JP2017044540A - Attitude correction method for measurement instrument and device for measuring distance between planes - Google Patents

Attitude correction method for measurement instrument and device for measuring distance between planes Download PDF

Info

Publication number
JP2017044540A
JP2017044540A JP2015166135A JP2015166135A JP2017044540A JP 2017044540 A JP2017044540 A JP 2017044540A JP 2015166135 A JP2015166135 A JP 2015166135A JP 2015166135 A JP2015166135 A JP 2015166135A JP 2017044540 A JP2017044540 A JP 2017044540A
Authority
JP
Japan
Prior art keywords
distance
inter
distance measuring
measurement error
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015166135A
Other languages
Japanese (ja)
Other versions
JP6524441B2 (en
Inventor
康一郎 原田
Koichiro Harada
康一郎 原田
豊樹 山本
Toyoki Yamamoto
豊樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015166135A priority Critical patent/JP6524441B2/en
Publication of JP2017044540A publication Critical patent/JP2017044540A/en
Application granted granted Critical
Publication of JP6524441B2 publication Critical patent/JP6524441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy by correcting an attitude of a device for measuring distance between planes in a state of being set in a calibrator so as to reduce slight inclination generated by a manufacturing error.SOLUTION: A device 1 for measuring distance between planes comprises a support medium 2 which can be inserted into facing two planes, three contact type displacement sensors 3a provided in one end part of the support medium 2 and three contact type displacement sensors 3b provided in the other end part of the support medium 2 and finds inclination to the facing two planes and measures distance therebetween. When the device 1 for measuring distance between planes is calibrated, inclination is changed from the state in which the device 1 for measuring distance between planes is set to a calibrator 7 with already-known distance between parallel two planes, to perform distance measurement and acquire a measurement error. Next, on the basis of the measurement error, an initial angle generated by a manufacturing error of the device 1 for measuring distance between planes is determined. Next, the initial angle is corrected by, for example, inserting a shim so as to reduce the initial angle.SELECTED DRAWING: Figure 1

Description

本発明は、対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具、例えば面間距離測定装置に適用して好適な姿勢補正方法に関する。   The present invention relates to a posture correction method suitable for application to a measuring instrument that can measure the distance to an object and determine the posture with respect to the object, for example, an inter-surface distance measuring device.

対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具では、その初期姿勢が測定精度に影響を与えることがある。
以下では、本出願人が提案している二面間の距離を測定する面間距離測定装置を例として、まずその説明を行い、続いてその初期姿勢が測定精度に影響を与えることを説明する。
圧延機の管理の一つとして、圧延機ハウジングのハウジングウィンドウにおいて対向する二面間の距離(ハウジングウィンドウ幅と呼ぶ)を測定、管理することが行われている(例えば特許文献1を参照)。圧延機による圧延中には、ロールに生じる圧延荷重により圧延機ハウジング及びライナで磨耗や変形が生ずるため、定期的にハウジングウィンドウ幅を測定、管理することが必要となる。
従来、ハウジングウィンドウ幅の測定はインサイドマイクロゲージ等を用いて行われることが多い。しかしながら、インサイドマイクロゲージ等を用いる測定作業は、人員が2名以上必要となり、また、被測定部のグリス清掃作業が必要となるため、負担のかかる作業となっている。また、インサイドマイクロゲージを用いた測定作業にはスキルが要求され(測定面とゲージを垂直にする方向を視覚的に判断することは困難であるため、垂直近傍の状態でゲージを動かした時の手の感触により判断し測定する必要がある)、ヒューマンエラーによる測定誤差が発生しやすい問題もある。
In a measuring instrument that can measure the distance to an object and determine the posture with respect to the object, the initial posture may affect the measurement accuracy.
In the following, the inter-surface distance measuring device that measures the distance between two surfaces proposed by the present applicant will be described as an example, and then the initial posture will affect the measurement accuracy. .
As one of the management of the rolling mill, measuring and managing the distance between two opposing surfaces (referred to as housing window width) in the housing window of the rolling mill housing (see, for example, Patent Document 1). During rolling by a rolling mill, wear and deformation occur in the rolling mill housing and liner due to the rolling load generated on the roll, so it is necessary to measure and manage the housing window width periodically.
Conventionally, the measurement of the housing window width is often performed using an inside micro gauge or the like. However, the measurement work using the inside micro gauge or the like is a burdensome work because two or more people are required and the work for cleaning the grease to be measured is required. Also, skill is required for measurement work using the inside micro gauge (since it is difficult to visually determine the direction in which the measurement surface and the gauge are perpendicular, it is difficult to move the gauge in the vertical vicinity. There is also a problem that measurement error due to human error is likely to occur.

特許第5332606号公報Japanese Patent No. 5332606 特許第5610443号公報Japanese Patent No. 5610443 特開2005−37353号公報JP 2005-37353 A

本出願人は、ハウジングウィンドウ幅の測定に利用して好適な測定器具として、特願2015−72118号において、対向する二面間に挿入することのできる支持体と、前記支持体の一端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの一方の面までの距離を測定する3つ以上の一方の距離測定センサと、前記支持体の他端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの他方の面までの距離を測定する3つ以上の他方の距離測定センサとを備えた面間距離測定装置を提案している。
この面間距離測定装置は、二面間における各々の点間距離を算出し、その線分と面とのなす角から面間距離を算出するものである。これにより、距離測定時に、ハウジングウィンドウの面との直交関係を維持する必要がなく、測定者に依存しない測定が可能となる。
In the Japanese Patent Application No. 2015-72118, the applicant of the present invention has disclosed a support body that can be inserted between two opposing surfaces as a measurement instrument suitable for use in measuring the housing window width, and one end portion of the support body. Provided at the other end of the support, and three or more distance measuring sensors for measuring a distance from a predetermined position of the inter-surface distance measuring device to one of the two surfaces. The inter-surface distance measuring device includes three or more other distance measuring sensors that measure the distance from a predetermined position of the inter-surface distance measuring device to the other of the two surfaces. .
This inter-surface distance measuring device calculates the inter-point distance between two surfaces and calculates the inter-surface distance from the angle formed by the line segment and the surface. Thereby, at the time of distance measurement, it is not necessary to maintain the orthogonal relationship with the surface of the housing window, and measurement independent of the measurer is possible.

また、対象物までの距離を測定する測定器具として、例えば特許文献2には、非接触三次元測定器が開示されている。非接触式三次元測定器は、二つのエンコーダ付き回転モータと、レーザ測距システムから構成され、エンコーダで二つの角度φ、θを計測するとともに、レーザ測距システムにより計測対象までの距離を測定することで、計測点の座標情報を得て、計測対象全体形状の三次元形状データを生成する。また、例えば特許文献3には、ワークに対して複数の測定姿勢を取ることが可能な検出器を備えた表面性状測定機が開示されている。   As a measuring instrument for measuring the distance to an object, for example, Patent Document 2 discloses a non-contact three-dimensional measuring device. The non-contact type three-dimensional measuring instrument is composed of two rotary motors with encoders and a laser ranging system. The encoder measures two angles φ and θ, and measures the distance to the measurement object with the laser ranging system. Thus, the coordinate information of the measurement point is obtained, and the three-dimensional shape data of the entire shape to be measured is generated. Further, for example, Patent Document 3 discloses a surface texture measuring machine including a detector capable of taking a plurality of measurement postures with respect to a workpiece.

