JP2017043221A - Control device for vehicle system - Google Patents

Control device for vehicle system Download PDF

Info

Publication number
JP2017043221A
JP2017043221A JP2015167349A JP2015167349A JP2017043221A JP 2017043221 A JP2017043221 A JP 2017043221A JP 2015167349 A JP2015167349 A JP 2015167349A JP 2015167349 A JP2015167349 A JP 2015167349A JP 2017043221 A JP2017043221 A JP 2017043221A
Authority
JP
Japan
Prior art keywords
motor
vehicle
control device
vehicle system
drive source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015167349A
Other languages
Japanese (ja)
Inventor
見多 出口
Kenta Deguchi
見多 出口
明仁 中原
Akihito Nakahara
明仁 中原
鈴木 康介
Kosuke Suzuki
康介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015167349A priority Critical patent/JP2017043221A/en
Publication of JP2017043221A publication Critical patent/JP2017043221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle system that can improve overall efficiency in a wide driving range while improving overall efficiency of a driving system in a large torque region, and to provide a control method for the same.SOLUTION: A control device for the vehicle system including an engine, reluctance-type motor or induction motor, as a first driving source, and a surface magnet-type motor, as a second driving source, integrally controls so as to drive a front wheel by the first driving source and drive a rear wheel by the second driving source.SELECTED DRAWING: Figure 1

Description

本発明は,車両システムの制御装置に関する。   The present invention relates to a control device for a vehicle system.

従来の車両は,車両に備えられたエンジンや電動機により,前輪もしくは後輪,さらには前輪と後輪の両方を駆動することで駆動力を得ている。これらの車両においては,車両の走行状況に応じて前輪と後輪の駆動力の配分を変更させることで,運転範囲の拡大や低燃費(もしくは電費)化を図っている。上述に示した車両の一例を特許文献1から特許文献3に示す。特許文献1記載のハイブリッド車の駆動システム構成では,エンジン効率の悪い低速・高トルクの領域を電動機で負担することで広い運転範囲と駆動系の総合効率の向上の両立を図っている。また,特許文献2ないし特許文献3に記載の電気自動車の駆動システム構成では,前輪と後輪に配置された電動機によって駆動しているため,低速・高トルク領域においてもエンジンと比較して効率が高く,駆動系の総合効率を向上させている。   Conventional vehicles obtain driving force by driving front wheels or rear wheels, and both front wheels and rear wheels by an engine or an electric motor provided in the vehicle. In these vehicles, the driving range is expanded and the fuel consumption (or electricity consumption) is reduced by changing the distribution of the driving force between the front wheels and the rear wheels in accordance with the traveling state of the vehicle. An example of the vehicle described above is shown in Patent Literature 1 to Patent Literature 3. In the drive system configuration of the hybrid vehicle described in Patent Document 1, both a wide driving range and an improvement in the overall efficiency of the drive system are achieved by burdening a low-speed and high-torque region with poor engine efficiency with an electric motor. Further, in the drive system configuration of the electric vehicle described in Patent Documents 2 to 3, since it is driven by electric motors arranged on the front wheels and the rear wheels, the efficiency is lower than that of the engine even in the low speed / high torque region. High, improving the overall efficiency of the drive train.

特許第5561099号Patent No. 5561099 特開2014-207727号公報JP 2014-207727 A 特開2009-142036号公報JP2009-142036

