JP2017036992A - Method of producing test piece - Google Patents

Method of producing test piece Download PDF

Info

Publication number
JP2017036992A
JP2017036992A JP2015158263A JP2015158263A JP2017036992A JP 2017036992 A JP2017036992 A JP 2017036992A JP 2015158263 A JP2015158263 A JP 2015158263A JP 2015158263 A JP2015158263 A JP 2015158263A JP 2017036992 A JP2017036992 A JP 2017036992A
Authority
JP
Japan
Prior art keywords
test piece
axle
parallel part
test
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015158263A
Other languages
Japanese (ja)
Other versions
JP6520547B2 (en
Inventor
泰三 牧野
Taizo Makino
泰三 牧野
酒井 宏樹
Hiroki Sakai
宏樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015158263A priority Critical patent/JP6520547B2/en
Publication of JP2017036992A publication Critical patent/JP2017036992A/en
Application granted granted Critical
Publication of JP6520547B2 publication Critical patent/JP6520547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a test piece used in a simplified evaluation test for assessing fatigue strength of a parallel section of an axle.SOLUTION: A method of producing a test piece used in a simplified evaluation test for assessing fatigue strength of a parallel section of an axle made of a metallic material is provided. The method includes a turning process for finish-machining a material corresponding to the metallic material under conditions that satisfy [0.40≤R/R≤0.80] to form a parallel section having a diameter of 5-20 mm, where Rrepresents a circumferential velocity (m/min) used when finish-machining the parallel section of the axle, and Rrepresents a circumferential velocity (m/min) used when finish-machining the parallel section of the test piece.SELECTED DRAWING: None

Description

本発明は、試験片の製造方法に係り、特に、車軸の平行部の疲労強度の簡易評価試験に用いる試験片の製造方法に関する。   The present invention relates to a method for manufacturing a test piece, and more particularly to a method for manufacturing a test piece used for a simple evaluation test of fatigue strength of a parallel portion of an axle.

鉄道車両等の車両に用いられる車軸は、車両の安全走行にとって最も重要な部品の一つである。そのため、車軸の疲労特性を明らかにすることは、極めて重要な課題といえる。車軸の疲労特性に関する試験方法として、実物大の車軸を用いた疲労試験がしばしば行われている。   An axle used for a vehicle such as a railway vehicle is one of the most important parts for safe driving of the vehicle. Therefore, clarifying the fatigue characteristics of the axle is an extremely important issue. As a test method for fatigue characteristics of an axle, a fatigue test using a full-size axle is often performed.

実物大の車軸を用いた疲労試験機の一つに共振型輪軸疲労試験機がある。共振型輪軸疲労試験機は、車軸の一端部に設けられた車輪の外周部を台座に固定し、車軸の他端部に偏芯マス付きのモーターを取り付けて回転させることで、車軸の車輪とのはめ合い部近傍に回転曲げの負荷を与える仕組みのものである。なお、圧入部に対して平行部の直径が小さいと、き裂は車軸の平行部において生じる。そして、き裂が発生する限界の応力を評価することによって、車軸の平行部における疲労限度を求めることができる。非特許文献1には、共振型輪軸疲労試験機を用いた実物大車輪を用いた疲労試験評価について記載されている。この試験機では、実物大車軸の疲労試験評価を行うことも可能である。   One type of fatigue testing machine that uses a full-size axle is a resonant wheel fatigue testing machine. The resonance type wheel fatigue tester fixes the outer periphery of a wheel provided at one end of an axle to a pedestal, and attaches and rotates a motor with an eccentric mass to the other end of the axle to In this mechanism, a rotational bending load is applied in the vicinity of the fitting portion. If the diameter of the parallel part is small with respect to the press-fitted part, a crack occurs in the parallel part of the axle. And the fatigue limit in the parallel part of an axle can be calculated | required by evaluating the stress of the limit which a crack generate | occur | produces. Non-Patent Document 1 describes a fatigue test evaluation using a full-scale wheel using a resonance type wheel shaft fatigue tester. With this testing machine, it is also possible to perform a fatigue test evaluation of a full-scale axle.

Y. OKAGATA, K. KIRIYAMA and T. KATO, Fatigue strength evaluation of the Japanese railway wheel, Fatigue & Fracture of Engngineering Materials & Structures, 30 (2007), p356-371.Y. OKAGATA, K. KIRIYAMA and T. KATO, Fatigue strength evaluation of the Japanese railway wheel, Fatigue & Fracture of Engngineering Materials & Structures, 30 (2007), p356-371.

しかしながら、実物大車軸を用いた疲労試験では、試験ごとに実際の車軸を準備する必要があるだけでなく、大型な試験装置が必要となるため、試験に要するコストが過大であるという問題がある。そのため、車軸の疲労特性を簡易的に評価する試験方法が望まれる。   However, the fatigue test using a full-size axle requires not only the preparation of the actual axle for each test, but also a large test device, which causes a problem that the cost required for the test is excessive. . Therefore, a test method for simply evaluating the fatigue characteristics of the axle is desired.

車軸の疲労特性を簡易的に調査するためには、小型の試験片を用いた疲労試験を行う必要がある。しかしながら、同一の化学組成、金属組織および機械的特性等を有する金属材料を用いたとしても、小型の試験片を用いた試験によって得られる疲労限度の値と、実物大車軸における疲労限度の値とが必ずしも一致するとは限らない。そのため、簡易的な方法によって車軸の疲労特性を評価するためには、実物大車軸と同等の疲労特性を示す小型試験片を作製する必要がある。   In order to easily investigate the fatigue characteristics of the axle, it is necessary to conduct a fatigue test using a small test piece. However, even if metal materials having the same chemical composition, metal structure, mechanical properties, etc. are used, the fatigue limit value obtained by a test using a small test piece and the fatigue limit value on a full-scale axle Do not necessarily match. Therefore, in order to evaluate the fatigue characteristics of an axle by a simple method, it is necessary to produce a small test piece that exhibits the same fatigue characteristics as a full-size axle.