上述した本出願人が提案する面間距離測定装置の角度分解能は0.0004°(sin0.0004=7/1000000)であることより、高精度の測定が期待できる。本発明の事例においては、期待精度0.04°(期待精度0.05mmから算出)と十分な機器単体精度を有している。しかしながら、本発明適用前の実測精度(誤差)は0.025°であり、この誤差をすべて較正誤差と仮定すると、期待精度の倍精度を確保できていないことが分かる。これより、現状の較正方法では、測定性能を十分に発揮できない課題がある。   The angle resolution of the inter-plane distance measuring apparatus proposed by the applicant described above is 0.0004 ° (sin 0.0004 = 7/1000000), and therefore high-precision measurement can be expected. In the case of the present invention, it has an expected accuracy of 0.04 ° (calculated from an expected accuracy of 0.05 mm) and sufficient unit accuracy. However, the actual measurement accuracy (error) before application of the present invention is 0.025 °, and assuming that all of these errors are calibration errors, it can be seen that the double precision of the expected accuracy cannot be secured. Thus, there is a problem that the current calibration method cannot sufficiently exhibit the measurement performance.

本発明は、対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具を用いる際に、その機能を利用して姿勢を補正して、実測精度(誤差)を低減して、期待精度の倍精度確保を可能とし、測定精度を向上させ、測定性能を十分に発揮することを目的とする。   When using a measuring instrument that can measure the distance to an object and determine the attitude to the object, the present invention uses the function to correct the attitude and reduce the measurement accuracy (error). The objective is to ensure the double precision of the expected accuracy, improve the measurement accuracy, and fully demonstrate the measurement performance.

本発明の測定器具の姿勢補正方法は、対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具の姿勢を補正するためのものであって、前記測定器具を用いて基準とする平面の距離の測定を行い、前記基準とする平面に対する前記測定器具の初期姿勢を求めて、前記初期姿勢を補正することを特徴とする。
本発明の面間距離測定装置の姿勢補正方法は、対向する二面間に挿入することのできる支持体と、前記支持体の一端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの一方の面までの距離を測定する3つ以上の一方の距離測定センサと、前記支持体の他端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの他方の面までの距離を測定する3つ以上の他方の距離測定センサとを備え、前記対向する二面に対する傾きを求めて、前記二面間の距離を測定する面間距離測定装置の姿勢を補正するためのものであって、前記面間距離測定装置を、平行な二面間の距離が既知の較正器にセットした状態から傾きを変えて距離測定を行い、測定誤差を取得する手順と、前記測定誤差に基づいて、前記面間距離測定装置の初期角度を求める手順と、前記初期角度を補正する手順とを有することを特徴とする。
また、本発明の面間距離測定装置の姿勢補正方法の他の特徴とするところは、前記測定誤差を取得する手順では、前記面間距離測定装置を前記較正器にセットした状態で、前記面間距離測定装置の一端部側で傾きを変えて距離測定を行い、所定の傾きでの測定誤差を求め、次に、前記面間距離測定装置の他端部側で傾きを変えて距離測定を行い、前記所定の傾きでの測定誤差を求める点にある。この場合に、前記測定誤差を取得する手順では、前記一端部側で求めた前記所定の傾きでの測定誤差と、前記他端部側で求めた前記所定の傾きでの測定誤差との中立値を求めて、前記中立値に対する測定誤差を算出し、前記初期角度を求める手順では、前記中立値に対する測定誤差に基づいて前記初期角度を求めるようにするのが好ましい。
また、本発明の面間距離測定装置の姿勢補正方法の他の特徴とするところは、前記初期角度を求める手順では、測定誤差Δ、前記較正器の二面間の距離L、傾きθとして、初期角度θ´を下式
θ´=tan-1(Δ・180/L・π・θ)
により求める点にある。
The measuring instrument posture correction method of the present invention is a method for measuring the distance to an object and correcting the posture of the measuring instrument that can determine the posture with respect to the object. The distance of the plane is measured, the initial posture of the measuring instrument with respect to the reference plane is obtained, and the initial posture is corrected.
The method for correcting the posture of the inter-surface distance measuring apparatus according to the present invention includes a support body that can be inserted between two opposing surfaces, and one end portion of the support body, from a predetermined position of the inter-surface distance measurement apparatus. Three or more distance measurement sensors for measuring the distance to one of the two surfaces, and the other end of the support, and the second distance sensor from a predetermined position of the inter-surface distance measurement device. An inter-surface distance measurement that includes three or more other distance measurement sensors that measure a distance to the other of the surfaces, and calculates a tilt between the two opposing surfaces and measures a distance between the two surfaces. It is for correcting the posture of the apparatus, and the distance measurement is performed by changing the inclination from the state in which the inter-surface distance measurement apparatus is set in a calibrator in which the distance between two parallel surfaces is known, and the measurement error is measured. Based on the acquisition procedure and the measurement error, the inter-surface distance measurement device A step of determination of the initial angle, and having a procedure for correcting the initial angle.
Another aspect of the posture correction method of the inter-surface distance measurement apparatus according to the present invention is that, in the procedure for obtaining the measurement error, the inter-surface distance measurement apparatus is set in the calibrator, and the surface is measured. The distance is measured by changing the inclination at one end of the inter-distance measuring device to obtain a measurement error at a predetermined inclination, and then the distance is measured by changing the inclination at the other end of the inter-surface distance measuring device. The measurement error at the predetermined inclination is obtained. In this case, in the procedure of obtaining the measurement error, the neutral value of the measurement error at the predetermined inclination obtained on the one end side and the measurement error at the predetermined inclination obtained on the other end side In the procedure of calculating the measurement error with respect to the neutral value and calculating the initial angle, it is preferable to determine the initial angle based on the measurement error with respect to the neutral value.
Further, another feature of the posture correction method of the inter-surface distance measurement apparatus according to the present invention is that, in the procedure for obtaining the initial angle, as a measurement error Δ, a distance L between the two surfaces of the calibrator, and an inclination θ, The initial angle θ ′ is expressed by the following equation: θ ′ = tan −1 (Δ · 180 / L · π · θ)
It is in the point to ask

本発明によれば、対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具を用いる際に、その機能を利用して姿勢を補正して、実測精度(誤差)を低減して、期待精度の倍精度確保を可能とし、測定精度を向上させ、測定性能を十分に発揮することができる。   According to the present invention, when using a measuring instrument that can measure the distance to an object and obtain the posture with respect to the object, the posture is corrected using the function to reduce the measurement accuracy (error). Thus, it is possible to ensure the double precision of the expected accuracy, improve the measurement accuracy, and sufficiently exhibit the measurement performance.

