1の透明導電膜付きガラス基板は、以下のように製造した。ガラス基板 OA−10G(日本電気硝子社製)の上に、DCマグネトロンスパッタリング装置を用い、ターゲットとしてITOを用いて透明導電膜(第1透明導電膜)を形成した。形成時のガラス板の温度(熱処理温度)を140℃とし、真空チャンバ内にアルゴンガスと微量の酸素ガス(アルゴン:酸素=100sccm:0.4sccm)を、真空チャンバ内の圧力が1Pa(酸素分圧:4.0×10−3Pa)になるように調整して導入した。形成された第1透明導電膜の厚さは15nmである。
次に、第1透明導電膜の上に、DCマグネトロンスパッタリング装置を用い、ターゲットとしてITOを用いて透明導電膜(第2透明導電膜)を形成した。形成時のガラス基板の温度(熱処理温度)を300℃とし、比抵抗が極小となるように真空チャンバ内にアルゴンガスと微量の酸素ガス(アルゴン:酸素=100sccm:0.8sccm)を、真空チャンバ内の圧力が1Pa(酸素分圧:7.9×10−3Pa)になるように調整して導入した。形成された第2透明導電膜の厚さは135nmである。
Example 1
The glass substrate with a transparent conductive film of Example 1 was manufactured as follows. A transparent conductive film (first transparent conductive film) was formed on a glass substrate OA-10G (manufactured by Nippon Electric Glass Co., Ltd.) using a DC magnetron sputtering apparatus and using ITO as a target. The temperature (heat treatment temperature) of the glass plate at the time of formation is 140 ° C., argon gas and a small amount of oxygen gas (argon: oxygen = 100 sccm: 0.4 sccm) are placed in the vacuum chamber, and the pressure in the vacuum chamber is 1 Pa (oxygen content). The pressure was adjusted to 4.0 × 10 −3 Pa) and introduced. The thickness of the formed first transparent conductive film is 15 nm.
Next, a transparent conductive film (second transparent conductive film) was formed on the first transparent conductive film using a DC magnetron sputtering apparatus and using ITO as a target. The glass substrate temperature (heat treatment temperature) at the time of formation is set to 300 ° C., and argon gas and a small amount of oxygen gas (argon: oxygen = 100 sccm: 0.8 sccm) are placed in the vacuum chamber so that the specific resistance is minimized. The internal pressure was adjusted to 1 Pa (oxygen partial pressure: 7.9 × 10 −3 Pa). The thickness of the formed second transparent conductive film is 135 nm.

(比較例1)
実施例1と同じガラス板上に、DCマグネトロンスパッタリング装置を用い、ターゲットとしてITOを用いて透明導電膜を形成した。形成時のガラス板の温度(熱処理温度)を300℃とし、真空チャンバ内にアルゴンガスと微量の酸素ガス(アルゴン:酸素=100sccm:0.8sccm)を、真空チャンバ内の圧力が1Pa(酸素分圧:7.9×10−3Pa)になるように調整して導入した。形成された透明導電膜の厚さは150nmである。
(Comparative Example 1)
A transparent conductive film was formed on the same glass plate as in Example 1 using a DC magnetron sputtering apparatus and using ITO as a target. The temperature (heat treatment temperature) of the glass plate at the time of formation was set to 300 ° C., argon gas and a small amount of oxygen gas (argon: oxygen = 100 sccm: 0.8 sccm) were placed in the vacuum chamber, and the pressure in the vacuum chamber was 1 Pa (oxygen content) (Pressure: 7.9 × 10 −3 Pa). The thickness of the formed transparent conductive film is 150 nm.

(比較例2)
実施例1と同じガラス板上に、DCマグネトロンスパッタリング装置を用い、ターゲットとしてITOを用いて透明導電膜を形成した。形成時のガラス板の温度を室温とし、真空チャンバ内にアルゴンガスを導入し、微量の酸素ガス(アルゴン:酸素=100sccm:0.6sccm)を真空チャンバ内の圧力が1Pa(酸素分圧:6.0×10−3Pa)になるように調整して導入した。形成後、形成された膜を300℃、30分間真空雰囲気で加熱した。形成された透明導電膜の厚さは150nmである。
(Comparative Example 2)
A transparent conductive film was formed on the same glass plate as in Example 1 using a DC magnetron sputtering apparatus and using ITO as a target. The temperature of the glass plate at the time of forming is set to room temperature, argon gas is introduced into the vacuum chamber, and a small amount of oxygen gas (argon: oxygen = 100 sccm: 0.6 sccm) is applied at a pressure of 1 Pa (oxygen partial pressure: 6). 0.0 × 10 −3 Pa). After formation, the formed film was heated in a vacuum atmosphere at 300 ° C. for 30 minutes. The thickness of the formed transparent conductive film is 150 nm.