本発明は、上記の問題を解決し、車軸の平行部の疲労強度の簡易評価試験に用いる試験片の製造方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a method for manufacturing a test piece used for a simple evaluation test of fatigue strength of a parallel portion of an axle.

本発明者らは、実際の車軸に用いられる金属材料に対応する素材を用いて、軸力試験片および回転曲げ試験片を作製した。なお、一般的な試験片の作製方法と同様に、エメリー紙による研磨によって仕上加工を施した。   The inventors of the present invention produced an axial force test piece and a rotating bending test piece using a material corresponding to a metal material used for an actual axle. In addition, finishing was performed by polishing with emery paper in the same manner as a general test piece manufacturing method.

上記の軸力試験片および回転曲げ試験片を用いて、それぞれ軸力疲労試験および回転曲げ疲労試験を実施し、疲労限度を求めたところ、実物大車軸を用いた疲労試験によって求められた疲労限度の値と比較して、著しく高い値となった。   Using the above-mentioned axial force test piece and rotating bending test piece, an axial force fatigue test and a rotating bending fatigue test were carried out, respectively, and the fatigue limit was obtained. The fatigue limit obtained by the fatigue test using a full-scale axle was then obtained. The value was significantly higher than the value of.

そこで、実物大車軸と試験片との表面性状の違いに注目し、実際の車軸の仕上加工条件を模擬した条件で試験片を作製した。種々の仕上加工条件で複数の試験片を作製し、疲労試験を実施した結果、実物大車軸の疲労限度と同等の値を再現することが可能となった。   Therefore, paying attention to the difference in surface properties between the full-size axle and the test piece, the test piece was prepared under the conditions simulating the actual finishing conditions of the axle. As a result of producing a plurality of test pieces under various finishing conditions and conducting a fatigue test, it was possible to reproduce a value equivalent to the fatigue limit of a full-scale axle.

発明者らがさらに検討した結果、仕上加工条件に起因する試験片の表面粗さおよび軸方向の残留応力が、疲労限度に大きく影響を及ぼし、これらの値を実際の車軸と試験片とで同等の値に調整することによって、疲労限度についても同等の値とすることが可能であることが判明した。   As a result of further investigation by the inventors, the surface roughness of the test piece and the axial residual stress due to the finishing processing conditions have a great influence on the fatigue limit, and these values are the same between the actual axle and the test piece. It was found that the fatigue limit can be made equivalent by adjusting to the value of.

仕上加工条件と表面粗さおよび軸方向の残留応力との関係についてより詳細に検討した結果、表面粗さの大きさは、旋削加工における送り、切込み量およびチップ形状の3つの要素に支配されており、実物大車軸と試験片との仕上加工におけるこれらの3つの条件をそろえることによって、同等の表面粗さが得られることが分かった。   As a result of a more detailed examination of the relationship between finishing machining conditions, surface roughness, and axial residual stress, the size of the surface roughness is governed by three factors: feed, depth of cut and insert shape in turning. Thus, it was found that the same surface roughness can be obtained by aligning these three conditions in the finish machining of the actual large axle and the test piece.

一方、軸方向の残留応力は引張残留応力であり、旋削加工時におけるごく表層の局所的な発熱による発熱部の降伏強度の低下および周囲からの変形拘束に起因して生じると考えられる。そして、引張残留応力の大きさについては、旋削加工における周速が大きく関係していることが分かった。しかしながら、実物大車軸と試験片とでは、寸法が大きく異なり、その差によって熱容量が異なるため、仕上加工において単純に周速を同じにしても同等の引張残留応力は得ることができない。   On the other hand, the residual stress in the axial direction is a tensile residual stress, which is considered to be caused by a decrease in the yield strength of the heat generating part due to local heat generation at the very surface layer during turning and deformation constraint from the surroundings. And it turned out that the peripheral speed in turning is largely related to the magnitude of the tensile residual stress. However, since the actual large axle and the test piece are greatly different in size and have different heat capacities, the same tensile residual stress cannot be obtained even if the peripheral speed is simply the same in finishing.

本発明は、上記の知見に基づいて完成されたものであり、下記の試験片の製造方法を要旨とする。   The present invention has been completed on the basis of the above findings, and the gist thereof is the following test piece manufacturing method.

(1)金属材料からなる車軸の平行部の疲労強度の簡易評価試験に用いる試験片の製造方法であって、
旋削加工により、前記金属材料に対応する素材に対して、下記(i)式を満足する条件で仕上加工を施し、直径が5〜20mmである平行部を形成する、試験片の製造方法。
0.40≦R/R≦0.80 ・・・(i)
但し、上記(i)式中の各記号の意味は下記のとおりである。
:車軸の平行部における仕上加工時の周速(m/min)
:試験片の平行部における仕上加工時の周速(m/min)
(1) A method of manufacturing a test piece used for a simple evaluation test of fatigue strength of a parallel portion of an axle made of a metal material,
A method for producing a test piece, in which a parallel processing having a diameter of 5 to 20 mm is formed by performing a finishing process on a material corresponding to the metal material by a turning process under conditions satisfying the following expression (i).
0.40 ≦ R s / R r ≦ 0.80 (i)
However, the meaning of each symbol in the above formula (i) is as follows.
R r : Peripheral speed (m / min) during finish machining in the parallel part of the axle
R s : Peripheral speed (m / min) at the time of finishing in the parallel part of the test piece

(2)前記仕上加工における加工条件が、さらに、下記(ii)式を満足する、上記(1)に記載の試験片の製造方法。
0.03≦D/D≦0.12 ・・・(ii)
但し、上記(ii)式中の各記号の意味は下記のとおりである。
:車軸の平行部の直径(mm)
:試験片の平行部の直径(mm)
(2) The manufacturing method of the test piece according to the above (1), wherein the processing conditions in the finishing process further satisfy the following formula (ii).
0.03 ≦ D s / D r ≦ 0.12 (ii)
However, the meaning of each symbol in the above formula (ii) is as follows.
Dr : Diameter of the parallel part of the axle (mm)
D s : Diameter of the parallel part of the test piece (mm)