実施形態に係る面間距離測定装置の概略構成を示す図である。It is a figure showing a schematic structure of an inter-surface distance measuring device concerning an embodiment. 実施形態に係る面間距離測定装置の使用状態を模式的に示す図である。It is a figure which shows typically the use condition of the inter-surface distance measuring apparatus which concerns on embodiment. 面間距離測定装置の使用例を説明するための図である。It is a figure for demonstrating the usage example of a surface distance measuring apparatus. 面間距離の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the distance between surfaces. 較正器の一例を示す図である。It is a figure which shows an example of a calibrator. 較正器にセットした面間距離測定装置の初期角度を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the initial angle of the inter-surface distance measuring apparatus set to the calibrator. 面間距離測定装置の左右操作により得られた傾きと距離との関係の例を示す図である。It is a figure which shows the example of the relationship between the inclination and distance which were obtained by the left-right operation of the inter-plane distance measuring apparatus. 片側を持ち上げたときの面間距離測定装置と較正器との関係を示す図である。It is a figure which shows the relationship between the inter-surface distance measuring apparatus when one side is lifted, and a calibrator. 測定誤差と初期角度との関係を示す特性図である。It is a characteristic view which shows the relationship between a measurement error and an initial angle. 初期角度を低減させた後の傾きと距離との関係の例を示す図である。It is a figure which shows the example of the relationship between the inclination after reducing an initial angle, and distance. 他の実施形態としてレーザトラッカーを対象とする場合を説明するための図である。It is a figure for demonstrating the case where a laser tracker is made into object as other embodiment.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
まず、図1〜図4を参照して、本実施形態で対象とする測定器具である面間距離測定装置について説明する。
図1に、実施形態に係る面間距離測定装置1の概略構成を示す。また、図2に、実施形態に係る面間距離測定装置1の使用状態を模式的に示す。面間距離測定装置1は、対向する二面101a、101b間の距離、例えば図3に示すように、圧延機ハウジング100のハウジングウィンドウ幅を測定するのに用いられる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
First, with reference to FIGS. 1-4, the inter-surface distance measuring apparatus which is a measuring instrument made into object by this embodiment is demonstrated.
FIG. 1 shows a schematic configuration of an inter-plane distance measuring apparatus 1 according to the embodiment. FIG. 2 schematically shows a usage state of the inter-plane distance measuring apparatus 1 according to the embodiment. The inter-surface distance measuring device 1 is used to measure a distance between two opposing surfaces 101a and 101b, for example, a housing window width of the rolling mill housing 100 as shown in FIG.

図2に示すように、面間距離測定装置1は、ハウジングウィンドウにおいて対向する二面101a、101b間に挿入することのできる支持体2と、支持体2の一端部に設けられた3つの一方の距離測定センサ3aと、支持体2の他端部に設けられた3つの他方の距離測定センサ3bとを備える。一方の各距離測定センサ3aは、該面間距離測定装置1の所定の位置4から一方の面101aまでの距離を測定する。また、他方の各距離測定センサ3bは、該面間距離測定装置1の所定の位置5から他方の面101bまでの距離を測定する。   As shown in FIG. 2, the inter-surface distance measuring device 1 includes a support 2 that can be inserted between two opposing surfaces 101 a and 101 b in a housing window, and one of the three provided at one end of the support 2. Distance measuring sensor 3 a and three other distance measuring sensors 3 b provided at the other end of the support 2. Each one of the distance measuring sensors 3a measures the distance from the predetermined position 4 of the inter-surface distance measuring device 1 to the one surface 101a. The other distance measuring sensor 3b measures the distance from the predetermined position 5 of the inter-surface distance measuring device 1 to the other surface 101b.

図1に示すように、支持体2は、棒体201と、棒体201の両端部に設けられた一対の支持板202a、202bとを備える。   As shown in FIG. 1, the support body 2 includes a rod body 201 and a pair of support plates 202 a and 202 b provided at both ends of the rod body 201.

棒体201は、パイプ材201aと、パイプ材201aの両端に挿設される一対のサブパイプ材201bとにより構成される。複数の長さのサブパイプ材201bを用意しておけば、測定しようとしている面間距離に応じてサブパイプ材201を選択することにより、棒体201の全長を自由に変えることができる。   The rod 201 is composed of a pipe material 201a and a pair of sub-pipe materials 201b inserted at both ends of the pipe material 201a. If the sub-pipe material 201b having a plurality of lengths is prepared, the total length of the rod body 201 can be freely changed by selecting the sub-pipe material 201 according to the inter-surface distance to be measured.

また、支持板202a、202bは、円板状に構成され、その中心に設けられた挿入部203が棒体201の端部に挿設されて、棒体201に対して垂直に配置される。
支持板202aには、距離測定センサ3aとして接触式変位センサが配設される。同様に、支持板202bには、距離測定センサ3bとして接触式変位センサが配設される。接触式変位センサ3a、3bはストローク式プローブ301を有し、エアによりプローブ301をその軸方向に伸長させることができる(図1中の矢印Xを参照のこと)。プローブの駆動構造として、エアによる駆動構造とすることで、小型化が可能になるとともに、プローブ301の面101a、101bへの接触圧を精度良く制御することができる。本実施形態では、支持板202aにおいて、3つの接触式変位センサ3aが正三角形の各頂点に配置される。同様に、支持板202bにおいて、3つの接触式変位センサ3bが正三角形の各頂点に配置される。
Further, the support plates 202a and 202b are formed in a disc shape, and an insertion portion 203 provided at the center thereof is inserted into an end portion of the rod body 201, and is arranged perpendicular to the rod body 201.
A contact displacement sensor is disposed on the support plate 202a as the distance measuring sensor 3a. Similarly, a contact-type displacement sensor is disposed on the support plate 202b as the distance measuring sensor 3b. The contact-type displacement sensors 3a and 3b have a stroke type probe 301, and the probe 301 can be extended in the axial direction by air (see arrow X in FIG. 1). By using a driving structure using air as the probe driving structure, it is possible to reduce the size and to control the contact pressure to the surfaces 101a and 101b of the probe 301 with high accuracy. In the present embodiment, in the support plate 202a, three contact displacement sensors 3a are arranged at the vertices of an equilateral triangle. Similarly, on the support plate 202b, three contact displacement sensors 3b are arranged at the apexes of the equilateral triangle.

ここで、図2に示すように、面間距離測定装置1の所定の位置4とは、面間距離測定装置1の非可動部であって面101aに最も近い位置、すなわち接触式変位センサ3aのうち、可動部であるプローブ301を除くケーシング部分302のうち面101aに最も近い位置をいう。同様に、面間距離測定装置1の所定の位置5とは、面間距離測定装置1の非可動部であって面101bに最も近い位置、すなわち接触式変位センサ3bのうち、可動部であるプローブ301を除くケーシング部分302のうち面101bに最も近い位置をいう。   Here, as shown in FIG. 2, the predetermined position 4 of the inter-surface distance measuring device 1 is a non-movable part of the inter-surface distance measuring device 1 and the closest position to the surface 101a, that is, the contact-type displacement sensor 3a. Among these, the position closest to the surface 101a in the casing part 302 excluding the probe 301 which is a movable part is said. Similarly, the predetermined position 5 of the inter-surface distance measuring apparatus 1 is a non-movable part of the inter-surface distance measuring apparatus 1 and the position closest to the surface 101b, that is, the movable part of the contact displacement sensor 3b. The position closest to the surface 101b in the casing part 302 excluding the probe 301 is said.

