JP2017039148A - Quality control method of strand in continuous casting facility and continuous casting facility - Google Patents

Quality control method of strand in continuous casting facility and continuous casting facility Download PDF

Info

Publication number
JP2017039148A
JP2017039148A JP2015162595A JP2015162595A JP2017039148A JP 2017039148 A JP2017039148 A JP 2017039148A JP 2015162595 A JP2015162595 A JP 2015162595A JP 2015162595 A JP2015162595 A JP 2015162595A JP 2017039148 A JP2017039148 A JP 2017039148A
Authority
JP
Japan
Prior art keywords
power generation
slab
thermoelectric
thermoelectric power
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015162595A
Other languages
Japanese (ja)
Other versions
JP6354703B2 (en
Inventor
堤 康一
Koichi Tsutsumi
康一 堤
高志 黒木
Takashi Kuroki
高志 黒木
鷲見 郁宏
Ikuhiro Sumi
郁宏 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015162595A priority Critical patent/JP6354703B2/en
Publication of JP2017039148A publication Critical patent/JP2017039148A/en
Application granted granted Critical
Publication of JP6354703B2 publication Critical patent/JP6354703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect quality abnormality of a strand surface site as soon as possible in a continuous casting facility having a thermoelectric generation device in atmosphere that steam exists.SOLUTION: In a continuous casting facility having a thermoelectric generation device 3 converting thermal energy of strand consecutively into electric energy, the thermoelectric generation device 3 is consisted so that several thermoelectric generation units 21(21a-21e) confront to a heat source strand 11, calculates a difference of the electric power generation of the neighboring thermoelectric generation units 21a-21e arranged to a width direction of the strand 11 and determines the quality of the strand 11 based on the difference of the electric power generation.SELECTED DRAWING: Figure 6

Description

本発明は、連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置を有する連続鋳造設備における鋳片の品質管理方法、およびそのような方法を実施する連続鋳造設備に関する。   The present invention relates to a slab quality control method in a continuous casting facility having a thermoelectric generator that converts thermal energy of continuously cast slab into electrical energy, and a continuous casting facility that implements such a method.

製鉄所の中では、省エネルギーが積極的に進められており、新たな要素技術が実用プロセスへと適用されている。その中で、製鉄所の製鋼工程における連続鋳造プロセスにおいては、溶融した約1550℃の鋼を冷却して鋳片を製造する。連続鋳造された鋳片はトーチカッターで所定の長さに切断するが、切断までの間に、鋳片のエッジ部の表面温度は約600℃まで冷却されており、鋳片の表面温度が鋳込み開始からトーチカッターで切断するまで最大約1000℃も降下するため、省エネルギーの観点から鋳片の顕熱を有効活用することが求められている。このような鋳片の顕熱を有効利用する技術として、近年、異種の導体または半導体に温度差を与えることにより、高温部と低温部との間に起電力が生じるゼーベック効果として知られる物理現象により熱を直接電力に変換する手法を用いたものが提案されている(特許文献1、2)。   In steelworks, energy conservation is actively promoted, and new elemental technologies are applied to practical processes. Among them, in the continuous casting process in the steelmaking process of an ironworks, molten steel at about 1550 ° C. is cooled to produce a slab. The continuously cast slab is cut to a predetermined length with a torch cutter, but the surface temperature of the edge of the slab is cooled to about 600 ° C until the cutting, and the surface temperature of the slab is cast. Since a maximum of about 1000 ° C. is lowered from the start to cutting with a torch cutter, it is required to effectively utilize the sensible heat of the slab from the viewpoint of energy saving. As a technology that effectively utilizes the sensible heat of such a slab, in recent years, a physical phenomenon known as the Seebeck effect in which an electromotive force is generated between a high temperature part and a low temperature part by giving a temperature difference to different conductors or semiconductors. A method using a method of directly converting heat into electric power is proposed (Patent Documents 1 and 2).

一方、連鋳鋳片は鋳型による一次冷却の後に、二次冷却と呼ばれるスプレーノズルによる水の直接冷却が行われている。この二次冷却の際に、二次冷却ノズルチップの先端がゴミなどで詰まって鋳片の冷却が不十分になったり、または大量の水で鋳片を冷却した時に過冷却が発生して鋳片表面に横割れが生じたりするといった品質上の問題が発生することがある。このため、鋳造後の鋳片は直接加熱炉に装入することができず、加熱炉の原単位を悪化させているのが現状である。   On the other hand, the continuous cast slab is directly cooled by a spray nozzle called secondary cooling after primary cooling by a mold. During this secondary cooling, the tip of the secondary cooling nozzle tip is clogged with dust, resulting in insufficient cooling of the slab, or when the slab is cooled with a large amount of water, overcooling occurs and casting occurs. Quality problems such as lateral cracks occurring on one surface may occur. For this reason, the slab after casting cannot be directly charged into the heating furnace, and the basic unit of the heating furnace is deteriorated at present.

連続鋳造のように鋼の大量生産に関わる設備においては、少しでも生産性を向上させる必要があり、上述のような加熱炉の原単位悪化を抑制するため、連鋳鋳片の製造時に監視を継続し、いち早く表面割れのような鋳片の表面欠陥を発見することが望まれている。   In equipment related to mass production of steel such as continuous casting, it is necessary to improve productivity even a little, and in order to suppress the deterioration of the basic unit of the heating furnace as described above, monitoring is performed during the production of continuous cast slabs. It is desired to continue and find surface defects of slabs such as surface cracks as soon as possible.

このような技術として、特許文献3には、二次元放射温度計によりスラブ表面の温度を測定し、そのデータを取り込み、温度差から鋳片の品質判定を実施する手法が提案されている。   As such a technique, Patent Document 3 proposes a method of measuring the temperature of the slab surface with a two-dimensional radiation thermometer, taking in the data, and determining the quality of the slab from the temperature difference.

このような放射温度計を用いてスラブ表面温度を監視する手法は、確かに有効であるが、通常の放射温度計は、一般には、波長が約10μmと長いことから、上述した二次冷却で蒸発した水蒸気が発生し、正しい表面温度が測定できないという問題がある。   Although the method of monitoring the slab surface temperature using such a radiation thermometer is certainly effective, since a normal radiation thermometer generally has a long wavelength of about 10 μm, the above-described secondary cooling is used. There is a problem that evaporated water vapor is generated and the correct surface temperature cannot be measured.

これに対し、特許文献4には、特許文献3の問題であった鋳片表面と放射温度計の間に存在する水蒸気を10NL/分以上の流量の気体(例えばエアー)で除去して測定する技術が提案されている。   On the other hand, in Patent Document 4, the water vapor existing between the slab surface and the radiation thermometer, which was the problem of Patent Document 3, is measured by removing gas (for example, air) having a flow rate of 10 NL / min or more. Technology has been proposed.

しかし、この技術では、放射温度計の他に水蒸気を除去する気体を噴射する配管が必要になり、設備として大きくなることなどの問題があり、さらに長期的にはメンテナンスが必要になるなどの問題がある。   However, with this technology, in addition to the radiation thermometer, a pipe for injecting a gas that removes water vapor is required, and there are problems such as an increase in equipment size, and problems such as the need for maintenance in the long term. There is.

また、上記特許文献1、2の技術は、熱電発電装置によって熱回収を行うことのみが記載されており、熱電発電装置を用いた連続鋳造設備において早期に連鋳鋳片の表面欠陥を発見する試みはなされていない。   Further, the techniques of Patent Documents 1 and 2 only describe that heat recovery is performed by a thermoelectric power generation device, and surface defects of continuous cast slabs are discovered early in a continuous casting facility using the thermoelectric power generation device. No attempt has been made.