(3)前記試験片の平行部における表面粗さが、前記車軸の平行部における表面粗さとの関係において、下記(iii)式を満足する、上記(1)または(2)に記載の試験片の製造方法。
0.75≦Rz/Rz≦1.25 ・・・(iii)
但し、上記(iii)式中の各記号の意味は下記のとおりである。
Rz:車軸の平行部の表面粗さ(μm)
Rz:試験片の平行部の表面粗さ(μm)
(3) The test piece according to (1) or (2), wherein the surface roughness at the parallel part of the test piece satisfies the following expression (iii) in relation to the surface roughness at the parallel part of the axle: Manufacturing method.
0.75 ≦ Rz s / Rz r ≦ 1.25 (iii)
However, the meaning of each symbol in the above formula (iii) is as follows.
Rz r : Surface roughness of the parallel part of the axle (μm)
Rz s : surface roughness of the parallel part of the test piece (μm)

(4)前記試験片の平行部における残留応力が、前記車軸の平行部における残留応力との関係において、下記(iv)式を満足する、上記(1)から(3)までのいずれかに記載の試験片の製造方法。
0.7≦σ/σ≦1.3 ・・・(iv)
但し、上記(iv)式中の各記号の意味は下記のとおりである。
σ:車軸の平行部の残留応力(MPa)
σ:試験片の平行部の残留応力(MPa)
(4) The residual stress in the parallel portion of the test piece satisfies the following formula (iv) in relation to the residual stress in the parallel portion of the axle, and is described in any one of (1) to (3) above. Of manufacturing test piece.
0.7 ≦ σ s / σ r ≦ 1.3 (iv)
However, the meaning of each symbol in the above formula (iv) is as follows.
σ r : Residual stress (MPa) in the parallel part of the axle
σ s : Residual stress (MPa) of the parallel part of the test piece

(5)前記車軸が、鉄道用車軸である、上記(1)から(4)までのいずれかに記載の試験片の製造方法。   (5) The test piece manufacturing method according to any one of (1) to (4), wherein the axle is a railway axle.

本発明によれば、車軸の平行部の疲労強度の簡易評価試験に用いる試験片を安定的に製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture stably the test piece used for the simple evaluation test of the fatigue strength of the parallel part of an axle shaft.

試験片の形状を説明するための図である。It is a figure for demonstrating the shape of a test piece. 疲労試験で得られたS−N線図である。It is a SN diagram obtained by the fatigue test. 疲労試験で得られたS−N線図である。It is a SN diagram obtained by the fatigue test.

本発明の製造方法を用いて製造される試験片は、金属材料からなる車軸の平行部の疲労強度の簡易評価試験に用いるものである。本発明の試験片は特に、鉄道用車軸の平行部の疲労強度を簡易的に評価するのに好適に用いることが可能である。   A test piece manufactured using the manufacturing method of the present invention is used for a simple evaluation test of fatigue strength of a parallel portion of an axle made of a metal material. In particular, the test piece of the present invention can be suitably used for simply evaluating the fatigue strength of the parallel portion of the railway axle.

試験片を作製するにあたっては、車軸を構成する金属材料に対応する金属材料を素材として用いる必要がある。なお、車軸を構成する金属材料に対応する金属材料とは、同等の化学組成、金属組織および機械的性質を有する金属材料を意味する。したがって、試験片の素材は、車軸と同等の化学組成を有する原料を用い、同様の条件での熱処理を施すことによって、製造することが好ましい。なお、上記の化学組成および熱処理条件については、必ずしも厳密に同一にする必要はなく、疲労強度に大きく影響を及ぼさない範囲で許容されるものとする。   In producing the test piece, it is necessary to use a metal material corresponding to the metal material constituting the axle as a material. In addition, the metal material corresponding to the metal material which comprises an axle means the metal material which has an equivalent chemical composition, a metal structure, and a mechanical property. Therefore, it is preferable to manufacture the material of the test piece by using a raw material having a chemical composition equivalent to that of the axle and performing heat treatment under the same conditions. The above chemical composition and heat treatment conditions do not necessarily have to be exactly the same, and are allowed within a range that does not significantly affect fatigue strength.

本発明に係る試験片は、直径が5〜20mmである平行部を有する。平行部の直径が5mm未満では、試験中に座屈のおそれが生じるため、疲労強度を評価する際の誤差が過大となり正確な評価が行えなくなる。一方、20mmを超えると試験片の寸法が大きくなるため、簡易的な評価方法とはいえなくなる。   The test piece according to the present invention has a parallel portion having a diameter of 5 to 20 mm. If the diameter of the parallel portion is less than 5 mm, buckling may occur during the test, so that an error in evaluating the fatigue strength becomes excessive and accurate evaluation cannot be performed. On the other hand, if it exceeds 20 mm, the dimension of the test piece becomes large, so it cannot be said that it is a simple evaluation method.

車軸は通常、旋削加工によって製造される。したがって、実際の車軸と試験片との表面性状を同等とするため、試験片は旋削加工によって最終的な仕上加工が行われる必要がある。なお、試験片を製造するに際しては、素材を最初から仕上まで全て旋削加工によって作製してもよいし、仕上のみ旋削加工によって行ってもよい。   The axle is usually manufactured by turning. Therefore, in order to make the surface properties of the actual axle and the test piece equal, the test piece needs to be finally finished by turning. When manufacturing the test piece, all the materials from the beginning to the finish may be produced by turning, or only the finish may be produced by turning.