図1に示すように、支持板202a、202bの周縁部には筒状のプロテクタ204が装着され、接触式変位センサ3a、3bを保護するようにしている。
また、支持板202a、202bの傾き防止のために、支持板202a、202bを不図示のストリング等で支持する構成としてもよい。
なお、棒体201や支持板202a、202bは、剛性を確保しながら軽量化を計るべく、例えばアルミニウム合金製とし、面間距離測定装置1を1人で持ち上げられる程度の重量とするのが好ましい。
As shown in FIG. 1, a cylindrical protector 204 is attached to the peripheral portions of the support plates 202a and 202b so as to protect the contact displacement sensors 3a and 3b.
Further, the support plates 202a and 202b may be supported by a string (not shown) or the like in order to prevent the support plates 202a and 202b from tilting.
The rod body 201 and the support plates 202a and 202b are preferably made of, for example, an aluminum alloy and have a weight that allows the inter-surface distance measuring device 1 to be lifted by one person in order to reduce weight while ensuring rigidity. .

次に、面間距離測定装置1による面間距離測定の概要を説明する。
図2に示すように、ハウジングウィンドウにおいて対向する二面101a、101b間に面間距離測定装置1を挿入する。このとき、面間距離測定装置1は、二面101a、101bに対して傾いていてもかまわない。
この場合に、作業者が面間距離測定装置1を持ち上げて二面101a、101b間に挿入するようにしてもよいし、図3に示すように、支持部材6(例えば三脚及びアーム)により面間距離測定装置1を支持して、二面101a、101b間に挿入するようにしてもよい。支持部材6を使用することにより、高い位置のハウジングウィンドウ幅を測定することが可能となる。
Next, an outline of the inter-surface distance measurement by the inter-surface distance measurement device 1 will be described.
As shown in FIG. 2, the inter-surface distance measuring device 1 is inserted between the two surfaces 101a and 101b facing each other in the housing window. At this time, the inter-surface distance measuring device 1 may be inclined with respect to the two surfaces 101a and 101b.
In this case, the operator may lift the inter-surface distance measuring device 1 and insert it between the two surfaces 101a and 101b. Alternatively, as shown in FIG. 3, the surface is supported by a support member 6 (for example, a tripod and an arm). The inter-distance measuring device 1 may be supported and inserted between the two surfaces 101a and 101b. By using the support member 6, it is possible to measure the housing window width at a high position.

二面101a、101b間に面間距離測定装置1を挿入した状態で、各接触式変位センサ3a、3bのプローブ301を伸長させて、面101a、101bに接触させる。すなわち、支持板202aで支持される3つの接触式変位センサ3aのプローブ301を伸長させて一方の面101aに接触させ、支持板202bで支持される3つの接触式変位センサ3bのプローブ301を伸長させて他方の面101bに接触させる。被測定部にグリスが塗布されている場合、プローブ301を推進させてグリスを貫通させて面101a、101bに接触させる。   With the inter-surface distance measuring device 1 inserted between the two surfaces 101a and 101b, the probes 301 of the contact displacement sensors 3a and 3b are extended to contact the surfaces 101a and 101b. That is, the probes 301 of the three contact displacement sensors 3a supported by the support plate 202a are extended to contact one surface 101a, and the probes 301 of the three contact displacement sensors 3b supported by the support plate 202b are extended. To be brought into contact with the other surface 101b. When grease is applied to the part to be measured, the probe 301 is driven to penetrate the grease and contact the surfaces 101a and 101b.

以下、図4を参照して、面間距離の算出方法について説明する。面間距離は、対向する二面101a、101bが平行であることを前提として算出される。
図2に示すように、面間距離LHWは、面間距離測定装置1の傾きをθ、各接触式変位センサ3a、3bのプローブ301を面101a、101bに接触させた状態での面間距離測定装置1の長さをLmとして、下式(1)により表わされる。
Hereinafter, a method for calculating the inter-surface distance will be described with reference to FIG. The inter-surface distance is calculated on the assumption that the two opposing surfaces 101a and 101b are parallel.
As shown in FIG. 2, the inter-surface distance L HW is the inter-surface distance in the state where the inclination of the inter-surface distance measuring device 1 is θ and the probes 301 of the contact displacement sensors 3a and 3b are in contact with the surfaces 101a and 101b. The length of the distance measuring device 1 is represented by L m as follows.

Figure 2017044540
Figure 2017044540

図4に示すように、3つの接触式変位センサ3aが正三角形の各頂点a,b,cに配置され、3つの接触式変位センサ3bが正三角形の各頂点d,e,fに配置される。頂点aと頂点dは、面間距離測定装置1の軸まわりにおいて同位相に配置される。頂点bと頂点e、頂点cと頂点fについても同様である。また、面間距離測定装置1の一端部側の所定の位置4と他端部側の所定の位置5との間の長さをkとする。また、接触式変位センサ3a、3bそれぞれの間のピッチをwとする。また、一方の面101aで各接触式変位センサ3aにより測定される距離をl,m,n、他方の面101bで各接触式変位センサ3bにより測定される距離をl´,m´,n´とする。
接触点P1〜P6の各点の座標を測定し、一方の面101a及び他方の面101bそれぞれ3点で平均面を作り、対象面上の各点との法線距離を算出すると、距離Lmは下式(2)で表わされる。なお、対象面が厳密な平行であれば平均化は不要であるが、実用上は平均化するのが好ましい。
As shown in FIG. 4, three contact displacement sensors 3a are arranged at the vertices a, b, c of the equilateral triangle, and three contact displacement sensors 3b are arranged at the vertices d, e, f of the equilateral triangle. The The vertex a and the vertex d are arranged in the same phase around the axis of the inter-plane distance measuring device 1. The same applies to vertex b and vertex e, vertex c and vertex f. In addition, the length between the predetermined position 4 on the one end side of the inter-surface distance measuring device 1 and the predetermined position 5 on the other end side is k. In addition, the pitch between the contact type displacement sensors 3a and 3b is assumed to be w. Further, the distance measured by each contact displacement sensor 3a on one surface 101a is l, m, n, and the distance measured by each contact displacement sensor 3b on the other surface 101b is l ', m', n '. And
When the coordinates of each of the contact points P 1 to P 6 are measured, an average surface is formed by three points on one surface 101a and the other surface 101b, and a normal distance from each point on the target surface is calculated, the distance L m is represented by the following formula (2). If the target surface is strictly parallel, averaging is not necessary, but in practice it is preferable to average.