(評価)
各サンプルの透明導電膜の比抵抗は、抵抗率計(三菱化学アナリテック社製 MCP−T350)およびエリプソメーター(J.A.Woolam社製 VASE)を用いて測定した。
(Evaluation)
The specific resistance of the transparent conductive film of each sample was measured using a resistivity meter (MCP-T350 manufactured by Mitsubishi Chemical Analytech Co.) and an ellipsometer (VASE manufactured by JA Woollam).

各サンプルの表面粗さR及びRは、AFM(Digital Instruments社製 NanoScopeIII)によって測定した。なお、R及びRは、JIS B0601(2001年)で規定された値である。 The surface roughness R a and R Z in each sample was measured by AFM (Digital Instruments Inc. Nanoscope III). Note that R a and R Z are values defined in JIS B0601 (2001).

各サンプルについて測定した結果を表1に示す。   The results measured for each sample are shown in Table 1.

表1に示すように、実施例1の透明導電膜付きガラス基板は比抵抗が低く、かつRが小さい。そのため、比抵抗が低く、かつ突起の少ない透明導電膜を有する透明導電膜付き基板が得られる。
一方、比較例1は、Rが大きく、透明導電膜に突起が形成されるため、ダークスポットが形成されやすい。比較例2は、比抵抗が大きく、OLED照明として用いるのに十分でない。
As shown in Table 1, the glass substrate with a transparent conductive film of Example 1 has a low specific resistance and a small Rz . Therefore, a substrate with a transparent conductive film having a transparent conductive film with low specific resistance and few protrusions can be obtained.
On the other hand, in Comparative Example 1, since Rz is large and protrusions are formed on the transparent conductive film, dark spots are easily formed. Comparative Example 2 has a large specific resistance and is not sufficient for use as OLED illumination.

1 基板
2 第1透明導電膜
3 第2透明導電膜
10 透明導電膜付き基板
11 有機EL層
12 金属陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 First transparent conductive film 3 Second transparent conductive film 10 Substrate with transparent conductive film 11 Organic EL layer 12 Metal cathode

Claims (5)

基板上に第1透明導電膜を形成し、前記第1透明導電膜上に第2透明導電膜を形成する透明導電膜付き基板の製造方法であって、
前記第1透明導電膜を構成する材料の結晶化温度よりも低い温度で第1透明導電膜を形成し、
前記第2透明導電膜を構成する材料の結晶化温度よりも高い温度で第2透明導電膜を形成することを特徴とする透明導電膜付き基板の製造方法。
A method for producing a substrate with a transparent conductive film, comprising forming a first transparent conductive film on a substrate and forming a second transparent conductive film on the first transparent conductive film,
Forming the first transparent conductive film at a temperature lower than the crystallization temperature of the material constituting the first transparent conductive film;
A method for producing a substrate with a transparent conductive film, wherein the second transparent conductive film is formed at a temperature higher than a crystallization temperature of a material constituting the second transparent conductive film.
前記第1透明導電膜及び前記第2透明導電膜はITO膜であり、前記第1透明導電膜は、50〜140℃で形成されることを特徴とする請求項1に記載の透明導電膜付き基板の製造方法。   The said 1st transparent conductive film and the said 2nd transparent conductive film are ITO films | membranes, The said 1st transparent conductive film is formed at 50-140 degreeC, The transparent conductive film with Claim 1 characterized by the above-mentioned. A method for manufacturing a substrate. 前記第1透明導電膜及び前記第2透明導電膜は、不活性ガスと酸素ガスを含む混合ガスを用いたスパッタリング法により形成され、前記第1透明導電膜の形成時における酸素分圧は、前記第2透明導電膜の形成時における酸素分圧よりも低いことを特徴とする請求項1または2に記載の透明導電膜付き基板の製造方法。   The first transparent conductive film and the second transparent conductive film are formed by a sputtering method using a mixed gas containing an inert gas and an oxygen gas, and the oxygen partial pressure during the formation of the first transparent conductive film is The method for producing a substrate with a transparent conductive film according to claim 1 or 2, wherein the pressure is lower than an oxygen partial pressure at the time of forming the second transparent conductive film. 基板と、
前記基板上に配された第1透明導電膜と、
前記第1透明導電膜上に配された、前記第1透明導電膜よりも比抵抗の低い第2透明導電膜とを備えることを特徴とする透明導電膜付き基板。
A substrate,
A first transparent conductive film disposed on the substrate;
A substrate with a transparent conductive film, comprising: a second transparent conductive film disposed on the first transparent conductive film and having a specific resistance lower than that of the first transparent conductive film.
前記第2透明導電膜の外表面の表面粗さRzが30nm以下であることを特徴とする請求項4に記載の透明導電膜付き基板。   The substrate with a transparent conductive film according to claim 4, wherein a surface roughness Rz of an outer surface of the second transparent conductive film is 30 nm or less.
JP2015167561A 2015-08-27 2015-08-27 Method for producing substrate with transparent conductive film and substrate with transparent conductive film Pending JP2017045634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167561A JP2017045634A (en) 2015-08-27 2015-08-27 Method for producing substrate with transparent conductive film and substrate with transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167561A JP2017045634A (en) 2015-08-27 2015-08-27 Method for producing substrate with transparent conductive film and substrate with transparent conductive film

