JP2017039973A - Thin steel sheet for hot molding excellent in moldability and strength increase and hot molding method therefor - Google Patents

Thin steel sheet for hot molding excellent in moldability and strength increase and hot molding method therefor Download PDF

Info

Publication number
JP2017039973A
JP2017039973A JP2015162060A JP2015162060A JP2017039973A JP 2017039973 A JP2017039973 A JP 2017039973A JP 2015162060 A JP2015162060 A JP 2015162060A JP 2015162060 A JP2015162060 A JP 2015162060A JP 2017039973 A JP2017039973 A JP 2017039973A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
room temperature
warm forming
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015162060A
Other languages
Japanese (ja)
Other versions
JP6330759B2 (en
Inventor
金子 真次郎
Shinjiro Kaneko
真次郎 金子
横田 毅
Takeshi Yokota
毅 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015162060A priority Critical patent/JP6330759B2/en
Publication of JP2017039973A publication Critical patent/JP2017039973A/en
Application granted granted Critical
Publication of JP6330759B2 publication Critical patent/JP6330759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for hot molding capable of enhancing press moldability by hot molding of a high strength steel sheet with TS of 780 MPa or more while avoiding problems such as weldability, low temperature toughness and chemical conversion treatment by mold engineering and capable of increasing strength in use environment thereof (ordinary temperature) for a member after hot molding.SOLUTION: There is provided a steel having a component composition containing, by mass%, C:0.04 to 0.1%, Si:0.5% to 1.2%, Mn:2.5 to 3.5%, P:0.001 to 0.05%, S:0.0001 to 0.01%, Al:0.001 to 0.1%, N:0.0005 to 0.01% and Nb:0.01 to 0.1% and the balance Fe with inevitable impurities and a steel structure containing, by area percentage of polygonal ferrite:20% or more, bainite:10% or more and residual austenite:3% or more and having average crystal particle diameter of the residual austenite of 5 μm or less and further C concentration in the residual austenite after molding with strain amount of 0.10 at 300°C, (Cγ) of 0.2% or more.SELECTED DRAWING: Figure 2

Description

本発明は、主に自動車の構造部材に供して好適な780MPa以上の引張強度(TS)を有する温間成形用の高強度薄鋼板およびその温間成形方法に関し、特に温間成形時に高い延性を示すことで優れたプレス成形性を得るだけでなく、成形後には強度の大幅な上昇を図ることで高い部材強度を達成しようとするものである。
本発明で対象とする、高強度薄鋼板としては、高強度熱延鋼板、高強度冷延鋼板および高強度溶融亜鉛めっき鋼板が挙げられる。また、本発明において、薄鋼板とは、熱延鋼板の場合は板厚が10mm以下のものを、冷延鋼板およびめっき鋼板の場合は板厚が3mm以下のものをいう。
The present invention relates to a high-strength thin steel sheet for warm forming having a tensile strength (TS) of 780 MPa or more, which is suitable mainly for structural members of automobiles, and a warm forming method thereof, and particularly has high ductility during warm forming. In addition to obtaining excellent press formability by showing, it is intended to achieve high member strength by increasing the strength significantly after molding.
Examples of the high-strength thin steel sheet targeted in the present invention include high-strength hot-rolled steel sheets, high-strength cold-rolled steel sheets, and high-strength hot-dip galvanized steel sheets. In the present invention, the thin steel sheet means a sheet having a thickness of 10 mm or less in the case of a hot-rolled steel sheet, and a sheet thickness of 3 mm or less in the case of a cold-rolled steel sheet and a plated steel sheet.

近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSが780MPa以上で、板厚の薄い高強度鋼板の自動車構造部材への適用が積極的に進められている。しかしながら、一般的には、鋼板の高強度化は鋼板のプレス成形性の低下につながることから、高強度と優れた成形性を併せ持つ鋼板が望まれている。
一方で、鋼板を加熱した状態で塑性加工を施す温間成形を行うことにより、上記の要請に対応する種々の技術が検討されている。
In recent years, for the purpose of ensuring passenger safety in the event of a collision and improving fuel efficiency by reducing the weight of the vehicle body, the application of high-strength steel sheets having a TS of 780 MPa or more and a thin thickness to automobile structural members has been actively promoted. However, in general, increasing the strength of a steel sheet leads to a decrease in press formability of the steel sheet, so a steel sheet having both high strength and excellent formability is desired.
On the other hand, various techniques corresponding to said request | requirement are examined by performing warm forming which performs a plastic working in the state which heated the steel plate.

温間成形を施すことによる変形抵抗の低減を利用して成形性を向上させる技術として、例えば特許文献1には、質量%で、C:0.010〜0.10%、Si:0.05〜2.0%、Mn:0.50〜3.00%、P:0.003〜0.15%、S:0.01%以下を含有し、残部はFeおよび不可避不純物からなる成分組成を有し、かつその組織が、主相であるフェライトと第2相であるマルテンサイトとを主体にして構成され、(100℃におけるYS)/(20℃におけるYS)が0.50以下であることを特徴とする温間プレス成形性に優れた薄鋼板が提案されている。   As a technique for improving formability by utilizing deformation resistance reduction by performing warm forming, for example, Patent Document 1 discloses mass%, C: 0.010 to 0.10%, Si: 0.05 to 2.0%, and Mn: 0.50 to 3.00%, P: 0.003 to 0.15%, S: 0.01% or less, with the balance having a component composition composed of Fe and inevitable impurities, and the structure is composed of ferrite as the main phase and the second phase. A thin steel sheet excellent in warm press formability, characterized in that it is composed mainly of a certain martensite and (YS at 100 ° C.) / (YS at 20 ° C.) is 0.50 or less, has been proposed.

特許文献2には、質量%にて、C:0.03〜0.2%、Si:0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.1%以下、Cr:0.01〜1%、Al:0.01〜0.1%、N:0.02%以下を含有し、残部はFeおよび不純物からなる組成で、室温における引張強さに対する450℃における引張強さの比が0.7以下であることを特徴とする高張力薄鋼板が提案されている。   In Patent Document 2, in mass%, C: 0.03 to 0.2%, Si: 0.5% or less, Mn: 1 to 3%, P: 0.1% or less, S: 0.1% or less, Cr: 0.01 to 1%, Al: 0.01 to 0.1%, N: 0.02% or less, with the balance being composed of Fe and impurities, characterized in that the ratio of the tensile strength at 450 ° C to the tensile strength at room temperature is 0.7 or less High strength thin steel sheets have been proposed.

特許文献3には、質量%で、C:0.01〜0.12%、Si:2.0%以下、Mn:0.01〜2.0%、P:0.2%以下、Al:0.001〜0.1%、N:0.0040〜0.0200%を含み、さらに、Ti:0.001〜0.1%、B:0.01%以下を含有し、残部Feおよび不可避的不純物よりなる組成と、平均結晶粒径が8μm以下のフェライトを主相とする組織を有し、かつ質量%で0.0040〜0.0080%の固溶N量を有することを特徴とする温間プレス成形性に優れた高張力熱延鋼板が提案されている。   In Patent Document 3, C: 0.01 to 0.12%, Si: 2.0% or less, Mn: 0.01 to 2.0%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.0040 to 0.0200% by mass% And further comprising Ti: 0.001 to 0.1%, B: 0.01% or less, the composition consisting of the balance Fe and inevitable impurities, and a structure whose main phase is ferrite having an average crystal grain size of 8 μm or less, A high-tensile hot-rolled steel sheet excellent in warm press formability, characterized by having a solid solution N amount of 0.0040 to 0.0080% by mass%, has been proposed.

特許文献4には、室温における引張強さTSが780MPa以上で、降伏比が0.85以上である引張特性を有する高強度熱延鋼板であって、該高強度熱延鋼板を、400〜700℃の温間成形温度域の温度に加熱し該温間成形温度域の温度で引張試験を行った際の、降伏応力が、室温における降伏応力の80%以下で、かつ全伸びが、室温における全伸びの1.1倍以上であり、さらに、前記温間成形温度域の温度で15%以下の歪を付与する温間加工を施し室温まで冷却したのち、室温で引張試験を行った際の、降伏応力が、室温における降伏応力の80%以上で、かつ全伸びが、室温における全伸びの80%以上であり、温間成形性に優れることを特徴とする温間成形用高強度熱延鋼板が提案されている。   Patent Document 4 discloses a high-strength hot-rolled steel sheet having a tensile property with a tensile strength TS at room temperature of 780 MPa or more and a yield ratio of 0.85 or more. The yield stress is 80% or less of the yield stress at room temperature and the total elongation is the total elongation at room temperature when heated to a temperature in the warm molding temperature range and subjected to a tensile test at the temperature in the warm molding temperature range. The yield stress when a tensile test is performed at room temperature after performing warm working to give a strain of 15% or less at a temperature in the warm forming temperature range and cooling to room temperature. A high-strength hot-rolled steel sheet for warm forming is proposed, which has a yield stress of 80% or more at room temperature and a total elongation of 80% or more of the total elongation at room temperature and is excellent in warm formability. ing.

特許文献5には、室温における引張強さが780MPa以上であり、400℃以上700℃以下の加熱温度域における降伏応力が室温における降伏応力の80%以下であり、前記加熱温度域における全伸びが室温における全伸びの1.1倍以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の降伏応力が前記加熱前の室温における降伏応力の70%以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の全伸びが前記加熱前の室温における全伸びの70%以上であることを特徴とする温間成形用高強度鋼板が提案されている。   In Patent Document 5, the tensile strength at room temperature is 780 MPa or more, the yield stress in the heating temperature range from 400 ° C. to 700 ° C. is 80% or less of the yield stress at room temperature, and the total elongation in the heating temperature range is It is 1.1 times or more of the total elongation at room temperature, and the yield stress after cooling from the heating temperature to room temperature after applying a strain of 20% or less to the heating temperature range is the yield stress at room temperature before the heating. 70% or more, the total elongation after heating from the heating temperature to room temperature after applying 20% or less strain to the heating temperature range is 70% or more of the total elongation at room temperature before heating A high-strength steel sheet for warm forming has been proposed.

特許文献6には、質量%で、C:0.05〜0.3%、Si:1〜3%、Mn:0.5〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:40〜85%、残留オ−ステナイト:5〜20%、マルテンサイト+上記残留オ−ステナイト:10〜50%、フェライト:5〜40%を含む組織を有し、上記残留オ−ステナイトは、そのC濃度(CγR)が0.5〜1.0質量%であるとともに、フェライト粒内に存在するものが全組織に対する面積率で1%以上存在することで、150〜250℃での温間成形時には十分に強度低下する一方、成形後の室温での使用時には980MPa以上の高強度が確保できる温間成形性に優れた高強度鋼板が提案されている。 Patent Document 6 includes mass%, C: 0.05 to 0.3%, Si: 1 to 3%, Mn: 0.5 to 3%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, with the balance being the composition of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 40 to 85%, residual austenite: 5 to 20%, It has a structure containing martensite + the above retained austenite: 10 to 50%, ferrite: 5 to 40%, and the above retained austenite has a C concentration (Cγ R ) of 0.5 to 1.0% by mass. The presence of 1% or more of the ferrite grains in the area ratio relative to the entire structure reduces the strength sufficiently during warm molding at 150 to 250 ° C, while 980 MPa or more when used at room temperature after molding. A high-strength steel sheet excellent in warm formability that can secure a high strength is proposed.

特許文献7には、質量%で、C:0.02〜0.3%、Si:1.0〜3.0%、Mn:1.8〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.01〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留オ−ステナイト:3%以上、マルテンサイト+前記残留オ−ステナイト:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オ−ステナイト中のC濃度(CγR)が0.3〜1.2質量%であり、前記成分組成中のNの一部または全部が固溶Nであり、該固溶N量が30〜100ppmであることを特徴とする室温および温間での成形性に優れた高強度鋼板が提案されている。 Patent Document 7 includes mass%, C: 0.02 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.8 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.01 to 0.03%, the balance is composed of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 50-85%, residual austenite: 3% or more, martens Site + said retained austenite: 10 to 45%, ferrite: 5 to 40% of the structure containing each phase, C concentration (Cγ R ) in the said retained austenite is 0.3 to 1.2% by mass A high-strength steel sheet having excellent formability at room temperature and warm, wherein a part or all of N in the component composition is solute N, and the amount of solute N is 30 to 100 ppm. Proposed.

特許文献8には、質量%で、C:0.02〜0.3%、Si:1.0〜3.0%、Mn:1.8〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.008%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留オ−ステナイト:3%以上、マルテンサイト+前記残留オ−ステナイト:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オ−ステナイト中のC濃度(CγR)が0.3〜1.2質量%であり、前記成分組成中のNの一部が固溶Nであり、該固溶N量が12ppm以下であることを特徴とする室温および温間での成形性に優れた高強度鋼板が提案されている。
なお、特許文献7および8では、100〜250℃の温度域で加工したときに、室温で強度を得るために活用していたTRIP現象を固溶N量を増加させることにより抑制することで、温間での強度を低下させ、室温での高強度化と温間での成形加重低減効果向上を同時に実現させている。
In Patent Document 8, in mass%, C: 0.02 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.8 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.008%, the balance is composed of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 50 to 85%, residual austenite: 3% or more, martens Site + said retained austenite: 10 to 45%, ferrite: 5 to 40% of the structure containing each phase, C concentration (Cγ R ) in the said retained austenite is 0.3 to 1.2% by mass A high-strength steel sheet excellent in formability at room temperature and warm is proposed, wherein a part of N in the component composition is solute N, and the amount of solute N is 12 ppm or less. Yes.
In Patent Documents 7 and 8, when processing in a temperature range of 100 to 250 ° C., the TRIP phenomenon used to obtain strength at room temperature is suppressed by increasing the amount of dissolved N, The strength at the warm is lowered, and the strength at room temperature is increased and the effect of reducing the molding load at the warm is improved at the same time.

一方、温間成形での残留オ−ステナイトを安定化させて成形性を向上する技術として、例えば特許文献9には、質量%で、C:0.05〜0.6%、Si+Al:0.5〜3%、Mn:0.5〜3%、P:0.15%以下、S:0.02%以下を含有し、且つ、母相組織は、平均硬度がビッカ−ス硬度で240Hv以上であるベイニティック・フェライト及び/又はグラニュラ−・ベイニティック・フェライトを全組織に対して占積率で70%以上含有し、第2相組織は、残留オ−ステナイトを全組織に対して占積率で5〜30%含有し、該残留オ−ステナイト中のC濃度(CγR)は1.0%以上であり、更にベイナイト/マルテンサイトを含有しても良いものであることを特徴とする温間加工による伸び及び伸びフランジ性に優れた高強度鋼板が提案されている。 On the other hand, as a technique for stabilizing the retained austenite in warm forming and improving formability, for example, Patent Document 9 discloses, in mass%, C: 0.05 to 0.6%, Si + Al: 0.5 to 3%, Mn : 0.5 to 3%, P: 0.15% or less, S: 0.02% or less, and the parent phase structure has bainitic ferrite and / or granular with an average hardness of 240 Hv or more in Vickers hardness. -Bainitic ferrite is contained in 70% or more of the entire structure, and the second phase structure contains residual austenite in the entire structure of 5-30%, The C concentration (Cγ R ) in the retained austenite is 1.0% or more, and may further contain bainite / martensite. High strength steel sheets have been proposed.