特開昭59−198883号公報JP 59-198883 A 特開2014−166041号公報JP 2014-166041 A 特開2012−110917号公報JP 2012-110917 A 特開2012−71330号公報JP 2012-71330 A

本発明は、熱電発電装置を有する連続鋳造設備において、水蒸気が存在する雰囲気でも、鋳片表面部位の品質異常を可及的速やかに検出することができる鋳片の品質管理方法、およびそのような方法を実施可能な連続鋳造設備を提供することを課題とする。   The present invention relates to a slab quality control method capable of detecting as soon as possible a quality abnormality of a slab surface part even in an atmosphere where water vapor exists in a continuous casting facility having a thermoelectric generator, and such It is an object to provide a continuous casting facility capable of performing the method.

本発明者らは、熱電発電装置を有する連続鋳造設備において、連鋳鋳片上に滞留する水蒸気を除去せずに、鋳片表面部位の異常を検出する手法を検討した。その結果、複数の熱電発電ユニットを有する熱電発電装置において、鋳片の幅方向に配列されている熱電発電ユニットの発電量の差から鋳片幅方向の表面温度差を推定することができ、それにより鋳片の品質判定を行うことができるという知見を得た。   The inventors of the present invention have studied a method for detecting an abnormality of a slab surface portion without removing water vapor remaining on a continuous cast slab in a continuous casting facility having a thermoelectric generator. As a result, in the thermoelectric power generation apparatus having a plurality of thermoelectric power generation units, the surface temperature difference in the slab width direction can be estimated from the difference in the amount of power generated by the thermoelectric power generation units arranged in the width direction of the slab, The knowledge that the quality judgment of slab can be performed was obtained.

本発明は、このような知見に基づくものであり、以下の(1)〜(6)を提供する。   The present invention is based on such knowledge and provides the following (1) to (6).

(1)連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置を有する連続鋳造設備における鋳片の品質管理方法であって、
前記熱電発電装置は、複数の熱電素子を有する熱電発電モジュールを受熱手段と放熱手段との間に設けてなる熱電発電ユニットを熱源となる鋳片に対峙するように複数配列して構成され、
鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする連続鋳造設備における鋳片の品質管理方法。
(1) A quality control method for a slab in a continuous casting facility having a thermoelectric power generation device that converts thermal energy of continuously cast slab into electrical energy,
The thermoelectric power generation device is configured by arranging a plurality of thermoelectric power generation units provided with a thermoelectric power generation module having a plurality of thermoelectric elements between a heat receiving means and a heat dissipation means so as to face a slab as a heat source,
Continuous casting equipment characterized in that a difference in power generation amount between adjacent thermoelectric power generation units among thermoelectric power generation units arranged in the width direction of the slab is obtained, and quality determination of the slab is performed based on the difference in power generation amount Quality control method for slabs in Japan.

(2)前記熱電発電装置は、鋳片の幅方向に5個以上の熱電発電ユニットが配列され、これら幅方向に配列された熱電発電ユニットの端部の2個を除いた熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする(1)に記載の連続鋳造設備における鋳片の品質管理方法。   (2) The thermoelectric power generation apparatus includes five or more thermoelectric power generation units arranged in the width direction of the slab, and excluding two of the end portions of the thermoelectric power generation units arranged in the width direction. The quality control method for a slab in a continuous casting facility according to (1), wherein a difference in power generation between adjacent thermoelectric power generation units is obtained and the quality of the slab is determined based on the difference in power generation.

(3)鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留し、その鋳片を検査して、検出された欠陥のレベルに応じた手入れを行うことを特徴とする(1)または(2)に記載の連続鋳造設備における鋳片の品質管理方法。   (3) When the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab is 20% or more, the slab is withheld and the slab is inspected. The quality control method for a slab in a continuous casting facility according to (1) or (2), wherein the maintenance is performed according to the level of the detected defect.

(4)鋼を連続鋳造する連続鋳造設備本体と、
連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置と、
鋳片の品質判定を行う品質判定部と
を有し、
前記熱電発電装置は、複数の熱電素子を有する熱電発電モジュールを受熱手段と放熱手段との間に設けてなる熱電発電ユニットを熱源となる鋳片に対峙するように複数配列して構成され、
前記品質判定部は、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする連続鋳造設備。
(4) a continuous casting equipment body for continuously casting steel;
A thermoelectric generator that converts the thermal energy of the continuously cast slab into electrical energy;
A quality judgment unit for judging the quality of the slab,
The thermoelectric power generation device is configured by arranging a plurality of thermoelectric power generation units provided with a thermoelectric power generation module having a plurality of thermoelectric elements between a heat receiving means and a heat dissipation means so as to face a slab as a heat source,
The quality determination unit obtains a difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab, and performs quality determination of the slab based on the difference in power generation amount. Characteristic continuous casting equipment.

(5)前記熱電発電装置は、鋳片の幅方向に5個以上の熱電発電ユニットが配列され、
前記品質判定部は、これら幅方向に配列された熱電発電ユニットの端部の2個を除いた熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする(4)に記載の連続鋳造設備。
(5) In the thermoelectric generator, five or more thermoelectric generator units are arranged in the width direction of the slab,
The quality determination unit obtains a difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units excluding two of the end portions of the thermoelectric power generation units arranged in the width direction, and based on the difference in power generation amount The continuous casting equipment according to (4), wherein the quality of the slab is determined.

(6)前記品質判定部は、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留する指令を発し、保留された鋳片の検査が行われ、検出された欠陥のレベルに応じた手入れが行われることを特徴とする(4)または(5)に記載の連続鋳造設備。   (6) The quality judgment unit issues a command to hold the slab when the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab is 20% or more. The continuous casting equipment as set forth in (4) or (5), wherein the cast slab that has been released and held is inspected, and maintenance is performed according to the detected defect level.

本発明によれば、連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置を有する連続鋳造設備において、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて連鋳鋳片の品質判定を行うことにより、水蒸気が存在する雰囲気でも、鋳片幅方向の表面温度差を推定することができ、鋳片表面部位の異常を可及的速やかに検出することができる。その結果、鋳片の顕熱回収を行いながら、表面品質の優れた鋳片を安定して製造することができ、歩留まりの向上、製造コストの低減などの大きな効果を得ることができる。   According to the present invention, in a continuous casting facility having a thermoelectric power generation device that converts thermal energy of continuously cast slab into electrical energy, adjacent thermoelectric power generation units among thermoelectric power generation units arranged in the width direction of the slab. By determining the difference in power generation amount, and determining the quality of the continuous cast slab based on the difference in power generation amount, the surface temperature difference in the slab width direction can be estimated even in an atmosphere where water vapor exists. Abnormalities in the slab surface can be detected as quickly as possible. As a result, it is possible to stably produce a slab having excellent surface quality while performing sensible heat recovery of the slab, and to obtain great effects such as improvement in yield and reduction in production cost.