しかしながら, 特許文献1に記載のハイブリッド車の駆動システムでは,エンジン効率の悪い低速・高トルク領域を電動機で負担することで,エンジン単体の駆動と比べて駆動系の総合効率が高くなるものの,後輪に埋め込み磁石型電動機のようなリラクタンストルクを活用したリラクタンス型電動機が用いられているため,電動機の効率が低い部分で駆動されていることになる。一方で,特許文献2ないし特許文献3に記載の電気自動車駆動システムでは,前輪および後輪の電動機のいずれも,広い運転範囲を満足するために,埋め込み磁石型電動機のようなリラクタンストルクを活用したリラクタンス型電動機が用いられている。一般的に,リラクタンス型電動機は,大きなトルクを発生させるために,コイル磁束の力を使ってトルクを出すため,銅損が大きくなり効率が悪くなる。そのため,電動車両の発進時や勾配のある道路を走行する際には効率の低い大トルク領域で駆動する必要があるため,総合効率の低下を招く。   However, in the hybrid vehicle drive system described in Patent Document 1, the overall efficiency of the drive system is higher than the drive of the engine alone, because the electric motor bears the low speed and high torque regions where the engine efficiency is poor. Since a reluctance type motor utilizing reluctance torque such as an embedded magnet type motor is used in the wheel, the motor is driven at a portion where the efficiency of the motor is low. On the other hand, in the electric vehicle drive systems described in Patent Document 2 to Patent Document 3, both the front wheel and rear wheel motors utilize reluctance torque like an embedded magnet type motor in order to satisfy a wide driving range. A reluctance motor is used. In general, a reluctance motor generates torque using the coil magnetic flux force in order to generate a large torque, resulting in large copper loss and poor efficiency. Therefore, when starting an electric vehicle or traveling on a road with a gradient, it is necessary to drive in a large torque region with low efficiency, resulting in a decrease in overall efficiency.

本発明は,上記の課題を解決するため,大トルク領域の駆動系の総合効率を向上しつつ,広い運転範囲においても総合効率を向上させることが可能な車両システムとその制御方法を提供することを目的とする。   In order to solve the above problems, the present invention provides a vehicle system capable of improving the overall efficiency of a drive system in a large torque region and improving the overall efficiency even in a wide driving range, and a control method thereof. With the goal.

上記の目的を達成するために,本発明では,第1駆動源としてエンジンもしくはリラクタンス型電動機または誘導電動機を備え,かつ第2駆動源として表面磁石型電動機を備える車両システムの制御装置であって,前輪を前記第一の駆動源で駆動するとともに後輪を前記第二の電動源で駆動するように統合制御する制御装置ことを特徴とする。   In order to achieve the above object, the present invention provides a control device for a vehicle system including an engine, a reluctance motor or an induction motor as a first drive source, and a surface magnet motor as a second drive source, The control device performs integrated control so that the front wheels are driven by the first drive source and the rear wheels are driven by the second electric power source.

本発明の車両システムおよびその制御装置は,第1駆動源の効率が低い大トルク領域の効率を改善するために,第2駆動源として大トルク領域の効率の高い表面磁石型電動機を駆動力として用いるため,大トルク領域の効率改善が可能となる。   In order to improve the efficiency in the large torque region where the efficiency of the first drive source is low, the vehicle system and the control device thereof according to the present invention use a surface magnet type motor having a high efficiency in the large torque region as the driving force as the second drive source. As a result, the efficiency in the large torque region can be improved.

本発明の実施形態の車両駆動システムを備えた車両。The vehicle provided with the vehicle drive system of embodiment of this invention. 本発明の実施形態の第1駆動源および第2駆動源の特性。The characteristic of the 1st drive source and 2nd drive source of embodiment of this invention. 第1駆動源10の効率マップの一例。An example of the efficiency map of the 1st drive source 10. 第2駆動源20のトルク特性NTrearと,その効率マップの一例。An example of the torque characteristic NT rear of the 2nd drive source 20, and its efficiency map. 本発明の実施形態のアキシャルギャップ型の表面磁石型電動機の斜視図。1 is a perspective view of an axial gap type surface magnet type electric motor according to an embodiment of the present invention. 本発明の実施形態のアキシャルギャップ型の表面磁石型電動機の断面図。A sectional view of an axial gap type surface magnet type electric motor of an embodiment of the present invention. 本発明の実施形態のインホイール型の車両駆動システムを備えた車両。The vehicle provided with the in-wheel type vehicle drive system of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の一例を示す断面図である。It is sectional drawing which shows an example of the surface magnet type electric motor of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface magnet type electric motor of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の磁石近傍における構造の一例を示す拡大図である。It is an enlarged view which shows an example of the structure in the magnet vicinity of the surface magnet type electric motor of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の磁石近傍における構造の他の例を示す拡大図である。It is an enlarged view which shows the other example of the structure in the magnet vicinity of the surface magnet type electric motor of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の磁石近傍における構造の他の例を示す拡大図である。It is an enlarged view which shows the other example of the structure in the magnet vicinity of the surface magnet type electric motor of embodiment of this invention. 本発明の実施形態の表面磁石型電動機の磁石近傍における構造の他の例を示す拡大図である。It is an enlarged view which shows the other example of the structure in the magnet vicinity of the surface magnet type electric motor of embodiment of this invention.

