JP2017044605A - Contactless inner surface shape measurement device - Google Patents

Contactless inner surface shape measurement device Download PDF

Info

Publication number
JP2017044605A
JP2017044605A JP2015167971A JP2015167971A JP2017044605A JP 2017044605 A JP2017044605 A JP 2017044605A JP 2015167971 A JP2015167971 A JP 2015167971A JP 2015167971 A JP2015167971 A JP 2015167971A JP 2017044605 A JP2017044605 A JP 2017044605A
Authority
JP
Japan
Prior art keywords
measurement
light
light emitting
reference axis
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015167971A
Other languages
Japanese (ja)
Other versions
JP6610090B2 (en
Inventor
智浩 青戸
Tomohiro Aoto
智浩 青戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2015167971A priority Critical patent/JP6610090B2/en
Publication of JP2017044605A publication Critical patent/JP2017044605A/en
Application granted granted Critical
Publication of JP6610090B2 publication Critical patent/JP6610090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a contactless inner surface shape measurement device that enables highly accurate measurement.SOLUTION: A measurement unit 14 of a contactless inner surface shape measurement device 1 is arranged so as to be inserted into a measurement hole P of a measurement object. The measurement unit 14 comprises: a light emitting unit 40 that emits measurement light Lof; a right-angle mirror 42 that reflects the measurement light Lof emitted from the light emitting unit 40 in a direction perpendicular to a reference axis 14a; and a motor 44 that rotates the right-angle mirror 42 around the reference axis 14a to rotate an irradiation direction of the measurement light Lof.SELECTED DRAWING: Figure 2

Description

本発明は非接触内面形状測定装置に係り、特に円筒内面又は深穴内面の形状寸法を非接触により測定する非接触内面形状測定装置に関する。   The present invention relates to a non-contact inner surface shape measuring apparatus, and more particularly to a non-contact inner surface shape measuring apparatus that measures the shape dimension of a cylindrical inner surface or a deep hole inner surface in a non-contact manner.

特許文献1、2には、測定対象の孔の内面の形状又は孔の内径を非接触で測定する測定装置が開示されている。   Patent Documents 1 and 2 disclose measuring devices that measure the shape of the inner surface of the hole to be measured or the inner diameter of the hole in a non-contact manner.

これらの特許文献1、2の測定装置によれば、プリズム等の反射部材を測定対象の孔に挿入配置し、その反射部材を介して孔の内面にレーザ光を照射してその反射光を検出する。これによって、レーザ光が照射された測定点の位置(特定位置からの距離)が測定される。また、反射部材を所定の回転軸周りに回転させてその回転軸周りの全周方向に測定方向を変えることで、孔の内面形状や孔の内径等が測定される。   According to these measuring apparatuses of Patent Documents 1 and 2, a reflecting member such as a prism is inserted into the hole to be measured, and the reflected light is detected by irradiating the inner surface of the hole through the reflecting member. To do. Thereby, the position (distance from the specific position) of the measurement point irradiated with the laser beam is measured. Further, the inner surface shape of the hole, the inner diameter of the hole, and the like are measured by rotating the reflecting member around a predetermined rotation axis and changing the measurement direction around the rotation axis.

特開2014−126396号公報JP 2014-126396 A 特開2008−304407号公報JP 2008-304407 A

しかしながら、特許文献1、2では、反射部材のみの回転だけでなく、他の光学部材の回転を伴うものであるため、反射部材を回転させるための回転機構が大規模であり、精度の低下を招く要因となっている。   However, Patent Documents 1 and 2 involve not only the rotation of the reflection member but also the rotation of other optical members, so the rotation mechanism for rotating the reflection member is large-scale, and the accuracy is reduced. It is an inviting factor.

本発明は、このような事情に鑑みてなされたもので、高精度な測定が可能な非接触内面形状測定装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the non-contact inner surface shape measuring apparatus in which a highly accurate measurement is possible.

上記目的を達成するため、本発明の一の態様に係る非接触内面形状測定装置は、測定対象である測定孔に挿入される測定部から測定孔の内面である測定内面に測定光を照射することで非接触により測定内面の形状を測定する非接触内面形状測定装置であって、測定部は、測定部の測定孔への挿入方向に沿った基準軸と、基準軸に沿った方向に測定光を出射する光出射部と、光出射部に対向して配置され、光出射部から出射された測定光の進行方向を変更し、測定内面に向けて測定光を出射する進行方向変更部材と、進行方向変更部材を基準軸周りに回転させる駆動手段と、測定内面に当接して測定部を測定孔の内部に支持するガイド部と、を備える。   In order to achieve the above object, a non-contact inner surface shape measuring device according to one aspect of the present invention irradiates measurement light, which is an inner surface of a measurement hole, from a measurement unit inserted into a measurement hole that is a measurement object. This is a non-contact inner surface shape measuring device that measures the shape of the measurement inner surface in a non-contact manner, and the measurement unit measures the reference axis along the insertion direction of the measurement unit into the measurement hole and the direction along the reference axis. A light emitting portion that emits light, and a traveling direction changing member that is disposed to face the light emitting portion, changes the traveling direction of the measuring light emitted from the light emitting portion, and emits the measuring light toward the measurement inner surface And a driving means for rotating the traveling direction changing member around the reference axis, and a guide portion that contacts the measurement inner surface and supports the measurement portion inside the measurement hole.

本形態によれば、反射部材等の進行方向変更部材を駆動手段により回転させるだけで、測定光の照射方向を基準軸周りに回転させることができ、測定内面の全周方向の形状を測定することができる。したがって、進行方向変更部材を回転させるための回転機構の簡素化を図ることができるため、回転運動誤差が小さく、かつ、軽量なので自重による撓みが小さく、かつ、振動が少ない。これにより、測定精度の向上を図ることができる。また、高速回転も可能となり、測定時間の短縮を図ることもできる。   According to this embodiment, it is possible to rotate the irradiation direction of the measurement light around the reference axis only by rotating the traveling direction changing member such as the reflecting member by the driving unit, and measure the shape of the entire circumference of the measurement inner surface. be able to. Therefore, since the rotation mechanism for rotating the traveling direction changing member can be simplified, the rotational motion error is small and the weight is small, so that bending due to its own weight is small and vibration is small. Thereby, improvement of measurement accuracy can be aimed at. Also, high-speed rotation is possible, and the measurement time can be shortened.

また、測定部は、ガイド部により測定孔の内部で支持されるため、安定した姿勢で測定を行うことができ、測定精度の向上を図ることができる。   In addition, since the measurement unit is supported inside the measurement hole by the guide unit, measurement can be performed in a stable posture, and measurement accuracy can be improved.

本発明の他の態様に係る非接触内面形状測定装置において、進行方向変更部材は、基準軸に斜めに交差する反射面を有する反射部材である態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to another aspect of the present invention, the traveling direction changing member may be a reflecting member having a reflecting surface that obliquely intersects the reference axis.

本発明の更に他の態様に係る非接触内面形状測定装置において、光出射部は、進行方向変更部材よりも挿入方向の先端側に配置され、測定光を挿入方向の基端側に向けて出射する態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to still another aspect of the present invention, the light emitting portion is disposed on the distal end side in the insertion direction relative to the traveling direction changing member, and emits the measurement light toward the proximal end side in the insertion direction. It can be set as the mode to do.

本発明の更に他の態様に係る非接触内面形状測定装置において、ガイド部は、測定部の挿入方向の先端側と基端側とに配置された態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to still another aspect of the present invention, the guide portion may be disposed on the distal end side and the proximal end side in the insertion direction of the measurement portion.

本発明の更に他の態様に係る非接触内面形状測定装置において、進行方向変更部材は透明円筒により基準軸周りの周囲が囲まれている態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to still another aspect of the present invention, the traveling direction changing member may be an aspect in which the periphery around the reference axis is surrounded by a transparent cylinder.

本発明の更に他の態様に係る非接触内面形状測定装置において、波長掃引光源と、波長掃引光源から出射された光を互いに異なる光路を通過する測定光と参照光とに分岐する分岐手段と、測定光を光出射部に案内する案内手段と、光出射部から進行方向変更部材を介して出射された測定光が照射される測定点からの戻り光であって、進行方向変更部材、光出射部、及び、案内手段を介して戻る戻り光と参照光との干渉光を検出する光検出手段と、駆動手段より回転する反射部材の各回転角度において、光検出手段により検出された干渉光に基づいて測定点の位置を検出することにより、測定内面の形状を検出する内面形状検出手段と、を備えた態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to still another aspect of the present invention, a wavelength swept light source, a branching unit for branching light emitted from the wavelength swept light source into measurement light and reference light that pass through different optical paths, Guide light for guiding the measurement light to the light emitting portion, and return light from the measurement point irradiated with the measurement light emitted from the light emitting portion via the traveling direction changing member, the traveling direction changing member, the light emission Light detection means for detecting interference light between the return light and the reference light returning via the guide means and the interference light detected by the light detection means at each rotation angle of the reflecting member rotated by the drive means. By detecting the position of the measurement point based on this, it is possible to adopt an aspect including an inner surface shape detection unit that detects the shape of the measurement inner surface.