本発明に係る鋳片の管理方法が適用される連続鋳造設備の概略構成を示す図である。It is a figure which shows schematic structure of the continuous casting installation with which the management method of the slab which concerns on this invention is applied. 熱電発電装置を鋳片搬送方向に沿って示す模式図である。It is a schematic diagram which shows a thermoelectric power generator along a slab conveyance direction. 熱電発電装置3を鋳片幅方向に沿って示す模式図である。It is a schematic diagram which shows the thermoelectric generator 3 along a slab width direction. 熱電発電ユニットの構造を示す断面図である。It is sectional drawing which shows the structure of a thermoelectric power generation unit. 熱電発電ユニットにおける熱電発電モジュールの配置例およびサイズを示す図である。It is a figure which shows the example of arrangement | positioning and size of the thermoelectric power generation module in a thermoelectric power generation unit. 熱電発電装置を構成する熱電発電ユニットにより鋳片の品質判定を行うための装置構成を示す図である。It is a figure which shows the apparatus structure for performing the quality determination of slab by the thermoelectric power generation unit which comprises a thermoelectric power generation apparatus. 、隣り合う熱電発電ユニットの発電量の差の比率と鋳片割れ個数との関係を示す図である。It is a figure which shows the relationship between the ratio of the difference in the electric power generation amount of an adjacent thermoelectric power generation unit, and slab cracking number. 実施例における熱電発電ユニットの配置および熱電発電ユニットと鋳片のサイズを示す図である。It is a figure which shows arrangement | positioning of the thermoelectric power generation unit in an Example, and the size of a thermoelectric power generation unit and a slab. 実施例における熱電発電ユニットの配置および熱電発電ユニットと鋳片のサイズを示す図である。It is a figure which shows arrangement | positioning of the thermoelectric power generation unit in an Example, and the size of a thermoelectric power generation unit and a slab.

以下、添付図面を参照して本発明の実施の形態について説明する。
図1は、本発明に係る鋳片の管理方法が適用される連続鋳造設備の概略構成を示す図である。
図1に示すように、連続鋳造設備1は、連続鋳造設備本体2と、熱電発電装置3とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of a continuous casting facility to which a slab management method according to the present invention is applied.
As shown in FIG. 1, the continuous casting equipment 1 has a continuous casting equipment body 2 and a thermoelectric generator 3.

連続鋳造設備本体2は、取鍋12からの溶鋼Lを一旦貯留する中間容器であるタンディッシュ13と、溶鋼を冷却し凝固させる鋳型14と、鋳型14から下方に引き抜かれた鋳片11を冷却させる冷却装置15と、矯正ロール等からなるローラー群16と、凝固した鋳片11を切断する切断装置(トーチカッター)17とを有する。19は鋳片11を搬送するための搬送ローラーである。なお、図示はしていないが、鋳片の温度を測定する温度計および鋳片を引き抜くためのダミーバーに関連した設備(ダミーバーテーブル等)が設けられている。   The continuous casting equipment body 2 cools the tundish 13 which is an intermediate container for temporarily storing the molten steel L from the ladle 12, the mold 14 for cooling and solidifying the molten steel, and the cast piece 11 drawn downward from the mold 14. And a roller group 16 made of straightening rolls and a cutting device (torch cutter) 17 for cutting the solidified slab 11. Reference numeral 19 denotes a transport roller for transporting the slab 11. Although not shown, a thermometer for measuring the temperature of the slab and equipment (dummy bar table or the like) related to a dummy bar for extracting the slab are provided.

このように構成される連続鋳造設備1では、一般には、精錬段階で所定の成分に調整された鋼が取鍋12によって運搬され、レードルタレットもしくはスウイングタワーと呼ばれる設備(図示せず)にクレーンにて静置される。その後、取鍋12内の溶鋼は、タンディッシュ13を介して、鋳型14に注入される。注入された溶鋼は、鋳型14にて冷却(一次冷却)され、凝固して鋳片11となり、冷却装置15にて冷却(二次冷却)されながら、矯正ロール等ローラー群16によって引き抜かれる。その後、鋳片は切断装置(トーチカッター)17により所定の鋳込み長さで溶断される。そして、この過程で鋳片11の顕熱が熱電発電装置3により電力に変換される。   In the continuous casting equipment 1 configured as described above, generally, steel adjusted to a predetermined component in the refining stage is transported by the ladle 12 and is transferred to a crane (not shown) called a ladle turret or a swing tower. And left to stand. Thereafter, the molten steel in the ladle 12 is poured into the mold 14 through the tundish 13. The injected molten steel is cooled (primary cooling) by the mold 14, solidified to become a slab 11, and is drawn by the roller group 16 such as a correction roll while being cooled (secondary cooling) by the cooling device 15. Thereafter, the slab is melted by a cutting device (torch cutter) 17 to a predetermined casting length. In this process, the sensible heat of the slab 11 is converted into electric power by the thermoelectric generator 3.

熱電発電装置3は、本例では、切断装置17の上流側に設けられているが、ローラー群16の出側から切断装置17の下流側にかけて二点鎖線で示す領域A内の任意の位置に配置することができる。なお、熱電発電装置3の配置位置は、設備が配置できれば領域Aに限らず、ローラー群16に対応する二点鎖線で示す領域Bでもよく、設備が入れば冷却装置15のセグメント内等、鋳型14よりも下流であれば特に限定されない。   In this example, the thermoelectric generator 3 is provided on the upstream side of the cutting device 17, but at an arbitrary position in the region A indicated by a two-dot chain line from the exit side of the roller group 16 to the downstream side of the cutting device 17. Can be arranged. The arrangement position of the thermoelectric generator 3 is not limited to the area A as long as the equipment can be arranged, but may be the area B indicated by a two-dot chain line corresponding to the roller group 16. If it is downstream from 14, it will not specifically limit.

次に熱電発電装置3について説明する。
図2は熱電発電装置を鋳片搬送方向に沿って示す模式図、図3は熱電発電装置3を鋳片幅方向に沿って示す模式図である。熱電発電装置3は、複数の熱電発電ユニット21と、熱電発電ユニット21を主に高さ方向に移動させる移動機構22とを有している。複数の熱電発電ユニット21は、搬送ローラー19上に搬送される熱源である鋳片11の上方に対峙して配置されている。熱電発電ユニット21は、鋳片搬送方向に複数、幅方向に複数、マトリックス状に配置されている。移動機構22により、熱電発電ユニット21と鋳片11との距離を調整することができる。移動機構22としては、パワーシリンダを好適に用いることができる。熱電発電ユニット21間の隙間は極力小さいことが好ましく、熱膨張分を考慮した程度の隙間であることが好ましい。
Next, the thermoelectric generator 3 will be described.
FIG. 2 is a schematic diagram showing the thermoelectric generator along the slab conveying direction, and FIG. 3 is a schematic diagram showing the thermoelectric generator 3 along the slab width direction. The thermoelectric generator 3 includes a plurality of thermoelectric power generation units 21 and a moving mechanism 22 that moves the thermoelectric power generation units 21 mainly in the height direction. The plurality of thermoelectric power generation units 21 are arranged facing the upper side of the slab 11 which is a heat source conveyed on the conveyance roller 19. A plurality of thermoelectric power generation units 21 are arranged in a matrix in the slab conveying direction and in the width direction. The distance between the thermoelectric generator unit 21 and the cast slab 11 can be adjusted by the moving mechanism 22. A power cylinder can be suitably used as the moving mechanism 22. The gap between the thermoelectric generator units 21 is preferably as small as possible, and is preferably a gap that takes into account the thermal expansion.