以下,本発明の実施例を説明する。図1に本発明の実施形態1の車両駆動システムを備えた車両1を示す。   Examples of the present invention will be described below. FIG. 1 shows a vehicle 1 including a vehicle drive system according to a first embodiment of the present invention.

車両1は,前輪車軸51を介して第1駆動源10によって駆動される前輪50と,後輪車軸61を介して第2駆動源20によって駆動される後輪60を有する。第1駆動源10は,埋込磁石型電動機等のリラクタンス型電動機もしくは誘導型電動機で構成される。第1駆動源10は,バッテリー12から供給される電力をインバータ11によって制御することで駆動する。また,第2駆動源20は,表面磁石型電動機で構成される。第2駆動源20は,バッテリー12から供給される電力をインバータ21によって制御されることで駆動する。   The vehicle 1 has a front wheel 50 driven by a first drive source 10 via a front wheel axle 51 and a rear wheel 60 driven by a second drive source 20 via a rear wheel axle 61. The first drive source 10 is composed of a reluctance motor such as an embedded magnet motor or an induction motor. The first drive source 10 is driven by controlling the power supplied from the battery 12 by the inverter 11. The second drive source 20 is composed of a surface magnet type electric motor. The second drive source 20 is driven by the power supplied from the battery 12 being controlled by the inverter 21.

図2(a)から図2(c)に本発明の実施形態1における車両1の特性を示す。車両1の走行に必要なトルクと回転数特性をNTallで示す。本実施形態の車両駆動システムでは,図2(a)にNTfrontで示したトルクと回転数特性を第1駆動源10で駆動し,NTallからNTallを除いた領域を満たす部分(NTrear)を第2駆動源20で駆動する。 FIG. 2 (a) to FIG. 2 (c) show the characteristics of the vehicle 1 in the first embodiment of the present invention. The torque and rotational speed characteristics required for traveling of the vehicle 1 are indicated by NT all . In the vehicle drive system of the present embodiment, the torque and rotational speed characteristics indicated by NT front in FIG. 2 (a) are driven by the first drive source 10, and a portion satisfying the region excluding NT all from NT all (NT rear ) Is driven by the second drive source 20.

図2(b)に第1駆動源10の効率マップの一例を示す。図2(b)において,効率はη1>η2>η3の順で高くなる。車両特性NTallを第1駆動源10のみ負担した場合,各回転数における大トルク領域Tmaxの部分では効率が悪くなる。ここで,大トルク領域Tmaxは,例えば,車両を停止状態から車両を発進させる場合や加速する場合,上り勾配路を走行する場合に使用される領域である。そこで,本実施形態では大トルク領域Tmaxの領域を後輪に配置した表面磁石型電動機で構成される第2駆動源20で駆動する。 FIG. 2B shows an example of the efficiency map of the first drive source 10. In FIG. 2B, the efficiency increases in the order of η 1 > η 2 > η 3 . When only the first drive source 10 bears the vehicle characteristic NT all , the efficiency is deteriorated in the portion of the large torque region T max at each rotation speed. Here, the large torque region T max is a region used when, for example, the vehicle is started from a stopped state or accelerated, or when traveling on an uphill road. Therefore, in the present embodiment, the second torque source 20 is driven by the second drive source 20 configured by a surface magnet type electric motor in which the region of the large torque region T max is disposed on the rear wheel.