Figure 2017044540
Figure 2017044540

また、cosθは、例えば頂点a,b,cからなる正三角形の法線ベクトルn1→(→はn1の上に付されているものとする)と、面101aの法線ベクトルn2→(→はn2の上に付されているものとする)とにより、下式(3)で表わされる。
ここで、下式(4)で表わされる測定機内点と平面の方程式、下式(5)で表わされる測定面上点と平面の方程式とから、法線ベクトルn1→、n2→はそれぞれ下式(6)、下式(7)で表わされる。
Further, cos θ is, for example, a normal vector n 1 → of an equilateral triangle composed of vertices a, b, and c (→ is assumed to be attached on n 1 ) and a normal vector n 2 → of the surface 101a. (→ is assumed to be attached on n 2 ).
Here, the normal vectors n 1 → and n 2 → are obtained from the equation of the point in the measuring machine and the plane expressed by the following equation (4) and the equation of the point on the measuring surface and the plane expressed by the following equation (5), respectively. It is represented by the following formula (6) and the following formula (7).

Figure 2017044540
Figure 2017044540

式(2)で算出される距離Lmと式(3)で算出されるcosθとを式(1)に代入することにより、面間距離LHWを算出することができる。 By substituting the distance L m calculated by Expression (2) and cos θ calculated by Expression (3) into Expression (1), the inter-surface distance L HW can be calculated.

上述した面間距離の算出は、例えばCPU、ROM、RAM等を備えた計算装置により実行される。この場合に、計算装置、及び計算装置による算出結果を表示する表示装置はどこに設置されていてもよい。例えば面間距離測定装置1や支持部材6の適所に小型の計算装置及び小型の表示装置を設置すれば、作業者が作業しながら面間距離を確認することができる。また、各接触式変位センサ3a、3bで測定した距離を例えば無線通信で送出するようにし、別途設置した計算装置及び表示装置で面間距離の算出及び表示を行う形態でもよい。   The above-described calculation of the inter-surface distance is executed by a calculation device including, for example, a CPU, a ROM, a RAM, and the like. In this case, the calculation device and the display device that displays the calculation result by the calculation device may be installed anywhere. For example, if a small calculation device and a small display device are installed at appropriate positions of the inter-surface distance measuring device 1 and the support member 6, the inter-surface distance can be confirmed while an operator works. Further, the distance measured by each of the contact-type displacement sensors 3a and 3b may be transmitted by, for example, wireless communication, and the inter-surface distance may be calculated and displayed by a separately installed calculation device and display device.

以上のようにした面間距離測定装置1では、二面間における各々の点間距離を算出し、その線分と面とのなす角から面間距離を算出するものである。これにより、距離測定時に、ハウジングウィンドウの面との直交関係を維持する必要がなく、測定者に依存しない測定が可能となる。
そして、面間距離測定装置1を用いる測定作業は、人員が1名で足り、また、被測定部のグリス清掃作業が不要となるため、作業の負担を軽減させることができる。また、面間距離測定装置1を二面間に挿入してプローブ301を伸長させるだけなので、ヒューマンエラーによる測定誤差は発生しにくい。このように、大型の構造物等において対向する二面間の距離を、スキルレスで迅速に測定することができる。
In the inter-surface distance measuring apparatus 1 as described above, the distance between each point between two surfaces is calculated, and the inter-surface distance is calculated from the angle formed by the line segment and the surface. Thereby, at the time of distance measurement, it is not necessary to maintain the orthogonal relationship with the surface of the housing window, and measurement independent of the measurer is possible.
The measuring operation using the inter-surface distance measuring apparatus 1 requires only one person and eliminates the need for the grease cleaning operation for the part to be measured, thereby reducing the work burden. Further, since the inter-surface distance measuring device 1 is only inserted between the two surfaces and the probe 301 is extended, a measurement error due to a human error is unlikely to occur. Thus, the distance between two opposing surfaces in a large structure or the like can be quickly measured without skill.

次に、面間距離測定装置1の較正について説明する。
使用前準備として、較正器を用いた面間距離測定装置1の較正が行われる。図5には、較正器7の一例を示す。較正器7は、底面7a及び左右の側面7bを有し、例えば削り出し加工により形成される。左右の側面7bの平行度が確保されるとともに、左右の側面7b間の距離Lは一定の長さに厳密に管理されている。距離Lとしては、一例としてハウジングウィンドウ幅に近い1470mmが設定される。また、底面7aには、面間距離測定装置1を載置する左右のセット台7cが設けられている。左右のセット台7は、面間距離測定装置1を水平に載置できるように水平度が確保されている。
Next, calibration of the inter-surface distance measuring device 1 will be described.
As a pre-use preparation, the inter-surface distance measuring device 1 is calibrated using a calibrator. FIG. 5 shows an example of the calibrator 7. The calibrator 7 has a bottom surface 7a and left and right side surfaces 7b, and is formed by, for example, machining. The parallelism of the left and right side surfaces 7b is ensured, and the distance L between the left and right side surfaces 7b is strictly controlled to a certain length. As the distance L, 1470 mm close to the housing window width is set as an example. The bottom surface 7a is provided with left and right set stands 7c on which the inter-surface distance measuring device 1 is placed. The left and right set bases 7 are ensured to be level so that the inter-surface distance measuring device 1 can be placed horizontally.

較正に必要な条件は、面間距離測定装置1の主軸(片側3点の接触式変位センサの中心間を結ぶ線分)と較正器7の側面7bとの直交である。
しかしながら、アルミウム合金の加工精度や、接触式変位センサ3a、3bの取り付け精度等の製作誤差により、面間距離測定装置1を較正器7にセットした状態で、実際には微小な傾き(初期角度と呼ぶ)が生じる。そのため、較正に際しては初期角度の低減が求められる。この場合に、水準器等を用いて初期角度の低減を図ることが考えられるが、微小角度(例えば0.05°以下)を測定し、調整することは困難である。
The condition necessary for calibration is orthogonality between the main axis of the inter-surface distance measuring apparatus 1 (a line segment connecting the centers of the contact displacement sensors at three points on one side) and the side surface 7b of the calibrator 7.
However, due to manufacturing errors such as the processing accuracy of the aluminum alloy and the mounting accuracy of the contact-type displacement sensors 3a and 3b, the surface distance measuring device 1 is set in the calibrator 7 and actually has a very small inclination (initial angle). Is called). Therefore, a reduction in the initial angle is required for calibration. In this case, it is conceivable to reduce the initial angle using a level or the like, but it is difficult to measure and adjust a minute angle (for example, 0.05 ° or less).