試験片の仕上加工は、下記(i)式を満足する条件で行う必要がある。試験片の仕上加工時の周速が小さすぎて、R/Rの値が0.40未満となると、試験片表面に付与される引張残留応力が車軸と比較して小さくなり、疲労限度を過大評価することとなる。一方、試験片の仕上加工時の周速が大きすぎて、R/Rの値が0.80を超えると、試験片表面に過大な引張残留応力が付与されることとなり、疲労限度が著しく低くなってしまう。
0.40≦R/R≦0.80 ・・・(i)
但し、上記(i)式中の各記号の意味は下記のとおりである。
:車軸の平行部における仕上加工時の周速(m/min)
:試験片の平行部における仕上加工時の周速(m/min)
It is necessary to finish the test piece under conditions that satisfy the following formula (i). If the peripheral speed during finishing of the test piece is too low and the value of R s / R r is less than 0.40, the tensile residual stress applied to the surface of the test piece becomes smaller than the axle and the fatigue limit Will be overestimated. On the other hand, if the peripheral speed during finishing of the test piece is too high and the value of R s / R r exceeds 0.80, excessive tensile residual stress is applied to the surface of the test piece, and the fatigue limit is reduced. It will be significantly lower.
0.40 ≦ R s / R r ≦ 0.80 (i)
However, the meaning of each symbol in the above formula (i) is as follows.
R r : Peripheral speed (m / min) during finish machining in the parallel part of the axle
R s : Peripheral speed (m / min) at the time of finishing in the parallel part of the test piece

試験片の仕上加工は、さらに下記(ii)式を満足する条件で行うことが好ましい。試験片の平行部の直径が車軸の平行部の直径に比べて著しく小さく、D/Dの値が0.03未満となると、評価試験の精度が低下するおそれがある。一方、D/Dの値が0.12を超えると、実物大車軸に近い寸法の試験片を用意する必要があり、評価試験を簡易的に行うことが困難になるおそれがある。
0.03≦D/D≦0.12 ・・・(ii)
但し、上記(ii)式中の各記号の意味は下記のとおりである。
:車軸の平行部の直径(mm)
:試験片の平行部の直径(mm)
The finish processing of the test piece is preferably performed under conditions that satisfy the following formula (ii). If the diameter of the parallel part of the test piece is significantly smaller than the diameter of the parallel part of the axle and the value of D s / D r is less than 0.03, the accuracy of the evaluation test may be reduced. On the other hand, if the value of D s / D r exceeds 0.12, it is necessary to prepare a test piece having a size close to the actual large axle, which may make it difficult to easily perform an evaluation test.
0.03 ≦ D s / D r ≦ 0.12 (ii)
However, the meaning of each symbol in the above formula (ii) is as follows.
Dr : Diameter of the parallel part of the axle (mm)
D s : Diameter of the parallel part of the test piece (mm)

また、前記試験片の平行部における表面粗さが、前記車軸の平行部における表面粗さとの関係において、下記(iii)式を満足することが好ましい。上述のように、表面粗さは疲労限度に大きく影響を及ぼす要素の一つである。試験片と実際の車軸とで平行部における表面粗さの大きさはできる限り同等とすることが好ましい。表面粗さの大きさは、旋削加工における送り、切込み量およびチップ形状の3つの要素に支配されているため、実物大車軸と試験片との仕上加工におけるこれらの3つの条件をそろえることによって、下記(iii)式を満足することが可能となる。なお、本発明においては、表面粗さの値としては、JIS B 0601(2013)で規定される十点平均粗さRzJISを採用するものとする。
0.75≦Rz/Rz≦1.25 ・・・(iii)
但し、上記(iii)式中の各記号の意味は下記のとおりである。
Rz:車軸の平行部の表面粗さ(μm)
Rz:試験片の平行部の表面粗さ(μm)
Moreover, it is preferable that the surface roughness in the parallel part of the test piece satisfies the following formula (iii) in relation to the surface roughness in the parallel part of the axle. As described above, the surface roughness is one of the factors that greatly affect the fatigue limit. It is preferable that the surface roughness in the parallel portion between the test piece and the actual axle is as equal as possible. Since the size of the surface roughness is governed by three factors of feed, depth of cut, and insert shape in turning, by aligning these three conditions in the finish machining of a full-scale axle and test piece, It becomes possible to satisfy the following formula (iii). In the present invention, the 10-point average roughness RzJIS defined by JIS B 0601 (2013) is adopted as the value of the surface roughness.
0.75 ≦ Rz s / Rz r ≦ 1.25 (iii)
However, the meaning of each symbol in the above formula (iii) is as follows.
Rz r : Surface roughness of the parallel part of the axle (μm)
Rz s : surface roughness of the parallel part of the test piece (μm)

さらに、前記試験片の平行部における残留応力が、前記車軸の平行部における残留応力との関係において、下記(iv)式を満足することが好ましい。上述のように、残留応力も表面粗さと同様に、疲労限度に大きく影響を及ぼす要素の一つである。試験片と実際の車軸とで平行部における残留応力の値が大きく異なると疲労限度にも大きな差が生じてしまうおそれがある。残留応力の値は、実物大車軸と試験片との寸法の差に応じて、旋削加工における周速を調整することによって、下記(iv)式を満足することが可能となる。なお、車軸および試験片の平行部における残留応力の値は、X線回折法により求めることが可能である。
0.7≦σ/σ≦1.3 ・・・(iv)
但し、上記(iv)式中の各記号の意味は下記のとおりである。
σ:車軸の平行部の残留応力(MPa)
σ:試験片の平行部の残留応力(MPa)
Furthermore, it is preferable that the residual stress in the parallel part of the test piece satisfies the following formula (iv) in relation to the residual stress in the parallel part of the axle. As described above, the residual stress is one of the factors that greatly affect the fatigue limit, like the surface roughness. If the value of the residual stress in the parallel portion differs greatly between the test piece and the actual axle, there is a possibility that a large difference will occur in the fatigue limit. The value of the residual stress can satisfy the following formula (iv) by adjusting the peripheral speed in the turning process according to the difference in dimensions between the actual large axle and the test piece. In addition, the value of the residual stress in the parallel part of the axle and the test piece can be obtained by an X-ray diffraction method.
0.7 ≦ σ s / σ r ≦ 1.3 (iv)
However, the meaning of each symbol in the above formula (iv) is as follows.
σ r : Residual stress (MPa) in the parallel part of the axle
σ s : Residual stress (MPa) of the parallel part of the test piece