本発明の更に他の態様に係る非接触内面形状測定装置において、波長掃引光源は、波長を1200nm〜1600nmの範囲内で変化させる態様とすることができる。   In the non-contact inner surface shape measuring apparatus according to still another aspect of the present invention, the wavelength swept light source may be configured to change the wavelength within a range of 1200 nm to 1600 nm.

本発明によれば、高精度な測定が可能となる。   According to the present invention, highly accurate measurement is possible.

本発明が適用される非接触内面形状測定装置Non-contact inner surface shape measuring apparatus to which the present invention is applied 測定装置の内部構造を示した構成図Configuration diagram showing the internal structure of the measuring device 波長掃引光源から出力されるレーザ光の波長の時間変化を例示したグラフGraph illustrating time variation of wavelength of laser beam output from wavelength swept light source 測定孔に挿入された状態における測定部を示した構成図Configuration diagram showing the measurement part in the state inserted in the measurement hole テーパ形状の測定孔に測定部を挿入した状態を示した図The figure which showed the state which inserted the measurement part in the taper-shaped measurement hole 測定部の他の実施の形態の説明に使用した図The figure used for explanation of other embodiments of the measurement unit 非接触内面形状測定装置の測定手順を示すフローチャートFlow chart showing measurement procedure of non-contact inner surface shape measuring device 円筒の孔の内周面を測定して得られた測定データを示した図The figure which showed the measurement data obtained by measuring the inner peripheral surface of a cylindrical hole 内歯車を測定して得られた測定データを示した図The figure which showed the measurement data obtained by measuring the internal gear 図9の測定データを他の形態で示した図The figure which showed measurement data of Drawing 9 with other forms 測定光の戻り光の光量に大きさを示す干渉強度分布を例示した図The figure which illustrated interference intensity distribution which shows magnitude to the quantity of return light of measurement light

以下、添付図面に従って本発明の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される非接触内面形状測定装置の全体構成図である。   FIG. 1 is an overall configuration diagram of a non-contact inner surface shape measuring apparatus to which the present invention is applied.

同図に示すように、非接触内面形状測定装置1は、測定対象となる孔(以下、測定孔Pという)の内面(以下、測定内面Sという)の形状を求めるための測定データ(干渉信号)を取得する測定装置10と、測定装置10の各部の動作を制御するとともに、測定装置10により取得された測定データに基づいて各種演算処理を行って測定内面Sの形状や測定孔Pの内径などの測定内面Sの形状に関連する情報を算出する制御処理装置16とを有する。   As shown in the figure, the non-contact inner surface shape measuring apparatus 1 is a measurement data (interference signal) for obtaining the shape of the inner surface (hereinafter referred to as measurement inner surface S) of a hole to be measured (hereinafter referred to as measurement hole P). ) And the operation of each part of the measurement device 10, and various calculation processes are performed based on the measurement data acquired by the measurement device 10 to determine the shape of the measurement inner surface S and the inner diameter of the measurement hole P. And a control processing device 16 that calculates information related to the shape of the measurement inner surface S.

なお、制御処理装置16には、操作者が情報を入力する入力手段や情報を出力(表示、印刷等)する出力手段を含む。また、制御処理装置16の全体、又は、測定に関連する機能の全体若しくは一部は、測定装置10(下記の測定装置本体12)に組み込まれていてもよい。   The control processing device 16 includes an input means for an operator to input information and an output means for outputting (displaying, printing, etc.) information. Further, the entire control processing device 16 or all or part of the functions related to measurement may be incorporated in the measurement device 10 (the measurement device main body 12 described below).

また、測定内面Sとして、測定孔Pの軸心に垂直な断面形状が円形状のものに限らず多角形や複雑な形のものも測定可能である。   Further, the measurement inner surface S is not limited to a circular cross-sectional shape perpendicular to the axis of the measurement hole P but can also be a polygon or a complex shape.

測定装置10は、測定孔Pの外部に配置される測定装置本体12と、測定装置本体12にケーブル等(電気ケーブル及び光ファイバ)を介して接続され、測定孔Pの内部に挿入される測定部14とから構成される。   The measuring device 10 is connected to the measuring device main body 12 arranged outside the measuring hole P and the measuring device main body 12 via a cable or the like (electric cable and optical fiber) and is inserted into the measuring hole P. Part 14.

図2は、測定装置10の内部構造を示した構成図である。   FIG. 2 is a configuration diagram showing the internal structure of the measuring apparatus 10.

同図に示す測定装置10は、波長掃引干渉型変位センサの構成を有し、測定装置本体12において、波長掃引光源20と、波長掃引光源20に光ファイバ30を介して接続されるサーキュレータ22と、サーキュレータ22に光ファイバ32を介して接続される光検出器24とが設けられる。   The measurement apparatus 10 shown in the figure has a configuration of a wavelength sweep interference type displacement sensor. In the measurement apparatus main body 12, a wavelength sweep light source 20 and a circulator 22 connected to the wavelength sweep light source 20 via an optical fiber 30 are provided. And a photodetector 24 connected to the circulator 22 via an optical fiber 32.

一方、測定部14において、測定装置本体12のサーキュレータ22に光ファイバ34を介して接続される光出射部40と、光出射部40に対向配置される反射部材としての直角ミラー42と、直角ミラー42に連結され、一体物として省略して図示されたモータ44とロータリエンコーダ46とが設けられる。   On the other hand, in the measuring unit 14, a light emitting unit 40 connected to the circulator 22 of the measuring apparatus main body 12 via an optical fiber 34, a right angle mirror 42 as a reflecting member disposed opposite to the light emitting unit 40, and a right angle mirror The motor 44 and the rotary encoder 46 which are connected to 42 and omitted as an integral part are shown.

この測定装置10によれば、波長掃引光源20からは、波長を一定の波長帯の範囲で一定周期で掃引(変化)させた可干渉な光(レーザ光)が出射される。波長掃引光源20から出射された光は、光ファイバ30を介してサーキュレータ22へと送波される。   According to this measuring apparatus 10, coherent light (laser light) obtained by sweeping (changing) the wavelength at a constant period in the range of a constant wavelength band is emitted from the wavelength swept light source 20. The light emitted from the wavelength swept light source 20 is transmitted to the circulator 22 through the optical fiber 30.

図3は、波長掃引光源20から出力されるレーザ光の波長の時間変化を例示したグラフであり、横軸が時刻(時間)を示し、縦軸が波長を示す。同図に示すように波長が約1200nm〜約1600nmの範囲で繰り返し変化し、その変化の周波数が約1kHz〜約100kHzの範囲内の値となるように設定される。   FIG. 3 is a graph illustrating the time change of the wavelength of the laser light output from the wavelength swept light source 20, where the horizontal axis indicates time (time) and the vertical axis indicates the wavelength. As shown in the figure, the wavelength is repeatedly changed in the range of about 1200 nm to about 1600 nm, and the frequency of the change is set to a value in the range of about 1 kHz to about 100 kHz.

ここで、約1200nm〜約1600nmの波長帯域の使用は、高速測定、自然光ノイズの回避、及びアイセーフ(目に優しい)という点で優れる。特にアイセーフであることから測定感度の向上のために光量を20mW以上にしても問題が生じない。   Here, the use of the wavelength band of about 1200 nm to about 1600 nm is excellent in terms of high-speed measurement, avoidance of natural light noise, and eye-safe (friendly to eyes). In particular, since it is eye-safe, there is no problem even if the amount of light is 20 mW or more in order to improve measurement sensitivity.

図2においてサーキュレータ22へと送波された光は、サーキュレータ22により光ファイバ34のみに伝播され、光ファイバ34を介して光出射部40に送波される。   In FIG. 2, the light transmitted to the circulator 22 is propagated only to the optical fiber 34 by the circulator 22 and is transmitted to the light emitting unit 40 via the optical fiber 34.

光出射部40に送波された光は、光ファイバ34と光出射部40との接続部分における光ファイバ34の端面36において、一部が反射し、残りが光出射部40へと透過する。   A part of the light transmitted to the light emitting unit 40 is reflected at the end face 36 of the optical fiber 34 at the connection portion between the optical fiber 34 and the light emitting unit 40, and the rest is transmitted to the light emitting unit 40.

ここで、光ファイバ34の端面36は、波長掃引光源20からの光を測定光Lofと参照光Lrとに分岐する分岐部であり、端面36で反射した光により干渉計における参照光Lrが生成され、端面36を透過した光により干渉計における測定光Lofが生成される。   Here, the end face 36 of the optical fiber 34 is a branching part that branches the light from the wavelength swept light source 20 into the measurement light Lof and the reference light Lr, and the reference light Lr in the interferometer is generated by the light reflected by the end face 36. Then, the measurement light Lof in the interferometer is generated by the light transmitted through the end face 36.

光ファイバ34の端面36で反射した参照光Lrは、そのまま光ファイバ34を戻り、サーキュレータ22へと送波される。   The reference light Lr reflected by the end face 36 of the optical fiber 34 returns directly to the optical fiber 34 and is transmitted to the circulator 22.