そこで、以下に述べるように、面間距離測定装置1を較正器7にセットした状態から傾きを変えて距離測定を行い、測定誤差を取得し、その測定誤差に基づいて面間距離測定装置1の初期角度を求める。
図6に、較正器7にセットした面間距離測定装置1の初期角度を求める手順を示す。
ステップS1で、面間距離測定装置1を較正器7にセットした状態から傾きを変えて距離測定を行い、測定誤差、すなわち較正器7の既知の距離Lに対する誤差を取得する。
具体的には、面間距離測定装置1を較正器7にセットした状態として、面間距離測定装置1の右側を垂直方向に持ち上げるように操作して距離測定を行い、傾きθも求める。同様に、面間距離測定装置1の左側を垂直方向に持ち上げるように操作して距離測定を行い、傾きθも求める。これにより、例えば図7(a)、(b)に示すように、左右それぞれ3°持ち上げるまでの各傾きθでの測定結果が得られる。傾き3°は、初期角度の分解能0.0004°(0.005°の1/10オーダ)を得るために定めた。なお、どの程度の傾きまで操作するかは、必要とされる傾きの分解能等に応じて定めればよい。
Therefore, as described below, the distance measurement is performed by changing the inclination from the state in which the inter-surface distance measuring device 1 is set in the calibrator 7, the measurement error is obtained, and the inter-surface distance measuring device 1 is obtained based on the measurement error. Find the initial angle of.
FIG. 6 shows a procedure for obtaining the initial angle of the inter-plane distance measuring device 1 set in the calibrator 7.
In step S1, distance measurement is performed by changing the inclination from the state in which the inter-surface distance measuring device 1 is set in the calibrator 7, and a measurement error, that is, an error with respect to the known distance L of the calibrator 7 is obtained.
Specifically, with the inter-surface distance measuring device 1 set in the calibrator 7, the distance is measured by operating the right side of the inter-surface distance measuring device 1 in the vertical direction, and the inclination θ is also obtained. Similarly, the distance is measured by operating the left side of the inter-surface distance measuring device 1 so as to be lifted in the vertical direction, and the inclination θ is also obtained. As a result, for example, as shown in FIGS. 7A and 7B, measurement results are obtained at each inclination θ until the left and right sides are lifted by 3 °. The inclination of 3 ° was determined in order to obtain an initial angle resolution of 0.0004 ° (1/10 order of 0.005 °). It should be noted that the degree of tilting operation may be determined according to the required tilt resolution or the like.

ステップS2で、左右操作で生じる測定誤差の中立値を求める。図7(a)、(b)に示すように、傾きθ=3°の場合、左側の測定誤差は−0.05mm、右側の測定誤差は0.02mmとなり、中立値は(−0.05+0.02)/2=−0.015mmとなる。
ステップS3で、左右操作で生じる測定誤差から、ステップS2において求めた中立値を減算して除いたものを測定誤差として求める。左側の測定誤差については、−0.05−(−0.015)=−0.035mmとなり、右側の測定誤差については、0.02−(−0.015)=0.035mmとなり、傾きθ=3°での測定誤差は±0.035mmとなる。
面間距離測定装置1の傾きにより発生する測定誤差は、初期角度以外の要因(例えば温度変動による熱伸縮等)も含む。初期角度以外の要因を極力排除するために、すなわち初期角度に絞り込むために、片側だけでなく左右両側の操作によるデータを用い、その中立値に対する測定誤差とすることにより、初期角度の算出精度を向上させることができる。
In step S2, the neutral value of the measurement error caused by the left / right operation is obtained. As shown in FIGS. 7A and 7B, when the inclination θ = 3 °, the measurement error on the left side is −0.05 mm, the measurement error on the right side is 0.02 mm, and the neutral value is (−0.05 + 0). .02) /2=−0.015 mm.
In step S3, a value obtained by subtracting the neutral value obtained in step S2 from the measurement error caused by the left and right operation is obtained as a measurement error. The measurement error on the left side is −0.05 − (− 0.015) = − 0.035 mm, the measurement error on the right side is 0.02 − (− 0.015) = 0.035 mm, and the inclination θ The measurement error at 3 ° is ± 0.035 mm.
The measurement error caused by the inclination of the inter-surface distance measuring device 1 includes factors other than the initial angle (for example, thermal expansion and contraction due to temperature fluctuation). In order to eliminate factors other than the initial angle as much as possible, that is, in order to narrow down to the initial angle, the data from the operation on both the left and right sides as well as one side is used, and the measurement error with respect to the neutral value is taken as the calculation error of the initial angle. Can be improved.

ステップS4で、ステップS3において求めた測定誤差に基づいて、面間距離測定装置1の初期角度を求める。
図8に、片側を持ち上げたときの面間距離測定装置1と較正器7との関係を示す。図8からも明らかなように、測定誤差Δ(mm)、面間距離L(mm)、傾きθ(°)、初期角度θ´(°)は下式(8)で表わされるので、初期角度θ´は下式(9)により求められる。
Δ=(L・π・θ/180)・tanθ´・・・(8)
θ´=tan-1(Δ・180/L・π・θ)・・・(9)
図9に、式(9)で表わされる測定誤差Δと初期角度θ´との関係を示す。図9からもわかるように、本例では、測定誤差0.035mmに基づいて初期角度0.25°が求められる。
In step S4, the initial angle of the inter-surface distance measuring device 1 is obtained based on the measurement error obtained in step S3.
FIG. 8 shows the relationship between the inter-surface distance measuring device 1 and the calibrator 7 when one side is lifted. As is clear from FIG. 8, the measurement error Δ (mm), the inter-surface distance L (mm), the inclination θ (°), and the initial angle θ ′ (°) are expressed by the following equation (8). θ ′ is obtained by the following equation (9).
Δ = (L · π · θ / 180) · tan θ ′ (8)
θ ′ = tan −1 (Δ · 180 / L · π · θ) (9)
FIG. 9 shows the relationship between the measurement error Δ represented by the equation (9) and the initial angle θ ′. As can be seen from FIG. 9, in this example, an initial angle of 0.25 ° is obtained based on a measurement error of 0.035 mm.

なお、ここでは垂直方向に対する較正則を説明したが、水平方向に対する較正則も同様である。   Although the calibration rule for the vertical direction has been described here, the calibration rule for the horizontal direction is the same.

以上のようにして初期角度を求めた後、その初期角度を補正する。例えば初期角度を低減するように、セット台7cと面間距離測定装置1との間にシムを挿入する等により、物理的に面間距離測定装置1の姿勢補正を行う。或いは、初期角度を低減するように、式(1)〜式(7)に示す計算式に補正項を組み込む等、ソフトウェア面から対応を採るようにしてもよい。   After obtaining the initial angle as described above, the initial angle is corrected. For example, the posture of the inter-plane distance measuring device 1 is physically corrected by inserting a shim between the set base 7c and the inter-surface distance measuring device 1 so as to reduce the initial angle. Alternatively, in order to reduce the initial angle, a correction term may be incorporated into the calculation formulas shown in the formulas (1) to (7), or a countermeasure may be taken from the viewpoint of software.