図4は熱電発電ユニットの構造を示す断面図である。熱電発電ユニット21は、熱電素子31としてP型およびN型の半導体が数十〜数千百対の電極32で接続されて二次元に配置された熱電素子群と、その両側に配置された絶縁材33とからなる熱電発電モジュール34が、受熱部35および放熱部36の間に介在された状態で構成されている。熱電発電モジュール34の両側または片側に熱伝導シートや保護板を設けてもよい。   FIG. 4 is a cross-sectional view showing the structure of the thermoelectric power generation unit. The thermoelectric power generation unit 21 includes a thermoelectric element group in which P-type and N-type semiconductors are connected to each other by several tens to several hundreds of pairs of electrodes 32 as a thermoelectric element 31, and insulation disposed on both sides thereof. A thermoelectric power generation module 34 composed of the material 33 is configured to be interposed between the heat receiving portion 35 and the heat radiating portion 36. A heat conductive sheet or a protective plate may be provided on both sides or one side of the thermoelectric power generation module 34.

受熱部35は、熱源である鋳片11から熱を受ける受熱手段を構成するものであり、典型的には受熱板として構成されている。受熱部35は、熱電発電装置3の配置位置に応じて数度から数百度程度の温度となる。受熱部35を構成する材料としては、受熱部35が到達する温度で耐熱性や耐久性を持つものであればよい。例えば、銅や銅合金、アルミニウム、アルミニウム合金、セラミックス、カーボン、一般の鉄鋼材料を用いることができる。   The heat receiving portion 35 constitutes a heat receiving means that receives heat from the slab 11 that is a heat source, and is typically configured as a heat receiving plate. The heat receiving unit 35 has a temperature of several degrees to several hundred degrees depending on the arrangement position of the thermoelectric generator 3. The material constituting the heat receiving portion 35 may be any material having heat resistance and durability at the temperature reached by the heat receiving portion 35. For example, copper, copper alloys, aluminum, aluminum alloys, ceramics, carbon, and general steel materials can be used.

放熱部36は、熱源に対する温度差を設けるためのものであり。従来公知のものでよく、特別の制限はないが、フィンを具備した冷却デバイスや、接触熱伝達を活用した水冷デバイス、沸騰熱伝達を活用したヒートシンク、冷媒流路を有した水冷板等が好ましい形態として例示される。   The heat dissipation part 36 is for providing a temperature difference with respect to the heat source. Although it may be a conventionally known one, there is no particular restriction, but a cooling device equipped with fins, a water cooling device utilizing contact heat transfer, a heat sink utilizing boiling heat transfer, a water cooling plate having a refrigerant flow path, etc. are preferable. Illustrated as a form.

なお、熱電発電ユニットの低温側をスプレー冷却などで水冷しても、低温側は効率よく冷却されるため、冷却デバイスや水冷板等からなる放熱部36の代わりにスプレー冷媒を放熱手段として用いてもよい。特に、熱電発電ユニットを熱源より下方に設置する場合には、スプレー冷却を適用しても、スプレーを適切に配置すれば、残水はテーブル下に落下して、熱電発電ユニットの高温側を冷却することなく、熱電発電ユニットの低温側は効率よく冷却される。   Even if the low-temperature side of the thermoelectric generator unit is water-cooled by spray cooling or the like, the low-temperature side is efficiently cooled. Therefore, spray refrigerant is used as the heat radiation means instead of the heat radiation part 36 composed of a cooling device or a water-cooled plate. Also good. In particular, when the thermoelectric generator unit is installed below the heat source, even if spray cooling is applied, if the spray is properly placed, the remaining water will fall under the table and cool the high temperature side of the thermoelectric generator unit. Without this, the low temperature side of the thermoelectric generator unit is efficiently cooled.

また、上述したような熱電発電モジュール34の両側または片側に設けられた保護板が受熱手段や放熱手段を兼ねてもよい。また、受熱部35を構成する受熱板および/または放熱部36を構成する冷却板が絶縁材であったり、表面に絶縁材が被覆されたりしている場合は、これらを絶縁材33の代替として用いてもよい。   Further, the protection plates provided on both sides or one side of the thermoelectric power generation module 34 as described above may also serve as heat receiving means and heat radiating means. Further, when the heat receiving plate constituting the heat receiving portion 35 and / or the cooling plate constituting the heat radiating portion 36 is an insulating material or the surface is covered with an insulating material, these are substituted for the insulating material 33. It may be used.

熱電発電ユニット21は、複数の熱電発電モジュール34により構成されている。各熱電発電モジュール34間は直列に接続されて一つの熱電発電ユニットを構成し、電力を取り出すようになっている。熱電発電モジュール34は、例えば図5に示すように、横方向に4個、縦方向に4個マトリックス状に配置されている。図5の例では、熱電発電モジュール34は50mm角であり、熱電発電モジュール34どうしの間隔は10mmで、熱電発電ユニット21の外形は250mm角である。ただし、熱電発電モジュール34は50mmに限定する必要はなく、50mm以上の大きなものや、50mm以下の小さなものにしてもよく、設置する場所の環境に応じて適宜の大きさにすればよい。また、熱電発電モジュール34は、直列に繋がずに、並列に繋いで、外部に電力を供給してもよい。   The thermoelectric power generation unit 21 includes a plurality of thermoelectric power generation modules 34. The thermoelectric power generation modules 34 are connected in series to form one thermoelectric power generation unit and take out electric power. As shown in FIG. 5, for example, four thermoelectric modules 34 are arranged in a matrix in the horizontal direction and four in the vertical direction. In the example of FIG. 5, the thermoelectric power generation modules 34 are 50 mm square, the interval between the thermoelectric power generation modules 34 is 10 mm, and the outer shape of the thermoelectric power generation unit 21 is 250 mm square. However, the thermoelectric power generation module 34 need not be limited to 50 mm, and may be a large one of 50 mm or more or a small one of 50 mm or less, and may be appropriately sized according to the environment of the installation place. Further, the thermoelectric power generation modules 34 may be connected in parallel instead of being connected in series to supply electric power to the outside.

また鋳片11と熱電発電ユニット21の距離については、近ければ近いほど輻射熱が大きくなり発電量が増加するのは自明である。しかしながら、近すぎると、熱負荷が高いため、熱電発電モジュールの寿命への影響が懸念され、また、操業トラブルで鋳片と発電ユニットが物理的に接触し破損してしまうことが想定される。また熱電発電モジュールの種類によって、発電効率を高めるために最適な温度も存在している。以上のことから鋳片11と熱電発電ユニット21の距離は、状況に応じた適切な値に設定することが望ましい。   Further, as for the distance between the slab 11 and the thermoelectric power generation unit 21, it is obvious that the closer the distance is, the larger the radiant heat becomes and the power generation amount increases. However, if it is too close, the thermal load is high, so there is a concern about the influence on the life of the thermoelectric power generation module, and it is assumed that the slab and the power generation unit are physically contacted and damaged due to operation trouble. Also, depending on the type of thermoelectric power generation module, there is an optimum temperature for increasing the power generation efficiency. From the above, it is desirable to set the distance between the slab 11 and the thermoelectric power generation unit 21 to an appropriate value according to the situation.

次に、熱電発電装置を構成する熱電発電ユニットによる鋳片の品質判定について図6を参照しながら説明する。
図6に示すように、熱電発電ユニット21からはケーブル(図示せず)が延長されて、得られた電力がケーブルを介して取り出されるとともに、各熱電発電ユニット21の発電量のデータがデータ処理部41に送られ、そこで各熱電発電ユニット21の発電量データが随時記録され、データ処理部41の発電量データが品質判定部42に送られる。データ処理部41に記録された発電量データから鋳片11の温度を推定することができる。
Next, slab quality determination by the thermoelectric power generation unit constituting the thermoelectric power generation apparatus will be described with reference to FIG.
As shown in FIG. 6, a cable (not shown) is extended from the thermoelectric power generation unit 21, and the obtained electric power is taken out via the cable, and the power generation amount data of each thermoelectric power generation unit 21 is processed by data processing. The power generation amount data of each thermoelectric power generation unit 21 is recorded as needed, and the power generation amount data of the data processing unit 41 is transmitted to the quality determination unit 42. The temperature of the slab 11 can be estimated from the power generation amount data recorded in the data processing unit 41.

