JP2017036360A - Electrolyte film, production method of the same, and solid polymer fuel cell - Google Patents

Electrolyte film, production method of the same, and solid polymer fuel cell Download PDF

Info

Publication number
JP2017036360A
JP2017036360A JP2015156552A JP2015156552A JP2017036360A JP 2017036360 A JP2017036360 A JP 2017036360A JP 2015156552 A JP2015156552 A JP 2015156552A JP 2015156552 A JP2015156552 A JP 2015156552A JP 2017036360 A JP2017036360 A JP 2017036360A
Authority
JP
Japan
Prior art keywords
polymer
electrolyte membrane
group
basic molecule
membrane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015156552A
Other languages
Japanese (ja)
Other versions
JP6567359B2 (en
Inventor
済徳 金
Zumitoku Kin
済徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58047655&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017036360(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015156552A priority Critical patent/JP6567359B2/en
Publication of JP2017036360A publication Critical patent/JP2017036360A/en
Application granted granted Critical
Publication of JP6567359B2 publication Critical patent/JP6567359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte film which exhibits proton conductivity higher than that of perfluorosulfonic acid (PFSA) polymer represented by Nafion, and has high proton conductivity even at low humidification.SOLUTION: By introducing a basic molecule into an acidic polymer such as a PFSA polymer, an excellent conductive path based on an acid-base bond is formed, and subsequently the basic molecule is removed. Thereby, as shown in figure, very large proton conductivity is achieved in a wide temperature range and in a wide relative humidity range compared with a case in which Nafion or the like is used as it is. Also a hydrocarbon-based polymer can be used as the acidic polymer. Also a heterocyclic compound such as 1,2,4-triazole can be used as the basic molecule.SELECTED DRAWING: Figure 1

Description

本発明はPEMFC(proton exchange membrane fuel cell、固体高分子形燃料電池)用電解質膜等に適するパーフルオロスルホン酸ポリマー膜の製造方法、及びこれらの膜を電解質膜として使用したPEMFCに関する。   The present invention relates to a method for producing a perfluorosulfonic acid polymer membrane suitable for an electrolyte membrane for PEMFC (proton exchange membrane fuel cell), and a PEMFC using these membranes as an electrolyte membrane.

水素ガス及び酸素ガスを使用するPEMFCはクリーンなエネルギーシステムであり、高いエネルギー密度を有するとともに、変換効率が高いことから、次世代の電力発生機器として注目を浴びてきた。過去数10年間に亘ってナフィオン(Nafion)(イー アイ デュポン ドゥ ヌムール アンド カンパニーの登録商標)などのパーフルオロスルホン酸(perfluorosulfonic)イオン交換ポリマー(疎水性のパーフルオロカーボン骨格とスルホン酸基を持つパーフルオロ側鎖とから構成されるパーフルオロカーボン材料であり、tetrafluoroethyleneとperfluoro[2-(fluorosulfonylethoxy)propylvinyl ether]との共重合体である。本願ではこの共重合体を「パーフルオロスルホン酸(perfluorosulfonic acid、PFSA)ポリマー」と称する)がPEMFCの電解質として使用されてきた。   PEMFC using hydrogen gas and oxygen gas is a clean energy system, has a high energy density and high conversion efficiency, and has attracted attention as a next-generation power generation device. Perfluorosulfonic acid ion exchange polymers such as Nafion (registered trademark of EI DuPont de Nemours and Company) over the past several decades (perfluorocarbons with a hydrophobic perfluorocarbon skeleton and sulfonic acid groups) It is a perfluorocarbon material composed of side chains and is a copolymer of tetrafluoroethylene and perfluoro [2- (fluorosulfonylethoxy) propylvinyl ether] .In this application, this copolymer is referred to as “perfluorosulfonic acid (PFSA). ))) Has been used as an electrolyte for PEMFC.

これらの膜のプロトン輸送性はそれらの含水量によって強く規定されるが、含水量が少ない環境下でも高プロトン伝導性を有する燃料電池が求められ、広い領域温度で高効率で動作し、また含水量によらない高プロトン伝導度を有する電解質膜の開発研究が行われている。高プロトン伝導度を付与するには、プロトンの濃度を高くする手法やプロトンの移動度を高くする手法がある。一般に、プロトン濃度を高くする手法としては、ポリマーユニットへのスルホン基の導入量を多くする手法があり、ほとんどの研究はこちらに属する(例えば非特許文献1)。一方、プロトンの移動度を高くする手法としてポリマーの伝導パスを制御することがある。しかし、後者の手法による高プロトン伝導膜の開発研究はあまり行われていない。   Although the proton transport properties of these membranes are strongly defined by their water content, there is a need for fuel cells with high proton conductivity even in environments with low water content, which operate at high efficiency over a wide range of temperatures, and also contain them. Research and development of electrolyte membranes having high proton conductivity that does not depend on the amount of water have been conducted. In order to provide high proton conductivity, there are a method of increasing the proton concentration and a method of increasing the proton mobility. In general, as a technique for increasing the proton concentration, there is a technique for increasing the amount of sulfone groups introduced into the polymer unit, and most research belongs to this (for example, Non-Patent Document 1). On the other hand, there is a method of controlling the conduction path of a polymer as a technique for increasing the mobility of protons. However, little research has been done on the development of high proton conducting membranes using the latter method.