図10に、初期角度を低減させることによる効果を示す。面間距離測定装置1が二面に対して傾斜角θ=3°で傾いても、測定誤差は左右でそれぞれ−0.02mmとなった。すなわち、初期角度の低減前の誤差範囲は0.02〜−0.05mmであったのが、初期角度の低減後の誤差範囲は0.00〜−0.02mmとなり、距離測定精度を向上させることができた。   FIG. 10 shows the effect of reducing the initial angle. Even when the inter-surface distance measuring apparatus 1 was inclined with respect to the two surfaces at an inclination angle θ = 3 °, the measurement error was −0.02 mm on the left and right. That is, the error range before the initial angle reduction was 0.02 to -0.05 mm, but the error range after the initial angle reduction was 0.00 to -0.02 mm, which improves the distance measurement accuracy. I was able to.

(他の実施形態)
上述した実施形態では、面間距離測定装置1を較正器7にセットするときの側面7bに対する初期角度について説明したが、対象物までの距離と角度を取得できる測定器具であれば、本発明の適用範囲はそれに限られるものではない。
例えば、対象物までの距離を測定し、対象物に対する角度を求めることのできる測定器具として、レーザトラッカーがある。図11に示すように、レーザトラッカーでは、レーザトラッカー本体8から、対象物に接触させたターゲット9にレーザ光を照射し、ターゲット9から反射されたレーザ光を受光することにより距離を測定し、ターゲット9の三次元位置を決定する。
(Other embodiments)
In the above-described embodiment, the initial angle with respect to the side surface 7b when the inter-surface distance measuring device 1 is set in the calibrator 7 has been described. However, any measuring instrument that can acquire the distance and angle to the object is used. The scope of application is not limited to this.
For example, there is a laser tracker as a measuring instrument that can measure a distance to an object and obtain an angle with respect to the object. As shown in FIG. 11, in the laser tracker, the laser tracker body 8 irradiates the target 9 brought into contact with the object with laser light, and measures the distance by receiving the laser light reflected from the target 9. The three-dimensional position of the target 9 is determined.

本実施形態では、基準とする平面(以下、基準面と称する)に対するレーザトラッカー本体8の初期姿勢を求めて、その初期姿勢を補正する。すなわち、レーザトラッカー本体8が持つX、Y、Z軸を基準面に合わせる。基準面は、例えば対象物の測定面でもよいし、レーザトラッカー本体8が置かれる面でもよい。   In the present embodiment, the initial posture of the laser tracker body 8 with respect to a reference plane (hereinafter referred to as a reference surface) is obtained, and the initial posture is corrected. That is, the X, Y, and Z axes of the laser tracker body 8 are aligned with the reference plane. The reference surface may be, for example, a measurement surface of an object or a surface on which the laser tracker body 8 is placed.

図11に示すように、基準面に対する初期姿勢として、レーザトラッカー本体8が持つX軸又はY軸が角度αの傾きを、Z軸が角度βの傾きを有するとする。
基準面において、ターゲット9を一方向にずらしながら複数点(好ましくは3点以上)で距離を測定する。これにより、基準面でベクトルを生成することができる。同様に、基準面において、ターゲットを該一方向に直交する方向にずらしながら複数点(好ましくは3点以上)で距離を測定する。これにより、基準面でベクトルを生成することができる。
そして、レーザトラッカー本体8が持つX軸又はY軸と、Z軸とを、基準面で生成したベクトルに合わせるように、すなわち角度α、βを0にするようにレーザトラッカー本体8の初期姿勢を補正する。例えばレーザトラッカー本体8が置かれる面とレーザトラッカー本体8との間にシムを挿入する等により、物理的にレーザトラッカー本体8の姿勢補正を行う。
レーザトラッカー本体8が持つX、Y、Z軸が対象物の測定面に対してずれたまま測定を行うと、後から座標変換等の演算が必要となり、作業工数の増大と、演算作業に起因して桁落ち等が生じるおそれがある。基準面に対するレーザトラッカー本体8の初期姿勢を補正することにより、座標変換等の演算を不要とし、桁落ち等が生じないようにして測定精度を向上させることが可能になる。
As shown in FIG. 11, it is assumed that the X axis or Y axis of the laser tracker body 8 has an inclination of angle α and the Z axis has an inclination of angle β as an initial posture with respect to the reference plane.
On the reference plane, the distance is measured at a plurality of points (preferably three or more points) while shifting the target 9 in one direction. Thereby, a vector can be generated on the reference plane. Similarly, on the reference plane, the distance is measured at a plurality of points (preferably three or more points) while shifting the target in a direction orthogonal to the one direction. Thereby, a vector can be generated on the reference plane.
Then, the initial posture of the laser tracker body 8 is set so that the X axis or Y axis of the laser tracker body 8 and the Z axis match the vector generated on the reference plane, that is, the angles α and β are set to 0. to correct. For example, the posture of the laser tracker body 8 is physically corrected by inserting a shim between the surface on which the laser tracker body 8 is placed and the laser tracker body 8.
If measurement is performed while the X, Y, and Z axes of the laser tracker body 8 are deviated from the measurement surface of the object, calculations such as coordinate conversion are required later, resulting in an increase in work man-hours and calculation work. There is a risk of dropping digits. By correcting the initial posture of the laser tracker body 8 with respect to the reference surface, it is possible to eliminate the need for arithmetic operations such as coordinate conversion and to improve measurement accuracy without causing any digit loss or the like.

以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   Although the present invention has been described together with the embodiments, the above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner by these. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

1:面間距離測定装置
2:支持体
3a、3b:距離測定センサ(接触式変位センサ)
7:較正器
7b:側面
8:レーザトラッカー本体
9:ターゲット
1: Inter-surface distance measuring device 2: Support 3a, 3b: Distance measuring sensor (contact displacement sensor)
7: Calibrator 7b: Side 8: Laser tracker body 9: Target

Claims (5)