品質判定部42は、鋳片11の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片11の品質判定を行う。すなわち、幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差は、鋳片11のこれらの位置に対応する温度差に対応することになり、この値により鋳片11の品質判定を行うことができる。   The quality determination part 42 calculates | requires the difference in the electric power generation amount of an adjacent thermoelectric power generation unit among the thermoelectric power generation units arranged in the width direction of the slab 11, and performs quality determination of the slab 11 based on the difference in the electric power generation amount. . That is, the difference in the amount of power generated between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction corresponds to the temperature difference corresponding to these positions of the slab 11, and this value determines the slab 11. Quality judgment can be performed.

鋳片11の品質判定を行うためには鋳片幅方向に少なくとも3つの熱電発電ユニットが必要である。ただし、鋳片11の端部に対応する2つの熱電発電ユニットは発電量が少なくなる傾向にあり、また図6に示すように、鋳片11の幅によっては、端部の2つの熱電発電ユニットの直下に鋳片11が存在しない場合があり、このような場合には、端部の熱電発電ユニットの発電量が他の熱電発電ユニットの発電量よりも一層小さくなる。そのため、端部の2つの熱電発電ユニットを品質判定に用いないことが好ましく、その場合は、鋳片幅方向に5個以上の熱電発電ユニット21が設置されていることが好ましい。これにより、より高精度の品質判定を行うことができる。図6では鋳片幅方向に5個の熱電発電ユニットが設置された例を示しており、左側の熱電発電ユニットから順に21a、21b、21c、21d、21eの符号を付している。この例では、端部の熱電発電ユニット21a、21eは鋳片の品質判定に用いず、中央の熱電発電ユニット21b、21c、21dの3つを鋳片の品質判定に用いる。   In order to determine the quality of the slab 11, at least three thermoelectric power generation units are required in the slab width direction. However, the two thermoelectric power generation units corresponding to the ends of the slab 11 tend to reduce the amount of power generation, and depending on the width of the slab 11, as shown in FIG. In such a case, the amount of power generated by the thermoelectric power generation unit at the end is much smaller than the amount of power generated by other thermoelectric power generation units. Therefore, it is preferable not to use the two thermoelectric power generation units at the end for quality determination. In that case, it is preferable that five or more thermoelectric power generation units 21 are installed in the slab width direction. Thereby, quality determination with higher accuracy can be performed. FIG. 6 shows an example in which five thermoelectric power generation units are installed in the slab width direction, and reference numerals 21a, 21b, 21c, 21d, and 21e are given in order from the left thermoelectric power generation unit. In this example, the thermoelectric power generation units 21a and 21e at the end are not used for the quality determination of the slab, and the three thermoelectric power generation units 21b, 21c and 21d at the center are used for the quality determination of the slab.

鋳片幅方向の熱電発電ユニット21の数は多ければ多いほど、鋳片幅方向の発電量の変化、つまり、幅方向の温度差を細かく検知することができるため、鋳片幅方向の熱電発電ユニット21の数は多いほど好ましい。   As the number of thermoelectric power generation units 21 in the slab width direction is larger, a change in the amount of power generation in the slab width direction, that is, a temperature difference in the width direction can be detected more finely. The larger the number of units 21, the better.

品質判定に使用する時の隣り合う熱電発電ユニットの発電量の差の比率は、まず単純に隣り合う熱電発電ユニットの発電量の差を算出し、その後、その隣り合うユニットの発電量のうち、発電量の小さい熱電発電ユニットの発電量で除し、その値を100倍することによって算出することができる。   The ratio of the difference in power generation amount between adjacent thermoelectric power generation units when used for quality judgment is simply calculated by first calculating the difference in power generation amount between adjacent thermoelectric power generation units. It can be calculated by dividing by the power generation amount of the thermoelectric power generation unit having a small power generation amount and multiplying that value by 100.

鋳片の品質判定の手法としては、隣り合う熱電発電ユニットの発電量の差に基づいて鋳片の検査を行うか否かを判定し、検査により欠陥が発見されたときに所望の手入れを行うようにしてもよいし、発電量の差に基づいて直接に鋳片の手入れを行うか否かを判定してもよい。   As a method for determining the quality of the slab, it is determined whether or not to inspect the slab based on the difference in power generation amount between adjacent thermoelectric power generation units, and when a defect is found by the inspection, desired care is performed. Alternatively, it may be determined whether or not to clean the slab directly based on the difference in power generation amount.

好ましい品質判定の手法としては、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留し、その鋳片を検査して、検出された欠陥のレベルに応じた手入れを行うといった手法を挙げることができる。   As a preferable quality judgment method, when the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab is 20% or more, the slab is suspended, and the cast An example is a method in which a piece is inspected and care is taken in accordance with the detected defect level.

図7は、隣り合う熱電発電ユニットの発電量の差の比率と鋳片割れ個数との関係を示す図である。この図から、隣り合う熱電発電ユニットの発電量の差の比率が20%以上の場合に割れ個数が急激に増加することがわかる。このため、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時に、その鋳片を検査し、検出された欠陥のレベルに応じた手入れを行う。これにより、鋳片の欠陥をより確実に検出することができる。鋳片の手入れの手法としては、溶削、スカーファー、ハンドグラインダー等があり、欠陥のレベルに応じて割れ等の品質欠陥を除去できるものを選択する。   FIG. 7 is a diagram showing the relationship between the ratio of the difference in power generation between adjacent thermoelectric power generation units and the number of slab cracks. From this figure, it can be seen that the number of cracks increases abruptly when the ratio of the difference in power generation between adjacent thermoelectric power generation units is 20% or more. For this reason, when the ratio of the power generation amount difference between adjacent thermoelectric power generation units arranged in the width direction of the slab is 20% or more, the slab is inspected and the detected defect level is set. Caring for it accordingly. Thereby, the defect of a slab can be detected more reliably. As a method for cleaning the cast slab, there are cutting, scarf, hand grinder, and the like, and a method capable of removing quality defects such as cracks is selected according to the defect level.

なお、図7において、鋳片の割れ発生の検査方法は、基本的には目視によって判断した。鋳造方向に平行な縦割れは比較的明確に判定が可能であるが、鋳造方向に直行する割れは、オシレーションマークに平行になるため判断が困難となることがある。その場合は、ショットブラストなどでスケールを除去した後に判断した。割れ個数については、5mm以上の割れの個数をカウントすることにより、単位面積あたりの個数を算出した。割れ長さが5mm未満の割れの場合、割れ長さが短いと割れ深さも浅いことから、圧延によって、割れが圧着することより、製品の鋼板で欠陥にならないことがわかっている。   In addition, in FIG. 7, the inspection method of crack generation | occurrence | production of a slab was fundamentally judged by visual observation. Longitudinal cracks parallel to the casting direction can be determined relatively clearly, but cracks perpendicular to the casting direction may be difficult to determine because they are parallel to the oscillation mark. In that case, the determination was made after removing the scale by shot blasting or the like. Regarding the number of cracks, the number per unit area was calculated by counting the number of cracks of 5 mm or more. In the case of a crack having a crack length of less than 5 mm, since the crack depth is shallow if the crack length is short, it is known that the crack does not cause a defect in the product steel plate by rolling.