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

<参考実験1>
まず、共振型輪軸疲労試験機(SincoTec社製)を用いて、実物大車軸を用いた疲労試験を行った。共振型輪軸疲労試験機は、車軸の一端部に設けられた車輪の外周部を台座に固定し、車軸の他端部に偏芯マス付きのモーターを取り付けて回転させることで、車軸の車輪とのはめ合い部近傍に回転曲げの負荷を与える装置である。
<Reference experiment 1>
First, a fatigue test using a full-scale axle was performed using a resonance type wheel shaft fatigue tester (manufactured by SincoTec). The resonance type wheel fatigue tester fixes the outer periphery of a wheel provided at one end of an axle to a pedestal, and attaches and rotates a motor with an eccentric mass to the other end of the axle to This is a device that applies a rotational bending load in the vicinity of the fitting portion.

実物大車軸は、表1に示す化学組成を有する中炭素鋼に対して焼入れ焼戻しの熱処理を施すことによって製造されたものである。車軸の寸法は、圧入部の直径Dが191mm、平行部の直径dが166mmであり、段径比D/dが1.15である。また、車輪は圧入部からのオーバーハング量が5mmとなるような状態で固定されている。なお、車軸表面から深さが10mmの位置を中心として引張試験片を切り出し、引張試験を行うことによって機械的性質を調査した。その結果を表2に示す。   The actual large axle is manufactured by subjecting a medium carbon steel having the chemical composition shown in Table 1 to a heat treatment of quenching and tempering. As for the dimensions of the axle, the diameter D of the press-fit portion is 191 mm, the diameter d of the parallel portion is 166 mm, and the step diameter ratio D / d is 1.15. Further, the wheel is fixed in a state where the amount of overhang from the press-fit portion is 5 mm. In addition, the mechanical property was investigated by cutting out a tensile test piece centering on the position whose depth is 10 mm from the axle surface, and performing a tensile test. The results are shown in Table 2.

Figure 2017036992
Figure 2017036992

Figure 2017036992
Figure 2017036992

共振型輪軸疲労試験機を用いた疲労試験は室温大気中で行い、試験周波数を約20Hz、打切り繰り返し数を1×10回とした。疲労試験中は共振条件下で車軸平行部に貼付したひずみゲージの出力が一定となるよう試験周波数が制御される。き裂が発生すると試験周波数が変化するため、き裂発生を検知することができる。そして、き裂発生を検知するとモーターの回転が自動停止する機構となっている。平行部にき裂が発生して自動停止した場合、き裂は車軸断面の1/3程度の領域まで進展していたため、これを「破断」と呼ぶことにする。なお、平行部の試験応力には、フィレットR上に貼付した5連ゲージの出力より得た最大応力を用い、最小破断点と最大未破断点の応力の中間値を平行部の疲労限度とした。 The fatigue test using the resonance type wheel shaft fatigue tester was performed in the atmosphere at room temperature, the test frequency was about 20 Hz, and the number of repetitions was 1 × 10 7 times. During the fatigue test, the test frequency is controlled so that the output of the strain gauge attached to the axle parallel part is constant under the resonance condition. Since the test frequency changes when a crack occurs, it can be detected. And when crack generation is detected, the rotation of the motor is automatically stopped. When a crack occurs in the parallel portion and automatically stops, the crack has propagated to a region of about 1/3 of the axle cross section, and this will be referred to as “rupture”. Note that the maximum stress obtained from the output of the five-gauge gauge affixed on the fillet R was used as the test stress for the parallel portion, and the intermediate value of the stress at the minimum break point and the maximum unbreak point was used as the fatigue limit of the parallel portion. .

次に、試験片を用いた疲労試験を実施した。試験片に用いた素材も車軸と同じ中炭素鋼であり、焼入れ焼戻しの熱処理を施している。そして、試験片表面から深さが10mmの位置を中心として引張試験片を切り出し、引張試験を行うことによって機械的性質を調査した。化学組成および機械的性質の調査結果を表1および2にあわせて示す。表1および2に示されているように、試験片の化学組成および機械的性質は、車軸と同等であることが分かる。   Next, a fatigue test using the test piece was performed. The material used for the test piece is also the same medium carbon steel as the axle, and is subjected to a quenching and tempering heat treatment. And the mechanical property was investigated by cutting out the tensile test piece centering on the position whose depth is 10 mm from the test piece surface, and performing a tensile test. The survey results of chemical composition and mechanical properties are shown in Tables 1 and 2. As shown in Tables 1 and 2, it can be seen that the chemical composition and mechanical properties of the specimens are equivalent to the axles.

図1(a)および(b)に示す形状の軸力試験片および回転曲げ試験片の2種類の試験片を作製し、一般的な試験片の作製方法と同様に、エメリー紙による研磨によって仕上加工を施した。上記の軸力試験片および回転曲げ試験片を用いて、それぞれ軸力疲労試験および回転曲げ疲労試験を実施した。   Two types of test pieces, an axial force test piece and a rotary bending test piece having the shapes shown in FIGS. 1A and 1B, are prepared, and finished by polishing with emery paper in the same manner as a general test piece preparation method. Processed. An axial force fatigue test and a rotational bending fatigue test were performed using the axial force test piece and the rotating bending test piece, respectively.