一方、光ファイバ34の端面36を透過した光は測定光Lofとして光出射部40から出射される。光出射部40は、光ファイバ34の端面36から出射された測定光Lofを発散光から平行光あるいは集光光に変換し、又は、測定内面Sで反射して戻る測定光(戻り光Lor)を集光して端面36から光ファイバ34に入射させるコリメータレンズを含む。   On the other hand, the light transmitted through the end face 36 of the optical fiber 34 is emitted from the light emitting unit 40 as the measurement light Lof. The light emitting unit 40 converts the measurement light Lof emitted from the end face 36 of the optical fiber 34 from diverging light to parallel light or condensed light, or reflects the measurement light L reflected from the measurement inner surface S (return light Lor). A collimator lens that collects the light and enters the optical fiber 34 from the end face 36.

光出射部40から出射された測定光Lofは、測定部14が有する所定の基準軸14aに沿って(基準軸14a上を)進行した後、直角ミラー42の反射面である斜面で反射して基準軸14aに垂直な方向に進行する。   The measurement light Lof emitted from the light emitting unit 40 travels along the predetermined reference axis 14a of the measuring unit 14 (on the reference axis 14a), and then is reflected by the inclined surface that is the reflecting surface of the right-angle mirror 42. It proceeds in a direction perpendicular to the reference axis 14a.

なお、反射面による測定光Lofの反射方向は基準軸14aに垂直な方向でなくても測定内面に向かう方向であればよく、また、直角ミラー42と同様の作用を奏する反射面を有する反射部材であれば直角ミラー42でなくてもよい。さらに、反射部材に限らず、光出射部40から出射された測定光Lofの進行方向を変更し、測定内面Sに向けて測定光Lofを出射する進行方向変更部材であればよい。   The reflection direction of the measurement light Lof by the reflection surface is not limited to the direction perpendicular to the reference axis 14a as long as it is directed toward the measurement inner surface, and the reflection member has a reflection surface that exhibits the same action as the right-angle mirror 42. If so, the right-angle mirror 42 is not necessary. Furthermore, it is not limited to the reflecting member, and any traveling direction changing member that changes the traveling direction of the measuring light Lof emitted from the light emitting unit 40 and emits the measuring light Lof toward the measuring inner surface S may be used.

また、測定部14は、後述のように基準軸14aが図1のような測定孔Pの軸心と略同軸上となるように配置される。   Moreover, the measurement part 14 is arrange | positioned so that the reference axis 14a may become substantially coaxial with the axial center of the measurement hole P as shown in FIG.

なお、基準軸14aは、測定部14を測定孔Pに挿入する方向(挿入方向)に沿った軸であり、測定部14の挿入方向側を先端側、挿入方向と反対側を基端側とする。   The reference axis 14a is an axis along the direction (insertion direction) in which the measurement unit 14 is inserted into the measurement hole P, and the insertion direction side of the measurement unit 14 is the distal end side, and the opposite side to the insertion direction is the proximal end side. To do.

基準軸14aに垂直な方向に進行した測定光Lofは、測定内面Sに照射される。そして、測定内面Sで散乱(反射)した測定光の一部又は全部が戻り光Lorとしてそれまで通過した光路を逆行し、直角ミラー42及び光出射部40を介して光ファイバ34に入射する。   The measurement light Lof that has traveled in the direction perpendicular to the reference axis 14a is applied to the measurement inner surface S. Then, a part or all of the measurement light scattered (reflected) on the measurement inner surface S travels back as an optical path through the optical path 34 as the return light Lor and enters the optical fiber 34 via the right angle mirror 42 and the light emitting unit 40.

光ファイバ34に入射した戻り光Lorは、光ファイバ34を介してサーキュレータ22へと送波される。   The return light Lor incident on the optical fiber 34 is transmitted to the circulator 22 via the optical fiber 34.

光ファイバ34を経由してサーキュレータ22へと送波された上述の参照光Lr及び測定光の戻り光Lorは、サーキュレータ22により光ファイバ32のみに伝播され、光ファイバ32を介して光検出器24に入射する。   The above-described reference light Lr and measurement light return light Lor transmitted to the circulator 22 via the optical fiber 34 are propagated only to the optical fiber 32 by the circulator 22, and the photodetector 24 is transmitted via the optical fiber 32. Is incident on.

光検出器24には、測定内面Sで反射した測定光(戻り光Lor)と、光ファイバ34の端面36で反射した参照光Lrとの干渉光が入射し、光検出器24により、その干渉光の強度が電気信号である干渉信号として検出される。そして、その干渉信号が制御処理装置16へと与えられる。   Interference light between the measurement light reflected by the measurement inner surface S (return light Lor) and the reference light Lr reflected by the end face 36 of the optical fiber 34 enters the photodetector 24, and the interference is caused by the photodetector 24. The intensity of light is detected as an interference signal that is an electrical signal. Then, the interference signal is given to the control processing device 16.

制御処理装置16では、光検出器24から得られた干渉信号に基づいて測定内面Sにおいて測定光(戻り光)が照射された測定点の位置の情報、即ち、測定点の基準軸14aからの距離が距離情報として算出される。   In the control processing device 16, information on the position of the measurement point irradiated with the measurement light (return light) on the measurement inner surface S based on the interference signal obtained from the photodetector 24, that is, the measurement point from the reference axis 14a. The distance is calculated as distance information.

また、測定部14の直角ミラー42は、これに連結されたモータ44により、基準軸14a周りに少なくとも360度(1回転)以上回転する。なお、直角ミラー42の回転は360度未満の特定の角度範囲の回転であってもよいし、複数回転であってもよい。   Further, the right angle mirror 42 of the measurement unit 14 is rotated at least 360 degrees (one rotation) or more around the reference axis 14a by the motor 44 connected thereto. The rotation of the right angle mirror 42 may be a rotation within a specific angle range of less than 360 degrees, or may be a plurality of rotations.

これによって、光出射部40から出射されて直角ミラー42の斜面で反射した測定光Lofの照射方向(測定方向)が基準軸14a周りに回転し、測定方向が基準軸14a周りの全周方向に変更される。即ち、測定内面Sに対して測定光Lofがラジアル走査される。   As a result, the irradiation direction (measurement direction) of the measurement light Lof emitted from the light emitting unit 40 and reflected by the inclined surface of the right-angle mirror 42 rotates around the reference axis 14a, and the measurement direction becomes the entire circumferential direction around the reference axis 14a. Be changed. That is, the measurement light Lof is radially scanned with respect to the measurement inner surface S.

また、直角ミラー42のみの回転であるため、回転運動誤差が小さく、かつ、振動も少ないため、測定光をラジアル走査するための回転動作による測定精度の低下が少ない。例えば、ミクロンオーダでの高精度な測定が可能である。   In addition, since only the right-angle mirror 42 is rotated, the rotational motion error is small and the vibration is small, so that the measurement accuracy is hardly lowered due to the rotational operation for radial scanning of the measurement light. For example, high-accuracy measurement on the order of microns is possible.

更に、直角ミラー42のみの回転であるため、直角ミラー42を高速で回転させることができ、測定時間の短縮を図ることができる。   Furthermore, since only the right-angle mirror 42 is rotated, the right-angle mirror 42 can be rotated at high speed, and the measurement time can be shortened.

一方、測定部14の直角ミラー42の回転角度は、ロータリエンコーダ46により検出され、その回転角度の情報が制御処理装置16に与えられる。このロータリエンコーダ46により検出される回転角度の情報は、測定方向の基準軸14a周り方向に関する角度の情報に相当する。   On the other hand, the rotation angle of the right angle mirror 42 of the measurement unit 14 is detected by the rotary encoder 46, and information on the rotation angle is given to the control processing device 16. Information on the rotation angle detected by the rotary encoder 46 corresponds to information on an angle related to the direction around the reference axis 14a in the measurement direction.

これによって、制御処理装置16では、光検出器24からの干渉信号に基づいて検出される測定内面Sまでの距離の情報と、その距離が検出された際におけるロータリエンコーダ46からの回転角度の情報(測定方向の基準軸14a周り方向に関する角度の情報)とに基づいて、各測定点の位置が検出され、測定光が走査された走査面における測定内面Sの形状(位置)を示す測定データが得られる。   Thereby, in the control processing device 16, information on the distance to the measurement inner surface S detected based on the interference signal from the photodetector 24 and information on the rotation angle from the rotary encoder 46 when the distance is detected. Measurement data indicating the shape (position) of the measurement inner surface S on the scanning surface where the position of each measurement point is detected and the measurement light is scanned based on (information on the angle about the reference axis 14a in the measurement direction). can get.

なお、直角ミラー42を複数回転させて測定内面Sの同一点の位置を複数回検出し、平均化することで測定精度を向上させることができる。   Note that the measurement accuracy can be improved by rotating the right angle mirror 42 a plurality of times, detecting the position of the same point on the measurement inner surface S a plurality of times, and averaging.

以上、上記実施の形態の測定装置10は参照光と測定光との干渉光を検出する干渉計の一形態を示したものであり、他の構成の干渉計を採用してもよい。例えば、マイケルソン干渉計として一般的に知られている構成であってもよい。   As described above, the measurement apparatus 10 of the above embodiment shows one form of an interferometer that detects the interference light between the reference light and the measurement light, and an interferometer having another configuration may be adopted. For example, a configuration generally known as a Michelson interferometer may be used.