以上のように構成される連続鋳造設備においては、鋳片11が連続鋳造される過程で、鋳片11の顕熱が熱電発電装置3により電力に変換される。このとき、熱電発電装置3は、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて連鋳鋳片の品質判定を行うようにしたので、水蒸気が存在する雰囲気でも、鋳片表面部位の温度差による品質異常を可及的速やかに検出することができる。その結果、鋳片11の顕熱回収を行いながら、表面品質の優れた鋳片を安定して製造することができ、歩留まりの向上、製造コストの低減などの大きな効果を得ることができる。   In the continuous casting equipment configured as described above, the sensible heat of the slab 11 is converted into electric power by the thermoelectric generator 3 in the process of continuously casting the slab 11. At this time, the thermoelectric generator 3 obtains the difference in the power generation amount of the adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab, and the quality of the continuous cast slab based on the difference in the power generation amount Since the determination is performed, the quality abnormality due to the temperature difference of the slab surface portion can be detected as quickly as possible even in an atmosphere where water vapor exists. As a result, while performing sensible heat recovery of the slab 11, it is possible to stably manufacture a slab having excellent surface quality, and to obtain significant effects such as improvement in yield and reduction in manufacturing cost.

また、熱電発電装置3を鋳片の幅方向に5個以上の熱電発電ユニット21が配列された構成とし、これら幅方向に配列された熱電発電ユニットの端部の2個を除いた熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことにより、より高精度の品質判定を行うことができる。   Further, the thermoelectric generator 3 has a configuration in which five or more thermoelectric power generation units 21 are arranged in the width direction of the slab, and two thermoelectric generation units excluding the end portions of the thermoelectric power generation units arranged in the width direction are excluded. By determining the difference in the amount of power generation between adjacent thermoelectric power generation units and performing the quality determination of the slab based on the difference in the amount of power generation, more accurate quality determination can be performed.

さらに、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留し、その鋳片を検査して、検出された欠陥のレベルに応じた手入れを行うことにより、鋳片の欠陥をより確実に検出することができる。   Furthermore, when the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab is 20% or more, the slab is retained, and the slab is inspected, By performing care according to the level of the detected defect, it is possible to detect the defect of the slab more reliably.

以下、本発明の実施例について説明する。
(試験No.1、2)
試験No.1、2では、鋼種として炭素含有量が0.12%の中炭素鋼を用い、鋳造速度(Vc)をNo.1では1.4m/min、No.2では1.6m/minとして、厚み250mm、幅1950mmの鋳片を連続鋳造した。このときの二次冷却の比水量は、鋳造速度に応じ、試験No.1、2でそれぞれ1.78L/kg、2.17L/kgとした。熱電発電ユニットは鋳片の上方に設置し、図8に示すように、鋳片幅方向の数を7個(No.1−1、No.1−2、No.1−3、No.1−4、No.1−5、No.1−6、No.1−7)とした。熱電発電ユニット一つの幅が250mmであり、幅方向にほぼ隙間なく設置していることから、熱電発電装置全体の幅方向の長さは約1750mmであって、鋳片幅1950mmより狭い。よって、端部の発電ユニットNo.1−1とNo.1−7の発電出力は、スラブの端部の表面温度を表していると考えられる。また熱電発電ユニットと鋳片との距離は275mmとした。
Examples of the present invention will be described below.
(Test Nos. 1 and 2)
Test No. In Nos. 1 and 2, medium carbon steel having a carbon content of 0.12% was used as the steel type, and the casting speed (Vc) was No. 1. No. 1 is 1.4 m / min. In No. 2, a cast piece having a thickness of 250 mm and a width of 1950 mm was continuously cast at 1.6 m / min. The specific water amount of the secondary cooling at this time depends on the casting speed. 1 and 2 were 1.78 L / kg and 2.17 L / kg, respectively. The thermoelectric power generation unit is installed above the slab, and as shown in FIG. 8, the number in the slab width direction is 7 (No. 1-1, No. 1-2, No. 1-3, No. 1). -4, No. 1-5, No. 1-6, No. 1-7). Since the width of one thermoelectric power generation unit is 250 mm and is installed with almost no gap in the width direction, the length in the width direction of the entire thermoelectric power generation apparatus is about 1750 mm, which is narrower than the slab width of 1950 mm. Therefore, the power generation unit No. 1-1 and No.1. The power output of 1-7 is considered to represent the surface temperature of the end of the slab. The distance between the thermoelectric generator unit and the slab was 275 mm.

上述の定義により隣り合う熱電発電ユニットの発電量の差の比率の最大値を求めた結果、試験No.1では熱電発電ユニットNo.1−3とNo.1−4の差で14.3%であり、実際に鋳片に割れは発生しなかった。よって、鋳片を保留することもなく、検査をすることも実施せずに無手入れで次工程の圧延に直送した。   As a result of obtaining the maximum value of the ratio of the difference in power generation amount between adjacent thermoelectric power generation units according to the above definition, the test No. 1 shows a thermoelectric generator unit No. 1; 1-3 and No.1. The difference of 1-4 was 14.3%, and no cracks were actually generated in the slab. Therefore, the slab was not put on hold, inspected and carried out without any maintenance, and directly sent to the next rolling process.

試験No.2では、隣り合う発電ユニットの発電量の差の比率が最大54.5%となり、鋳片を保留し検査したところ、鋳片に割れが発生していることが確認された。そのため鋼板での欠陥発生防止のために、溶削に代表される鋳片の手入れを実施し、割れ部を除去して次工程へ鋳片を搬出することができた。そのため、製品の鋼板で欠陥が発生することはなかった。   Test No. In No. 2, the ratio of the difference in power generation amount between adjacent power generation units was 54.5% at maximum, and when the slab was suspended and inspected, it was confirmed that the slab was cracked. For this reason, in order to prevent the occurrence of defects in the steel sheet, it was possible to care for the slab typified by melting, remove the cracked portion, and carry the slab to the next process. Therefore, no defects were generated in the product steel plate.

(試験No.3、4)
試験No.3、4では、鋼種として炭素含有量が0.06%の低炭素鋼を用い、鋳造速度(Vc)をいずれも1.8m/minとして、厚み250mm、幅1250mmの鋳片を連続鋳造した。このときの二次冷却の比水量は、試験No.3、4でそれぞれ1.64L/kg、2.27L/kgとした。熱電発電ユニットは、試験No.1、2と同じものを用いた。すなわち、鋳片幅方向の数を7個(No.1−1、No.1−2、No.1−3、No.1−4、No.1−5、No.1−6、No.1−7)とした。熱電発電ユニット一つの幅が250mmであり、熱電発電装置全体の幅方向の長さは約1750mmであって、図9に示すように、鋳片幅1250mmより広い。つまり、端部の発電ユニットNo.1−1とNo.1−7の直下には鋳片が存在しない状態である。そのため、ユニットNo.1−1とNo.1−7は出力が小さいため品質判定には使用しなかった。また熱電発電ユニットと鋳片との距離は試験No.1、2と同様に275mmとした。
(Test Nos. 3 and 4)
Test No. In Nos. 3 and 4, low-carbon steel having a carbon content of 0.06% was used as the steel type, and a cast piece having a thickness of 250 mm and a width of 1250 mm was continuously cast at a casting speed (Vc) of 1.8 m / min. The specific water amount of the secondary cooling at this time is the test No. 3 and 4 were 1.64 L / kg and 2.27 L / kg, respectively. The thermoelectric generator unit has a test no. The same thing as 1 and 2 was used. That is, the number in the slab width direction is 7 (No. 1-1, No. 1-2, No. 1-3, No. 1-4, No. 1-5, No. 1-6, No. 1). 1-7). The width of one thermoelectric power generation unit is 250 mm, and the length in the width direction of the entire thermoelectric power generation apparatus is about 1750 mm, which is wider than the slab width of 1250 mm as shown in FIG. That is, the power generation unit no. 1-1 and No.1. There is no cast slab immediately below 1-7. Therefore, unit no. 1-1 and No.1. 1-7 was not used for quality judgment because of its small output. The distance between the thermoelectric generator unit and the cast slab is the test number. It was set to 275 mm similarly to 1 and 2.