軸力疲労試験には容量50kNの電気油圧サーボ型疲労試験機を、回転曲げ疲労試験には容量100Nmの小野式回転曲げ疲労試験機を用いた。試験周波数は、軸力疲労試験で10Hz、回転曲げ疲労試験で57Hzとし、いずれも応力比は−1(両振り)、試験環境は室温・大気中、打切り繰返し数は1×10回とした。 An electro-hydraulic servo type fatigue tester with a capacity of 50 kN was used for the axial force fatigue test, and an Ono type rotary bending fatigue tester with a capacity of 100 Nm was used for the rotary bending fatigue test. The test frequency was 10 Hz for the axial force fatigue test and 57 Hz for the rotary bending fatigue test. In all cases, the stress ratio was -1 (both swings), the test environment was at room temperature and in the atmosphere, and the number of truncation repetitions was 1 × 10 7 times. .

図2に疲労試験で得られたS−N線図を示し、その結果から得られた疲労限度を表3に示す。図2および表3においては、実物大車軸の疲労限度に対する比で整理している。ここで、表中の疲労限度は図中の最小破断点とこれより低応力の最大未破断点の応力の中間値(繰返し数1×10回で判定)とした。その結果、実物大車軸の疲労限度に対して、表面を研磨した試験片の疲労限度は、軸力試験片で1.33倍、回転曲げ試験片で1.37倍と高いレベルにあることが分かる。 FIG. 2 shows the SN diagram obtained in the fatigue test, and Table 3 shows the fatigue limit obtained from the results. In FIG. 2 and Table 3, the ratio of the full-scale axle to the fatigue limit is arranged. Here, the fatigue limit in the table was an intermediate value (determined by the number of repetitions of 1 × 10 7 times) between the minimum breaking point in the figure and the maximum unbreaking point having a lower stress. As a result, the fatigue limit of the specimen whose surface was polished was 1.33 times that of the axial force test piece and 1.37 times that of the rotating bending specimen, compared to the fatigue limit of the full-scale axle. I understand.

Figure 2017036992
Figure 2017036992

<実施例1>
続いて、実際の車軸の仕上加工条件を模擬した条件で図1(c)に示す形状の試験片を作製した。すなわち、旋削加工の仕上加工条件における送り、切込み量およびチップ形状については、実際の車軸での条件と同一にした。周速については、表4に示すように種々の条件として、複数の試験片を作製した。なお、試験片の化学組成および機械的性質は、上記の参考実験1で用いた試験片と同一である。
<Example 1>
Then, the test piece of the shape shown in FIG.1 (c) was produced on the conditions which simulated the finishing process conditions of the actual axle. In other words, the feed, depth of cut, and insert shape in the finishing process conditions of the turning process were the same as those in the actual axle. As for the peripheral speed, as shown in Table 4, a plurality of test pieces were produced under various conditions. The chemical composition and mechanical properties of the test piece are the same as those of the test piece used in Reference Experiment 1 above.

表4に仕上加工時の周速比、試験片の平行部における表面粗さ、残留応力および実物大車軸に対する疲労限度比を示す。表4には実物大車軸の結果も合わせて示している。   Table 4 shows the peripheral speed ratio at the time of finishing, the surface roughness at the parallel portion of the test piece, the residual stress, and the fatigue limit ratio with respect to the actual large axle. Table 4 also shows the results for the actual large axle.

Figure 2017036992
Figure 2017036992

表4から分かるように、本発明の規定を全て満足している試験番号1〜3では、表面粗さおよび残留応力が実物大車軸の値と同等となり、その結果、疲労限度についても同等の値となった。なお、試験番号1について疲労試験を行った結果のS−N線図を、参考実験1における試験片(軸力試験片および回転曲げ試験片)との比較のために図2にあわせて示しており、実物大車軸との比較のために図3に示している。図3においても、図2と同様に実物大車軸の疲労限度に対する比で整理している。   As can be seen from Table 4, in Test Nos. 1 to 3 that satisfy all the provisions of the present invention, the surface roughness and residual stress are equivalent to the values of the actual large axle, and as a result, the fatigue limit is also equivalent. It became. The SN diagram of the result of the fatigue test for test number 1 is shown in FIG. 2 for comparison with the test pieces (axial force test piece and rotary bending test piece) in Reference Experiment 1. 3 for comparison with a full-size axle. In FIG. 3 as well, the ratio of the full-scale axle to the fatigue limit is arranged as in FIG.

一方、周速が低い比較例の試験番号4では、表面粗さについては実物大車軸と同等であったが、残留応力が著しく低くなり、その結果、疲労限度が高くなった。また、周速が高い比較例の試験番号5では、残留応力が過大となり、その結果、疲労強度が低くなり、実物大車軸の値を再現することができなかった。   On the other hand, in the test number 4 of the comparative example having a low peripheral speed, the surface roughness was the same as that of the actual large axle, but the residual stress was remarkably reduced, and as a result, the fatigue limit was increased. Further, in the test number 5 of the comparative example having a high peripheral speed, the residual stress was excessive, and as a result, the fatigue strength was low, and the value of the full size axle could not be reproduced.

表5は、実物大車軸と試験番号1の試験片との仕上加工条件を比較した表である。なお、表面粗さを両者で同等の値とするために、送り、チップ形状および最終切込み量は全て同じにしている。一方、周速が異なるにも拘わらず同等の引張応力が得られた理由として、実物大車軸と試験片との直径および回転数の違いが関係していると考えられる。   Table 5 is a table comparing the finishing conditions of the actual large axle and the test piece of test number 1. In order to make the surface roughness equal to both, the feed, the tip shape, and the final cutting depth are all the same. On the other hand, the reason why the equivalent tensile stress was obtained despite the different peripheral speeds is considered to be related to the difference in diameter and rotational speed between the actual large axle and the test piece.