図2(c)に第2駆動源20のトルク特性NTrearと,その効率マップの一例を示す。表面磁石型電動機は,界磁側の磁石磁束を有効に活用してトルクを発生させるため,リラクタンス型電動機や誘導型電動機と比べて励磁電流を小さくすることできる。そのため,励磁側に発生する銅損が小さくなり,効率が高い特徴がある。 FIG. 2 (c) shows an example of the torque characteristic NT rear of the second drive source 20 and its efficiency map. Since the surface magnet type motor generates torque by effectively using the magnetic flux on the field side, the excitation current can be made smaller than that of a reluctance type motor or an induction type motor. For this reason, the copper loss generated on the excitation side is reduced and the efficiency is high.

従って,図2(a)に示すように,第1駆動源の効率が悪い大トルク領域分を,第2駆動源20に備えられる表面磁石型電動機に負担させて車両を駆動させることで,効率の高い駆動システムが提供できる。   Therefore, as shown in FIG. 2 (a), a large torque region where the efficiency of the first drive source is poor is borne by the surface magnet type electric motor provided in the second drive source 20 to drive the vehicle. High drive system can be provided.

図6(a)及び図6(b)は、上述した表面磁石型電動機の例を示す断面図である。図6(a)及び図6(b)のいずれにおいても、ラジアルモータ300は、ロータコア301と、ステータコア303と、を有する。ロータコア301には、磁石302が周方向に複数配置される。図6(a)と図6(b)との違いは複数の磁石302同士の間隔であり、図6(a)の複数の磁石の間隔は図6(b)の複数の磁石の間隔よりも大きい。この場合、図6(a)のラジアルモータ300が、図6(b)のラジアルモータ300よりもリラクタンストルクが大きくなる。   FIG. 6A and FIG. 6B are cross-sectional views showing examples of the above-described surface magnet type electric motor. In both FIG. 6A and FIG. 6B, the radial motor 300 includes a rotor core 301 and a stator core 303. A plurality of magnets 302 are arranged on the rotor core 301 in the circumferential direction. The difference between FIG. 6 (a) and FIG. 6 (b) is the spacing between the plurality of magnets 302, and the spacing between the plurality of magnets in FIG. 6 (a) is greater than the spacing between the plurality of magnets in FIG. 6 (b). large. In this case, the reluctance torque of the radial motor 300 in FIG. 6A is larger than that of the radial motor 300 in FIG.

このような特性を利用して、図1に示される前輪電動機10には、図6(b)のラジアルモータ300を適用することで、より効率の高い駆動システムが提供できる。   Utilizing such characteristics, a more efficient drive system can be provided by applying the radial motor 300 of FIG. 6B to the front wheel motor 10 shown in FIG.

また、図1に示される前輪電動機10には図6(b)のラジアルモータ300を適用し、後輪電動機20には図6(a)のラジアルモータ300を適用することも考えられる。   It is also conceivable to apply the radial motor 300 of FIG. 6B to the front wheel motor 10 shown in FIG. 1 and apply the radial motor 300 of FIG. 6A to the rear wheel motor 20.

さらに図7(a)ないし図7(d)は、上述した表面磁石型電動機の磁石近傍における構造の拡大図である。図7(a)の磁石配置は図6(a)に対応し、磁石302は、磁性体であるロータコア301に埋め込まれている。図7(b) の磁石配置は、磁石302がロータコア301から露出しかつ磁石302との間に空隙又ロータコア301が配置される場合を示し、図7(a)の磁石配置よりもリラクタンストルクが小さくなる。   Further, FIGS. 7A to 7D are enlarged views of the structure in the vicinity of the magnet of the surface magnet type electric motor described above. The magnet arrangement in FIG. 7A corresponds to FIG. 6A, and the magnet 302 is embedded in the rotor core 301 that is a magnetic body. The magnet arrangement in FIG. 7B shows a case where the magnet 302 is exposed from the rotor core 301 and the gap or the rotor core 301 is arranged between the magnet 302 and the reluctance torque is higher than that in the magnet arrangement in FIG. Get smaller.