Publications (1)

Publication Number Publication Date
JP2017045634A true JP2017045634A (en) 2017-03-02

Family

ID=58211626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167561A Pending JP2017045634A (en) 2015-08-27 2015-08-27 Method for producing substrate with transparent conductive film and substrate with transparent conductive film

Country Status (1)

Country Link
JP (1) JP2017045634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097143A (en) * 2018-12-17 2020-06-25 日東電工株式会社 Electroconductive film having protective film, and method for manufacturing electroconductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931630A (en) * 1995-07-25 1997-02-04 Dainippon Printing Co Ltd Transparent electrically conductive film and its production
JPH09194232A (en) * 1996-01-17 1997-07-29 Nippon Sheet Glass Co Ltd Substrate formed with ito film and formation of ito film
JP2004012846A (en) * 2002-06-07 2004-01-15 Toray Ind Inc Color filter and method for manufacturing the same
JP2011243592A (en) * 2003-03-25 2011-12-01 Semiconductor Energy Lab Co Ltd Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931630A (en) * 1995-07-25 1997-02-04 Dainippon Printing Co Ltd Transparent electrically conductive film and its production
JPH09194232A (en) * 1996-01-17 1997-07-29 Nippon Sheet Glass Co Ltd Substrate formed with ito film and formation of ito film
JP2004012846A (en) * 2002-06-07 2004-01-15 Toray Ind Inc Color filter and method for manufacturing the same
JP2011243592A (en) * 2003-03-25 2011-12-01 Semiconductor Energy Lab Co Ltd Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097143A (en) * 2018-12-17 2020-06-25 日東電工株式会社 Electroconductive film having protective film, and method for manufacturing electroconductive film
JP7262218B2 (en) 2018-12-17 2023-04-21 日東電工株式会社 Conductive film with protective film and method for producing conductive film

Similar Documents

Publication Publication Date Title
TWI552407B (en) Organic electronic device and method for producing of organic electronic device
JP2005353589A (en) Organic electroluminescent display device and its manufacturing method
JP2002352956A (en) Thin-film light emitting substance and manufacturing method therefor
JPWO2006061964A1 (en) Substrate with conductive film and method for producing the same
JP5660128B2 (en) Light emitting device
JP2017091695A (en) Organic electroluminescent element, lighting system, surface light source, and display device
JP4269986B2 (en) Oxide sintered compact target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive substrate, display device, and organic electroluminescence element
JP2017045634A (en) Method for producing substrate with transparent conductive film and substrate with transparent conductive film
JP4736348B2 (en) Manufacturing method of organic EL element
KR20110107447A (en) Flexible organic light emitting diode and manufacturing method for the same
JP2008171993A (en) Organic electroluminescent element, light source for optical communication, and lighting apparatus
KR20050073233A (en) Manufacturing method of indium tin oxide thin film
JP2011040173A (en) Organic electroluminescent device
JP2009076544A (en) Organic el element
KR100685832B1 (en) inorganic layer and Fabricating method of the same
JP2014517488A (en) Substrate with electrodes for OLED devices and such OLED devices
JP3891435B2 (en) Organic EL device and method for manufacturing the same
JP2010287383A (en) Method of manufacturing organic electroluminescent element
Hyung et al. Bottom-emission organic light-emitting diodes using semitransparent anode electrode by O2 plasma
JP2006054098A (en) Manufacturing method of transparent conductive film and organic el light-emitting element
JP2004111201A (en) Substrate for light-emitting element, substrate with transparent conductive film for light-emitting element, and light-emitting element
KR102045374B1 (en) Top emission Organic Light Emitting Diode Display Device and Method of manufacturing the same
JP2008210653A (en) Organic el element
KR20180035478A (en) The conductive transparent substrate and fabricating method of the same
KR100943975B1 (en) Indium tin oxide thin film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105