試験No.1、2と同様に、隣り合う発電ユニットの発電量の差の比率の最大値を求めた結果、試験No.3ではユニットNo.1−4とNo.1−5の差で16.7%であったことより、鋳片を保留することもなく、検査をすることも実施しなかった。   Test No. As in the case of Nos. 1 and 2, the maximum value of the ratio of the difference in power generation between adjacent power generation units was obtained. In unit 3, unit no. 1-4 and No.1. Since the difference was 16.7% with a difference of 1-5, the slab was not retained and no inspection was performed.

試験No.4では、隣り合う発電ユニットの発電量の差の比率が最大40.0%であったことから、鋳片を保留し検査したところ、鋳片に割れが発生していることが確認された。そのため、試験No.2と同様に、鋼板での欠陥発生防止のために、溶削に代表される鋳片の手入れを実施し、割れ部を除去して次工程へ鋳片を搬出した。そのため、製品の鋼板で欠陥が発生することはなかった。   Test No. In No. 4, the ratio of the difference in the amount of power generation between adjacent power generation units was 40.0% at the maximum. Therefore, when the slab was suspended and inspected, it was confirmed that the slab was cracked. Therefore, test no. Similarly to No. 2, in order to prevent the occurrence of defects in the steel sheet, the cast slab represented by melting was carried out, the cracked portion was removed, and the slab was carried out to the next process. Therefore, no defects were generated in the product steel plate.

(試験No.5、6)
試験No.5、6では、鋼種として炭素含有量が0.15%の中炭素鋼を用い、鋳造速度(Vc)をNo.5では1.6m/min、No.6では1.8m/minとして、厚み220mm、幅1950mmの鋳片を連続鋳造した。このときの二次冷却の比水量は、鋳造速度に応じ、それぞれ1.89L/kg、2.23L/kgとした。試験No.1、2と比較すると鋳片厚みが250mmから220mmと薄くなったため、鋳造速度が増大した条件である。熱電発電ユニットは、試験No.1、2と同じものを用いた。すなわち、鋳片幅方向の数を7個(No.1−1、No.1−2、No.1−3、No.1−4、No.1−5、No.1−6、No.1−7)とした。熱電発電ユニット一つの幅が250mmであり、熱電発電装置全体の幅方向の長さは約1750mmである。よって、端部の発電ユニットNo.1−1とNo.1−7の発電出力は、スラブの端部の表面温度を表していると考えられる。また熱電発電ユニットと鋳片との距離は試験No.1、2と同様に275mmとした。
(Test Nos. 5 and 6)
Test No. In Nos. 5 and 6, medium carbon steel having a carbon content of 0.15% was used as the steel type, and the casting speed (Vc) was No. No. 5 is 1.6 m / min. In No. 6, a cast piece having a thickness of 220 mm and a width of 1950 mm was continuously cast at 1.8 m / min. The specific water amount of the secondary cooling at this time was 1.89 L / kg and 2.23 L / kg, respectively, according to the casting speed. Test No. Compared with 1 and 2, the slab thickness was reduced from 250 mm to 220 mm, so the casting speed was increased. The thermoelectric generator unit has a test no. The same thing as 1 and 2 was used. That is, the number in the slab width direction is 7 (No. 1-1, No. 1-2, No. 1-3, No. 1-4, No. 1-5, No. 1-6, No. 1). 1-7). The width of one thermoelectric power generation unit is 250 mm, and the length in the width direction of the entire thermoelectric power generation apparatus is about 1750 mm. Therefore, the power generation unit No. 1-1 and No.1. The power output of 1-7 is considered to represent the surface temperature of the end of the slab. The distance between the thermoelectric generator unit and the cast slab is the test number. It was set to 275 mm similarly to 1 and 2.

試験No.1、2と同様に、隣り合う熱電発電ユニットの発電量の差の比率の最大値を求めた結果、試験No.5ではユニットNo.1−4とNo.1−5の差で18.8%と20%未満であることから、実際に鋳片に割れは発生しなかった。よって、鋳片を保留することもなく、検査をすることも実施せずに無手入れで次工程の圧延に直送した。   Test No. As in the case of Nos. 1 and 2, as a result of obtaining the maximum value of the ratio of the difference in power generation between adjacent thermoelectric power generation units, In unit 5, unit no. 1-4 and No.1. Since the difference of 1-5 is 18.8% and less than 20%, no cracks were actually generated in the slab. Therefore, the slab was not put on hold, inspected and carried out without any maintenance, and directly sent to the next rolling process.

試験No.6では、隣り合う熱電発電ユニットの発電量の差の比率が最大31.3%となり、鋳片を保留し検査したところ、鋳片に割れが発生していることが確認された。そのため鋼板での欠陥発生防止のために、溶削に代表される鋳片の手入れを実施し、割れ部を除去して次工程へ鋳片を搬出することができた。そのため、製品の鋼板で欠陥が発生することはなかった。   Test No. In No. 6, the ratio of the difference in power generation between adjacent thermoelectric power generation units was 31.3% at maximum, and when the slab was suspended and inspected, it was confirmed that the slab was cracked. For this reason, in order to prevent the occurrence of defects in the steel sheet, it was possible to care for the slab typified by melting, remove the cracked portion, and carry the slab to the next process. Therefore, no defects were generated in the product steel plate.

以上の結果を表1にまとめて示す
The above results are summarized in Table 1.

1 連続鋳造設備
2 連続鋳造設備本体
3 熱電発電装置
4 テーブルローラー
11 鋳片
12 取鍋
13 タンディッシュ
14 鋳型
15 スラブ冷却装置
16 矯正ロール等ローラー群
17 スラブ切断装置
19 搬送ローラー
21 熱電発電ユニット
22 移動機構
31 熱電素子
32 電極
33 絶縁材
34 熱電発電モジュール
35 受熱部(受熱手段)
36 放熱部(放熱手段)
41 データ処理部
42 品質判定部
DESCRIPTION OF SYMBOLS 1 Continuous casting equipment 2 Continuous casting equipment main body 3 Thermoelectric power generation device 4 Table roller 11 Slab 12 Ladle 13 Tundish 14 Mold 15 Slab cooling device 16 Rollers, such as straightening rolls 17 Slab cutting device 19 Conveyance roller 21 Thermoelectric power generation unit 22 Movement Mechanism 31 Thermoelectric element 32 Electrode 33 Insulating material 34 Thermoelectric power generation module 35 Heat receiving part (heat receiving means)
36 Heat radiation part (heat radiation means)
41 Data processing unit 42 Quality judgment unit

Claims (6)