図7(c) の磁石配置は、磁石302がロータコア301から露出しかつ磁石302との間に空隙がない場合を示し、図7(b)の磁石配置よりもリラクタンストルクが小さくなる。   The magnet arrangement in FIG. 7C shows a case where the magnet 302 is exposed from the rotor core 301 and there is no gap between the magnet 302 and the reluctance torque is smaller than that in the magnet arrangement in FIG.

また図7(d) の磁石配置は、磁石302がロータコア301から露出しかつ磁石302が樹脂等の非磁性体307に覆われる場合を示し、図7(b)の磁石配置とほぼ同等のリラクタンストルクが生じる。   7 (d) shows a case where the magnet 302 is exposed from the rotor core 301 and the magnet 302 is covered with a non-magnetic material 307 such as resin, and the reluctance is almost the same as the magnet arrangement of FIG. 7 (b). Torque is generated.

本実施形態においては、前輪電動機10と後輪電動機20にこれらの磁石配置の電動機を組合せて配置することができる。   In the present embodiment, the front wheel motor 10 and the rear wheel motor 20 can be combined with the motors having these magnet arrangements.

次に本発明の実施形態2の車両駆動システムについて説明する。図3および図4は,実施形態2における第2駆動源20の表面磁石型電動機の構成の一例である。図3に示すように,本実施例では,第2駆動源20にアキシャルギャップ構造の表面磁石型電動機(以下,アキシャルギャップ型電動機200)を適用している。アキシャルギャップ型電動機200は,電磁鋼板などの磁性薄板で作製したロータコア201と,ロータコア201の軸方向面に配置される複数の磁石202で構成されるロータを有する。加えて,周方向に複数配置されたステータコア203と,各コアに巻回されるコイル204とで構成されるステータを有する。ロータとステータは,空隙Gを介して回転軸S方向に対面するように配置される。   Next, a vehicle drive system according to Embodiment 2 of the present invention will be described. 3 and 4 show an example of the configuration of the surface magnet type electric motor of the second drive source 20 in the second embodiment. As shown in FIG. 3, in this embodiment, a surface magnet type electric motor having an axial gap structure (hereinafter referred to as an axial gap type electric motor 200) is applied to the second drive source 20. The axial gap type electric motor 200 has a rotor composed of a rotor core 201 made of a magnetic thin plate such as an electromagnetic steel plate, and a plurality of magnets 202 arranged on the axial surface of the rotor core 201. In addition, it has a stator composed of a plurality of stator cores 203 arranged in the circumferential direction and coils 204 wound around each core. The rotor and the stator are arranged so as to face each other in the direction of the rotation axis S through the gap G.

本実施例によれば,第2駆動源20に用いられる表面磁石型電動機を小型化することが可能となるとともに,ラジアルギャップ構造の表面磁石型電動機よりも磁石に作用する遠心力に対する強度が高く,かつ信頼性が高い第2駆動源20が得られる。   According to this embodiment, the surface magnet type electric motor used for the second drive source 20 can be reduced in size, and the strength against centrifugal force acting on the magnet is higher than that of the surface gap type electric motor having a radial gap structure. And the 2nd drive source 20 with high reliability is obtained.

図5は本発明の実施形態3の車両駆動システムである。本実施形態では,第2駆動源を,車両1の後輪60の左右それぞれの内部に配置された表面磁石型電動機20aおよび20bで構成する。これに伴い,それぞれの表面磁石型電動機20a,20bに対応するインバータ21a,21bを備える。   FIG. 5 shows a vehicle drive system according to the third embodiment of the present invention. In the present embodiment, the second drive source is composed of surface magnet type electric motors 20a and 20b arranged inside the left and right sides of the rear wheel 60 of the vehicle 1, respectively. Accordingly, inverters 21a and 21b corresponding to the respective surface magnet type electric motors 20a and 20b are provided.