次に、測定部14の具体的な構成について説明する。図4は、測定孔Pに挿入された状態における測定部14を示した構成図である。尚、上述のように測定部14の測定孔Pへの挿入方向側を先端側、挿入方向と反対側を基端側とする。   Next, a specific configuration of the measurement unit 14 will be described. FIG. 4 is a configuration diagram illustrating the measurement unit 14 in a state of being inserted into the measurement hole P. As described above, the insertion direction side of the measurement unit 14 into the measurement hole P is the distal end side, and the opposite side to the insertion direction is the proximal end side.

同図に示すように測定部14は、上記光出射部40が支持された第1支持部50と、第1支持部50よりも基端側に配置された第2支持部52であって、上記直角ミラー42が回転可能に支持されると共に上記モータ44及び上記ロータリエンコーダ46が支持された第2支持部52と、第1支持部50と第2支持部52との間に配置されて第1支持部50と第2支持部52とを一体的に連結する透明円筒54と、第1支持部50の先端側と第2支持部52の基端側とに設けられ、測定部14を測定孔Pに案内する第1ガイド部56及び第2ガイド部58と、第2ガイド部58の基端側に連設され、測定孔Pに対して測定部14を押し引き操作して挿入量を調整する挿入パイプ60と、を備える。   As shown in the figure, the measurement unit 14 includes a first support unit 50 on which the light emitting unit 40 is supported, and a second support unit 52 disposed on the base end side of the first support unit 50, The right angle mirror 42 is rotatably supported, and is disposed between a second support portion 52 on which the motor 44 and the rotary encoder 46 are supported, and between the first support portion 50 and the second support portion 52. A transparent cylinder 54 that integrally connects the first support portion 50 and the second support portion 52, and provided on the distal end side of the first support portion 50 and the proximal end side of the second support portion 52, and measures the measurement portion 14. The first guide portion 56 and the second guide portion 58 that are guided to the hole P, and the base end side of the second guide portion 58 are connected, and the measurement portion 14 is pushed and pulled with respect to the measurement hole P to reduce the insertion amount. An insertion pipe 60 to be adjusted.

第1支持部50は、外径が円柱状の円柱部材70であって、軸心が測定部14の基準軸14aと略同軸上に配置された円柱部材70を有する。その円柱部材70の軸心に沿った中央部分において光出射部40が支持される。   The first support part 50 is a cylindrical member 70 having an outer diameter that is cylindrical, and has a cylindrical member 70 whose axial center is arranged substantially coaxially with the reference axis 14 a of the measurement part 14. The light emitting portion 40 is supported at a central portion along the axis of the cylindrical member 70.

また、光ファイバ34が接続される光出射部40の基端側は、円柱部材70の内部に収容保持されると共に、測定光Lofが出射される光出射部40の先端側は円柱部材70の基端面よりも基端側(測定部14における基端側)に突出して配置される。なお、光出射部40の先端側は光出射部40から測定光Lofが出射される端面側を示し、光出射部40の先端部分には例えばコリメータレンズが配置されている。   Further, the proximal end side of the light emitting portion 40 to which the optical fiber 34 is connected is accommodated and held inside the cylindrical member 70, and the distal end side of the light emitting portion 40 from which the measurement light Lof is emitted is the cylindrical member 70. It is arranged so as to protrude from the base end surface to the base end side (base end side in the measurement unit 14). In addition, the front end side of the light emission part 40 shows the end surface side from which the measurement light Lof is emitted from the light emission part 40, and a collimator lens, for example, is disposed at the front end part of the light emission part 40.

これによって、光ファイバ34から光出射部40に送波された測定光Lofは、測定部14の先端側から基端側に向かって光出射部40から出射されると共に、基準軸14aと略同軸上を進行する。なお、図2と図4とでは光出射部40の向きは反転しており、これに伴い、直角ミラー42の向きも反転している。   As a result, the measurement light Lof transmitted from the optical fiber 34 to the light emitting portion 40 is emitted from the light emitting portion 40 from the distal end side to the proximal end side of the measuring portion 14 and substantially coaxial with the reference axis 14a. Go on top. 2 and 4, the direction of the light emitting unit 40 is reversed, and accordingly, the direction of the right angle mirror 42 is also reversed.

第2支持部52は、第1支持部50と同様に外径が円柱状の円柱部材72であって、軸心が測定部14の基準軸14aと略同軸上に配置された円柱部材72を有する。   The second support portion 52 is a columnar member 72 having an outer diameter that is a columnar shape, similar to the first support portion 50, and the columnar member 72 whose axial center is arranged substantially coaxially with the reference axis 14 a of the measurement unit 14. Have.

円柱部材72の内部には、モータ44が収容保持され、モータ44の回転軸44aには、円柱部材72の軸心に沿って円柱部材72に回転自在に軸支された回転軸部材74が連結される。そして、その回転軸部材74の先端部に直角ミラー42が固定される。   A motor 44 is housed and held inside the cylindrical member 72, and a rotating shaft member 74 that is rotatably supported by the cylindrical member 72 along the axis of the cylindrical member 72 is connected to the rotating shaft 44 a of the motor 44. Is done. Then, the right angle mirror 42 is fixed to the tip of the rotating shaft member 74.

直角ミラー42は、円柱部材72の先端面よりも先端側(測定部14における先端側)において、光出射部40の先端(測定光が出射される端面)に対向する位置に配置されると共に、反射面である斜面が基準軸14aと交差する位置であって、斜面が基準軸14aと斜め(略45度)に交差するように配置される。   The right angle mirror 42 is disposed at a position facing the tip (end surface from which the measurement light is emitted) of the light emitting unit 40 on the tip side (tip side in the measurement unit 14) of the tip surface of the cylindrical member 72, and The inclined surface which is a reflection surface is a position where the reference axis 14a intersects, and the inclined surface intersects the reference axis 14a obliquely (approximately 45 degrees).

これによって、モータ44の回転軸44aの回転によって直角ミラー42が基準軸14a周りに回転する。そして、光出射部40から出射された測定光Lofが直角ミラー42の斜面により反射されて基準軸14aに垂直な方向に照射されると共に、その照射方向が測定方向として基準軸14a周りに回転する。なお、測定光Lofの照射方向は基準軸14aに垂直な成分を含む方向であれば、必ずしも基準軸14aに垂直な方向でなくてもよい。   As a result, the right angle mirror 42 rotates around the reference axis 14 a by the rotation of the rotation shaft 44 a of the motor 44. Then, the measurement light Lof emitted from the light emitting unit 40 is reflected by the inclined surface of the right angle mirror 42 and irradiated in a direction perpendicular to the reference axis 14a, and the irradiation direction rotates around the reference axis 14a as a measurement direction. . Note that the irradiation direction of the measurement light Lof does not necessarily have to be a direction perpendicular to the reference axis 14a as long as it includes a component perpendicular to the reference axis 14a.

また、円柱部材72の内部には、ロータリエンコーダ46が収容保持され、回転軸部材74に連結される。これによって、回転軸部材74を介して直角ミラー42の回転角度の情報が測定方向の基準軸14a周り方向に関する角度を示す情報としてロータリエンコーダ46により検出される。   In addition, the rotary encoder 46 is accommodated and held in the cylindrical member 72 and connected to the rotary shaft member 74. As a result, information on the rotation angle of the right-angle mirror 42 is detected by the rotary encoder 46 as information indicating an angle related to the direction around the reference axis 14a in the measurement direction via the rotation shaft member 74.

なお、直角ミラー42よりも先端側に光出射部40を配置しているため、基準軸14a周りに回転する直角ミラー42により反射して照射された測定光Lofが走査される走査面(測定領域)を光ファイバ34が横切る。しかしながら、光ファイバ34は極めて細く(測定光のビーム径よりも細く)することが可能であり、光ファイバ34の測定への影響を略生じさせないものとすることができる。   Since the light emitting portion 40 is disposed on the tip side of the right-angle mirror 42, the scanning surface (measurement region) on which the measurement light Lof reflected and irradiated by the right-angle mirror 42 rotating around the reference axis 14a is scanned. ) Crosses the optical fiber 34. However, the optical fiber 34 can be extremely thin (thinner than the beam diameter of the measurement light), and the optical fiber 34 can be hardly affected by the measurement.

透明円筒54は、測定光Lofの波長を透過する透明部材により円筒状に形成され、透明円筒54の先端は、第1支持部50の円柱部材70の基端面の周縁に固着され、透明円筒54の基端は、第2支持部52の円柱部材72の前端面の周縁に固着される。   The transparent cylinder 54 is formed in a cylindrical shape by a transparent member that transmits the wavelength of the measurement light Lof, and the distal end of the transparent cylinder 54 is fixed to the periphery of the base end surface of the columnar member 70 of the first support portion 50. Is fixed to the peripheral edge of the front end surface of the cylindrical member 72 of the second support portion 52.

これにより、第1支持部50の円柱部材70と第2支持部52の円柱部材72とが透明円筒54を介して一体的に連結される。   Thereby, the columnar member 70 of the first support part 50 and the columnar member 72 of the second support part 52 are integrally connected via the transparent cylinder 54.