特許文献10には、質量%で、C:0.05〜0.25%、Si:1.00%超2.5%以下、Al:1.0%以下、Si+Al:合計で3%以下、Mn:0.5〜3%、P:0.15%以下、S:0.02%以下を含み、残部が鉄および不純物からなる成分組成を有し、母相は、平均ビッカ−ス硬さが250Hv以上のベイニティック・フェライトを全組織に対して面積率で80%以上含み、第2相は、残留オ−ステナイトを全組織に対して面積率で5〜15%含み、該残留オ−ステナイト中のC濃度(CγR)は0.6質量%以上1.0質量%未満であり、さらに、ベイナイトおよび/またはマルテンサイトを含んでもよい組織とすることにより、温間にてTRIP作用を最大限に発揮できるようになり、確実に高延性化できる温間加工性に優れた高強度鋼板が提案されている。 In Patent Document 10, in mass%, C: 0.05 to 0.25%, Si: more than 1.00%, 2.5% or less, Al: 1.0% or less, Si + Al: 3% or less in total, Mn: 0.5 to 3%, P: 0.15 %, S: 0.02% or less, with the balance being a composition comprising iron and impurities, and the parent phase is an area of bainitic ferrite having an average Vickers hardness of 250 Hv or more with respect to the entire structure. The second phase contains the remaining austenite in an area ratio of 5 to 15% with respect to the whole structure, and the C concentration (Cγ R ) in the residual austenite is 0.6% by mass or more and 1.0%. By making the structure less than% by mass and further containing bainite and / or martensite, it is possible to maximize the TRIP effect in warm conditions, and warm workability that can reliably increase the ductility. A high-strength steel sheet excellent in resistance is proposed.

特許文献11には、質量%で、C:0.05〜0.4%、Si+Al:0.5〜3%、Mn:0.5〜3%、P:0.15%以下、S:0.02%以下を含み、残部が鉄および不純物からなる成分組成を有し、マルテンサイトおよび/またはベイニティック・フェライトを合計量で全組織に対して面積率で45〜80%含み、ポリゴナル・フェライトを全組織に対して面積率で5〜40%含み、残留オ−ステナイトを全組織に対して面積率で5〜20%含み、該残留オ−ステナイト中のC濃度(CγR)は0.6質量%以上1.0質量%未満であり、さらに、ベイナイトを含んでもよい組織とすることにより、温間にてTRIP作用を最大限に発揮できるようになり、伸びフランジ性は若干犠牲にしつつも、さらに高延性化できる温間加工性に優れた高強度鋼板が提案されている。 Patent Document 11 includes, in mass%, C: 0.05 to 0.4%, Si + Al: 0.5 to 3%, Mn: 0.5 to 3%, P: 0.15% or less, S: 0.02% or less, with the balance being iron and impurities The total amount of martensite and / or bainitic ferrite in a total area of 45 to 80%, and polygonal ferrite in an area ratio of 5 to 5 Including 40%, including residual austenite in an area ratio of 5 to 20% with respect to the entire structure, and the C concentration (Cγ R ) in the residual austenite being 0.6% by mass or more and less than 1.0% by mass; By adopting a structure that may contain bainite, it is possible to maximize the TRIP effect in the warm condition, while sacrificing the stretch flangeability to some extent, and with excellent warm workability that can further increase ductility. Strength steel plates have been proposed.

特許文献12には、質量%で、C:0.05〜0.3%、Si:1〜3%、Mn:0.5〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オ−ステナイト:5〜20%、マルテンサイト+上記残留オ−ステナイト:10〜50%、フェライト:40%以下を含む組織を有し、上記残留オ−ステナイトは、そのC濃度(CγR)が0.5〜1.2質量%、その平均円相当直径が0.2〜2μm、その平均アスペクト比(最大径/最小径)が3.0未満を満足させることにより、加工誘起マルテンサイト変態時にγRの周囲に与える歪量を大きくすることにより、縮フランジ成形のような圧縮が加わる際の加工誘起マルテンサイトへの変態の進行を抑制する効果を大きくすることによって、縦壁部の延性確保と、フランジ部からの材料の流入を促進することにより、深絞り性を高めることができる成形性に優れた高強度鋼板が提案されている。 In Patent Document 12, in mass%, C: 0.05 to 0.3%, Si: 1 to 3%, Mn: 0.5 to 3%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, with the balance being the composition of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 50 to 90%, residual austenite: 5 to 20%, Martensite + the above retained austenite: 10 to 50%, ferrite: 40% or less of the structure, the above retained austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass, its average circle By satisfying an equivalent diameter of 0.2 to 2 μm and an average aspect ratio (maximum diameter / minimum diameter) of less than 3.0, the amount of strain applied to the periphery of γ R during processing-induced martensitic transformation is increased, thereby reducing flanges. Suppresses the progress of transformation to processing-induced martensite when compression such as A high strength steel sheet with excellent formability that can enhance deep drawability by increasing ductility of the vertical wall and promoting inflow of material from the flange has been proposed. .

特許文献13には、質量%で、C:0.05〜0.3%、Si:1〜3%、Mn:0.5〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オ−ステナイト:3%以上、マルテンサイト+上記残留オ−ステナイト:10〜50%、フェライト:40%以下を含む組織を有し、上記残留オ−ステナイトは、そのC濃度(CγR)が0.5〜1.2質量%であり、この残留オ−ステナイトのうち、マルテンサイトに囲まれたものを0.3%以上存在させることにより、塑性変形時に当該γRにひずみが加わりにくくして、変形初期の加工誘起変態を抑制しつつ、変形後期にも加工変形誘起変態を起こしやすくすることにより、加工硬化を広い範囲で実現できる延性に優れた高強度鋼板が提案されている。 In Patent Document 13, in mass%, C: 0.05 to 0.3%, Si: 1 to 3%, Mn: 0.5 to 3%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, with the balance being composed of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 50 to 90%, residual austenite: 3% or more, martens Site + The above-mentioned residual austenite: 10 to 50%, ferrite: 40% or less of the structure, and the residual austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass. The presence of 0.3% or more of austenite surrounded by martensite makes it difficult for γ R to be strained during plastic deformation, and suppresses work-induced transformation at the early stage of deformation, while at the later stage of deformation. However, by making it easier to cause deformation-induced transformation, work hardening is A high-strength steel sheet excellent in ductility that can be realized by surroundings has been proposed.

特許文献14には、質量%で、C:0.02〜0.3%、Si:1.0〜3.0%、Mn:1.8〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:45〜85%、残留オ−ステナイト:3%以上、マルテンサイト+前記残留オ−ステナイト:10〜50%、フェライト:5〜45%の各相を含む組織を有し、前記残留オ−ステナイトのC濃度(CγR)が0.6〜1.2質量%であり、KAM(Kernel Average Misorientation)値の頻度分布曲線において、全頻度に対する、該KAM値が0.4°以下の頻度の比率XKAM≦0.4°と、フェライトの面積率Vαとの関係が、XKAM≦0.4°/Vα≧0.8を満たし、かつ、前記フェライトと該フェライト以外の各相(硬質第2相)との界面に存在する、円相当直径0.1μm以上のセメンタイト粒子が、前記硬質第2相1μm当たり3個以下とすることにより、低ひずみ速度域では強度が高くなり、高ひずみ速度域では強度が低くなるような、強度のひずみ速度依存性が大きい材料を用いて、低ひずみ速度域でのTRIP現象を促進して加工硬化を促し強度向上を図ることにより、パンチ肩部と縮フランジ部との間に強度差を付与することによって深絞り性が高められる、温間での深絞り性に優れた高強度鋼板が提案されている。 In Patent Document 14, in mass%, C: 0.02 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.8 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, the balance is composed of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 45 to 85%, residual austenite: 3% or more, martens Site + said retained austenite: 10 to 50%, ferrite: 5 to 45% of the structure containing each phase, C concentration (Cγ R ) of said retained austenite is 0.6 to 1.2% by mass, In the frequency distribution curve of the KAM (Kernel Average Misorientation) value, the relationship between the ratio X KAM ≦ 0.4 ° of the frequency where the KAM value is 0.4 ° or less to the total frequency and the area ratio Vα of the ferrite is X KAM ≦ 0.4 ° /Vα≧0.8 and exists at the interface between the ferrite and each phase other than the ferrite (hard second phase) Circle equivalent diameter 0.1μm or more cementite particles, by said hard second phase 1 [mu] m 2 3 per below, strength is increased in the low strain rate range, such as strength in the high strain rate range is lower, strength Using a material with high strain rate dependence, the TRIP phenomenon in the low strain rate region is promoted to promote work hardening and improve strength, thereby giving a strength difference between the punch shoulder and the reduced flange. By doing so, a high-strength steel sheet has been proposed that can improve the deep drawability and is excellent in warm deep drawability.

特許文献15には、質量%で、C:0.02〜0.3%、Si:1.0〜3.0%、Mn:1.8〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留オ−ステナイト:3%以上、マルテンサイト+前記残留オ−ステナイト:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オ−ステナイト中のC濃度(CγR)が0.6〜1.2質量%であり、EPMAでライン分析して得られたMn濃度分布に基づく、前記残留オ−ステナイト中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavを1.2以上とすることにより、マトリックス(母相)の延性向上とγRによるTRIP効果の最大化による均一伸びの向上の両立を図ることによって、室温強度と深絞り性を並存しうる室温および温間での深絞り性に優れた高強度鋼板が提案されている。 Patent Document 15 includes mass%, C: 0.02 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.8 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, the balance is composed of iron and impurities, the area ratio to the whole structure, bainitic ferrite: 50 to 85%, residual austenite: 3% or more, martens Site + the retained austenite: 10 to 45%, ferrite: 5 to 40% of the structure containing each phase, C concentration (Cγ R ) in the retained austenite is 0.6 to 1.2% by mass Based on the Mn concentration distribution obtained by EPMA line analysis, the ratio Mnγ R / Mn av between the Mn concentration Mnγ R in the retained austenite and the average Mn concentration Mn av in the whole tissue is 1.2 or more. by, to achieve both improvement of uniform elongation by maximizing TRIP effect by improvement of ductility and gamma R of the matrix (mother phase) Te, a high strength steel sheet excellent in deep drawability between room temperature and temperature may coexist at room temperature strength and deep drawability is proposed.

特許文献16には、質量%で、C:0.10〜0.30%、Si:1.0%超え〜3.0%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.010%以下、N:0.0020〜0.0300%以下、Al:0.0010〜0.1%を満たし、残部が鉄および不可避的不純物からなる成分組成を有し、ミクロ組織が、全組織に対する面積率でベイニティックフェライトとベイナイトの合計:65%以上、残留オ−ステナイト:5%以上、マルテンサイトと残留オ−ステナイトの合計:35%以下、ポリゴナルフェライト:10%以下、残部として前記以外の組織:5%以下からなり、前記残留オ−ステナイト中の炭素濃度が1.3%以下であり、かつ、ベイニティックフェライトおよび/またはベイナイトのパケット界面間隔を1.4μm以上とすることにより、残留オ−ステナイトのTRIP効果がより一層促進し、延性、特に、温間での延性を著しく向上させることができるとともに、温間における材料強度の加工速度依存性が強まり、温間での深絞り性をも向上させることができる温間での延性と深絞り性に優れる高強度鋼板が提案されている。   In Patent Document 16, C: 0.10 to 0.30%, Si: more than 1.0% to 3.0% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.010% or less, N: 0.0020 to 0.0300% or less, Al: 0.0010 to 0.1% is satisfied, the balance is composed of iron and inevitable impurities, and the microstructure is the area ratio of the whole structure with the sum of bainitic ferrite and bainite: 65% or more , Residual austenite: 5% or more, total of martensite and residual austenite: 35% or less, polygonal ferrite: 10% or less, and the rest of the structure: 5% or less, and the residual austenite The concentration of carbon in the steel is 1.3% or less and the interfacial spacing of bainitic ferrite and / or bainite is 1.4 μm or more, thereby further promoting the TRIP effect of residual austenite, and particularly ductility. And warm High strength with excellent ductility in warm and deep drawability that can improve ductility remarkably and increase the dependence of the material strength in the warm on the processing speed and also improve the deep drawability in the warm Steel plates have been proposed.

また、プレス中の加工−熱処理により強度を上昇させる技術として、例えば特許文献17には、重量%で、C:0.01〜0.20%、Si:0.01〜3.0%、Mn:0.01〜3.0%、P:0.002〜0.2%、S:0.001〜0.020%、Al:0.005〜2.0%、N:0.0002〜0.01%、Mo:0.01〜1.5%、を含有し、更に重量%で、Cr:0.01〜1.5%、Nb:0.005〜0.10%、Ti:0.005〜0.10%、V:0.005〜0.10%、B:0.0003〜0.005%、の1種または2種以上を含有せしめ、その範囲が特定の成分組成式(A)を満足することを特徴とする熱処理硬化能に優れた薄鋼板が提案されている。   In addition, as a technique for increasing the strength by processing-heat treatment during pressing, for example, Patent Document 17 describes, in wt%, C: 0.01 to 0.20%, Si: 0.01 to 3.0%, Mn: 0.01 to 3.0%, P: 0.002 to 0.2%, S: 0.001 to 0.020%, Al: 0.005 to 2.0%, N: 0.0002 to 0.01%, Mo: 0.01 to 1.5%, and further in wt%, Cr: 0.01 to 1.5%, Nb : 0.005 to 0.10%, Ti: 0.005 to 0.10%, V: 0.005 to 0.10%, B: 0.0003 to 0.005%, one or more of them are included, and the range of the specific component composition formula (A) A thin steel sheet excellent in heat-treating hardenability characterized by satisfaction has been proposed.

特許文献18には、質量%で、C:0.02〜0.20%、Si:0.5〜2.0%、Mn:0.5〜2.5%、sol.Al:0.15〜1.2%、N:0.020%以下、かつ、Si(%)+sol.Al(%)≧1.2(%)を満足し、残部がFeおよび不可避的不純物からなり、体積%で10%以上のベイナイトを含有し、パ−ライトとマルテンサイトの合計が体積%で10%以下である結晶組織を備えた温間成形用高張力鋼板が提案されている。   In Patent Document 18, in mass%, C: 0.02 to 0.20%, Si: 0.5 to 2.0%, Mn: 0.5 to 2.5%, sol.Al: 0.15 to 1.2%, N: 0.020% or less, and Si ( %) + Sol.Al (%) ≥ 1.2 (%), the balance is Fe and inevitable impurities, contains 10% or more bainite by volume%, and the total of pearlite and martensite is volume% A high-tensile steel sheet for warm forming having a crystal structure of 10% or less has been proposed.

さらに、温間成形時の延性向上と温間成形後の室温での強度上昇を複合した技術として、特許文献19には、質量%で、C:0.04〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライトを30%以上、マルテンサイトを20%以上および残留オ−ステナイトを3%未満含有することを特徴とする、成形性および強度上昇能に優れた温間成形用薄鋼板が提案されている。   Furthermore, as a technology that combines ductility improvement at the time of warm forming and strength increase at room temperature after warm forming, Patent Document 19 includes mass%, C: 0.04 to 0.2%, Si: 0.5 to 2.5%, A component composition containing Mn: 1.5 to 3.5%, P: 0.001 to 0.05%, S: 0.0001 to 0.01%, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, the balance being Fe and inevitable impurities. It has excellent formability and strength increasing capability, characterized in that the steel structure contains 30% or more of polygonal ferrite, 20% or more of martensite and less than 3% of retained austenite in terms of area ratio. A thin steel sheet for warm forming has been proposed.

また、特許文献20には、質量%で、C:0.1〜0.3%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライトを40%以上、ベイナイトを5%以上および残留オ−ステナイトを3%以上含有することを特徴とする、成形性および強度上昇能に優れた温間成形用薄鋼板が提案されている。
特許文献19,20では、温間加工による残留オ−ステナイトの安定化あるいは動的歪み時効による延性の向上による温間での成形性の向上と、温間成形時の歪み時効硬化による温間成形後の室温での強度上昇を同時に実現することを可能としている。
Further, in Patent Document 20, in mass%, C: 0.1 to 0.3%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.5%, P: 0.001 to 0.05%, S: 0.0001 to 0.01%, Al: 0.001 -0.1%, N: 0.0005-0.01%, with the balance being composed of Fe and inevitable impurities, steel structure is 40% or more of polygonal ferrite and 5% or more of bainite in area ratio And the thin steel plate for warm forming excellent in the formability and the strength raising ability characterized by containing 3% or more of retained austenite is proposed.
In Patent Documents 19 and 20, improvement of warm formability by stabilization of retained austenite by warm working or improvement of ductility by dynamic strain aging, and warm forming by strain aging hardening during warm forming It is possible to realize a subsequent increase in strength at room temperature.