本実施例によれば,第2駆動源を後輪60内に備えているため,車両1の後部のスペースを広く確保することができる。また,第2駆動源が左右に独立して配置されるため,車両の走行制御を左右独立で行うことが可能となり,走行安定性を向上させることが可能となる。   According to this embodiment, since the second drive source is provided in the rear wheel 60, a wide space in the rear portion of the vehicle 1 can be secured. In addition, since the second drive source is arranged independently on the left and right, it is possible to perform the vehicle running control independently on the left and right, and to improve the running stability.

1…車両、10…前輪電動機、11…前輪インバータ、12…バッテリー、20…後輪電動機、20a…後輪電動機、20b…後輪電動機、21…後輪インバータ、21a…後輪インバータ、21b…後輪インバータ、50…前輪、51…前輪車軸、60…後輪、61…後輪車軸、200…アキシャルモータ、201…ロータコア、202…磁石、203…ステータコア、204…コイル、205…ハウジング、206…ベアリング、207…シャフト、301…ロータコア、302…磁石、303…ステータコア、S…回転軸、G…空隙 DESCRIPTION OF SYMBOLS 1 ... Vehicle, 10 ... Front wheel motor, 11 ... Front wheel inverter, 12 ... Battery, 20 ... Rear wheel motor, 20a ... Rear wheel motor, 20b ... Rear wheel motor, 21 ... Rear wheel inverter, 21a ... Rear wheel inverter, 21b ... Rear wheel inverter, 50 ... front wheel, 51 ... front wheel axle, 60 ... rear wheel, 61 ... rear wheel axle, 200 ... axial motor, 201 ... rotor core, 202 ... magnet, 203 ... stator core, 204 ... coil, 205 ... housing, 206 ... Bearing, 207 ... Shaft, 301 ... Rotor core, 302 ... Magnet, 303 ... Stator core, S ... Rotating shaft, G ... Gap

Claims (4)

車両の前輪の駆動源としてエンジン若しくはリラクタンス型電動機又は誘導電動機を備え、
前記車両の後輪の駆動源として表面磁石型電動機を備える車両システムの制御装置であって、
前後輪の駆動源を統合制御する車両システムの制御装置。
An engine or a reluctance motor or induction motor as a drive source for the front wheels of the vehicle;
A control device for a vehicle system including a surface magnet type electric motor as a drive source for a rear wheel of the vehicle,
A control device for a vehicle system for integrated control of front and rear wheel drive sources.
請求項1に記載された車両システムの制御装置であって、
前記表面磁石型電動機は、回転軸の軸方向において、空隙を挟んでロータ及びステータが対向するアキシャルギャップ型モータである車両システムの制御装置。
A control device for a vehicle system according to claim 1,
The surface magnet type motor is a control device for a vehicle system which is an axial gap type motor in which a rotor and a stator face each other with a gap in an axial direction of a rotation shaft.
請求項2に記載された車両システムの制御装置であって、
前記アキシャルギャップ型モータは、車両のホイール内に配置される車両システムの制御装置。
A control device for a vehicle system according to claim 2,
The axial gap type motor is a control device for a vehicle system disposed in a wheel of the vehicle.
請求項1ないし3に記載されたいずれかの車両システムの制御装置であって、
所定負荷までは前記エンジン若しくはリラクタンス型電動機又は誘導電動機により車両を駆動し、当該所定負荷以上の場合は前記表面磁石型電動機との協調駆動により車両を駆動する車両システムの制御装置。
A control device for a vehicle system according to any one of claims 1 to 3,
A control device for a vehicle system that drives a vehicle by the engine, a reluctance motor or an induction motor up to a predetermined load, and drives the vehicle by cooperative driving with the surface magnet motor when the load exceeds the predetermined load.
JP2015167349A 2015-08-27 2015-08-27 Control device for vehicle system Pending JP2017043221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167349A JP2017043221A (en) 2015-08-27 2015-08-27 Control device for vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167349A JP2017043221A (en) 2015-08-27 2015-08-27 Control device for vehicle system