ポリマーユニットのスルホン化度を高くし、高含水率条件下で高プロトン伝導度を有するポリマーの報告は多い。しかし、広温領域や低含水量状態でも高プロトン伝導度を示す電解質膜の開発報告例はほとんどない。実用化に当たっては低含水量での性能低下の問題を解決できる、広温度領域や低含水量状態でも高プロトン伝導度が発揮できる高温PEMFC用の電解質膜として使用可能な代替材料を見出すことが求められている。   There have been many reports of polymers with high degree of sulfonation of polymer units and high proton conductivity under high water content conditions. However, there are few reports on the development of electrolyte membranes that exhibit high proton conductivity even in a wide temperature range or in a low water content state. In practical use, it is necessary to find an alternative material that can solve the problem of performance degradation at low water content, and can be used as an electrolyte membrane for high-temperature PEMFC that can exhibit high proton conductivity even in a wide temperature range or low water content state. It has been.

本発明は、上述した従来技術の問題点を解消し、広温度領域や低含水量状態でも高プロトン伝導度が発揮できる高温PEMFC用の電解質膜として使用可能な膜を提供することにある。   An object of the present invention is to provide a membrane that can be used as an electrolyte membrane for a high-temperature PEMFC that can solve the above-described problems of the prior art and can exhibit high proton conductivity even in a wide temperature range or in a low water content state.

本発明の一側面によれば、
塩基性分子を導入し、酸―塩基による伝導パスを形成後、前記塩基性分子を除去した酸性ポリマーを含む、電解質膜が与えられる。
ここで、前記酸性ポリマーはスルホン基を含む酸性ポリマーであってよい。
また、前記酸性ポリマーはパーフルオロスルホン酸ポリマー及びスルホン基を有する炭化水素ポリマーからなる群から選択されてよい。
また、前記パーフルオロスルホン酸ポリマーは以下の化学構造式からなる群から選択されてよい。

また、前記炭化水素ポリマーは以下の化学構造式からなる群から選択されてよい。


あるいは、前記炭化水素ポリマーはポリアリールサルファイド(polyarylsulfide)、ポリアリールエーテル(polyarylether)、ポリアリールスルホン(polyarylsulfone)、ポリアリールケトン(polyarylketone)、及びポリアリールヘキサフルオロイソプロピリデン(polyaryhexafluoroisopropylidene)からなる群から選択される骨格構造を含む重合体または共重合体であってよい。
本発明の他の側面によれば、前記酸性ポリマーに塩基性分子を添加した後、前記塩基性分子を前記酸性ポリマーから除去する、上記いずれかの電解質膜の製造方法が与えられる。
ここで、前記塩基性分子は複素環式化合物またはアミノ基を含む界面活性剤であってよい。
また、前記複素環式分子は1,2,4−トリアゾール、ウンデシルイミダゾール、1,2,3−トリアゾール、ベンズイミダゾール、ピラゾール、及びイミダゾールからなる群から選択されてよい。
前記塩基性分子の除去は、膜状になった、前記塩基性分子を添加した前記酸性ポリマーに水中での加熱、過酸化水素中での保持及び希硫酸中での保持からなる群から選択される少なくとも一の処理を施すことであってよい。
本発明の更に他の側面によれば、上記何れかの電解質膜を使用した固体高分子形燃料電池が与えられる。
According to one aspect of the invention,
After introducing basic molecules and forming an acid-base conduction path, an electrolyte membrane containing an acidic polymer from which the basic molecules have been removed is provided.
Here, the acidic polymer may be an acidic polymer including a sulfone group.
The acidic polymer may be selected from the group consisting of a perfluorosulfonic acid polymer and a hydrocarbon polymer having a sulfone group.
The perfluorosulfonic acid polymer may be selected from the group consisting of the following chemical structural formulas.

The hydrocarbon polymer may be selected from the group consisting of the following chemical structural formulas.