特開2000−87183号公報JP 2000-87183 A 特開2003−113442号公報Japanese Patent Laid-Open No. 2003-113442 特開2001−234282号公報JP 2001-234282 A 特開2013−133519号公報JP 2013-133519 JP 特開2013−23721号公報JP 2013-23721 特開2013−181184号公報JP 2013-181184 A 特許第5636347号公報Japanese Patent No. 5636347 特開2013−40383号公報JP 2013-40383 特開2004−190050号公報Japanese Patent Laid-Open No. 2004-190050 特許第5537394号公報Japanese Patent No. 5537394 特開2011−219859号公報JP 2011-219859 特開2012−122129号公報JP 2012-122129 A 特開2012−122130号公報JP 2012-122130 A 特開2012−180569号公報JP 2012-180569 A 特開2012−180570号公報JP 2012-180570 A 特開2012−188738号公報JP 2012-188738 A 特開2000−234153号公報JP 2000-234153 A 特開2002−256388号公報Japanese Patent Laid-Open No. 2002-256388 特開2012−107319号公報JP 2012-107319 A 特開2012−92358号公報JP 2012-92358 A

しかしながら、特許文献1,2に記載された技術は、温間成形での変形抵抗の低下を利用した寸法精度の向上を意図したものであり、温間成形時の成形性(延性)を向上するものではない。また、特許文献3に記載された技術は、温間成形での変形抵抗の変化を利用した絞り性の向上を意図したものであり、温間成形時の延性は考慮されておらず適用できる成形様式が限定されてしまうという問題がある。
しかも、特許文献1〜3ではいずれも、温間加工後の常温(部材の使用環境)における強度については何ら考慮されていない。
However, the techniques described in Patent Documents 1 and 2 are intended to improve dimensional accuracy using a decrease in deformation resistance in warm forming, and improve the formability (ductility) during warm forming. It is not a thing. In addition, the technique described in Patent Document 3 is intended to improve drawability using a change in deformation resistance in warm forming, and is applicable to molding without considering ductility during warm forming. There is a problem that the style is limited.
Moreover, none of Patent Documents 1 to 3 considers the strength at normal temperature (the environment in which the member is used) after warm working.

特許文献4〜8に記載された一連の技術は、残留オ−ステナイト鋼において比較的低温での温間成形時に強度を低下することで超ハイテンの成形荷重を軽減することを主眼としたもので、温間成形による延性の向上は意図されておらず、温間加工後の常温(部材の使用環境)における強度は原板ままであり、その加工−熱処理による上昇については考慮されていない。   The series of techniques described in Patent Documents 4 to 8 are mainly intended to reduce the forming load of super high tensile strength by reducing the strength at the time of warm forming at a relatively low temperature in residual austenitic steel. The improvement of ductility by warm forming is not intended, the strength at normal temperature (the environment in which the member is used) after the warm working remains as the original plate, and the increase due to the working-heat treatment is not considered.

特許文献9に記載された技術は、母相組織の平均硬度と残留オ−ステナイト中のC濃度及びその体積率を制御して延性と伸びフランジ性を向上するものであるが、温間加工後の常温(部材の使用環境)における強度について考慮されていない。   The technique described in Patent Document 9 is to improve the ductility and stretch flangeability by controlling the average hardness of the matrix structure, the C concentration in the retained austenite and the volume ratio thereof, but after warm working The strength at room temperature (the environment in which the material is used) is not considered.

特許文献10〜16に記載された一連の技術は、鋼組織における残留オ−ステナイトをはじめとする構成相の構成比率、残留オ−ステナイト中のC濃度、各構成相の形態、内部構造等を精緻に制御することで、残留オーステナイトの安定度、歪みの局所分布、強度の歪み速度依存性などを制御して、残留オ−ステナイト鋼の延性や深絞り性を向上するものである。しかしながら、これら特許文献では、超ハイテンの成形性を向上することを主眼としており、温間成形による強度の向上は意図されておらず、温間加工後の常温(部材の使用環境)における強度は原板と同等程度を維持するものに過ぎず、その加工−熱処理による上昇については考慮されていない。
さらに、これら一連の特許は、残留オ−ステナイト鋼を対象にしており、C,Siを高濃度で含有することが必須になっており、これらが過剰に添加された場合に問題となる、化成処理性、スポット溶接性、低温靭性などの実用特性については配慮されておらず、実際に開示された事例においても、これら成分が高濃度で含有されていることは明らかである。
A series of techniques described in Patent Documents 10 to 16 include the composition ratio of the constituent phases including residual austenite in the steel structure, the C concentration in the residual austenite, the form of each constituent phase, the internal structure, and the like. By controlling precisely, the stability of residual austenite, the local distribution of strain, the strain rate dependence of strength, and the like are controlled to improve the ductility and deep drawability of the retained austenitic steel. However, these patent documents mainly focus on improving the formability of ultra-high tensile strength, and are not intended to improve the strength by warm forming, and the strength at normal temperature (component usage environment) after warm working is It is only what maintains the same level as the original plate, and the rise due to the processing-heat treatment is not considered.
Furthermore, these series of patents are directed to residual austenitic steel, and it is essential to contain C and Si in a high concentration, which becomes a problem when they are added excessively. Practical properties such as processability, spot weldability, and low temperature toughness are not taken into consideration, and it is clear that these components are contained at a high concentration even in actually disclosed examples.

特許文献17に記載された技術は、転位密度の高い母相組織中に温間成形で微細炭化物を形成させて強度を上昇させることを意図したものであり、また特許文献18に記載された技術は、転位密度の高い母相組織を温間成形で歪み時効硬化させて強度を上昇させることを意図したものであるが、いずれも温間成形時の成形性については何ら考慮がされていない。   The technique described in Patent Document 17 is intended to increase the strength by forming fine carbides by warm forming in a matrix structure having a high dislocation density, and the technique described in Patent Document 18 Is intended to increase the strength by strain-aging hardening of the matrix structure having a high dislocation density by warm forming, but none of them considers the formability during warm forming.

特許文献19,20に記載された技術は、温間成形時の延性の向上と温間成形後の室温での強度の向上を両立することを意図したものである。しかしながら、残留オ−ステナイトを活用しない特許文献19では、歪み時効による強度の上昇は顕著であるものの、温間成形での延性は充分とは言い難い。また、特許文献20では、残留オーステナイトの安定により温間成形で優れた延性を示すが、歪み時効による強度の上昇は充分とは言い難い。さらに、C,Siを高濃度で含有することが必須になっており、これらが過剰に添加された場合に問題となる、化成処理性、スポット溶接性、低温靭性などの実用特性について配慮しているとは言い難い。   The techniques described in Patent Documents 19 and 20 are intended to achieve both improvement in ductility during warm forming and improvement in strength at room temperature after warm forming. However, in Patent Document 19 in which residual austenite is not utilized, although the increase in strength due to strain aging is significant, it is difficult to say that the ductility in warm forming is sufficient. Patent Document 20 shows excellent ductility in warm forming due to the stability of retained austenite, but it is difficult to say that the increase in strength due to strain aging is sufficient. Furthermore, it is indispensable to contain C and Si at a high concentration, and consideration is given to practical properties such as chemical conversion, spot weldability, and low temperature toughness that become a problem when they are added excessively. It ’s hard to say.

本発明は、これらの問題を解決し、780MPa以上のTSを有する高強度鋼板において、成分および組織設計により、溶接性、低温靭性、化成処理性などの実用特性に配慮しつつ、温間成形におけるプレス成形性の向上と同時に、温間成形後の部材においては、その使用環境(常温)における強度の大幅な上昇が可能な温間成形用鋼板を、その温間成形方法と共に提供することを目的とする。   The present invention solves these problems, and in a high-strength steel sheet having a TS of 780 MPa or more, in consideration of practical properties such as weldability, low-temperature toughness, chemical conversion property, etc. The purpose is to provide a steel sheet for warm forming, together with its warm forming method, capable of significantly increasing the strength in the usage environment (room temperature) of the member after warm forming simultaneously with improvement of press formability. And

まず、この発明の基礎となった実験結果について述べる。
成分組成として0.095%C−0.78%Si−2.81%Mn−0.012%P−0.0011%S−0.040%Al−0.0033%N−0.055%Nbを含有する鋼Xと、0.082%C−1.4%%Si−2.63%Mn−0.011%P−0.0019%S−0.038%Al−0.0031%N−0.19%Cr−0.09%Moを含有する鋼Yと、0.121%C−0.15%Si−2.33%Mn−0.019%P−0.0010%S−0.032%Al−0.0024%N−0.23%Cr−0.19%Moを含有する鋼Zとを、実験室的に真空溶解炉にて溶製して鋳片とした。これらを1250℃に加熱し、粗圧延を施したのち、仕上げ圧延を880℃の温度で行い、620℃で巻取相当熱処理を施して熱延鋼板とした。これらの熱延鋼板に酸性を施して表面のスケ−ルを除去し、さらに圧下率50%の冷間圧延を施して冷延鋼板とした。次いで、750〜900℃で300sの均熱処理を施した後に、300〜500℃まで冷却し120s保持したのち室温まで冷却して、種々の鋼板を作製した。
First, the experimental results on which the present invention is based will be described.
Steel X containing 0.095% C-0.78% Si-2.81% Mn-0.012% P-0.0011% S-0.040% Al-0.0033% N-0.055% Nb and 0.082% C-1.4 %% Si- Steel Y containing 2.63% Mn-0.011% P-0.0019% S-0.038% Al-0.0031% N-0.19% Cr-0.09% Mo, 0.121% C-0.15% Si-2.3% Mn-0.019% P- Steel Z containing 0.0010% S-0.032% Al-0.0024% N-0.23% Cr-0.19% Mo was melted in a laboratory in a vacuum melting furnace to obtain a slab. These were heated to 1250 ° C. and subjected to rough rolling, then finish rolling was performed at a temperature of 880 ° C., and a heat treatment equivalent to winding was performed at 620 ° C. to obtain a hot-rolled steel sheet. These hot-rolled steel sheets were acidified to remove the scale on the surface, and further subjected to cold rolling with a reduction rate of 50% to obtain cold-rolled steel sheets. Next, after soaking for 300 s at 750 to 900 ° C., cooling to 300 to 500 ° C., holding for 120 s and then cooling to room temperature, various steel sheets were produced.

これらの鋼板について、鋼組織の同定を行うとともに、各組織の面積分率を測定した。
ミクロ組織は鋼板の圧延方向に平行な板厚断面について、ナイタ−ルによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大して鋼組織を同定した。これを画像解析ソフト(Image−Pro ;Cybernetics社製)により解析し各相の面積率を求めた。但し、マルテンサイトと残留オ−ステナイトは区別が困難であるため、これらについては総和の面積率を求めて、後述する方法で残留オ−ステナイトの面積率を別に求めると共に、これを差し引くことでマルテンサイトの面積率とした。
About these steel plates, while identifying the steel structure, the area fraction of each structure was measured.
As for the microstructure, the steel microstructure was identified by magnifying the corrosion appearance structure due to the nitrile by 5000 times with a scanning electron microscope (SEM) on the thickness cross section parallel to the rolling direction of the steel sheet. This was analyzed by image analysis software (Image-Pro; manufactured by Cybernetics) to determine the area ratio of each phase. However, since martensite and retained austenite are difficult to distinguish, the total area ratio is obtained for these, and the area ratio of retained austenite is separately determined by the method described later, and this is subtracted to obtain martensite. The area ratio of the site was used.

また、鋼板を板厚1/4の位置まで研磨した後に、さらに0.1mmを化学研磨した面を測定面として、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)、(220)面のピ−クの積分強度を測定し、そのすべての組合せについてfccの比率を算出し、その平均値をもって残留オ−ステナイトの体積率を求め、3次元的に均質として、これを残留オ−ステナイトの面積率とした。なお、残留オ−ステナイトの平均結晶粒径は、上記したSEM観察にあたり、200℃で200分の熱処理を施した後に腐食を実施することで、マルテンサイトに相当する部分では焼戻しにより下部組織が現出され易く残留オーステナイトと異なる形態を示すことから、この下部組織が現出しない相を残留オーステナイトとみなし、上記した画像解析を行うことにより求めた。本発明において、対象とする残留オーステナイトの粒径の下限値は、測定限界である0.01μmとした。
さらに、fcc鉄の(220)面の回折ピ−クのシフト量からオ−ステナイト中のC濃度(Cγ)を算出した。
In addition, after polishing the steel plate to the position of 1/4 thickness, the surface of which 0.1 mm was chemically polished was used as the measurement surface, and using Mo Kα rays with an X-ray diffractometer, the fcc iron (200), ( 220), (311) plane and bcc iron (200), (211), (220) plane of the integrated intensity of the peak is measured, fcc ratio is calculated for all the combinations, and the average value The volume ratio of the retained austenite was obtained and made three-dimensionally homogeneous, and this was used as the area ratio of the retained austenite. The average grain size of the retained austenite is determined by tempering in the portion corresponding to martensite by performing corrosion after performing heat treatment at 200 ° C. for 200 minutes in the above-mentioned SEM observation. Since it is easy to be released and shows a different form from retained austenite, the phase in which this substructure does not appear is regarded as retained austenite and obtained by performing the above-described image analysis. In the present invention, the lower limit value of the target retained austenite particle size was set to 0.01 μm, which is the measurement limit.
Further, the C concentration (Cγ) in austenite was calculated from the shift amount of the diffraction peak on the (220) plane of fcc iron.

また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して、20mm/minのクロスヘッド速度で、試験温度を室温から500℃まで変化した温間引張試験を行い、機械的性質を評価した。さらに、一部のサンプルについては、温間での引張試験を歪み量0.10で停止して室温まで冷却したのち残留オ−ステナイトのCγを測定した。また、一部のサンプルについては、温間引張試験を歪み量0.10で停止し、室温まで冷却したのち、再度引張試験を実施し、機械的性質を評価した。   In addition, a JIS No. 5 tensile test specimen was taken in the direction perpendicular to the rolling direction, and a warm tensile test was performed in accordance with JIS Z 2241 at a crosshead speed of 20 mm / min, changing the test temperature from room temperature to 500 ° C. The mechanical properties were evaluated. Further, for some samples, the hot tensile test was stopped at a strain of 0.10 and cooled to room temperature, and then Cγ of retained austenite was measured. For some samples, the warm tensile test was stopped at a strain amount of 0.10, cooled to room temperature, and then the tensile test was performed again to evaluate the mechanical properties.

鋼Xでは、ポリゴナルフェライトの面積率が52%で、その平均結晶粒径が7.3μm、ベイナイトの面積率が27%で、その平均結晶粒径が5.4μmでかつ、残留オーステナイトの面積率が5%で、その平均結晶粒径が3.4μmであるサンプル、鋼Yでは、ポリゴナルフェライトの面積率が56%で、その平均結晶粒径が15.8μm、ベイナイトの面積率が13%で、その平均結晶粒径が11.0μmでかつ、残留オーステナイトの面積率が1%で、その平均結晶粒径が2.7μmであるサンプル、鋼Zでは、ポリゴナルフェライトの面積率が57%で、その平均結晶粒径が12.7μm、ベイナイトの面積率が5%で、その平均結晶粒径が9.0μmでかつ、残留オーステナイトの面積率が2%で、その平均結晶粒径が2.5μmであるサンプルを評価に供した。   In Steel X, the area ratio of polygonal ferrite is 52%, the average crystal grain size is 7.3 μm, the area ratio of bainite is 27%, the average crystal grain size is 5.4 μm, and the area ratio of residual austenite is In the sample 5% with an average grain size of 3.4 μm, Steel Y, the area ratio of polygonal ferrite is 56%, the average grain size is 15.8 μm, and the area ratio of bainite is 13%. In the sample, steel Z, in which the average crystal grain size is 11.0 μm, the retained austenite area ratio is 1%, and the average crystal grain diameter is 2.7 μm, the area ratio of polygonal ferrite is 57%, and the average crystal Evaluation was made on a sample with a grain size of 12.7μm, a bainite area ratio of 5%, an average crystal grain size of 9.0μm, a residual austenite area ratio of 2%, and an average crystal grain size of 2.5μm. Provided.