連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置を有する連続鋳造設備における鋳片の品質管理方法であって、
前記熱電発電装置は、複数の熱電素子を有する熱電発電モジュールを受熱手段と放熱手段との間に設けてなる熱電発電ユニットを熱源となる鋳片に対峙するように複数配列して構成され、
鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする連続鋳造設備における鋳片の品質管理方法。
A quality control method for a slab in a continuous casting facility having a thermoelectric generator that converts thermal energy of continuously cast slab into electrical energy,
The thermoelectric power generation device is configured by arranging a plurality of thermoelectric power generation units provided with a thermoelectric power generation module having a plurality of thermoelectric elements between a heat receiving means and a heat dissipation means so as to face a slab as a heat source,
Continuous casting equipment characterized in that a difference in power generation amount between adjacent thermoelectric power generation units among thermoelectric power generation units arranged in the width direction of the slab is obtained, and quality determination of the slab is performed based on the difference in power generation amount Quality control method for slabs in Japan.
前記熱電発電装置は、鋳片の幅方向に5個以上の熱電発電ユニットが配列され、これら幅方向に配列された熱電発電ユニットの端部の2個を除いた熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする請求項1に記載の連続鋳造設備における鋳片の品質管理方法。   In the thermoelectric generator, five or more thermoelectric generator units are arranged in the width direction of the slab, and two adjacent thermoelectric generator units are excluded from the two thermoelectric generator units arranged in the width direction. The method for quality control of a slab in a continuous casting facility according to claim 1, wherein a difference in power generation amount of the power generation unit is obtained, and quality evaluation of the slab is performed based on the difference in power generation amount. 鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留し、その鋳片を検査して、検出された欠陥のレベルに応じた手入れを行うことを特徴とする請求項1または請求項2に記載の連続鋳造設備における鋳片の品質管理方法。   When the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab is 20% or more, the slab is held, and the slab is inspected and detected. 3. A method for quality control of a slab in a continuous casting facility according to claim 1, wherein care is performed in accordance with the level of a defect. 鋼を連続鋳造する連続鋳造設備本体と、
連続鋳造された鋳片の熱エネルギーを電気エネルギーに変換する熱電発電装置と、
鋳片の品質判定を行う品質判定部と
を有し、
前記熱電発電装置は、複数の熱電素子を有する熱電発電モジュールを受熱手段と放熱手段との間に設けてなる熱電発電ユニットを熱源となる鋳片に対峙するように複数配列して構成され、
前記品質判定部は、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする連続鋳造設備。
A continuous casting equipment body for continuously casting steel;
A thermoelectric generator that converts the thermal energy of the continuously cast slab into electrical energy;
A quality judgment unit for judging the quality of the slab,
The thermoelectric power generation device is configured by arranging a plurality of thermoelectric power generation units provided with a thermoelectric power generation module having a plurality of thermoelectric elements between a heat receiving means and a heat dissipation means so as to face a slab as a heat source,
The quality determination unit obtains a difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units arranged in the width direction of the slab, and performs quality determination of the slab based on the difference in power generation amount. Characteristic continuous casting equipment.
前記熱電発電装置は、鋳片の幅方向に5個以上の熱電発電ユニットが配列され、
前記品質判定部は、これら幅方向に配列された熱電発電ユニットの端部の2個を除いた熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差を求め、その発電量の差に基づいて鋳片の品質判定を行うことを特徴とする請求項4に記載の連続鋳造設備。
In the thermoelectric generator, five or more thermoelectric generator units are arranged in the width direction of the slab,
The quality determination unit obtains a difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric power generation units excluding two of the end portions of the thermoelectric power generation units arranged in the width direction, and based on the difference in power generation amount The continuous casting equipment according to claim 4, wherein the quality of the slab is determined.
前記品質判定部は、鋳片の幅方向に配列された熱電発電ユニットのうち隣り合う熱電発電ユニットの発電量の差の比率が20%以上の時、その鋳片を保留する指令を発し、
保留された鋳片の検査が行われ、検出された欠陥のレベルに応じた手入れが行われることを特徴とする請求項4または請求項5に記載の連続鋳造設備。
The quality determination unit issues a command to hold the slab when the ratio of the difference in power generation amount between adjacent thermoelectric power generation units among the thermoelectric generation units arranged in the width direction of the slab is 20% or more,
The continuous casting equipment according to claim 4 or 5, wherein inspection of the held slab is performed and maintenance is performed according to the detected defect level.
JP2015162595A 2015-08-20 2015-08-20 Slab quality control method and continuous casting equipment in continuous casting equipment Active JP6354703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162595A JP6354703B2 (en) 2015-08-20 2015-08-20 Slab quality control method and continuous casting equipment in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162595A JP6354703B2 (en) 2015-08-20 2015-08-20 Slab quality control method and continuous casting equipment in continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2017039148A true JP2017039148A (en) 2017-02-23
JP6354703B2 JP6354703B2 (en) 2018-07-11

Family

ID=58205814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162595A Active JP6354703B2 (en) 2015-08-20 2015-08-20 Slab quality control method and continuous casting equipment in continuous casting equipment

Country Status (1)

Country Link
JP (1) JP6354703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114614A (en) * 2017-12-21 2019-07-11 株式会社デンソー Abnormality detection device of heat exchanger
JP2020139538A (en) * 2019-02-27 2020-09-03 日信工業株式会社 Braking device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076094A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp Method for detecting flaw of continuously cast slab and system for detecting flaw
JP2013085334A (en) * 2011-10-06 2013-05-09 Jfe Steel Corp Thermoelectric generator
JP2013151023A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp Continuous casting equipment row and thermoelectric generation method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076094A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp Method for detecting flaw of continuously cast slab and system for detecting flaw
JP2013085334A (en) * 2011-10-06 2013-05-09 Jfe Steel Corp Thermoelectric generator
JP2013151023A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp Continuous casting equipment row and thermoelectric generation method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114614A (en) * 2017-12-21 2019-07-11 株式会社デンソー Abnormality detection device of heat exchanger
JP7087376B2 (en) 2017-12-21 2022-06-21 株式会社デンソー Heat exchanger anomaly detector
JP2020139538A (en) * 2019-02-27 2020-09-03 日信工業株式会社 Braking device

Also Published As

Publication number Publication date
JP6354703B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5920208B2 (en) Continuous casting equipment line and thermoelectric power generation method using the same
JP5832698B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
JP6354703B2 (en) Slab quality control method and continuous casting equipment in continuous casting equipment
JP5682205B2 (en) Defect detection method and defect detection system for continuous cast slab
JP5832697B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method using the same
KR102567105B1 (en) Continuous casting method of slab cast steel
JP5621387B2 (en) Method for detecting surface defects in continuous cast slabs
WO2014050127A1 (en) Manufacturing equipment line, and thermoelectric power generation method
JP6311805B2 (en) Steelworks manufacturing equipment line and thermoelectric power generation method
JP6112154B2 (en) Steelworks manufacturing equipment line and thermoelectric power generation method
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JP5998983B2 (en) Continuous casting equipment line and thermoelectric power generation method using the same
JP5973485B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
JP6032235B2 (en) Continuous casting equipment equipped with thermoelectric power generation equipment and thermoelectric power generation method using the same
JP5958433B2 (en) Steel plate manufacturing equipment row for casting and rolling, and thermoelectric power generation method using the same
KR101686034B1 (en) Manufacturing facility line and thermoelectric power generation method
JP2014217849A (en) Method of detecting casting piece surface defect and facility abnormality of continuous casting machine
JP6873193B2 (en) Manufacturing equipment line and thermoelectric power generation method
JPS60115354A (en) Installation for producing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250