Publications (1)

Publication Number Publication Date
JP2017043221A true JP2017043221A (en) 2017-03-02

Family

ID=58211373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167349A Pending JP2017043221A (en) 2015-08-27 2015-08-27 Control device for vehicle system

Country Status (1)

Country Link
JP (1) JP2017043221A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332019A (en) * 1998-05-13 1999-11-30 Toyota Motor Corp Power transmission apparatus and four-wheel-drive-vehicle using the same
JP2005312147A (en) * 2004-04-20 2005-11-04 Tochigi Fuji Ind Co Ltd Electric motor driving device
JP2006258289A (en) * 2005-02-16 2006-09-28 Ntn Corp In-wheel motor drive unit
JP2011131674A (en) * 2009-12-24 2011-07-07 Shusaku Murata Power control unit and vehicle including the same
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle
JP2014052064A (en) * 2012-09-10 2014-03-20 Jtekt Corp Speed reducer and motor rotating force transmission device equipped therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332019A (en) * 1998-05-13 1999-11-30 Toyota Motor Corp Power transmission apparatus and four-wheel-drive-vehicle using the same
JP2005312147A (en) * 2004-04-20 2005-11-04 Tochigi Fuji Ind Co Ltd Electric motor driving device
JP2006258289A (en) * 2005-02-16 2006-09-28 Ntn Corp In-wheel motor drive unit
JP2011131674A (en) * 2009-12-24 2011-07-07 Shusaku Murata Power control unit and vehicle including the same
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle
JP2014052064A (en) * 2012-09-10 2014-03-20 Jtekt Corp Speed reducer and motor rotating force transmission device equipped therewith

Similar Documents

Publication Publication Date Title
JP5477161B2 (en) Double stator type motor
JP5592848B2 (en) Transverse magnetic flux type rotating electric machine and vehicle
US9106121B2 (en) Double-stator motor
US7462968B2 (en) Electric wheel
JP4707696B2 (en) Axial gap type motor
JP4449035B2 (en) Permanent magnet rotating electric machine for electric vehicles
JP6158022B2 (en) Rotating electric machine and vehicle
US9787144B2 (en) Rotating electrical motor using transverse magnetic flux
Ahmad et al. Design improvement of a new outer-rotor hybrid excitation flux switching motor for in-wheel drive EV
CN104854775A (en) Asynchronous machine with optimized distribution of electrical losses between stator and rotor
JP5323592B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
WO2014188757A1 (en) Rotor for rotating electric machine, rotating electric machine, electric drive system, and electric vehicle
JP4889281B2 (en) Motor drive motor and motor drive control method
CN108141076B (en) Magnet type rotor, rotating electrical machine provided with magnet type rotor, and electric vehicle provided with rotating electrical machine
CN105914981B (en) A kind of electric vehicle composite excitation wheel hub motor
JP2007267514A (en) Electric four-wheel drive vehicle and electric motor for use therein
CN107846126B (en) Electric car directly drives hub motor
JP3740482B2 (en) Permanent magnet rotating electric machine for electric vehicles
KR101938889B1 (en) To the motor and alternator in wheel system for motor vehicles
JP5612632B2 (en) Permanent magnet rotating electric machine
US20160149444A1 (en) Stator of interior permanent magnet synchronous motor
JP2017043221A (en) Control device for vehicle system
JP2017011806A (en) Motor control device
JP2007209197A (en) Ipm motor
JP2018007493A (en) Rotary electric machine, electric drive system using the same, and electric powered vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305