上記したサンプルX、YおよびZについて、温間引張試験時のTSとElの積算値と試験温度の関係について調べた結果を、図1に示す。
同図に示したとおり、サンプルXでは、試験温度が200℃から400℃の範囲でTSとElの積算値が著しく高い値を示し、温間で優れた成形性を示していることが分かる。これに対し、サンプルYでは、TSとElの積算値の上昇は認められるが、温度範囲が狭いうえに室温からの特性の上昇量が小さかった。また、サンプルZでは、TSとElの積算値の顕著な上昇は認められなかった。
FIG. 1 shows the results of examining the relationship between the integrated values of TS and El during the warm tensile test and the test temperature for the samples X, Y, and Z described above.
As shown in the figure, Sample X shows that the integrated value of TS and El is remarkably high when the test temperature is in the range of 200 ° C. to 400 ° C., and it shows excellent moldability in the warm condition. On the other hand, in sample Y, an increase in the integrated value of TS and El was observed, but the temperature range was narrow and the increase in characteristics from room temperature was small. In Sample Z, no significant increase in the integrated value of TS and El was observed.

また、上記したサンプルX、YおよびZについて、温間での引張試験を歪み量0.10で停止し、室温まで冷却したのちに測定した残留オ−ステナイト中のC濃度(Cγ)を温間引張試験時のCγとみなし、Cγと試験温度の関係について調べた結果を図2に示す。
同図に示したとおり、サンプルXでは、試験温度が200℃から400℃の範囲でCγが上昇しており、温間試験過程で残留オ−ステナイト中のC濃度が上昇することで残留γが安定化されたことが分かる。この点、サンプルY、Zでは、Cγの顕著な上昇は認められず、かかる効果は発現していない。
In addition, for the samples X, Y and Z described above, the tensile test in the warm was stopped at a strain amount of 0.10, and the C concentration (Cγ) in the retained austenite measured after cooling to room temperature was measured in the warm tensile test. FIG. 2 shows the results of examining the relationship between Cγ and the test temperature.
As shown in the figure, in sample X, Cγ increases when the test temperature is in the range of 200 ° C. to 400 ° C., and the residual γ is increased by increasing the C concentration in the retained austenite during the warm test process. It can be seen that it has been stabilized. In this respect, in samples Y and Z, no significant increase in Cγ was observed, and this effect was not manifested.

さらに、上記したサンプルX、YおよびZについて、温間での引張試験を歪み量0.10で停止し、室温まで冷却したのち、再度引張試験をしたときのTSから室温で引張試験をしたときのTSを差し引いた値、すなわちTSの上昇量(ΔTS)を求めた。ΔTSと試験温度の関係を図3に示す。
同図に示したとおり、サンプルXでは、試験温度が200℃から400℃の範囲でΔTSが著しく高い値を示し、高い強度上昇能を示した。これに対し、サンプルY、Zでは、ΔTSの顕著な上昇は認められなかった。
Further, for the above samples X, Y, and Z, the warm tensile test was stopped at a strain amount of 0.10, cooled to room temperature, and then the TS when the tensile test was performed at room temperature from the TS when the tensile test was performed again. The value obtained by subtracting the value, that is, the TS increase (ΔTS) was determined. The relationship between ΔTS and test temperature is shown in FIG.
As shown in the figure, in Sample X, ΔTS showed a remarkably high value in the test temperature range of 200 ° C. to 400 ° C., and showed a high strength increasing ability. On the other hand, in Samples Y and Z, no significant increase in ΔTS was observed.

次に、本発明者らは、780MPa以上のTSを有する高強度鋼板において、上記した実験事実に基づき、温間成形時の延性の向上と、温間で成形した後の常温での強度の上昇を両立する方法について、さらなる創意工夫を加えながら鋭意検討を重ねた結果、以下の知見を得た。
i)成分組成を特定の関係を満足するように適正化した上で、面積率で、ポリゴナルフェライトを20%以上、ベイナイトを10%以上含有させ、さらに残留オーステナイトを3%以上含有させ、かつ残留オーステナイトの平均結晶粒径を5μm以下とすることにより、780MPa以上のTSを有する高強度鋼板において、温間成形時における延性の向上ひいては成形性の向上と、温間成形後の常温での大幅な強度の上昇を併せて達成することができる。
ii)こうした特性の向上は、上記した特徴を有する薄鋼板を、鋼板温度が200〜400℃で、相当塑性歪み量0.02以上の加工を加えることによって得られる。
Next, the present inventors, in a high-strength steel sheet having a TS of 780 MPa or more, based on the above-described experimental facts, improved ductility during warm forming, and increased strength at room temperature after warm forming As a result of intensive studies on how to achieve both, further gaining ingenuity, the following knowledge was obtained.
i) After optimizing the component composition so as to satisfy a specific relationship, the area ratio includes 20% or more of polygonal ferrite, 10% or more of bainite, and further 3% or more of retained austenite, and By making the average grain size of retained austenite 5 μm or less, in high-strength steel sheets with a TS of 780 MPa or more, improvement of ductility during warm forming, as well as improvement of formability, and a significant increase at room temperature after warm forming An increase in strength can be achieved at the same time.
ii) Improvement of such characteristics can be obtained by subjecting a thin steel plate having the above-described characteristics to a processing at a steel plate temperature of 200 to 400 ° C. and an equivalent plastic strain of 0.02 or more.

本発明は、上記の知見に基づき、さらに研究を重ねた末に開発されたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.04〜0.1%、Si:0.5〜1.2%、Mn:2.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%およびNb:0.01〜0.1%を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、組織は、面積率で、ポリゴナルフェライトを20%以上、ベイナイトを10%以上、残留オーステナイトを3%以上含有し、かつ残留オーステナイトの平均結晶粒径が5μm以下であり、さらに300℃において歪み量0.10の成形後の残留オ−ステナイト中のC濃度(Cγ300)が0.2%以上であることを特徴とする成形性および強度上昇能に優れたに優れた温間成形用薄鋼板。
The present invention was developed after further research based on the above findings.
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.04-0.1%, Si: 0.5-1.2%, Mn: 2.5-3.5%, P: 0.001-0.05%, S: 0.0001-0.01%, Al: 0.001-0.1%, N: 0.0005- Contains 0.01% and Nb: 0.01-0.1%, the balance has a component composition consisting of Fe and inevitable impurities, the structure is area ratio, polygonal ferrite 20% or more, bainite 10% or more The austenite content is 3% or more, the average crystal grain size of the retained austenite is 5 μm or less, and the C concentration (Cγ 300 ) in the retained austenite after molding with a strain amount of 0.10 at 300 ° C. is 0.2% or more. A thin steel sheet for warm forming which is excellent in formability and strength increasing ability, characterized by being.

2.ポリゴナルフェライトとベイナイトの平均結晶粒径が、それぞれ10μm以下であることを特徴とする前記1に記載の温間成形用薄鋼板。 2. 2. The thin steel sheet for warm forming as described in 1 above, wherein the average crystal grain sizes of polygonal ferrite and bainite are each 10 μm or less.

3.マルテンサイトを面積率で20%以上含有することを特徴とする前記1または2に記載の温間成形用薄鋼板。 3. 3. The thin steel sheet for warm forming as described in 1 or 2 above, which contains martensite in an area ratio of 20% or more.

4.室温における歪み量0.10での残留オーステナイトの体積率(Vγ0)と300℃における歪み量0.10での残留オーステナイトの体積率(Vγ300)とが下記式(1)を満足することを特徴とする前記1〜3のいずれかに記載の温間成形用薄鋼板。

Vγ300 / Vγ0 ≧ 2.0 --- (1)
4). The volume fraction of retained austenite (Vγ 0 ) at a strain amount of 0.10 at room temperature and the volume fraction of retained austenite (Vγ 300 ) at a strain amount of 0.10 at 300 ° C. satisfy the following formula (1): The thin steel sheet for warm forming according to any one of 1 to 3.
Record
300 / Vγ 0 ≧ 2.0 --- (1)

5.室温における歪み量0.05での加工硬化率(WHR0)と300℃における歪み量0.05での加工硬化率(WHR300)とが下記式(2)を満足し、かつ、室温での引張強度(TS0)と300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS300)とが下記式(3)を満足することを特徴とする前記1〜4のいずれかに記載の温間成形用薄鋼板。

WHR300 / WHR0≧ 1.2 --- (2)
TS300 − TS0 ≧ 150 MPa --- (3)
5). The work hardening rate (WHR 0 ) at a strain amount of 0.05 at room temperature and the work hardening rate (WHR 300 ) at a strain amount of 0.05 at 300 ° C. satisfy the following formula (2), and the tensile strength (TS at room temperature) 0 ) and the tensile strength (TS 300 ) at room temperature after applying pre-processing with a strain amount of 0.10 at 300 ° C. satisfies the following formula (3): Steel sheet for warm forming.
Record
WHR 300 / WHR 0 ≧ 1.2 --- (2)
TS 300 − TS 0 ≧ 150 MPa --- (3)

6.室温での引張強度に対する200〜400℃の温度域での引張強度の低下量が150MPa以下であり、室温での降伏強度に対する200〜400℃の温度域での降伏強度の上昇量が50MPa以下であることを特徴とする前記1〜5のいずれかに記載の温間成形用薄鋼板。 6). The decrease in tensile strength in the temperature range of 200 to 400 ° C with respect to the tensile strength at room temperature is 150 MPa or less, and the increase in yield strength in the temperature range of 200 to 400 ° C with respect to the yield strength at room temperature is 50 MPa or less. The thin steel sheet for warm forming as described in any one of 1 to 5 above.

7.成分組成として、質量%でさらに、Ti:0.005〜0.1%およびV:0.005〜0.1%から選ばれる少なくとも1種の元素を含有することを特徴とする前記1〜6のいずれかに記載の温間成形用薄鋼板。 7). The warm according to any one of 1 to 6 above, further comprising at least one element selected from Ti: 0.005 to 0.1% and V: 0.005 to 0.1% as a component composition by mass% Thin steel sheet for forming.

8.成分組成として、質量%でさらに、B:0.0003〜0.0050%を含有することを特徴とする前記1〜7のいずれかに記載の温間成形用薄鋼板。 8). The thin steel sheet for warm forming as described in any one of 1 to 7 above, wherein the composition further contains B: 0.0003 to 0.0050% by mass%.

9.成分組成として、質量%でさらに、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%およびCu:0.01〜1.0%から選ばれる少なくとも1種の元素を含有することを特徴とする前記1〜8のいずれかに記載の温間成形用薄鋼板。 9. The composition further comprises at least one element selected from Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 1.0% and Cu: 0.01 to 1.0% in terms of mass%. The thin steel sheet for warm forming as described in any one of 1 to 8 above.

10.前記1〜9のいずれかに記載の温間成形用薄鋼板を、鋼板温度が200〜400℃で、相当塑性歪み量0.02以上の加工を加えることを特徴とする成形性および強度上昇能に優れた温間成形方法。 Ten. The thin steel sheet for warm forming according to any one of 1 to 9 above is excellent in formability and strength increasing capability, characterized by adding a processing of a steel sheet temperature of 200 to 400 ° C. and an equivalent plastic strain of 0.02 or more. Warm forming method.

本発明によれば、780MPa以上のTSを有する高強度鋼板において、温間成形を適用することにより、プレス成形性を向上させて部品形状の自由度を高め、より成形難易度の高い部品の高強度化が可能となる。さらに、本発明により製造した構造部材を自動車車体に適用することにより、より一層の乗員の安全性確保や大幅な車体軽量化による燃費改善を図ることができる。   According to the present invention, in a high-strength steel sheet having a TS of 780 MPa or more, by applying warm forming, the press formability is improved and the degree of freedom of part shape is increased, and the high degree of difficulty in forming parts is increased. Strengthening is possible. Furthermore, by applying the structural member manufactured according to the present invention to the automobile body, it is possible to further improve the safety of the occupant and improve the fuel consumption by significantly reducing the weight of the vehicle body.

鋼X、YおよびZについて、温間引張試験時における試験温度とTS×El値との関係を示した図である。It is the figure which showed the relationship between the test temperature at the time of a warm tension test, and TSxEl value about steel X, Y, and Z. FIG. 鋼X、YおよびZについて、温間での引張試験を歪み量0.10で停止し、室温まで冷却したのちの残留オ−ステナイト中のC濃度(Cγ)を、試験温度との関係で示した図である。A graph showing the C concentration (Cγ) in retained austenite after stopping the tensile test at a strain of 0.10 for steel X, Y and Z and cooling to room temperature in relation to the test temperature. It is. 鋼X、YおよびZについて、温間での引張試験を歪み量0.10で停止し、室温まで冷却したのち、再度引張試験をしたときのTSの上昇量(ΔTS)を、試験温度との関係で示した図である。For steel X, Y and Z, the tensile test in warm was stopped at a strain amount of 0.10, and after cooling to room temperature, the increase in TS (ΔTS) when the tensile test was performed again in relation to the test temperature. FIG. プレス成形要領を示した図である。It is the figure which showed the press molding point. 成形品(ハット部材)の口開き量を示した図である。It is the figure which showed the opening amount of the molded article (hat member).

以下、本発明を具体的に説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味するものとする。
1)成分組成
C:0.04〜0.1%
Cは、鋼を強化するにあたり重要な元素であり、高い固溶強化能を有するとともに、オ−ステナイトを安定化して、温間成形時に残留オ−ステナイトを利用して延性を向上するために不可欠な元素である。さらに、温間成形時には、鋼中のCは加工で導入された可動転位とその成形温度下で強い相互作用を示して、室温に冷却した後も可動転位はCで固着された状態になるため、温間加工後に室温で変形したときの強度が著しく上昇する。こうした効果を得るには、少なくとも0.04%以上のC添加が必要である。一方、0.1%を超えるCの過度の添加は、薄鋼板の適用に不可欠なスポット溶接性が劣化するともに、マルテンサイトが著しく硬化して延性をむしろ低下させたり、低温靭性に悪影響を及ぼす。本発明では、後述するNb添加の効果による組織制御で、Cの添加を抑制しながら残留オ−ステナイトの安定化を達成することができる。したがって、C量の上限は0.1%とする。
Hereinafter, the present invention will be specifically described. Note that “%” representing the content of component elements means “% by mass” unless otherwise specified.
1) Component composition C: 0.04 to 0.1%
C is an important element for strengthening steel, and has high solid solution strengthening ability, and is indispensable for stabilizing austenite and improving ductility by utilizing retained austenite during warm forming. Element. In addition, during warm forming, C in the steel exhibits a strong interaction at the forming temperature with the movable dislocations introduced in the process, and the movable dislocations remain fixed with C even after cooling to room temperature. The strength when deformed at room temperature after warm working is significantly increased. In order to obtain such effects, it is necessary to add at least 0.04% of C. On the other hand, excessive addition of C exceeding 0.1% deteriorates spot weldability, which is indispensable for the application of thin steel sheets, and martensite significantly hardens to lower ductility, or adversely affects low temperature toughness. In the present invention, it is possible to achieve stabilization of retained austenite while suppressing the addition of C by the structure control by the effect of Nb addition described later. Therefore, the upper limit of the C amount is 0.1%.