Figure 2017036992
Figure 2017036992

表5に示しているように、実物大車軸の回転数に対して、試験片の回転数は13倍であった。加工時の発熱量は、工具(チップ)の押し付け力が一定であるとすると周速が高いほど大きくなる。一方、車軸および試験片の表面上のある周方向位置で見たとき、発熱源である工具との接触部がその位置に到達する単位時間あたりの頻度は回転数に比例する。よって、車軸および試験片の表面上では周速が大きいほど、そして回転数が大きいほど発熱量が大きくなると考えられる。以上より、試験片では車軸より周速は遅いが回転数が高いため、車軸と同等の残留応力が発生したものと推定される。   As shown in Table 5, the rotational speed of the test piece was 13 times the rotational speed of the actual large axle. If the pressing force of the tool (chip) is constant, the amount of heat generated during processing increases as the peripheral speed increases. On the other hand, when viewed at a certain circumferential position on the surface of the axle and the test piece, the frequency per unit time at which the contact portion with the tool as the heat generation source reaches that position is proportional to the rotation speed. Therefore, it is considered that the amount of heat generation increases as the peripheral speed increases and the rotation speed increases on the surfaces of the axle and the test piece. From the above, it is presumed that the test piece had a lower peripheral speed than the axle but a higher rotational speed, so that the same residual stress as the axle was generated.

なお、直径が小さいほど熱容量が小さくなり、試験片全体の温度が上昇しやすくなる。よって、試験片で実体車軸と同等の周速で仕上加工すると、試験片全体の温度上昇によって焼き戻され、強度低下が生じたり、表層に脱炭が生じたりするおそれがある。上記の試験番号5においても、試験片表面が黒変しており、断面ミクロ観察の結果、一部脱炭が認められた。   Note that the smaller the diameter, the smaller the heat capacity, and the temperature of the entire test piece tends to rise. Therefore, if the test piece is finished at a peripheral speed equivalent to that of the actual axle, the test piece may be tempered due to an increase in temperature of the entire test piece, resulting in a decrease in strength or decarburization on the surface layer. Also in the above test number 5, the surface of the test piece was blackened, and as a result of cross-sectional micro observation, partial decarburization was recognized.

本発明によれば、車軸の平行部の疲労強度の簡易評価試験に用いる試験片を安定的に製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture stably the test piece used for the simple evaluation test of the fatigue strength of the parallel part of an axle shaft.

Claims (5)

金属材料からなる車軸の平行部の疲労強度の簡易評価試験に用いる試験片の製造方法であって、
旋削加工により、前記金属材料に対応する素材に対して、下記(i)式を満足する条件で仕上加工を施し、直径が5〜20mmである平行部を形成する、試験片の製造方法。
0.40≦R/R≦0.80 ・・・(i)
但し、上記(i)式中の各記号の意味は下記のとおりである。
:車軸の平行部における仕上加工時の周速(m/min)
:試験片の平行部における仕上加工時の周速(m/min)
A method of manufacturing a test piece used for a simple evaluation test of fatigue strength of a parallel part of an axle made of a metal material,
A method for producing a test piece, in which a parallel processing having a diameter of 5 to 20 mm is formed by performing a finishing process on a material corresponding to the metal material by a turning process under conditions satisfying the following expression (i).
0.40 ≦ R s / R r ≦ 0.80 (i)
However, the meaning of each symbol in the above formula (i) is as follows.
R r : Peripheral speed (m / min) during finish machining in the parallel part of the axle
R s : Peripheral speed (m / min) at the time of finishing in the parallel part of the test piece
前記仕上加工における加工条件が、さらに、下記(ii)式を満足する、請求項1に記載の試験片の製造方法。
0.03≦D/D≦0.12 ・・・(ii)
但し、上記(ii)式中の各記号の意味は下記のとおりである。
:車軸の平行部の直径(mm)
:試験片の平行部の直径(mm)
The manufacturing method of the test piece of Claim 1 with which the processing conditions in the said finishing process further satisfy | fill the following (ii) Formula.
0.03 ≦ D s / D r ≦ 0.12 (ii)
However, the meaning of each symbol in the above formula (ii) is as follows.
Dr : Diameter of the parallel part of the axle (mm)
D s : Diameter of the parallel part of the test piece (mm)
前記試験片の平行部における表面粗さが、前記車軸の平行部における表面粗さとの関係において、下記(iii)式を満足する、請求項1または請求項2に記載の試験片の製造方法。
0.75≦Rz/Rz≦1.25 ・・・(iii)
但し、上記(iii)式中の各記号の意味は下記のとおりである。
Rz:車軸の平行部の表面粗さ(μm)
Rz:試験片の平行部の表面粗さ(μm)
The method for manufacturing a test piece according to claim 1 or 2, wherein the surface roughness of the parallel part of the test piece satisfies the following formula (iii) in relation to the surface roughness of the parallel part of the axle.
0.75 ≦ Rz s / Rz r ≦ 1.25 (iii)
However, the meaning of each symbol in the above formula (iii) is as follows.
Rz r : Surface roughness of the parallel part of the axle (μm)
Rz s : surface roughness of the parallel part of the test piece (μm)
前記試験片の平行部における残留応力が、前記車軸の平行部における残留応力との関係において、下記(iv)式を満足する、請求項1から請求項3までのいずれかに記載の試験片の製造方法。
0.7≦σ/σ≦1.3 ・・・(iv)
但し、上記(iv)式中の各記号の意味は下記のとおりである。
σ:車軸の平行部の残留応力(MPa)
σ:試験片の平行部の残留応力(MPa)
4. The test piece according to claim 1, wherein the residual stress in the parallel part of the test piece satisfies the following expression (iv) in relation to the residual stress in the parallel part of the axle. 5. Production method.
0.7 ≦ σ s / σ r ≦ 1.3 (iv)
However, the meaning of each symbol in the above formula (iv) is as follows.
σ r : Residual stress (MPa) in the parallel part of the axle
σ s : Residual stress (MPa) of the parallel part of the test piece
前記車軸が、鉄道用車軸である、請求項1から請求項4までのいずれかに記載の試験片の製造方法。   The test piece manufacturing method according to claim 1, wherein the axle is a railway axle.
JP2015158263A 2015-08-10 2015-08-10 Method of manufacturing test piece Active JP6520547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158263A JP6520547B2 (en) 2015-08-10 2015-08-10 Method of manufacturing test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158263A JP6520547B2 (en) 2015-08-10 2015-08-10 Method of manufacturing test piece