また、直角ミラー42は基準軸14a周りの周囲が透明円筒54により囲まれるが、透明円筒54は測定光Lofの波長を透過する特性を有するため、光出射部40から直角ミラー42を介して出射された測定光Lofが透明円筒54により遮断されることなく測定内面Sに照射される。そして、測定内面Sで反射した測定光(戻り光Lor)も透明円筒54により遮断されることなく透明円筒54を通過し直角ミラー42を介して光出射部40に入射する。   The right-angle mirror 42 is surrounded by a transparent cylinder 54 around the reference axis 14a. Since the transparent cylinder 54 has a characteristic of transmitting the wavelength of the measurement light Lof, it is emitted from the light emitting section 40 via the right-angle mirror 42. The measured measurement light Lof is applied to the measurement inner surface S without being blocked by the transparent cylinder 54. Then, the measurement light (return light Lor) reflected by the measurement inner surface S passes through the transparent cylinder 54 without being blocked by the transparent cylinder 54 and enters the light emitting unit 40 via the right angle mirror 42.

なお、透明円筒54は、測定光Lofの波長に対して透過性が高い材料で形成されたものであれば良く、本実施の形態における測定光Lofの波長である約1200nm〜約1600nmの光を透過する部材、例えばプラスティック(アクリル)やガラス材で表面と裏面が研磨された部材を用いることができる。   The transparent cylinder 54 only needs to be formed of a material that is highly transmissive with respect to the wavelength of the measurement light Lof, and light having a wavelength of about 1200 nm to about 1600 nm, which is the wavelength of the measurement light Lof in the present embodiment. A transparent member such as a member whose front and back surfaces are polished with plastic (acrylic) or glass material can be used.

また、透明円筒54の代わりに複数の細径の棒状部材等で第1支持部50の円柱部材70と第2支持部52の円柱部材72とを連結してもよい。   Further, the columnar member 70 of the first support part 50 and the columnar member 72 of the second support part 52 may be connected by a plurality of small-diameter rod-shaped members or the like instead of the transparent cylinder 54.

第1ガイド部56と第2ガイド部58は、互いに同様の構成を有し、基準軸14aと同軸上に配置された固定軸部材80と、固定軸部材80の先端に固定された連結部材82と、固定軸部材80(基準軸14a)に対して対称となる位置に設けられた一対のガイドローラ84を有する。   The first guide portion 56 and the second guide portion 58 have the same configuration as each other, a fixed shaft member 80 disposed coaxially with the reference shaft 14a, and a connecting member 82 fixed to the distal end of the fixed shaft member 80. And a pair of guide rollers 84 provided at positions symmetrical to the fixed shaft member 80 (reference shaft 14a).

また、第1ガイド部56は、その固定軸部材80の基端が第1支持部50の円柱部材70の先端面に固定されることで、第1支持部50の先端側に連設され、第2ガイド部58は、その連結部材82の先端面が第2支持部52の基端面に固定されることで、第2支持部52の基端側に連設される。   The first guide portion 56 is connected to the distal end side of the first support portion 50 by fixing the base end of the fixed shaft member 80 to the distal end surface of the columnar member 70 of the first support portion 50. The second guide portion 58 is connected to the proximal end side of the second support portion 52 by fixing the distal end surface of the connecting member 82 to the proximal end surface of the second support portion 52.

各ガイドローラ84は同一構造を有し、円板状のローラ部材86を備える。第1ガイド部56の一方のガイドローラ84のみに符号を付して説明すると、ガイドローラ84は、ローラ部材86と、ローラ部材86を回転自在に支持するアーム部材88と、連結部材82に固定され、アーム部材88を回転自在に支持する支持部材90と、を有する。   Each guide roller 84 has the same structure and includes a disk-shaped roller member 86. When only one guide roller 84 of the first guide portion 56 is described with reference numerals, the guide roller 84 is fixed to the roller member 86, the arm member 88 that rotatably supports the roller member 86, and the connecting member 82. And a support member 90 that rotatably supports the arm member 88.

ローラ部材86の回転軸及びアーム部材88の回転軸は、いずれも基準軸14aを含む同一の平面に対して垂直な方向を有する。   Both of the rotation shaft of the roller member 86 and the rotation shaft of the arm member 88 have a direction perpendicular to the same plane including the reference shaft 14a.

また、アーム部材88は、不図示の付勢部材によりローラ部材86が基準軸14aから離間する方向に付勢される。   Further, the arm member 88 is biased in a direction in which the roller member 86 is separated from the reference shaft 14a by a biasing member (not shown).

これらの第1ガイド部56及び第2ガイド部58により、測定部14を測定孔Pに挿入した際に、各ローラ部材86が測定内面Sに圧接(押圧)される。そして、測定部14の基準軸14aが測定孔Pの軸心と略同軸上に配置される。   By the first guide portion 56 and the second guide portion 58, each roller member 86 is pressed (pressed) against the measurement inner surface S when the measurement portion 14 is inserted into the measurement hole P. The reference axis 14a of the measurement unit 14 is arranged substantially coaxially with the axis of the measurement hole P.

なお、第1ガイド部56と第2ガイド部58のガイドローラ84は、基準軸14a周り方向の2箇所だけなく、例えば等間隔の3箇所以上に設けて、測定内面Sに3つ以上のローラ部材86が圧接されるようにしてもよい。   The guide rollers 84 of the first guide portion 56 and the second guide portion 58 are provided not only at two locations in the direction around the reference axis 14a but also at three or more locations at equal intervals, for example, and at least three rollers on the measurement inner surface S. The member 86 may be pressed.

また、本実施の形態では、第1ガイド部56及び第2ガイド部58のようなガイド部が測定部14の先端側と基端側とに設けられているが、ガイド部の配置はこれに限らない。   In the present embodiment, guide portions such as the first guide portion 56 and the second guide portion 58 are provided on the distal end side and the proximal end side of the measurement portion 14, but the arrangement of the guide portions is not limited thereto. Not exclusively.

挿入パイプ60は、第2ガイド部58の固定軸部材80の基端に連設され、その軸心が基準軸14aと略同軸上に配置される。   The insertion pipe 60 is connected to the base end of the fixed shaft member 80 of the second guide portion 58, and its axis is arranged substantially coaxially with the reference shaft 14a.

操作者がこの挿入パイプ60を把持することで、測定孔Pに対して測定部14の先端側から挿入することができ、挿入パイプ60を押し引き操作することで、測定孔Pに対する測定部14の挿入量を調整することができる。即ち、測定内面Sに対して測定光が照射(走査)される走査面の位置(測定位置)であって、測定孔Pの軸心に沿った方向に関する走査面の位置を挿入パイプ60の押し引き操作により調整することができる。   When the operator holds the insertion pipe 60, the operator can insert the measurement hole P from the distal end side of the measurement unit 14, and by pushing and pulling the insertion pipe 60, the measurement unit 14 for the measurement hole P can be inserted. The amount of insertion can be adjusted. That is, the position of the scanning surface (measurement position) where the measurement light is irradiated (scanned) to the measurement inner surface S, and the position of the scanning surface in the direction along the axis of the measurement hole P is pushed by the insertion pipe 60. It can be adjusted by pulling operation.

また、挿入パイプ60と挿入パイプ60が連設される固定軸部材80とは内部が中空となっており、それらの内部にはモータ44及びロータリエンコーダ46に接続される信号線(電線)が挿通配置される。そして、それらの信号線を外装により被覆したケーブルが挿入パイプ60の基端から延出され、そのケーブルが制御処理装置16に接続される。   Further, the insertion pipe 60 and the fixed shaft member 80 to which the insertion pipe 60 is connected are hollow inside, and a signal line (electric wire) connected to the motor 44 and the rotary encoder 46 is inserted into the inside. Be placed. Then, a cable in which these signal lines are covered with an exterior is extended from the proximal end of the insertion pipe 60, and the cable is connected to the control processing device 16.

これによって、モータ44を駆動する駆動信号(電力)が制御処理装置16から供給され、ロータリエンコーダ46により検出される回転角度情報が制御処理装置16に与えられる。   Accordingly, a drive signal (electric power) for driving the motor 44 is supplied from the control processing device 16, and rotation angle information detected by the rotary encoder 46 is given to the control processing device 16.

なお、モータ44及びロータリエンコーダ46に接続される信号線の配線経路は、本態様に限らず任意の態様とすることができ、固定軸部材80の内部を挿通するものでなくてもよいし、挿入パイプ60の内部を挿通するものでなくてもよい。   The wiring path of the signal line connected to the motor 44 and the rotary encoder 46 is not limited to this aspect, and may be any aspect, and may not be inserted through the fixed shaft member 80. The inside of the insertion pipe 60 may not be inserted.