Si:0.5〜1.2%
Siは、ポリゴナルフェライトの分率を高めるとともに、オーステナイトにCを偏在させながら炭化物の生成を抑制することで、オーステナイト中の固溶C濃度を高めて残留オーステナイトを安定化する効果がある。さらに、温間成形時のすべり系を制限する作用があり、可動転位の増殖を促進して転位密度を高め、固溶Cとの相互作用によって強度上昇にも寄与する。これらの作用を同時にかつ充分に発現させるには0.5%以上のSi添加が必要である。より好ましくは0.6%以上である。しかしながら、1.2%を超えるSiの添加は、上記した効果が飽和するばかりか、表面性状に甚大な問題を生ずるようになり、化成処理性を阻害することで塗装後の耐食性を大きく低下させる。さらには、へき開破壊を助長して低温靭性の低下を招く。本発明では、後述するNb添加の効果による組織制御で、Siの添加を抑制しながら残留オーステナイトの安定化を達成している。したがって、Si量の上限は1.2%とする。より好ましくは0.8%以下である。
Si: 0.5-1.2%
Si increases the fraction of polygonal ferrite and suppresses the formation of carbides while unevenly distributing C in austenite, thereby increasing the concentration of solid solution C in austenite and stabilizing residual austenite. Further, it has an action of limiting the slip system during warm forming, promotes the growth of movable dislocations, increases the dislocation density, and contributes to an increase in strength by interaction with solute C. In order to fully and fully exhibit these actions, it is necessary to add 0.5% or more of Si. More preferably, it is 0.6% or more. However, the addition of Si exceeding 1.2% not only saturates the above-described effects, but also causes serious problems in the surface properties, and significantly deteriorates the corrosion resistance after coating by inhibiting chemical conversion treatment. Furthermore, cleavage fracture is promoted and low temperature toughness is reduced. In the present invention, stabilization of retained austenite is achieved while suppressing the addition of Si by controlling the structure by the effect of Nb addition described later. Therefore, the upper limit of Si content is 1.2%. More preferably, it is 0.8% or less.

Mn:2.5〜3.5%
Mnは、鋼の熱間脆化の防止ならびに強度確保のために有効であるだけでなく、オ−ステナイトを安定化して残留オ−ステナイトの面積率の確保に有効に作用する。また、変態温度を低下させることで、鋼組織を微細化する作用がある。このため、所定の分率および粒径で残留オ−ステナイトを得るためには、Mn量を2.5%以上にする必要がある。一方、Mn量が3.5%を超えると、偏析層の生成が著しく成形性の劣化を招く。したがって、Mn量は2.5〜3.5%の範囲とする。
Mn: 2.5-3.5%
Mn is not only effective for preventing hot embrittlement of steel and ensuring strength, but also stabilizes austenite and effectively acts to ensure the area ratio of residual austenite. Moreover, there exists an effect | action which refines | miniaturizes a steel structure by lowering transformation temperature. For this reason, in order to obtain retained austenite at a predetermined fraction and particle size, the Mn content needs to be 2.5% or more. On the other hand, when the amount of Mn exceeds 3.5%, the formation of a segregation layer is remarkably deteriorated in formability. Therefore, the Mn content is in the range of 2.5 to 3.5%.

P:0.001〜0.05%
Pは、所望の強度に応じて添加する元素であり、またフェライト変態を促進するため、複合組織化にも有効な元素である。こうした効果を得るには、P量を0.001%以上にする必要がある。一方、P量が0.05%を超えると、溶接性やめっき性の低下を招く。したがって、P量は0.001〜0.05%の範囲とする。
P: 0.001 to 0.05%
P is an element to be added according to a desired strength, and is an element effective for forming a composite structure because it promotes ferrite transformation. In order to obtain such an effect, the P amount needs to be 0.001% or more. On the other hand, if the amount of P exceeds 0.05%, the weldability and the plating property are reduced. Therefore, the P content is in the range of 0.001 to 0.05%.

S:0.0001〜0.01%
Sは、粒界に偏析して温間加工時に鋼を脆化させるだけでなく、硫化物として存在して局部変形能を低下させるため、その量は0.01%以下とする。好ましくは0.003%以下、より好ましくは0.001%以下である。しかし、生産技術上の制約から、S量を0.0001%未満まで低減するのは難しい。したがって、S量は0.0001〜0.01%の範囲とする。好ましくは0.0001〜0.003%、より好ましくは0.0001〜0.001%の範囲である。
S: 0.0001 to 0.01%
S not only segregates at the grain boundaries and embrittles the steel during warm working, but also exists as a sulfide and lowers the local deformability, so the amount is made 0.01% or less. Preferably it is 0.003% or less, More preferably, it is 0.001% or less. However, it is difficult to reduce the amount of S to less than 0.0001% due to restrictions on production technology. Therefore, the S content is in the range of 0.0001 to 0.01%. Preferably it is 0.0001 to 0.003%, more preferably 0.0001 to 0.001% of range.

Al:0.001〜0.1%
Alは、フェライトを生成させ、強度−延性バランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.001%以上にする必要がある。一方、Al量が0.1%を超えると、表面性状の劣化を招く。したがって、Al量は0.001〜0.1%の範囲とする。
Al: 0.001 to 0.1%
Al is an element effective in generating ferrite and improving the strength-ductility balance. In order to obtain such an effect, the Al amount needs to be 0.001% or more. On the other hand, when the Al content exceeds 0.1%, the surface properties are deteriorated. Therefore, the Al content is in the range of 0.001 to 0.1%.

N:0.0005〜0.01%
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.01%を超えると、耐時効性の劣化が顕著となる。したがって、N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。そのため、N量は0.0005〜0.01%の範囲とする。
N: 0.0005-0.01%
N is an element that degrades the aging resistance of steel. In particular, when the N content exceeds 0.01%, the deterioration of aging resistance becomes significant. Therefore, the smaller the amount of N, the better. However, the amount of N needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N content is in the range of 0.0005 to 0.01%.

Nb:0.01〜0.1%
Nbは、本発明で極めて重要な役割を有する。Nbは、熱間圧延や連続焼鈍などの製造プロセスにおいて再結晶や相変態を抑制する作用を有し、その結果として鋼組織を極微細化する効果を示す。このような組織形態下では、残留オ−ステナイトが塑性拘束の影響で安定化するため、残留オ−ステナイト中のC濃度が比較的微量であっても温間での成形過程においては、高い延性を達成することが可能となる。同時に結晶粒の微細化により、温間成形時の転位運動の障害として作用し、可動転位密度の上昇による歪み時効硬化の増大にも寄与する。さらに、このような組織の微細化は、低温靭性の向上にも有効に寄与する。また、C、Nと析出物を形成して強度を上昇する効果も有する。これら効果を有効に発現させるためには。Nb量は0.01%以上とする必要がある。一方、Nbが0.1%を超えると、析出強化が過度に働き、延性や低温靭性の低下を招く。したがって、Nb量は0.01〜0.1%の範囲とする。
Nb: 0.01-0.1%
Nb has a very important role in the present invention. Nb has the effect of suppressing recrystallization and phase transformation in manufacturing processes such as hot rolling and continuous annealing, and as a result, exhibits the effect of miniaturizing the steel structure. Under such a structure, the retained austenite is stabilized under the influence of plastic restraint, so even if the C concentration in the retained austenite is relatively small, the ductility is high in the warm forming process. Can be achieved. At the same time, the refinement of crystal grains acts as an obstacle to dislocation movement during warm forming, and contributes to an increase in strain age hardening due to an increase in mobile dislocation density. Furthermore, such refinement of the structure effectively contributes to the improvement of low temperature toughness. It also has the effect of increasing the strength by forming precipitates with C and N. To make these effects effective. The amount of Nb needs to be 0.01% or more. On the other hand, if Nb exceeds 0.1%, precipitation strengthening works excessively, leading to a decrease in ductility and low temperature toughness. Therefore, the Nb content is in the range of 0.01 to 0.1%.

残部はFeおよび不可避的不純物である。
しかしながら、以下の理由で、Ti:0.005〜0.1%、V:0.005〜0.1%から選ばれる少なくとも1種の元素や、B:0.0003〜0.0050%や、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%から選ばれる少なくとも1種の元素を含有させることができる。
The balance is Fe and inevitable impurities.
However, for the following reasons, at least one element selected from Ti: 0.005-0.1%, V: 0.005-0.1%, B: 0.0003-0.0050%, Cr: 0.01-1.0%, Mo: 0.01-1.0 %, Ni: 0.01 to 1.0%, Cu: 0.01 to 1.0%, at least one element selected from them can be contained.

Ti:0.005〜0.1%、V:0.005〜0.1%
Ti、Vはいずれも、C,Nと析出物を形成して強度および靭性の向上に有効に寄与する。また、析出強化により鋼を強化するため、所望の強度に応じて添加することができる。また、Tiは、Bと同時に含有させた場合には、NをTiNとして析出させるため、BNの析出が抑制され、後述するBの添加効果が有効に発現される。こうした効果を得るには、Ti量、V量はそれぞれ0.005%以上にする必要がある。一方、Ti量、V量が0.1%を超えると、析出強化が過度に働き、延性の低下を招く。したがって、Ti量は0.005〜0.1%、V量は0.005〜0.1%の範囲で添加することが好ましい。
Ti: 0.005-0.1%, V: 0.005-0.1%
Both Ti and V form precipitates with C and N and contribute effectively to the improvement of strength and toughness. Moreover, since steel is strengthened by precipitation strengthening, it can be added according to a desired strength. Further, when Ti is contained at the same time as B, since N is precipitated as TiN, the precipitation of BN is suppressed, and the effect of adding B described later is effectively expressed. In order to obtain such effects, the Ti content and the V content must each be 0.005% or more. On the other hand, when the Ti content and the V content exceed 0.1%, precipitation strengthening works excessively, leading to a decrease in ductility. Therefore, it is preferable to add Ti in the range of 0.005 to 0.1% and V in the range of 0.005 to 0.1%.

B:0.0003〜0.0050%
Bは、焼入れ性を向上させて複合組織化を容易にするため、所定の分率でマルテンサイトを得るために必要に応じて添加する。こうした効果を得るには、B量を0.0003%以上にする必要がある。一方、B量が0.0050%を超えると、効果が飽和するとともに延性の低下を招く。したがって、B量は0.0003〜0.0050%の範囲で添加することが好ましい。
B: 0.0003-0.0050%
B is added as necessary to obtain martensite at a predetermined fraction in order to improve hardenability and facilitate complex organization. In order to obtain such an effect, the B amount needs to be 0.0003% or more. On the other hand, if the amount of B exceeds 0.0050%, the effect is saturated and ductility is reduced. Therefore, the B content is preferably added in the range of 0.0003 to 0.0050%.

Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%
Cr、Mo、Ni、Cuはいずれも、固溶強化元素としての役割のみならず、オ−ステナイトを安定化して複合組織化を容易にするため、所定の分率で残留オ−ステナイトを得るために必要に応じて添加する。こうした効果を得るには、Cr量、Mo量、Ni量、Cu量は、それぞれ0.01%以上にする必要がある。一方、Cr量、Mo量、Ni量、Cu量がそれぞれ1.0%を超えると、めっき性、成形性、スポット溶接性が低下する。したがって、Cr量は0.01〜1.0%、Mo量は0.01〜1.0% 、Ni量は0.01〜1.0%、Cu量は0.01〜1.0%の範囲とする。
Cr: 0.01-1.0%, Mo: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%
Cr, Mo, Ni, and Cu not only serve as solid solution strengthening elements, but also to stabilize retained austenite and facilitate complex formation, so that retained austenite is obtained at a predetermined fraction. Add as needed. In order to obtain such effects, the Cr content, the Mo content, the Ni content, and the Cu content must each be 0.01% or more. On the other hand, if the Cr content, the Mo content, the Ni content, and the Cu content each exceed 1.0%, the plateability, formability, and spot weldability deteriorate. Accordingly, the Cr amount is 0.01 to 1.0%, the Mo amount is 0.01 to 1.0%, the Ni amount is 0.01 to 1.0%, and the Cu amount is 0.01 to 1.0%.

2)ミクロ組織
ポリゴナルフェライト:20%以上
ベイナイト:10%以上
残留オーステナイトの面積率:3%以上
残留オーステナイトの平均結晶粒径:5μm以下
本発明において、温間成形時の延性の向上と温間加工後の常温での強度の上昇を同時に達成するためには、ポリゴナルフェライトとベイナイトの複合した組織を一定量含有させる必要がある。また、温間成形による延性向上の効果を得るには、所定量の残留オーステナイトを含有させる必要がある。残留オーステナイトは、歪み誘起変態により歪み伝播性を高めて塑性変形能を高める作用があるが、高温では残留オーステナイトが安定化することから、より高歪み域で作用するようになり、一層の延性向上が可能となる。
2) Microstructure Polygonal ferrite: 20% or more Bainite: 10% or more Area ratio of retained austenite: 3% or more Average crystal grain size of retained austenite: 5 μm or less In the present invention, improvement in ductility during warm forming and warm In order to simultaneously achieve an increase in strength at room temperature after processing, it is necessary to contain a fixed amount of a composite structure of polygonal ferrite and bainite. In order to obtain the effect of improving ductility by warm forming, it is necessary to contain a predetermined amount of retained austenite. Residual austenite has the effect of increasing the strain propagation property and improving the plastic deformability by strain-induced transformation, but since the retained austenite stabilizes at high temperatures, it will act in a higher strain region, further improving ductility. Is possible.

特に本発明のように、CやSiの添加量を抑制して残留オ−ステナイトへのC濃化による安定化が期待できない場合には、残留オ−ステナイトの結晶粒径を微細化することによる塑性拘束の作用により、加工に対する安定性を高めて延性を向上させることができる。温間成形においては、加熱によりCの拡散が促進されるため、残留オ−ステナイト中のC濃度が高まり、この効果が顕著に発現される。このためには、温間成形前室温段階で一定量の残留オ−ステナイトを残存させる必要があるが、上記した微細化の効果でこれを実現することができる。また、温間成形で導入された可動転位は主にポリゴナルフェライトに分布し塑性変形を担っている。この可動転位と鋼中のCが相互作用することで加工硬化能が高まり延性が向上する。また、温間成形時に主にポリゴナルフェライトに導入された可動転位と鋼中のCとが相互作用することにより、室温に冷却した後も可動転位はCで固着された状態になるため、温間加工後に室温で変形したときの強度が著しく上昇する。さらに、残留オーステナイトから変態したマルテンサイトとポリゴナルフェライトは大きな硬度差を示すが、中間的な硬度を有するベイナイトを混在させることで局所的な応力集中を抑制して延性の向上に寄与する。
上記した効果を有効に発現させるには、面積率で、ポリゴナルフェライトを20%以上、ベイナイトを10%以上、残留オーステナイトの面積率を3%以上とし、さらに残留オーステナイトの平均結晶粒径を5μm以下とすることが肝要である。
In particular, as in the present invention, when the amount of addition of C and Si is suppressed and stabilization due to C concentration in residual austenite cannot be expected, the crystal grain size of residual austenite is reduced. By the action of plastic restraint, the stability to processing can be increased and ductility can be improved. In warm forming, since the diffusion of C is promoted by heating, the C concentration in the retained austenite is increased, and this effect is remarkably exhibited. For this purpose, a certain amount of retained austenite needs to be left at the room temperature stage before warm forming, and this can be realized by the above-described effect of miniaturization. In addition, movable dislocations introduced by warm forming are mainly distributed in polygonal ferrite and are responsible for plastic deformation. The interaction between this movable dislocation and C in the steel increases work hardening ability and improves ductility. In addition, the movable dislocations mainly introduced into polygonal ferrite during warm forming interact with C in the steel, so that the movable dislocations are fixed in C even after cooling to room temperature. The strength when deformed at room temperature after inter-working is significantly increased. Furthermore, martensite and polygonal ferrite transformed from retained austenite exhibit a large hardness difference, but mixing bainite having intermediate hardness suppresses local stress concentration and contributes to improvement of ductility.
In order to effectively exhibit the above effects, the area ratio is set to 20% or more of polygonal ferrite, 10% or more of bainite, 3% or more of retained austenite, and the average crystal grain size of retained austenite is 5 μm. It is important that:

なお、ポリゴナルフェライトの上限は、強度確保の面から70%とすることが好ましい。
また、ベイナイトの上限は、強度確保の面から50%とすることが好ましい。
さらに、残留オ−ステナイトの上限は、過度の含有が靭性や局部延性の低下を招く場合があるため、30%とすることが好ましい。
一方、ポリゴナルフェライトとベイナイトと残留オーステナイト以外の組織は、主にマルテンサイトである。その他、パーライトが混入する場合もあるが、その混入量が20%以下であれば何ら問題はない。
The upper limit of polygonal ferrite is preferably 70% from the viewpoint of securing strength.
The upper limit of bainite is preferably 50% from the viewpoint of securing strength.
Furthermore, the upper limit of retained austenite is preferably set to 30% because excessive content may cause a decrease in toughness and local ductility.
On the other hand, the structure other than polygonal ferrite, bainite and retained austenite is mainly martensite. In addition, pearlite may be mixed, but there is no problem if the mixed amount is 20% or less.