Publications (2)

Publication Number Publication Date
JP2017036992A true JP2017036992A (en) 2017-02-16
JP6520547B2 JP6520547B2 (en) 2019-05-29

Family

ID=58047551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158263A Active JP6520547B2 (en) 2015-08-10 2015-08-10 Method of manufacturing test piece

Country Status (1)

Country Link
JP (1) JP6520547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066431A (en) * 2017-10-05 2019-04-25 新日鐵住金株式会社 Jig unit, test device and test method
CN111795878A (en) * 2020-07-13 2020-10-20 中国航发沈阳发动机研究所 Preparation method of test piece for testing mechanical property of material after service

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163946U (en) * 1983-04-20 1984-11-02 三菱重工業株式会社 Test specimen polishing tool
JPS6333639A (en) * 1986-07-29 1988-02-13 Nippon Steel Corp Production of thickness-wire circular tensile test piece
US4875375A (en) * 1989-03-03 1989-10-24 University Of Iowa Research Foundation Axial-torsional extensometer
JPH04355342A (en) * 1991-05-31 1992-12-09 Ishikawajima Harima Heavy Ind Co Ltd Method of making small test piece
JPH0633219A (en) * 1992-07-14 1994-02-08 Sumitomo Metal Ind Ltd Axle high in fatigue strength for railroad and its manufacture
JPH11513938A (en) * 1996-04-09 1999-11-30 リチャード リウ,チュンホーン Parts manufacturing method
JP2009174883A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Fatigue test method in hydrogen gas
JP2011215143A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for assessing shearing fatigue characteristics of high strength metal material for power transmission shaft
JP2015113509A (en) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 Manufacturing method of ferrous metallic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163946U (en) * 1983-04-20 1984-11-02 三菱重工業株式会社 Test specimen polishing tool
JPS6333639A (en) * 1986-07-29 1988-02-13 Nippon Steel Corp Production of thickness-wire circular tensile test piece
US4875375A (en) * 1989-03-03 1989-10-24 University Of Iowa Research Foundation Axial-torsional extensometer
JPH04355342A (en) * 1991-05-31 1992-12-09 Ishikawajima Harima Heavy Ind Co Ltd Method of making small test piece
JPH0633219A (en) * 1992-07-14 1994-02-08 Sumitomo Metal Ind Ltd Axle high in fatigue strength for railroad and its manufacture
JPH11513938A (en) * 1996-04-09 1999-11-30 リチャード リウ,チュンホーン Parts manufacturing method
JP2009174883A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Fatigue test method in hydrogen gas
JP2011215143A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for assessing shearing fatigue characteristics of high strength metal material for power transmission shaft
JP2015113509A (en) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 Manufacturing method of ferrous metallic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066431A (en) * 2017-10-05 2019-04-25 新日鐵住金株式会社 Jig unit, test device and test method
JP6992387B2 (en) 2017-10-05 2022-01-13 日本製鉄株式会社 Jig unit, test equipment and test method
CN111795878A (en) * 2020-07-13 2020-10-20 中国航发沈阳发动机研究所 Preparation method of test piece for testing mechanical property of material after service
CN111795878B (en) * 2020-07-13 2023-07-21 中国航发沈阳发动机研究所 Preparation method of test piece for testing mechanical property of material after service

Also Published As

Publication number Publication date
JP6520547B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
Amanov et al. Ultrasonic fatigue performance of high temperature structural material Inconel 718 alloys at high temperature after UNSM treatment
JP5503608B2 (en) Fatigue fracture evaluation method for cylindrical metal materials
Fragoudakis et al. Fatigue assessment and failure analysis of shot‐peened leaf springs
Suh et al. Very high cycle fatigue characteristics of a chrome‐molybdenum steel treated by ultrasonic nanocrystal surface modification technique
Zou et al. Experimental and numerical study on fretting wear and fatigue of full-scale railway axles
Takahashi et al. Effects of shot peening on the torsional fatigue limit of high‐strength steel containing an artificial surface defect
JP2017036992A (en) Method of producing test piece
Zaides et al. Influence of oscillatory smoothing on the residual stress in cylindrical components
Epremian et al. Investigation of statistical nature of fatigue properties
JP2011106332A (en) Turbine blade and method of processing the same
Bhattacharyya et al. Influence of residual stress and temperature on the cyclic hardening response of M50 high-strength bearing steel subjected to rolling contact fatigue
Sahni et al. Elastic-plastic deformation of a thin rotating solid disk of exponentially varying density
Klein et al. Theoretical and experimental investigations about flank breakage in bevel gears
Ardi et al. Surface roughness, areal topographic measurement, and correlation to LCF behavior in a nickel-based superalloy
Pyun et al. Reducing production loss by prolonging service life of rolling mill shear pin with ultrasonic nanocrystal surface modification technology
Khalilpourazary et al. Fatigue life improvement of copper processed by equal channel angular pressing
Filinov et al. The monitoring of technological stresses by the method of magnetic noise
Connor et al. Failure Analysis of a M7X1 High-Speed Steel Tap
JP2007169684A (en) Pre-treatment for improving axial thickening workability
Da Fonte et al. The effect of steady torsion on fatigue crack growth under rotating bending loading on aluminium alloy 7075-T6
Szabó et al. Approximation of the stiffness of laminate stacks of electric motors subjected to cyclic loads
Seemikeri et al. Improvements in surface integrity and fatigue life of low plasticity burnished surfaces
Batson et al. Fatigue Strength of Carbon-and Alloy-Steel Plates as Used for Laminated Springs
Huang et al. Research on the mechanism of residual stress and its influence on fatigue life in grinding superalloy
MULETA FATIGUE ANALYSIS AND DESIGN MODIFICATION OF VEHICLE DRIVE SHAFT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151