対象物までの距離を測定し、対象物に対する姿勢を求めることのできる測定器具の姿勢を補正するための姿勢補正方法であって、
前記測定器具を用いて基準とする平面の距離の測定を行い、前記基準とする平面に対する前記測定器具の初期姿勢を求めて、前記初期姿勢を補正することを特徴とする測定器具の姿勢補正方法。
An attitude correction method for correcting the attitude of a measuring instrument that can measure the distance to an object and determine the attitude to the object,
A measuring instrument posture correction method comprising: measuring a distance of a reference plane using the measuring instrument; obtaining an initial attitude of the measuring instrument with respect to the reference plane; and correcting the initial attitude. .
対向する二面間に挿入することのできる支持体と、前記支持体の一端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの一方の面までの距離を測定する3つ以上の一方の距離測定センサと、前記支持体の他端部に設けられ、該面間距離測定装置の所定の位置から前記二面のうちの他方の面までの距離を測定する3つ以上の他方の距離測定センサとを備え、前記対向する二面に対する傾きを求めて、前記二面間の距離を測定する面間距離測定装置の姿勢を補正するための姿勢補正方法であって、
前記面間距離測定装置を、平行な二面間の距離が既知の較正器にセットした状態から傾きを変えて距離測定を行い、測定誤差を取得する手順と、
前記測定誤差に基づいて、前記面間距離測定装置の初期角度を求める手順と、
前記初期角度を補正する手順とを有することを特徴とする面間距離測定装置の姿勢補正方法。
A support body that can be inserted between two opposing surfaces, and provided at one end of the support body, and measures the distance from a predetermined position of the inter-surface distance measuring device to one of the two surfaces Three or more distance measuring sensors that are provided, and a distance measuring sensor provided at the other end of the support, and measuring a distance from a predetermined position of the inter-surface distance measuring device to the other of the two surfaces 3 An attitude correction method for correcting the attitude of an inter-surface distance measuring device that measures the distance between the two surfaces by obtaining an inclination with respect to the two opposing surfaces, and comprising two or more other distance measuring sensors. ,
A procedure for measuring the distance from the state in which the distance between two parallel surfaces is set in a calibrator whose distance between two parallel surfaces is already known, and obtaining a measurement error;
A procedure for obtaining an initial angle of the inter-surface distance measuring device based on the measurement error;
A method for correcting the initial angle, and a method for correcting a posture of the inter-surface distance measuring apparatus.
前記測定誤差を取得する手順では、前記面間距離測定装置を前記較正器にセットした状態で、前記面間距離測定装置の一端部側で傾きを変えて距離測定を行い、所定の傾きでの測定誤差を求め、次に、前記面間距離測定装置の他端部側で傾きを変えて距離測定を行い、前記所定の傾きでの測定誤差を求めることを特徴とする請求項2に記載の面間距離測定装置の姿勢補正方法。   In the procedure for obtaining the measurement error, in the state where the inter-surface distance measuring device is set in the calibrator, the distance is measured by changing the inclination at one end of the inter-surface distance measuring device, and at a predetermined inclination. The measurement error is obtained, and then the distance is measured by changing the inclination on the other end side of the inter-surface distance measuring device, and the measurement error at the predetermined inclination is obtained. Posture correction method for inter-surface distance measurement device. 前記測定誤差を取得する手順では、前記一端部側で求めた前記所定の傾きでの測定誤差と、前記他端部側で求めた前記所定の傾きでの測定誤差との中立値を求めて、前記中立値に対する測定誤差を算出し、
前記初期角度を求める手順では、前記中立値に対する測定誤差に基づいて前記初期角度を求めることを特徴とする請求項3に記載の面間距離測定装置の姿勢補正方法。
In the procedure for obtaining the measurement error, the neutral value of the measurement error at the predetermined inclination obtained on the one end side and the measurement error at the predetermined inclination obtained on the other end side is obtained, Calculate the measurement error for the neutral value,
4. The method of correcting a posture of an inter-plane distance measuring device according to claim 3, wherein in the step of obtaining the initial angle, the initial angle is obtained based on a measurement error with respect to the neutral value.
前記初期角度を求める手順では、測定誤差Δ、前記較正器の二面間の距離L、傾きθとして、初期角度θ´を下式
θ´=tan-1(Δ・180/L・π・θ)
により求めることを特徴とする請求項2乃至4のいずれか1項に記載の面間距離測定装置の姿勢補正方法。
In the procedure for obtaining the initial angle, the initial angle θ ′ is expressed by the following equation θ ′ = tan −1 (Δ · 180 / L · π · θ), with the measurement error Δ, the distance L between the two surfaces of the calibrator, and the inclination θ. )
5. The attitude correction method for an inter-surface distance measuring apparatus according to claim 2, wherein the attitude correction method is obtained by:
JP2015166135A 2015-08-25 2015-08-25 Attitude correction method of inter-surface distance measuring device Active JP6524441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166135A JP6524441B2 (en) 2015-08-25 2015-08-25 Attitude correction method of inter-surface distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015166135A JP6524441B2 (en) 2015-08-25 2015-08-25 Attitude correction method of inter-surface distance measuring device

Publications (2)

Publication Number Publication Date
JP2017044540A true JP2017044540A (en) 2017-03-02
JP6524441B2 JP6524441B2 (en) 2019-06-05

Family

ID=58209781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166135A Active JP6524441B2 (en) 2015-08-25 2015-08-25 Attitude correction method of inter-surface distance measuring device

Country Status (1)

Country Link
JP (1) JP6524441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084171B2 (en) 2017-11-22 2021-08-10 Fanuc Corporation Tool posture control apparatus
CN114482574A (en) * 2022-01-29 2022-05-13 上海建工二建集团有限公司 Positioning device for prefabricated wall board and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598358A (en) * 1995-05-24 1997-01-28 Hunter Engineering Company Apparatus and method for calibrating vehicle wheel alignment instruments
JP2009031120A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method and device for adjusting thickness measuring instrument
JP2013050352A (en) * 2011-08-30 2013-03-14 Ricoh Co Ltd Method of adjusting installation of stereo camera, and stereo camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598358A (en) * 1995-05-24 1997-01-28 Hunter Engineering Company Apparatus and method for calibrating vehicle wheel alignment instruments
JP2009031120A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method and device for adjusting thickness measuring instrument
JP2013050352A (en) * 2011-08-30 2013-03-14 Ricoh Co Ltd Method of adjusting installation of stereo camera, and stereo camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084171B2 (en) 2017-11-22 2021-08-10 Fanuc Corporation Tool posture control apparatus
CN114482574A (en) * 2022-01-29 2022-05-13 上海建工二建集团有限公司 Positioning device for prefabricated wall board and construction method thereof

Also Published As

Publication number Publication date
JP6524441B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
EP3014215B1 (en) Calibration of a contact probe
RU2559611C2 (en) Error correction device for cnc machines
JP6000478B2 (en) Tool shape measuring apparatus and tool shape measuring method
US11156454B2 (en) Measurement system and machine for folding an object
US9366592B2 (en) Arm type three-dimensional measuring apparatus and deflection correction method in arm type three-dimensional measuring apparatus
JP4504818B2 (en) Workpiece inspection method
EP2381214A1 (en) Optical measurement system
JP6524441B2 (en) Attitude correction method of inter-surface distance measuring device
KR101198492B1 (en) method and system for measurement of roll diameter
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP2007101279A (en) Correction coefficient determining method of rectangular coordinate moving mechanism, and collecting method of measuring data
JP6481469B2 (en) Surface distance measuring apparatus and method
JP2006145560A (en) Calibration program and method for copying probe
JP3096875B2 (en) Robot arm length correction device
JP4948336B2 (en) Rolling roll diameter measuring device of grinding machine and diameter measuring method of rolling roll
US20050217127A1 (en) Measurement device and method for determining the three-dimensional orientation of a body relative to two horizontal reference directions
JP3999063B2 (en) CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
DeFisher Metrology for manufacturing of freeform optical surfaces with UltraSurf
JP6181935B2 (en) Coordinate measuring machine
JP2018189459A (en) Measuring device, measurement method, system, and goods manufacturing method
JP3841273B2 (en) Scanning probe calibration apparatus, calibration program, and calibration method
JP2018009846A (en) Surface-to-surface distance measurement method, surface-to-surface distance arithmetic unit, and distance measurement apparatus
JP2011148045A (en) Device and method for calibrating tool coordinate system
CN107014331B (en) Device and method for identifying errors of measuring force of articulated arm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6524441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151