300℃で歪み量0.10の成形後の残留オ−ステナイト中のC濃度(Cγ300):0.2%以上
CやSiの添加量が少ない場合には、温間成形前の鋼板において残留オ−ステナイト中のC濃度を高めるのが困難であるため、鋼板の製造過程のみならず温間成形中にも残留オ−ステナイト中にCを濃化させる必要がある。延性に寄与するには、温間成形時に少なくとも0.2%以上の濃度となる必要がある。なお、Cγ300量の上限については特に限定されないが1.2%程度が実際的である。
C concentration in residual austenite after forming with strain of 0.10 at 300 ° C (Cγ 300 ): 0.2% or more In the case of residual austenite in the steel sheet before warm forming when the amount of C or Si is small Since it is difficult to increase the C concentration of C, it is necessary to concentrate C in the retained austenite not only during the manufacturing process of the steel sheet but also during warm forming. In order to contribute to ductility, the concentration needs to be at least 0.2% during warm forming. The upper limit of the amount of Cγ 300 is not particularly limited, but about 1.2% is practical.

さらに、本発明では、以下に述べる要件を満足させることが有効である。
ポリゴナルフェライトとベイナイトの平均結晶粒径:10μm以下
残留オーステナイトの結晶粒微細化による塑性拘束での安定化のためには、これらが均一かつ微細に分散して局所的な応力の集中を回避する必要がある。一方で、ポリゴナルフェライトとベイナイトから残留オーステナイトへのCの拡散による濃化を効率的に進めるには、拡散経路となる結晶粒界を多く含むことが好ましい。したがって、ポリゴナルフェライトとベイナイトの結晶粒径は微細であることが好適である。このような効果を得るためには、ポリゴナルフェライトとベイナイトの平均結晶粒径はそれぞれ10μm以下とすることが好ましい。
Furthermore, in the present invention, it is effective to satisfy the requirements described below.
Average grain size of polygonal ferrite and bainite: 10 μm or less For stabilization by plastic restraint by refining residual austenite grains, they are uniformly and finely dispersed to avoid local stress concentration There is a need. On the other hand, in order to efficiently promote concentration by diffusion of C from polygonal ferrite and bainite to retained austenite, it is preferable that many crystal grain boundaries serving as diffusion paths are included. Therefore, it is preferable that the crystal grain sizes of polygonal ferrite and bainite are fine. In order to obtain such an effect, the average crystal grain sizes of polygonal ferrite and bainite are preferably 10 μm or less, respectively.

マルテンサイトの面積率:20%以上
マルテンサイトは、その形成時の体積膨張により隣接するポリゴナルフェライトとの粒界近傍に可動転位を生成する作用を有する。この可動転位は温間成形時の転位源として作用し、塑性変形の進行にともない転位を増殖させる。これらの転位群と鋼中のCが相互作用することにより歪み時効硬化が発現し、温間加工後の室温での強度上昇に寄与する。また、温間成形時の可動転位と鋼中のCとの相互作用は、一般的な動的歪み時効現象で見られるように、延性の低下を招いたり、セレーションと呼ばれる変形時の応力の不安定を生ずる。しかしながら、この点については、ポリゴナルフェライトとマルテンサイトを適切に混合させることで、転位源が分散して歪みの伝播性を高めて加工硬化の促進による延性の向上を有効に発現せしめるとともに、応力のセレーションを解消することができる。このような効果を有効に発現するためには、マルテンサイトの面積率は20%以上とすることが好ましい。
Martensite area ratio: 20% or more Martensite has the effect of generating movable dislocations in the vicinity of the grain boundary with the adjacent polygonal ferrite due to volume expansion during its formation. This movable dislocation acts as a dislocation source during warm forming, and proliferates the dislocation as the plastic deformation progresses. These dislocation groups interact with C in steel to develop strain age hardening and contribute to an increase in strength at room temperature after warm working. In addition, the interaction between movable dislocations during warm forming and C in steel causes a decrease in ductility, as seen in a general dynamic strain aging phenomenon, and stress deformation during deformation called serration. Stabilize. However, with regard to this point, by appropriately mixing polygonal ferrite and martensite, the dislocation source is dispersed and the propagation of strain is enhanced, effectively improving the ductility by promoting work hardening and stress. Can be eliminated. In order to effectively exhibit such an effect, the area ratio of martensite is preferably 20% or more.

室温における歪み量0.10での残留オ−ステナイトの体積率(Vγ0)と300℃における歪み量0.10での残留オ−ステナイトの体積率(Vγ300)との関係:Vγ300/Vγ0≧2.0
本発明による鋼板では、上記したように温間での残留オ−ステナイトの安定化に伴い、歪み伝播性が向上(均一伸びが上昇)して延性が向上する。この効果がプレス成形性の向上に有効に寄与するには、比較的高歪みの領域まで残留オ−ステナイトが残存しなければならない。具体的には、300℃における歪み量0.10での残留オ−ステナイトの体積率(Vγ300)の、室温における歪み量0.10での残留オ−ステナイトの体積率(Vγ0)に対する比を2.0以上にすることが好ましい。
Relationship between volume fraction of retained austenite (Vγ 0 ) at a strain amount of 0.10 at room temperature and volume fraction of residual austenite (Vγ 300 ) at a strain amount of 0.10 at 300 ° C .: Vγ 300 / Vγ 0 ≧ 2.0
In the steel plate according to the present invention, as described above, with the stabilization of the retained austenite in the warm state, the strain propagation property is improved (uniform elongation is increased) and the ductility is improved. In order for this effect to contribute effectively to the improvement of press formability, residual austenite must remain up to a relatively high strain region. Specifically, the ratio of the volume ratio of residual austenite (Vγ 300 ) at a strain amount of 0.10 at 300 ° C. to the volume ratio of residual austenite (Vγ 0 ) at a strain amount of 0.10 at room temperature is set to 2.0 or more. It is preferable to do.

室温における歪み量0.05での加工硬化率(WHR0)と300℃における歪み量0.05での加工硬化率(WHR300)との関係:WHR300 / WHR0 ≧ 1.2
本発明による鋼板では、上記したように温間成形で導入する可動転位とCとの相互作用に基づく加工硬化の促進にともない、歪み伝播性が向上(均一伸びが上昇)して延性が向上する。この効果がプレス成形性の向上に有効に寄与するには、比較的高歪みの領域で加工硬化率が上昇しなければならない。具体的には、300℃における歪み量0.05での加工硬化率の室温における歪み量0.05での加工硬化率に対する比を1.2以上にすることが好ましい。
Relationship between work hardening rate (WHR 0 ) at a strain amount of 0.05 at room temperature and work hardening rate (WHR 300 ) at a strain amount of 0.05 at 300 ° C .: WHR 300 / WHR 0 ≧ 1.2
In the steel sheet according to the present invention, as described above, with the acceleration of work hardening based on the interaction between the movable dislocation introduced by warm forming and C, strain propagation is improved (uniform elongation is increased) and ductility is improved. . In order for this effect to contribute effectively to the improvement of press formability, the work hardening rate must increase in a relatively high strain region. Specifically, the ratio of the work hardening rate at a strain amount of 0.05 at 300 ° C. to the work hardening rate at a strain amount of 0.05 at room temperature is preferably 1.2 or more.

室温での引張強度(TS0)と300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS300)との関係:TS300−TS0≧150 MPa
本発明による鋼板では、温間成形時に導入される可動転位とCの相互作用により加工硬化能が向上するため、同じ歪み量まで加工したとしても温間成形では室温での成形に比較してより大きい転位密度で可動転位が蓄積されている。さらには、これらの可動転位の多くは鋼中のCで固着された状態にある。このため、温間成形で予加工(プレス加工)を加えたのちに室温で再度の変形を加えた場合には、これらの一連を室温で行った場合に比較して強度が高くなる。この効果を自動車部材の性能、特に衝突特性で有効に発現させて板厚低減による車体軽量化に寄与させるには、300℃で歪み量0.10の予加工を加えたのちの室温での引張強度は室温での引張強度に対して、少なくとも150MPa以上の上昇代を有することが好適である。
Relationship between tensile strength at room temperature (TS 0 ) and tensile strength at room temperature (TS 300 ) after pre-processing with strain of 0.10 at 300 ° C: TS 300 −TS 0 ≧ 150 MPa
In the steel sheet according to the present invention, the work hardening ability is improved by the interaction between the movable dislocation introduced during warm forming and C, so even if the same strain amount is processed, the warm forming is more in comparison with the forming at room temperature. Mobile dislocations are accumulated with a high dislocation density. Furthermore, many of these movable dislocations are in a state of being fixed by C in the steel. For this reason, when a deformation | transformation is again performed at room temperature after adding a pre-processing (press process) by warm forming, intensity | strength becomes high compared with the case where these series are performed at room temperature. In order to make this effect effective in the performance of automobile parts, especially the collision characteristics, and to contribute to the weight reduction of the car body by reducing the plate thickness, the tensile strength at room temperature after pre-processing with a strain amount of 0.10 at 300 ° C is It is preferable to have an increase margin of at least 150 MPa with respect to the tensile strength at room temperature.

室温での引張強度に対する200〜400℃の温度域での引張強度の低下量:150MPa以下
本発明による鋼板は200〜400℃の温度域で温間成形される。一般に、成形温度を上昇させることで歪みの回復や焼き戻し作用などで鋼板強度は低下する傾向を示すが、引張強度の低下が著しい場合には、特に絞り成形で破断耐力が低下してプレス割れの原因になる。したがって、温度域が200〜400℃での引張強度の室温での引張強度に対する低下量は150MPa以下とすることが望ましい。
Amount of decrease in tensile strength in the temperature range of 200 to 400 ° C. with respect to the tensile strength at room temperature: 150 MPa or less The steel sheet according to the present invention is warm-formed in the temperature range of 200 to 400 ° C. In general, steel sheet strength tends to decrease due to strain recovery and tempering action by increasing the forming temperature. Cause. Therefore, the amount of decrease in the tensile strength at a temperature range of 200 to 400 ° C. with respect to the tensile strength at room temperature is desirably 150 MPa or less.

室温での降伏強度に対する200〜400℃の温度域での降伏強度の上昇量:50MPa以下
本発明による鋼板は、温間成形時に導入される可動転位とCの相互作用により加工硬化能を向上させる。この相互作用は降伏強度を上昇させる傾向を示すが、その上昇量が著しく大きい場合には、スプリングバック量が増大して温間成形によるプレス部材の寸法精度を損なう場合がある。したがって、温度域が200〜400℃での降伏強度の室温での降伏強度に対する上昇量は50MPa以下とすることが望ましい。
Increase in yield strength in the temperature range of 200 to 400 ° C. with respect to yield strength at room temperature: 50 MPa or less The steel sheet according to the present invention improves work hardening ability by the interaction of movable dislocations and C introduced during warm forming. . This interaction tends to increase the yield strength. If the increase is extremely large, the amount of spring back may increase and the dimensional accuracy of the press member by warm forming may be impaired. Therefore, it is desirable that the amount of increase in the yield strength at a temperature range of 200 to 400 ° C. with respect to the yield strength at room temperature is 50 MPa or less.

3)温間成形方法
薄鋼板を鋼板温度が200〜400℃で、相当塑性歪み量0.02以上の加工を加える温間成形による延性向上には、歪み伝播性を高めるために、残留オ−ステナイトが室温に比較して高歪み域で安定化する適正な温度範囲でプレス成形を施す必要がある。同時に、温間成形による強度上昇には、導入される歪みと鋼中のCとを相互作用させるために、Cが充分に拡散が可能で、かつ転位が回復、消滅しない適正な温度範囲でプレス成形を施す必要がある。
鋼板温度が200℃未満では、残留オ−ステナイトが充分な安定化を示さず、かつ可動転位が導入されたとしても、Cが自由に拡散できないため相互作用が有効に発現しない。一方、400℃超では、残留オ−ステナイトが過度に安定化し歪み誘起変態を生じず、かつ可動転位が導入されたとしても、回復、消滅してしまうため、充分なC量を含有していても相互作用が有効に発現しない。
また、温間成形による、相当塑性歪み量が0.02未満の場合には、歪み誘起変態が充分に発現せず歪み伝播性(均一伸び)の向上が認められないばかりか、導入される可動転位の密度が充分でなく、加工硬化の促進による延性の向上や強度の上昇を図ることができない。したがって、温間成形に際しては相当塑性歪み量が0.02以上の条件で成形を行う必要がある。好ましくは相当塑性歪み量:0.10以上である。
3) Warm forming method In order to improve ductility by warm forming in which a thin steel plate is processed at a temperature of 200 to 400 ° C and an equivalent plastic strain of 0.02 or more, residual austenite is used to increase strain propagation. It is necessary to perform press molding in an appropriate temperature range that stabilizes in a high strain region as compared to room temperature. At the same time, in order to increase the strength due to warm forming, in order to allow the strain to be introduced to interact with C in the steel, the C can be sufficiently diffused, and the press is performed in an appropriate temperature range in which dislocations recover and do not disappear. It is necessary to mold.
When the steel plate temperature is less than 200 ° C., the retained austenite does not show sufficient stabilization, and even if movable dislocations are introduced, C cannot diffuse freely and the interaction is not effectively expressed. On the other hand, when the temperature exceeds 400 ° C., the retained austenite is excessively stabilized and does not cause strain-induced transformation, and even if a movable dislocation is introduced, it recovers and disappears, so that it contains a sufficient amount of C. However, the interaction is not effectively expressed.
In addition, when the amount of plastic strain due to warm forming is less than 0.02, not only the strain-induced transformation does not fully develop and the improvement of strain propagation property (uniform elongation) is not observed, but the movable dislocation introduced The density is not sufficient, and it is not possible to improve ductility or increase strength by promoting work hardening. Therefore, in warm forming, it is necessary to perform forming under the condition that the amount of equivalent plastic strain is 0.02 or more. Preferably, the amount of equivalent plastic strain is 0.10 or more.