また、光出射部40に接続される光ファイバ34は、第1支持部50の円柱部材70の内部において光出射部40に接続される一方の端部に対して、他方の端部が、円柱部材70の内部から外部に延出されて測定装置本体12に接続される。このとき、光ファイバ34の配線経路は、第2支持部52の円柱部材72、第2ガイド部58の固定軸部材80、及び、挿入パイプ60のうちの少なくとも1つの内部を挿通するものであってもよいし、また、モータ44の信号線と共に1本のケーブルに纏められて制御処理装置16又は測定装置本体12に接続される形態とすることもできる。   Further, the optical fiber 34 connected to the light emitting unit 40 has a columnar end opposite to one end connected to the light emitting unit 40 inside the columnar member 70 of the first support unit 50. The member 70 extends from the inside to the outside and is connected to the measuring apparatus main body 12. At this time, the wiring path of the optical fiber 34 is inserted through at least one of the cylindrical member 72 of the second support portion 52, the fixed shaft member 80 of the second guide portion 58, and the insertion pipe 60. Alternatively, the signal line of the motor 44 may be combined with a single cable and connected to the control processing device 16 or the measurement device main body 12.

以上、図4は、内径が略一定の測定孔Pに測定部14を挿入した状態を示したが、測定内面Sがテーパ形状の測定孔Pに測定部14を挿入した状態を図5に示す。同図に示すように測定部14の第1ガイド部56及び第2ガイド部58の各ガイドローラ84によりローラ部材86がテーパ形状の測定内面Sに圧接する位置まで移動する。これにより、測定部14の基準軸14aが測定孔Pの軸心と略同軸上に配置される。   4 shows a state in which the measurement part 14 is inserted into the measurement hole P having a substantially constant inner diameter. FIG. 5 shows a state in which the measurement part 14 is inserted into the measurement hole P having a tapered measurement inner surface S. . As shown in the figure, the roller member 86 is moved to a position where the guide roller 84 of the first guide portion 56 and the second guide portion 58 of the measurement portion 14 comes into pressure contact with the tapered measurement inner surface S. Thereby, the reference axis 14a of the measurement unit 14 is arranged substantially coaxially with the axis of the measurement hole P.

なお、光出射部40から直角ミラー42を介して基準軸14aに垂直な方向に出射された測定光は測定内面Sに対して斜めに照射されるが、測定内面Sで散乱した光が戻り光として直角ミラー42を介して光出射部40に入射するため測定が可能である。   Note that the measurement light emitted from the light emitting unit 40 through the right angle mirror 42 in a direction perpendicular to the reference axis 14a is obliquely irradiated to the measurement inner surface S, but the light scattered on the measurement inner surface S is returned light. Since it enters into the light emission part 40 through the right-angle mirror 42, it can measure.

以上の測定部14において、測定光Lofの走査面と交差する部分を含む光ファイバ34の一部分をケーブルレスで光学的に接続し、光出射部40から出射された測定光Lofが光ファイバ34に照射されないようにしてもよい。   In the measurement unit 14 described above, a part of the optical fiber 34 including a portion intersecting the scanning surface of the measurement light Lof is optically connected without a cable, and the measurement light Lof emitted from the light emission unit 40 is applied to the optical fiber 34. You may make it not be irradiated.

例えば、図6のように光ファイバ34が2つの光ファイバ34a、34bに分断され、その間に光が大気中を伝播するケーブルレス部34cが設けられる。ケーブルレス部34cは透明円筒54の外周部周辺となるように配置され、光ファイバ34aの端部35aと光ファイバ34bの端部35bとが各々、第2支持部52の円柱部材72と第1支持部50の円柱部材70に固定される。端部35a、35bの各々には、光ファイバ34a、34bからケーブルレス部34cに出射される光を平行光にし、また、ケーブルレス部34cから入射する光を集光して光ファイバ34a、34bに進入させるコリメータレンズが配置される。   For example, as shown in FIG. 6, the optical fiber 34 is divided into two optical fibers 34a and 34b, and a cableless portion 34c through which light propagates in the atmosphere is provided. The cableless portion 34c is arranged so as to be around the outer peripheral portion of the transparent cylinder 54, and the end portion 35a of the optical fiber 34a and the end portion 35b of the optical fiber 34b are respectively connected to the columnar member 72 of the second support portion 52 and the first member. It is fixed to the columnar member 70 of the support part 50. In each of the end portions 35a and 35b, the light emitted from the optical fibers 34a and 34b to the cableless portion 34c is converted into parallel light, and the light incident from the cableless portion 34c is collected to collect the optical fibers 34a and 34b. A collimator lens to be entered is disposed.

なお、ケーブルレス部34cは、透明円筒54の内側に配置されるようにしてもよい。   Note that the cableless portion 34 c may be disposed inside the transparent cylinder 54.

次に、非接触内面形状測定装置1の測定手順を図7のフローチャートを用いて説明する。   Next, the measurement procedure of the non-contact inner surface shape measuring apparatus 1 will be described using the flowchart of FIG.

まず、ステップS10では、操作者は、挿入パイプ60を把持して測定孔Pに対して測定部14を先端側から挿入する。そして、挿入パイプ60を押し引き操作して測定孔Pの軸心に沿った方向に関する測定位置を調整し設定する。そして、ステップS12に移行する。   First, in step S <b> 10, the operator holds the insertion pipe 60 and inserts the measurement unit 14 into the measurement hole P from the distal end side. Then, the insertion pipe 60 is pushed and pulled to adjust and set the measurement position in the direction along the axis of the measurement hole P. Then, the process proceeds to step S12.

ステップS12では、制御処理装置16は、測定装置本体12の波長掃引光源20をオンにして測定部14の光出射部40から測定光Lofを出射させる。また、モータ44を駆動して直角ミラー42を回転させる。そして、光検出器24からの干渉信号を取得して、干渉信号に基づいて測定光Lofが照射された測定内面S上の測定点までの距離の情報を取得(算出)する。この後、ステップS14に移行する。   In step S <b> 12, the control processing device 16 turns on the wavelength sweep light source 20 of the measurement device main body 12 and emits the measurement light Lof from the light emission unit 40 of the measurement unit 14. Further, the motor 44 is driven to rotate the right angle mirror 42. Then, an interference signal from the photodetector 24 is acquired, and information on the distance to the measurement point on the measurement inner surface S irradiated with the measurement light Lof is acquired (calculated) based on the interference signal. Thereafter, the process proceeds to step S14.

ステップS14では、制御処理装置16は、測定部14のロータリエンコーダ46から回転角度の情報を取得し、その回転角度(測定方向の基準軸14a周り方向に関する角度)とステップS12において取得した測定点までの距離とを対応付ける。そして、ステップS16に移行する。   In step S14, the control processing device 16 acquires information on the rotation angle from the rotary encoder 46 of the measurement unit 14, and the rotation angle (an angle related to the direction around the reference axis 14a in the measurement direction) and the measurement point acquired in step S12. Is associated with the distance. Then, the process proceeds to step S16.

ステップS16では、制御処理装置16は、モータ44により直角ミラー42を1回転させたか否か、即ち、測定方向を基準軸14a周りに1回転させたか否かを判定する。YESであれば、ステップS20に移行し、NOであれば、ステップS12に戻り、ステップS12〜ステップS16の処理を繰り返す。   In step S16, the control processing device 16 determines whether or not the right angle mirror 42 is rotated once by the motor 44, that is, whether or not the measurement direction is rotated once around the reference axis 14a. If it is YES, it will transfer to Step S20, and if it is NO, it will return to Step S12 and will repeat processing of Step S12-Step S16.

なお、ステップS16において、直角ミラー42を1回転させたか否かではく、予め決められた角度範囲分を回転させたか否かを判定するようにしてもよい。   In step S16, it may be determined whether or not the right angle mirror 42 has been rotated by a predetermined angle range, instead of whether or not the right angle mirror 42 has been rotated once.

また、制御処理装置16は、たとえば、直角ミラー42が予め決められた角度Δθ分だけ回転するごとに測定点までの距離情報することで、角度Δθは、例えば測定点の数をXとした場合には、360度を角度Δθで割った数の測定点に対する測定データを得る。   In addition, the control processing device 16 provides the distance information to the measurement point every time the right-angle mirror 42 rotates by a predetermined angle Δθ, for example, the angle Δθ is, for example, when the number of measurement points is X The measurement data for the number of measurement points obtained by dividing 360 degrees by the angle Δθ is obtained.

一方、ステップS16でYESと判定した場合のステップS20では、ステップS14において対応付けた各回転角度での距離の情報に基づいて、測定光の走査面における測定内面Sの形状情報(位置情報)を取得し、保存する。また、モニタ等の出力手段にその測定内面Sの形状情報を表示する。そして、ステップS22に移行する。   On the other hand, in step S20 when YES is determined in step S16, the shape information (position information) of the measurement inner surface S on the scanning surface of the measurement light is obtained based on the distance information at each rotation angle associated in step S14. Get and save. Further, the shape information of the measurement inner surface S is displayed on output means such as a monitor. Then, the process proceeds to step S22.

ステップS22では、操作者は、異なる測定位置での測定を行うか否かを判断する。そして、YESと判定した場合にはステップS10に戻り、挿入パイプ60の押し引き操作による測定位置の調整から開始する。NOと判定した場合には測定を終了する。   In step S22, the operator determines whether or not to perform measurement at a different measurement position. And when it determines with YES, it returns to step S10 and starts from adjustment of the measurement position by pushing-pull operation of the insertion pipe 60. FIG. If NO is determined, the measurement is terminated.