なお、本発明で用いられる高強度薄鋼板については、特にその製造方法を規定しないが、一般的な鋼板製造プロセスを利用して製造することが可能であり、その品種としては、熱延鋼板、冷延鋼板、溶融亜鉛めっき鋼板などが有る。
例えば、熱延鋼板として製造する場合には、スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延する時、スラブは再加熱されるが、圧延荷重の増大を防止するため、加熱温度は1150℃以上にすることが好ましい。また、スケ−ルロスの増大や燃料原単位の増加を防止するため、加熱温度の上限は1300℃とすることが好ましい。
熱間圧延は、粗圧延と仕上圧延により行われるが、仕上圧延は、冷間圧延・焼鈍後の成形性の低下を防ぐために、Ar3変態点以上の仕上温度で行うことが好ましい。また、結晶粒の粗大化による組織の不均一やスケ−ル欠陥の発生を防止するため、仕上温度は950℃以下とすることが好ましい。熱間圧延後の鋼板は、必要な残留オ−ステナイトの面積率を確保する観点から、仕上げ圧延後は1秒以内に20℃/s以上の冷却速度で650℃以下まで冷却したのち、350〜500℃の巻取温度で巻取ることが好ましい。
一方、以下に述べる冷延鋼板として製造する場合のように、酸洗および冷間圧延などの次工程が続く場合には、スケ−ル欠陥の防止や良好な形状性の確保の観点から、仕上げ圧延後は500〜700℃の巻取温度で巻取ることが好ましい。
The high strength thin steel sheet used in the present invention does not particularly define its production method, but can be produced using a general steel sheet production process. There are cold-rolled steel sheets and hot-dip galvanized steel sheets.
For example, when manufactured as a hot-rolled steel sheet, the slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but can also be manufactured by an ingot-making method or a thin slab casting method. When the slab is hot-rolled, the slab is reheated, but in order to prevent an increase in rolling load, the heating temperature is preferably 1150 ° C. or higher. Further, the upper limit of the heating temperature is preferably 1300 ° C. in order to prevent an increase in scale loss and an increase in fuel consumption rate.
The hot rolling is performed by rough rolling and finish rolling, but the finish rolling is preferably performed at a finishing temperature equal to or higher than the Ar 3 transformation point in order to prevent a decrease in formability after cold rolling / annealing. In order to prevent the occurrence of non-uniform structure and scale defects due to the coarsening of crystal grains, the finishing temperature is preferably 950 ° C. or lower. The steel sheet after hot rolling is cooled to 650 ° C. or less after cooling at a cooling rate of 20 ° C./s or more within 1 second after finishing rolling from the viewpoint of securing the necessary area ratio of retained austenite. Winding at a winding temperature of 500 ° C. is preferred.
On the other hand, when the next process such as pickling and cold rolling continues as in the case of manufacturing as a cold-rolled steel sheet described below, from the viewpoint of preventing scale defects and ensuring good shape, It is preferable to wind at a winding temperature of 500 to 700 ° C. after rolling.

冷延鋼板として製造する場合には、上記した巻取り後の熱延鋼板から、スケ−ルを酸洗などにより除去した後、ポリゴナルフェライトやベイナイトを効率的に生成させるため、圧下率40%以上で冷間圧延することが好ましい。冷間圧延後の鋼板はAc1変態点以上で(Ac3+50)℃以下の温度域に加熱後、30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の冷却停止温度まで一次冷却する際に、とくに750℃から600℃の範囲を15℃/s以上の冷却速度とするように冷却した後、350〜500℃の温度域で10s以上のオ−ステンパ処理を施したのち、2次冷却する方法によって製造することができる。 When manufacturing as a cold-rolled steel sheet, after removing the scale from the hot-rolled steel sheet after winding as described above by pickling, etc., in order to efficiently generate polygonal ferrite and bainite, a rolling reduction of 40% It is preferable to cold-roll as described above. After heating the steel sheet after cold rolling is Ac in 1 transformation point or more (Ac 3 +50) ° C. below the temperature range, 30~500S soaked, 3 to 30 ° C. / average cooling stop of 600 ° C. or less at a cooling rate of s When performing primary cooling to a temperature, in particular, after cooling to a cooling rate of 15 ° C./s or more in the range of 750 ° C. to 600 ° C., austempering treatment is performed for 10 s or more in the temperature range of 350 to 500 ° C. Then, it can be manufactured by a secondary cooling method.

溶融亜鉛めっき鋼板として製造する場合には、上記した巻取り後の熱延鋼板から、スケ−ルを酸洗などにより除去した後、ポリゴナルフェライトやベイナイトを効率的に生成させるため、圧下率40%以上で冷間圧延することが好ましい。冷間圧延後の鋼板はAc1変態点以上で(Ac3+50)℃以下の温度域に加熱後、30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の冷却停止温度まで一次冷却後に、350〜500℃の温度域で10s以上のオ−ステンパ処理をしたのち、Al量を0.10〜0.20mass%含む亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施し、ついでめっきの目付け量を調整するために必要に応じてワイピングを行ったのち、2次冷却することによって製造できる。なお、めっき中のFe濃度を調整して、めっきの密着性や塗装後の耐食性を向上させるために、2次冷却に先んじて450〜600℃の温度域で亜鉛めっきを合金化処理することもできる。 When producing as a hot dip galvanized steel sheet, after removing the scale by pickling, etc. from the hot-rolled steel sheet after winding, in order to efficiently generate polygonal ferrite and bainite, a reduction rate of 40 It is preferable to cold-roll at% or more. After heating the steel sheet after cold rolling is Ac in 1 transformation point or more (Ac 3 +50) ° C. below the temperature range, 30~500S soaked, 3 to 30 ° C. / average cooling stop of 600 ° C. or less at a cooling rate of s After primary cooling to the temperature, austempering for 10 s or more in the temperature range of 350 to 500 ° C., then dipping in a galvanizing bath containing 0.10 to 0.20 mass% of Al, and then performing hot dip galvanizing treatment In order to adjust the weight per unit area, it is possible to manufacture by performing secondary cooling after performing wiping as necessary. In addition, in order to adjust the Fe concentration during plating and improve the adhesion of plating and the corrosion resistance after coating, alloying treatment of galvanizing is also possible in the temperature range of 450-600 ° C prior to secondary cooling. it can.

(実施例1)
表1に示す成分組成の鋼種A〜Kを真空溶解炉により溶製し、分塊圧延でシ−トバ−スラブとした。これらのシ−トバ−スラブを、熱延鋼板の製造工程を模して、1250℃に加熱し、粗圧延を施したのち、仕上げ圧延を850〜920℃で行い、引続いて1秒以内に水溶性焼入れ液に浸漬して25℃/sの冷却速度で600℃まで冷却したのち、300〜600℃で1時間保持したのち炉冷する巻取相当熱処理を施して、組織構成を調整した熱延鋼板を作製した。
また、一部については、冷延鋼板の製造工程を模して、上記した熱延鋼板に酸洗を施して表面のスケ−ルを除去し、さらに圧下率50%の冷間圧延を施した。引き続き、750〜900℃で300sの均熱処理を施した後に、200〜500℃まで平均冷却速度を10℃/s、750℃から600℃の冷却速度を20℃/sとするガス冷却を施して冷却し、200〜500℃の温度域に30〜1800s保持したのち室温まで冷却し、組織構成を調整した種々の鋼板を作製した。
さらに、合金化溶融亜鉛めっき鋼板の製造工程を模して、上記した均熱処理、冷却、保持の工程ののち、525℃に再加熱し15s保持したのち室温まで冷却し、組織構成を調整した種々の鋼板を作製した。
これら鋼板は、それぞれのサンプル作製の手順に従い、熱延鋼板(HOT)、冷延鋼板(COLD)、合金化溶融亜鉛めっき鋼板(GA)に品種を分類した。
Example 1
Steel types A to K having the composition shown in Table 1 were melted in a vacuum melting furnace, and a sheet bar slab was formed by split rolling. These sheet bar slabs were heated to 1250 ° C to simulate the manufacturing process of hot-rolled steel sheets, and after rough rolling, finish rolling was performed at 850 to 920 ° C, and subsequently within 1 second. After cooling by dipping in an aqueous quenching liquid at a cooling rate of 25 ° C. / s up to 600 ° C., subjected to winding corresponding heat treatment for later furnace cooling and held for 1 hour at 3 from 00 to 600 ° C., and adjusted the organizational structure A hot-rolled steel sheet was produced.
Moreover, for some, imitating the manufacturing process of the cold-rolled steel sheet, the above-described hot-rolled steel sheet was pickled to remove the scale on the surface, and further subjected to cold rolling with a reduction rate of 50%. . Subsequently, after performing a soaking process for 300 s at 750 to 900 ° C, gas cooling was performed at an average cooling rate of 10 ° C / s from 200 to 500 ° C and a cooling rate of 750 ° C to 600 ° C at 20 ° C / s. After cooling and holding in a temperature range of 200 to 500 ° C. for 30 to 1800 s, it was cooled to room temperature, and various steel sheets with adjusted structure were prepared.
Furthermore, after the above-mentioned soaking, cooling, and holding steps, imitating the hot-dip galvanized steel sheet manufacturing process, reheating to 525 ° C, holding for 15 s, cooling to room temperature, and adjusting the structure A steel plate was prepared.
These steel sheets were classified into hot-rolled steel sheets (HOT), cold-rolled steel sheets (COLD), and alloyed hot-dip galvanized steel sheets (GA) according to the respective sample preparation procedures.

Figure 2017039973
Figure 2017039973

得られた鋼板について、鋼組織の同定を行うとともに、その面積分率を測定した。
ミクロ組織は鋼板の圧延方向に平行な板厚断面について、ナイタ−ルによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大して鋼組織を同定した。これを画像解析ソフト(Image−Pro ;Cybernetics社製)により解析し各相の面積率を求めた。但し、マルテンサイトと残留オ−ステナイトは区別が困難であるため、これらについては総和の面積率を求めて、後述する方法で残留オ−ステナイトの面積率を別に求めると共に、これを差し引くことでマルテンサイトの面積率とした。
また、鋼板を板厚1/4の位置まで研磨した後に、さらに0.1mm化学研磨した面を測定面として、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)、(220)面のピ−クの積分強度を測定し、そのすべての組合せについてfccの比率を算出し、その平均値をもって残留オ−ステナイトの体積率を求め、3次元的に均質として、これを残留オ−ステナイトの面積率とした。
同時に、上記したSEM観察によるミクロ組織より、フェライトとベイナイトについて粒界のみを描画し、画像処理ソフトにより各結晶粒を円と見なしたときの直径(円相当径)を導出し、これらを平均してフェライトおよびベイナイトの平均結晶粒径とした。
また、残留オーステナイトの平均結晶粒径は、上記したSEM観察にあたり、200℃で200分の熱処理を施した後に腐食を実施することで、マルテンサイトに相当する部分では焼戻しにより下部組織が現出され易く残留オーステナイトと異なる形態を示すことから、この下部組織が現出しない相を残留オーステナイトとみなし、上記した画像解析を行うことにより求めた。本発明において、対称とする残留オーステナイトの粒径の下限値は、測定限界である0.01μmとした。
About the obtained steel plate, while identifying the steel structure, the area fraction was measured.
As for the microstructure, the steel microstructure was identified by magnifying the corrosion appearance structure due to the nitrile by 5000 times with a scanning electron microscope (SEM) on the thickness cross section parallel to the rolling direction of the steel sheet. This was analyzed by image analysis software (Image-Pro; manufactured by Cybernetics) to determine the area ratio of each phase. However, since martensite and retained austenite are difficult to distinguish, the total area ratio is obtained for these, and the area ratio of retained austenite is separately determined by the method described later, and this is subtracted to obtain martensite. The area ratio of the site was used.
In addition, after polishing the steel plate to the position of the thickness 1/4, the surface that was further chemically polished by 0.1 mm was used as the measurement surface, and using the Kα ray of Mo with an X-ray diffractometer, (200), (220 ), (311) surface and bcc iron's (200), (211), (220) surface peak integral strength is measured, fcc ratio is calculated for all the combinations, and the average value is used as the residual The volume ratio of austenite was determined and made three-dimensionally homogeneous, and this was defined as the area ratio of residual austenite.
At the same time, only the grain boundaries of ferrite and bainite are drawn from the microstructure by SEM observation described above, and the diameter (equivalent circle diameter) when each crystal grain is regarded as a circle is derived by image processing software, and these are averaged. Thus, the average crystal grain sizes of ferrite and bainite were obtained.
In addition, the average grain size of retained austenite is the result of tempering in the portion corresponding to martensite by performing corrosion after performing heat treatment at 200 ° C. for 200 minutes in the above-mentioned SEM observation. Since it easily shows a different form from retained austenite, the phase in which this substructure does not appear is regarded as retained austenite and obtained by performing the above-described image analysis. In the present invention, the lower limit value of the grain size of the retained austenite to be symmetric is set to 0.01 μm which is the measurement limit.

また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して、20mm/minのクロスヘッド速度で室温での引張試験を行って、TSおよびYSを測定した。
これら鋼板より、表2に示す鋼組織、母材特性を有する鋼板を抽出し、以下に示す温間引張試験および温間プレス試験に供した。
Further, JIS No. 5 tensile test specimens were collected in a direction perpendicular to the rolling direction, and a tensile test was performed at room temperature at a crosshead speed of 20 mm / min in accordance with JIS Z 2241 to measure TS and YS.
From these steel sheets, steel sheets having the steel structure and base material characteristics shown in Table 2 were extracted and subjected to the following warm tensile test and warm press test.

Figure 2017039973
Figure 2017039973

温間成形での特性を評価するために、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して、20mm/minのクロスヘッド速度で、試験温度が200〜400℃の範囲で引張試験を行い、機械的性質を評価した。このときの300℃での試験と室温での試験において歪み量0.10で試験を停止し、このときの残留オ−ステナイトの面積率を上記した方法で測定し、300℃における歪み量0.10での残留オ−ステナイトの体積率の室温における歪み量0.10での残留オ−ステナイトの体積率に対する比を求めた。
また、300℃での試験と室温での試験における応力−歪み関係から、300℃における歪み量0.05での加工硬化率の室温における歪み量0.05での加工硬化率に対する比を求めた。室温でのTSから試験温度が200〜400℃で最も低いTSを差し引くことで温間加工時のTS低下量を求めた。また、試験温度が200〜400℃で最も高いYSから室温でのYSを差し引く事で温間加工時のYS上昇量を求めた。
さらに、300℃での温間引張試験を歪み量が0.10の時点で停止し、室温に冷却した後に再度引張試験を実施して、機械的性質を評価した。300℃で歪み量0.10の予加工を加えたのちの室温での引張強度から室温での引張強度を差し引く事で温間加工後のTS上昇量を求めた。
In order to evaluate the properties in warm forming, JIS No. 5 tensile test specimens were taken in the direction perpendicular to the rolling direction, and the test temperature was 200 to 400 at a crosshead speed of 20 mm / min in accordance with JIS Z 2241. Tensile tests were performed in the range of ° C. to evaluate mechanical properties. At this time, the test was stopped at a strain amount of 0.10 in the test at 300 ° C. and the test at room temperature, and the area ratio of residual austenite at this time was measured by the method described above, and the residual amount at a strain amount of 0.10 at 300 ° C. The ratio of the volume ratio of austenite to the volume ratio of residual austenite at a strain amount of 0.10 at room temperature was determined.
Further, from the stress-strain relationship in the test at 300 ° C. and the test at room temperature, the ratio of the work hardening rate at a strain amount of 0.05 at 300 ° C. to the work hardening rate at a strain amount of 0.05 at room temperature was obtained. By subtracting the lowest TS at a test temperature of 200 to 400 ° C. from the TS at room temperature, the amount of TS decrease during warm working was determined. Further, the amount of YS increase during warm working was determined by subtracting YS at room temperature from the highest YS at a test temperature of 200 to 400 ° C.
Further, the warm tensile test at 300 ° C. was stopped when the strain amount was 0.10, and after cooling to room temperature, the tensile test was performed again to evaluate the mechanical properties. The amount of increase in TS after warm working was determined by subtracting the tensile strength at room temperature from the tensile strength at room temperature after pre-processing with a strain amount of 0.10 at 300 ° C.

これら鋼板に温間プレス成形を施し、プレス成形性およびプレス成形品を用いた耐衝撃特性を評価した。鋼板は220mm×300mmのサイズのブランク板とし、300℃に加熱したのち、長手方向に300mmのハット断面形状の部材を図4に模式的示す方法でプレス成形を施し、割れの発生しない最大の成形高さ(限界成形高さ)を測定し、300℃における限界成形高さの室温における限界成形高さに対する比を求めた。また、同様の試験を成形高さ30mmで試験を停止して、成形品の縦壁部について、平面歪み変形を仮定して板厚減少量から相当ひずみを算出した。   These steel plates were subjected to warm press forming, and the press formability and impact resistance characteristics using the press formed products were evaluated. The steel plate is a blank plate of 220 mm x 300 mm size, heated to 300 ° C, and then subjected to press forming of a 300 mm hat cross-sectional shape in the longitudinal direction by the method schematically shown in Fig. 4 so that cracking does not occur The height (limit molding height) was measured, and the ratio of the limit molding height at 300 ° C. to the limit molding height at room temperature was determined. Further, the same test was stopped at a molding height of 30 mm, and the equivalent strain was calculated from the plate thickness reduction amount assuming a plane strain deformation for the vertical wall portion of the molded product.