以上の非接触内面形状測定装置1により得られた測定データ(及びモニタ等への出力画面)を例示する。   The measurement data (and output screen to a monitor etc.) obtained by the above non-contact inner surface shape measuring apparatus 1 are illustrated.

図8の測定データは、内径が約98mmの円筒の孔を測定孔Pとし、その内周面を測定内面Sとして測定したときに実測された測定内面Sの形状データを示す。   The measurement data in FIG. 8 shows the shape data of the measurement inner surface S measured when a cylindrical hole having an inner diameter of about 98 mm is used as the measurement hole P and the inner peripheral surface thereof is used as the measurement inner surface S.

同図に示すように測定データは極座標グラフにおいて多数の測定点xとしてプロットされており、グラフの中心Oが基準軸14aの位置に相当し、各測定点xの角度の座標及び径方向の座標が、測定内面Sにおいて測定光が照射された各測定点の基準軸14a周りの角度及び基準軸14aからの距離を示す。   As shown in the figure, the measurement data is plotted as a large number of measurement points x in the polar coordinate graph, the center O of the graph corresponds to the position of the reference axis 14a, and the angular coordinates and radial coordinates of each measurement point x. Indicates the angle around the reference axis 14a and the distance from the reference axis 14a at each measurement point irradiated with the measurement light on the measurement inner surface S.

また、図8のような測定データに基づいて、測定孔Pの内径を実測値として求めることができ、同図には、測定孔Pの内径の測定値が、97.991mm±0.0055mmであることが示されている。   Further, based on the measurement data as shown in FIG. 8, the inner diameter of the measurement hole P can be obtained as an actual measurement value. In the same figure, the measurement value of the inner diameter of the measurement hole P is 97.991 mm ± 0.0055 mm. It is shown that there is.

図9の測定データは、内歯車が形成された孔を測定孔Pとし、その内歯車を測定内面Sとして測定したときに実測された測定内面Sの形状データを示す。   The measurement data of FIG. 9 shows the shape data of the measured inner surface S measured when the hole in which the internal gear is formed is the measurement hole P and the internal gear is measured as the measurement inner surface S.

図8と同様に測定データは極座標グラフにおいて多数の測定点xとしてプロットされており、歯車の凹凸が精度良く測定されていることが同図の測定データからわかる。   As in FIG. 8, the measurement data is plotted as a large number of measurement points x in the polar graph, and it can be seen from the measurement data in FIG.

また、図9のような測定データに基づいて、歯先円と歯底円の直径を実測値として求めることができ、同図には、歯先円と歯底円の直径の測定値が、各々、115.998mm±0.017mm、124.975mm±0.044mmであることが示されている。   Further, based on the measurement data as shown in FIG. 9, the diameters of the tip circle and the root circle can be obtained as actual measurement values. They are shown to be 115.998 mm ± 0.017 mm and 124.975 mm ± 0.044 mm, respectively.

また、図10のように、図9における角度の座標と径方向の座標(半径)とを横軸と縦軸にして測定データの全体又は一部を表示することもできる。   Further, as shown in FIG. 10, the whole or a part of the measurement data can be displayed with the horizontal coordinate and the vertical axis representing the angle coordinate and the radial coordinate (radius) in FIG.

なお、測定装置10の光検出器24により検出された干渉信号を解析すると、図11のように基準軸14aからの距離に対して測定光の戻り光の光量に大きさを示す干渉強度分布が得られる。そして、測定内面Sにおいて測定光が照射された測定点は、その干渉強度分布において極大点aを形成し、その極大点aが示す距離が測定点xまでの距離を示す。   When the interference signal detected by the light detector 24 of the measurement apparatus 10 is analyzed, an interference intensity distribution indicating the magnitude of the amount of return light of the measurement light with respect to the distance from the reference axis 14a as shown in FIG. can get. The measurement point irradiated with the measurement light on the measurement inner surface S forms a maximum point a in the interference intensity distribution, and the distance indicated by the maximum point a indicates the distance to the measurement point x.

一方、透明円筒54の内面と外面でも戻り光が発生する場合には、干渉強度分布において、測定内面Sの測定点が形成する極大点a以外に、透明円筒54の内面と外面とにおいて測定光が通過した通過点が形成する極大点b、cも存在し、各々の極大点b、cが示す距離が透明円筒54の内面と外面の各々の通過点までの距離を示す。   On the other hand, when return light is generated also on the inner and outer surfaces of the transparent cylinder 54, the measurement light is measured on the inner and outer surfaces of the transparent cylinder 54 in addition to the maximum point a formed by the measurement points on the measurement inner surface S in the interference intensity distribution. There are also local maximum points b and c formed by the passing points through which the distances pass, and the distances indicated by the local maximum points b and c indicate the distances between the inner surface and the outer surface of the transparent cylinder 54.

これによれば、図11の干渉強度分布から直接的に導かれる透明円筒54の内面の通過点と外面の通過点との距離の差(透明円筒54の厚み)は、透明円筒54の厚みを大気中における光路長で表した値であり、透明円筒54の実空間での実際の厚みと相違する。そのため、図11の干渉強度分布から直接的に導かれる測定点までの距離も透明円筒54による誤差を含む。   According to this, the difference in the distance (thickness of the transparent cylinder 54) between the passing point of the inner surface and the outer surface of the transparent cylinder 54 directly derived from the interference intensity distribution of FIG. This is a value represented by the optical path length in the atmosphere, and is different from the actual thickness of the transparent cylinder 54 in the real space. Therefore, the distance to the measurement point directly derived from the interference intensity distribution of FIG.

一方、図11の干渉強度分布から直接的に導かれる透明円筒54の厚みを、透明円筒54の屈折率と大気の屈折率とに基づいて、実空間での実際の厚みに補正することで、測定点までの距離をより高精度に測定することができる。   On the other hand, by correcting the thickness of the transparent cylinder 54 directly derived from the interference intensity distribution of FIG. 11 to the actual thickness in real space based on the refractive index of the transparent cylinder 54 and the refractive index of the atmosphere, The distance to the measurement point can be measured with higher accuracy.

また、図11の干渉強度分布から導かれる透明円筒54の厚みが、透明円筒54の既知の厚みと既知の屈折率とに基づいて算出される大気中における光路長で表した透明円筒54の厚みと一致するように干渉強度分布の各点に対する距離を補正するようにしてもよい。   Further, the thickness of the transparent cylinder 54 derived from the interference intensity distribution of FIG. 11 is represented by the optical path length in the atmosphere where the thickness is calculated based on the known thickness and the known refractive index of the transparent cylinder 54. The distance to each point of the interference intensity distribution may be corrected so as to match.

以上、上記実施の形態の測定部14では、光出射部40が直角ミラー42よりも先端側に配置された構成としたが、これに限らず、光出射部40が直角ミラー42よりも基端側に配置された構成としてもよい。   As described above, in the measurement unit 14 according to the above-described embodiment, the light emitting unit 40 is disposed on the distal end side with respect to the right-angle mirror 42. However, the configuration is not limited thereto, and the light emitting unit 40 is proximal to the right-angle mirror 42. It is good also as a structure arrange | positioned at the side.

また、上記実施の形態の非接触内面形状測定装置1は、波長掃引干渉型変位センサの測定原理に基づくものであるが、この測定原理と異なるものであっても、測定孔Pに挿入される測定部から測定内面Sに測定光を照射することで非接触により測定内面Sの形状を測定する装置であれば本発明を適用できる。   Further, the non-contact inner surface shape measuring apparatus 1 of the above embodiment is based on the measurement principle of the wavelength sweep interference type displacement sensor, but even if it is different from this measurement principle, it is inserted into the measurement hole P. The present invention can be applied to any device that measures the shape of the measurement inner surface S in a non-contact manner by irradiating the measurement inner surface S with measurement light from the measurement unit.

1…非接触内面形状測定装置、10…測定装置、12…測定装置本体、14…測定部、14a…基準軸、16…制御処理装置、20…波長掃引光源、22…サーキュレータ、24…光検出器、30、32、34…光ファイバ、40…光出射部、42…直角ミラー、44…モータ、46…ロータリエンコーダ、50…第1支持部、52…第2支持部、54…透明円筒、56…第1ガイド部、58…第2ガイド部、60…挿入パイプ、70、72…円柱部材、84…ガイドローラ、86…ローラ部材、P…測定孔、S…測定内面 DESCRIPTION OF SYMBOLS 1 ... Non-contact inner surface shape measuring apparatus, 10 ... Measuring apparatus, 12 ... Measuring apparatus main body, 14 ... Measuring part, 14a ... Reference axis, 16 ... Control processing apparatus, 20 ... Wavelength sweep light source, 22 ... Circulator, 24 ... Light detection 30, 32, 34 ... optical fiber, 40 ... light emitting part, 42 ... right angle mirror, 44 ... motor, 46 ... rotary encoder, 50 ... first support part, 52 ... second support part, 54 ... transparent cylinder, 56 ... 1st guide part, 58 ... 2nd guide part, 60 ... Insertion pipe, 70, 72 ... Cylindrical member, 84 ... Guide roller, 86 ... Roller member, P ... Measurement hole, S ... Measurement inner surface

Claims (7)