また、図5に示すように成形品の口開き量を測定し、300℃における口開き量の室温における口開き量に対する比を求めた。さらに、このハット部材の底部に同一の鋼板を溶接してハット断面形状の角柱状の部品を作製し、この長手軸方向に高さ10mの位置から重量が750kgの重錘を落下衝突させて変位および荷重を測定した。このときの荷重値を変位50mmまで積分して吸収エネルギ−を算出し、300℃で成形したハット部品での吸収エネルギ−の室温で成形したハット部品の吸収エネルギ−に対する比を求めた。   Moreover, as shown in FIG. 5, the opening amount of the molded product was measured, and the ratio of the opening amount at 300 ° C. to the opening amount at room temperature was determined. Furthermore, the same steel plate is welded to the bottom of this hat member to produce a prismatic part with a hat cross-sectional shape, and a weight of 750 kg is dropped and collided from a position of a height of 10 m in the longitudinal direction. And the load was measured. The absorbed energy was calculated by integrating the load value at this time up to a displacement of 50 mm, and the ratio of the absorbed energy of the hat part molded at 300 ° C. to the absorbed energy of the hat part molded at room temperature was obtained.

化成処理性は、これら鋼板にリン酸塩処理を施し、生成した化成皮膜で評価した。リン酸塩処理は鋼板の表面をアルカリ脱脂剤で洗浄したのち水洗し、リン酸塩処理浴に120秒浸漬し、これを水洗、乾燥することで行った。比較のため、標準的な軟鋼板も同様に処理した。処理後の表面を走査型電子顕微鏡(SEM)で5000倍に拡大して化成皮膜を観察した。また、クロム酸を用いて被膜を溶解除去し、その前後の重量差から被膜重量を測定した。化成被膜が鋼板の表面を完全に被覆しているものを合格(○)とし、部分的に下地が露出しているものは不合格(×)と判定した。また、被膜重量が比較の軟鋼板に比較して15%以上小さいものは不合格(×)と判定した。   The chemical conversion treatment property was evaluated by a chemical conversion film produced by subjecting these steel plates to a phosphate treatment. Phosphate treatment was performed by washing the surface of the steel sheet with an alkaline degreasing agent, washing with water, immersing in a phosphate treatment bath for 120 seconds, washing with water and drying. For comparison, a standard mild steel plate was processed in the same manner. The treated surface was magnified 5000 times with a scanning electron microscope (SEM) to observe the chemical conversion film. Further, the coating was dissolved and removed using chromic acid, and the coating weight was measured from the difference in weight before and after. A case where the chemical conversion film completely covered the surface of the steel sheet was determined to be acceptable (◯), and a case where the base was partially exposed was determined to be unacceptable (x). Moreover, the thing whose coating weight is 15% or more small compared with the comparative mild steel plate was determined to be disqualified (x).

スポット溶接性は、同鋼種2枚合わせの溶接継ぎ手を作製し、その継ぎ手強度で評価した。スポット溶接はWES7301に準じて施工し、低炭素鋼の溶接条件例のAクラスに該当する溶接条件にて実施した。このとき、溶接電流値を種々変化させてJIS Z 3140に記載のA級の最小値に相当するナゲット径を形成する条件を標準条件とした。当該条件にて継ぎ手強度試験を、JIS Z 3136に準拠した剪断引張強度およびJIS Z 3137に準拠した十字引張強度の2種類で実施した。このときの十字引張強度を剪断引張強度で除した値が0.5以上のものを合格(○)、0.5未満のものを不合格(×)と判定した。   Spot weldability was evaluated by making a welded joint of two steel grades and the joint strength. Spot welding was performed according to WES7301 and was performed under the welding conditions corresponding to Class A in the welding conditions of low carbon steel. At this time, the condition for forming the nugget diameter corresponding to the minimum value of class A described in JIS Z 3140 by changing the welding current value in various ways was used as the standard condition. Under these conditions, the joint strength test was conducted with two types of shear tensile strength according to JIS Z 3136 and cross tensile strength according to JIS Z 3137. When the value obtained by dividing the cross tensile strength by the shear tensile strength at this time was 0.5 or more, it was judged as acceptable (◯), and the value less than 0.5 was judged as unacceptable (x).

低温靭性は、シャルピ−試験機を用いた低温衝撃試験により評価した。試験片形状がVノッチのシャルピ−試験をJIS Z 2242に準じて種々の温度で実施し、破面観察から延性破面率を測定した。このときに、延性破面率が50%となる温度である破面遷移温度を求めた。破面遷移温度が−40℃以下のものを合格(○)、−40℃超のものを不合格(×)と判定した。
得られた結果を表3に示す。
The low temperature toughness was evaluated by a low temperature impact test using a Charpy tester. A Charpy test with a V-notch specimen shape was carried out at various temperatures according to JIS Z 2242, and the ductile fracture surface ratio was measured from the fracture surface observation. At this time, the fracture surface transition temperature, which is the temperature at which the ductile fracture surface ratio becomes 50%, was determined. Those having a fracture surface transition temperature of −40 ° C. or lower were determined to be acceptable (◯), and those exceeding −40 ° C. were determined to be unacceptable (x).
The obtained results are shown in Table 3.

Figure 2017039973
Figure 2017039973

同表に示したとおり、本発明例による鋼板は、300℃で成形した場合には室温で成形した場合に比較して、限界成形高さが20%以上の向上を示しながら、これによる口開き量の増加は5%以内と寸法精度の低下は認められず、温間成形の適用で著しくプレス成形性が向上している。また、重錘落下試験での吸収エネルギーも300℃での成形部品では室温での成形部品に比較して15%以上の上昇を示し、耐衝撃特性にも優れていることがわかる。さらに、化成処理性、スポット溶接性、低温靭性といった実用特性も良好である。
As shown in the table, the steel plate according to the example of the present invention, when formed at 300 ° C., shows an improvement in the limit forming height of 20% or more compared to the case of forming at room temperature. The increase in the amount is within 5% and no decrease in dimensional accuracy is observed, and the press formability is remarkably improved by applying warm forming. In addition, the absorbed energy in the weight drop test also shows that the molded part at 300 ° C shows an increase of more than 15% compared to the molded part at room temperature, indicating that it has excellent impact resistance. Furthermore, practical properties such as chemical conversion treatment, spot weldability, and low temperature toughness are also good.

Claims (10)

質量%で、C:0.04〜0.1%、Si:0.5〜1.2%、Mn:2.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%およびNb:0.01〜0.1%を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、組織は、面積率で、ポリゴナルフェライトを20%以上、ベイナイトを10%以上、残留オーステナイトを3%以上含有し、かつ残留オーステナイトの平均結晶粒径が5μm以下であり、さらに300℃において歪み量0.10の成形後の残留オ−ステナイト中のC濃度(Cγ300)が0.2%以上であることを特徴とする成形性および強度上昇能に優れたに優れた温間成形用薄鋼板。 In mass%, C: 0.04-0.1%, Si: 0.5-1.2%, Mn: 2.5-3.5%, P: 0.001-0.05%, S: 0.0001-0.01%, Al: 0.001-0.1%, N: 0.0005- Contains 0.01% and Nb: 0.01-0.1%, the balance has a component composition consisting of Fe and inevitable impurities, the structure is area ratio, polygonal ferrite 20% or more, bainite 10% or more The austenite content is 3% or more, the average crystal grain size of the retained austenite is 5 μm or less, and the C concentration (Cγ 300 ) in the retained austenite after molding with a strain amount of 0.10 at 300 ° C. is 0.2% or more. A thin steel sheet for warm forming which is excellent in formability and strength increasing ability, characterized by being. ポリゴナルフェライトとベイナイトの平均結晶粒径が、それぞれ10μm以下であることを特徴とする請求項1に記載の温間成形用薄鋼板。   The thin steel sheet for warm forming according to claim 1, wherein the average crystal grain sizes of polygonal ferrite and bainite are each 10 μm or less. マルテンサイトを面積率で20%以上含有することを特徴とする請求項1または2に記載の温間成形用薄鋼板。   The thin steel sheet for warm forming according to claim 1 or 2, wherein martensite is contained in an area ratio of 20% or more. 室温における歪み量0.10での残留オーステナイトの体積率(Vγ0)と300℃における歪み量0.10での残留オーステナイトの体積率(Vγ300)とが下記式(1)を満足することを特徴とする請求項1〜3のいずれかに記載の温間成形用薄鋼板。

Vγ300 / Vγ0 ≧ 2.0 --- (1)
The volume fraction of residual austenite (Vγ 0 ) at a strain amount of 0.10 at room temperature and the volume fraction of residual austenite (Vγ 300 ) at a strain amount of 0.10 at 300 ° C. satisfy the following formula (1): Item 4. The thin steel sheet for warm forming according to any one of Items 1 to 3.
Record
300 / Vγ 0 ≧ 2.0 --- (1)
室温における歪み量0.05での加工硬化率(WHR0)と300℃における歪み量0.05での加工硬化率(WHR300)とが下記式(2)を満足し、かつ、室温での引張強度(TS0)と300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS300)とが下記式(3)を満足することを特徴とする請求項1〜4のいずれかに記載の温間成形用薄鋼板。

WHR300 / WHR0≧ 1.2 --- (2)
TS300 − TS0 ≧ 150 MPa --- (3)
The work hardening rate (WHR 0 ) at a strain amount of 0.05 at room temperature and the work hardening rate (WHR 300 ) at a strain amount of 0.05 at 300 ° C. satisfy the following formula (2), and the tensile strength (TS at room temperature) 0 ) and the tensile strength (TS 300 ) at room temperature after pre-processing with a strain amount of 0.10 at 300 ° C. satisfies the following formula (3): The thin steel sheet for warm forming described.
Record
WHR 300 / WHR 0 ≧ 1.2 --- (2)
TS 300 − TS 0 ≧ 150 MPa --- (3)
室温での引張強度に対する200〜400℃の温度域での引張強度の低下量が150MPa以下であり、室温での降伏強度に対する200〜400℃の温度域での降伏強度の上昇量が50MPa以下であることを特徴とする請求項1〜5のいずれかに記載の温間成形用薄鋼板。   The decrease in tensile strength in the temperature range of 200 to 400 ° C with respect to the tensile strength at room temperature is 150 MPa or less, and the increase in yield strength in the temperature range of 200 to 400 ° C with respect to the yield strength at room temperature is 50 MPa or less. The thin steel sheet for warm forming according to any one of claims 1 to 5, wherein the thin steel sheet is for warm forming. 成分組成として、質量%でさらに、Ti:0.005〜0.1%およびV:0.005〜0.1%から選ばれる少なくとも1種の元素を含有することを特徴とする請求項1〜6のいずれかに記載の温間成形用薄鋼板。   The temperature according to any one of claims 1 to 6, further comprising at least one element selected from Ti: 0.005-0.1% and V: 0.005-0.1% in terms of mass% as a component composition. Thin steel sheet for inter-forming. 成分組成として、質量%でさらに、B:0.0003〜0.0050%を含有することを特徴とする請求項1〜7のいずれかに記載の温間成形用薄鋼板。   The thin steel sheet for warm forming according to any one of claims 1 to 7, further comprising B: 0.0003 to 0.0050% by mass% as a component composition. 成分組成として、質量%でさらに、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%およびCu:0.01〜1.0%から選ばれる少なくとも1種の元素を含有することを特徴とする請求項1〜8のいずれかに記載の温間成形用薄鋼板。   The composition further comprises at least one element selected from Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 1.0% and Cu: 0.01 to 1.0% in terms of mass%. The thin steel sheet for warm forming according to any one of claims 1 to 8. 請求項1〜9のいずれかに記載の温間成形用薄鋼板を、鋼板温度が200〜400℃で、相当塑性歪み量0.02以上の加工を加えることを特徴とする成形性および強度上昇能に優れた温間成形方法。   The formability and strength increasing ability of the thin steel sheet for warm forming according to any one of claims 1 to 9, characterized in that the steel sheet temperature is 200 to 400 ° C, and processing with an equivalent plastic strain of 0.02 or more is applied. Excellent warm forming method.
JP2015162060A 2015-08-19 2015-08-19 Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method Active JP6330759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162060A JP6330759B2 (en) 2015-08-19 2015-08-19 Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162060A JP6330759B2 (en) 2015-08-19 2015-08-19 Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method

Publications (2)

Publication Number Publication Date
JP2017039973A true JP2017039973A (en) 2017-02-23
JP6330759B2 JP6330759B2 (en) 2018-05-30

Family

ID=58206448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162060A Active JP6330759B2 (en) 2015-08-19 2015-08-19 Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method

Country Status (1)

Country Link
JP (1) JP6330759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079433A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Production method of steel sheet
WO2020110795A1 (en) * 2018-11-29 2020-06-04 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP2011153336A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp High strength cold rolled steel sheet having excellent formability, and method for producing the same
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
JP2012092358A (en) * 2010-10-22 2012-05-17 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength enhancing ability, and method for warm forming using the same
JP2012107319A (en) * 2010-10-22 2012-06-07 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength increase performance, and method for warm forming using the same
JP2013032582A (en) * 2011-07-06 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method for producing cold rolled steel sheet
JP2014122426A (en) * 2013-12-27 2014-07-03 Nippon Steel & Sumitomo Metal Hot-dip plated cold rolled steel sheet and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP2011153336A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp High strength cold rolled steel sheet having excellent formability, and method for producing the same
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
JP2012092358A (en) * 2010-10-22 2012-05-17 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength enhancing ability, and method for warm forming using the same
JP2012107319A (en) * 2010-10-22 2012-06-07 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength increase performance, and method for warm forming using the same
JP2013032582A (en) * 2011-07-06 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method for producing cold rolled steel sheet
JP2014122426A (en) * 2013-12-27 2014-07-03 Nippon Steel & Sumitomo Metal Hot-dip plated cold rolled steel sheet and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079433A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Production method of steel sheet
JP7167648B2 (en) 2018-11-13 2022-11-09 トヨタ自動車株式会社 Steel plate manufacturing method
WO2020110795A1 (en) * 2018-11-29 2020-06-04 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP6780804B1 (en) * 2018-11-29 2020-11-04 Jfeスチール株式会社 High-strength steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP6330759B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
KR101813974B1 (en) High-strength galvanized steel sheet and method for manufacturing the same
KR101660216B1 (en) High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
TWI412605B (en) High strength steel sheet and method for manufacturing the same
JP6540162B2 (en) High strength cold rolled steel sheet excellent in ductility and stretch flangeability, high strength alloyed galvanized steel sheet, and method for producing them
WO2004104256A1 (en) A cold-rolled steel sheet having a tensile strength of 780 mpa or more an excellent local formability and a suppressed increase in weld hardness
JP6421903B1 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
US20130048155A1 (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP6540245B2 (en) High strength steel plate excellent in shape freezing property and method for manufacturing the same
JPWO2018138898A1 (en) steel sheet
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP5895437B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP6473022B2 (en) High-strength steel sheet with excellent formability
JP5672946B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same
JP6330759B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method
JP6330758B2 (en) Thin steel sheet for warm forming excellent in formability and its warm forming method
JP2013216936A (en) Hot-dip galvannealed hot-rolled steel sheet and production method thereof
JP2016180138A (en) High-strength steel sheet with excellent fabricability
CN114585758B (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
JP2001207236A (en) High tensile strength hot dip galvanized steel plate and producing method therefor
JP5825204B2 (en) Cold rolled steel sheet
JP4936300B2 (en) High-strength hot-dip galvanized steel sheet excellent in press workability and manufacturing method thereof
JP2005272954A (en) Method for producing high tensile strength steel sheet having excellent ductility and stretch flange formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250