測定対象である測定孔に挿入される測定部から前記測定孔の内面である測定内面に測定光を照射することで非接触により前記測定内面の形状を測定する非接触内面形状測定装置であって、
前記測定部は、
前記測定部の前記測定孔への挿入方向に沿った基準軸と、
前記基準軸に沿った方向に測定光を出射する光出射部と、
前記光出射部に対向して配置され、前記光出射部から出射された測定光の進行方向を変更し、前記測定内面に向けて前記測定光を出射する進行方向変更部材と、
前記進行方向変更部材を前記基準軸周りに回転させる駆動手段と、
前記測定内面に当接して前記測定部を前記測定孔の内部に支持するガイド部と、
を備えた非接触内面形状測定装置。
A non-contact inner surface shape measuring device that measures the shape of the measurement inner surface in a non-contact manner by irradiating measurement light to a measurement inner surface that is an inner surface of the measurement hole from a measurement portion inserted into a measurement hole that is a measurement object ,
The measuring unit is
A reference axis along the insertion direction of the measurement part into the measurement hole;
A light emitting portion for emitting measurement light in a direction along the reference axis;
A traveling direction changing member that is disposed to face the light emitting portion, changes the traveling direction of the measuring light emitted from the light emitting portion, and emits the measuring light toward the measurement inner surface;
Driving means for rotating the traveling direction changing member around the reference axis;
A guide part that contacts the measurement inner surface and supports the measurement part inside the measurement hole;
A non-contact inner surface shape measuring apparatus.
前記進行方向変更部材は、前記基準軸に斜めに交差する反射面を有する反射部材である請求項1に記載の非接触内面形状測定装置。   The non-contact inner surface shape measuring apparatus according to claim 1, wherein the traveling direction changing member is a reflecting member having a reflecting surface obliquely intersecting the reference axis. 前記光出射部は、前記進行方向変更部材よりも前記挿入方向の先端側に配置され、前記測定光を前記挿入方向の基端側に向けて出射する請求項1又は2に記載の非接触内面形状測定装置。   3. The non-contact inner surface according to claim 1, wherein the light emitting portion is disposed on a distal end side in the insertion direction with respect to the traveling direction changing member, and emits the measurement light toward a proximal end side in the insertion direction. Shape measuring device. 前記ガイド部は、前記測定部の前記挿入方向の先端側と基端側とに配置された請求項1、2、又は3に記載の非接触内面形状測定装置。   The non-contact inner surface shape measuring device according to claim 1, 2, or 3, wherein the guide portion is disposed on a distal end side and a proximal end side in the insertion direction of the measurement portion. 前記進行方向変更部材は透明円筒により前記基準軸周りの周囲が囲まれている請求項1〜4のいずれか1項に記載の非接触内面形状測定装置。   The non-contact inner surface shape measuring apparatus according to claim 1, wherein the traveling direction changing member is surrounded by a transparent cylinder around the reference axis. 波長掃引光源と、
前記波長掃引光源から出射された光を互いに異なる光路を通過する測定光と参照光とに分岐する分岐手段と、
前記測定光を前記光出射部に案内する案内手段と、
前記光出射部から前記進行方向変更部材を介して出射された測定光が照射される測定点からの戻り光であって、前記進行方向変更部材、前記光出射部、及び、前記案内手段を介して戻る戻り光と前記参照光との干渉光を検出する光検出手段と、
前記駆動手段より回転する前記反射部材の各回転角度において、前記光検出手段により検出された干渉光に基づいて前記測定点の位置を検出することにより、前記測定内面の形状を検出する内面形状検出手段と、
を備えた請求項1〜5のいずれか1項に記載の非接触内面形状測定装置。
A wavelength swept light source;
Branching means for branching light emitted from the wavelength swept light source into measurement light and reference light that pass through different optical paths;
Guiding means for guiding the measurement light to the light emitting section;
Return light from the measurement point irradiated with the measurement light emitted from the light emitting part via the traveling direction changing member, via the traveling direction changing member, the light emitting part, and the guiding means Light detecting means for detecting interference light between the return light returning and the reference light;
Inner surface shape detection for detecting the shape of the measurement inner surface by detecting the position of the measurement point based on the interference light detected by the light detection device at each rotation angle of the reflecting member rotated by the driving device. Means,
The non-contact inner surface shape measuring apparatus according to claim 1, comprising:
前記波長掃引光源は、波長を1200nm〜1600nmの範囲内で変化させる請求項6に記載の非接触内面形状測定装置。   The non-contact inner surface shape measuring apparatus according to claim 6, wherein the wavelength swept light source changes a wavelength within a range of 1200 nm to 1600 nm.
JP2015167971A 2015-08-27 2015-08-27 Non-contact inner surface shape measuring device Active JP6610090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167971A JP6610090B2 (en) 2015-08-27 2015-08-27 Non-contact inner surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167971A JP6610090B2 (en) 2015-08-27 2015-08-27 Non-contact inner surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2017044605A true JP2017044605A (en) 2017-03-02
JP6610090B2 JP6610090B2 (en) 2019-11-27

Family

ID=58211613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167971A Active JP6610090B2 (en) 2015-08-27 2015-08-27 Non-contact inner surface shape measuring device

Country Status (1)

Country Link
JP (1) JP6610090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200001921A (en) * 2018-06-28 2020-01-07 한국광기술원 apparatus of detecting the inside shape of minute pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129647A (en) * 1983-12-16 1985-07-10 Osaka Gas Co Ltd Apparatus for inspecting interior of pipe
JPS6358133A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPH0237358U (en) * 1988-09-01 1990-03-12
JPH0455504U (en) * 1990-09-20 1992-05-13
JPH0868758A (en) * 1994-08-31 1996-03-12 Toa Gurauto Kogyo Kk Method and apparatus for investigating state of existing sewer pipe
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2011017615A (en) * 2009-07-09 2011-01-27 High Energy Accelerator Research Organization Pipe inner-surface shape measuring apparatus and method by white light interferometry
JP2011252774A (en) * 2010-06-01 2011-12-15 Fujifilm Corp Measuring apparatus for inspection target surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129647A (en) * 1983-12-16 1985-07-10 Osaka Gas Co Ltd Apparatus for inspecting interior of pipe
JPS6358133A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPH0237358U (en) * 1988-09-01 1990-03-12
JPH0455504U (en) * 1990-09-20 1992-05-13
JPH0868758A (en) * 1994-08-31 1996-03-12 Toa Gurauto Kogyo Kk Method and apparatus for investigating state of existing sewer pipe
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2011017615A (en) * 2009-07-09 2011-01-27 High Energy Accelerator Research Organization Pipe inner-surface shape measuring apparatus and method by white light interferometry
JP2011252774A (en) * 2010-06-01 2011-12-15 Fujifilm Corp Measuring apparatus for inspection target surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU, JIANPING ET AL.: "In vivo three-dimensional microelectromechanical endscopic swept source optical coherence tomography", OPTICS EXPRESS, vol. 15, no. 16, JPN6019006378, 6 August 2007 (2007-08-06), pages 10390 - 10396, ISSN: 0003985360 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200001921A (en) * 2018-06-28 2020-01-07 한국광기술원 apparatus of detecting the inside shape of minute pipe
KR102118648B1 (en) * 2018-06-28 2020-06-04 한국광기술원 apparatus of detecting the inside shape of minute pipe

Also Published As

Publication number Publication date
JP6610090B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
EP3529579B1 (en) Shape sensing with multi-core fiber sensor
US8055107B2 (en) Optical rotary adapter and optical tomographic imaging system using the same
JP5140396B2 (en) Optical connector and optical tomographic imaging apparatus using the same
JP2014515827A (en) 6 DOF laser tracker working with remote projector to convey information
JPWO2011062087A1 (en) Probe for optical tomographic image measuring apparatus and method for adjusting probe
JP5669182B2 (en) Vibration measuring apparatus and vibration measuring method by white interference method
JP2011017615A (en) Pipe inner-surface shape measuring apparatus and method by white light interferometry
JP6576542B2 (en) 3D shape measuring device, 3D shape measuring probe
US20180143000A1 (en) Optical measurement device, method for revising optical measurement device, and optical measurement method
JP2015097569A (en) Optical probe for optical interference tomographic imaging, and manufacturing method thereof
WO2010047190A1 (en) Rotary optical probe
JP5355489B2 (en) Optical potentiometer
US9128249B2 (en) Optical probe and optical measuring method
JP6610090B2 (en) Non-contact inner surface shape measuring device
CN106338259B (en) The curvature measuring device and measuring method of bar
JP6555472B2 (en) Non-contact inner surface shape measuring device
JP2014094121A (en) Light transmission device, and optical element
JP2011191076A (en) Device for measuring deflection, and device for measuring deflection and axial torsion
JP4804977B2 (en) Tunable laser device and optical tomographic imaging apparatus
JP2008268000A (en) Displacement measuring method and device
WO2018003097A1 (en) Optical inner-surface measurement device
JP2014094123A (en) Light transmission device, and optical element
JP2017215211A (en) Inner face measuring machine-purpose calibration device
JP5524549B2 (en) Optical probe
JP5447574B2 (en) Surface profile measuring device and translucent object thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250