Alternatively, the hydrocarbon polymer is selected from the group consisting of polyarylsulfide, polyarylether, polyarylsulfone, polyarylketone, and polyaryhexafluoroisopropylidene It may be a polymer or copolymer containing a skeleton structure.
According to another aspect of the present invention, there is provided the method for producing an electrolyte membrane according to any one of the above, wherein a basic molecule is added to the acidic polymer, and then the basic molecule is removed from the acidic polymer.
Here, the basic molecule may be a heterocyclic compound or a surfactant containing an amino group.
The heterocyclic molecule may be selected from the group consisting of 1,2,4-triazole, undecylimidazole, 1,2,3-triazole, benzimidazole, pyrazole, and imidazole.
The removal of the basic molecule is selected from the group consisting of heating in water, holding in hydrogen peroxide, and holding in dilute sulfuric acid to the acidic polymer with the basic molecule added in the form of a film. It is also possible to perform at least one process.
According to still another aspect of the present invention, a polymer electrolyte fuel cell using any one of the above electrolyte membranes is provided.

本発明により、プロトン伝導性が高く、しかも低加湿時にもこの特徴を維持する電解質膜を提供することができる。   According to the present invention, it is possible to provide an electrolyte membrane having high proton conductivity and maintaining this characteristic even when the humidity is low.

本発明の実施例のナフィオン改質電解質膜(図中、Modified Nafion)及びアクイヴィオン改質電解質膜(図中、Modified Aquivion)並びに市販のナフィオン212膜(図中、Nafion 212)及びアクイヴィオンE87−05S膜(図中、Aquivion E87-05S)の相対湿度RHに対する伝導度変化を示す図。(a)、(b)、(c)及び(d)はそれぞれセル温度(図中、Tcell)が40℃、80℃、100℃及び120℃の場合を示す。Nafion modified electrolyte membrane (Modified Nafion in the figure) and Aquivion modified electrolyte membrane (Modified Aquivion in the figure), and commercially available Nafion 212 membrane (Nafion 212 in the figure) and Aquivion E87-05S membrane of Examples of the present invention The figure which shows the conductivity change with respect to relative humidity RH of (Aquivion E87-05S in the figure). (A), (b), (c) and (d) show the case where the cell temperature (Tcell in the figure) is 40 ° C., 80 ° C., 100 ° C. and 120 ° C., respectively. セルに使用する電解質膜として本発明のナフィオン改質電解質膜(図中、Modified Nafion)及び市販のナフィオン115膜(図中、Nafion 115)を使用した場合の、セルの電流密度と電圧との関係を示す図。ここで、セルの拡散層にはマイクロポーラス層(microporous layer、MPL)を使用し、白金触媒の使用量は0.3mg/cmとした。(a)セル温度80℃、相対湿度100%の場合、(b)セル温度100℃、相対湿度50%の場合、及び(c)セル温度120℃、相対湿度25%の場合。Relationship between cell current density and voltage when Nafion modified electrolyte membrane of the present invention (Modified Nafion in the figure) and commercially available Nafion 115 membrane (Nafion 115 in the figure) are used as the electrolyte membrane used in the cell FIG. Here, a microporous layer (MPL) was used for the diffusion layer of the cell, and the amount of platinum catalyst used was 0.3 mg / cm 2 . (A) When the cell temperature is 80 ° C. and the relative humidity is 100%, (b) When the cell temperature is 100 ° C. and the relative humidity is 50%, and (c) When the cell temperature is 120 ° C. and the relative humidity is 25%.

フッ素系ポリマーであるNafionやAquivion電解質は高プロトン伝導度や高安定性を有している。しかし、低加湿条件下では何れの電解質も電導度の低下が大きい。本発明ではこれらの問題を解決するために、酸性ポリマーに塩基性分子を導入することによって酸−塩基結合による良好なプロトン伝導性を有する伝導パスを形成させてから塩基性分子を除去する。このようにして作製された伝導パスによりプロトン伝導性が向上し、低温あるいは低加湿下でも高プロトン伝導度を発揮する電解質膜を提供することができる。塩基性分子は良好な伝導パスを形成するために使用するが、この伝導パスの形成後に除去するのは、この処理によってプロトン伝導度が向上するからである。また、塩基性分子が残留すると、電解質膜として使用する際に問題を引き起こす可能性もある。ここで、上で説明したように、PFSAポリマーはスルホン基を有するので、酸性ポリマーの一種として使用できる。なお、プロトン酸度は一般にスルホン基が一番強いが、ポリマーを酸性にする基をスルホン基以外とすることもできる。   Nafion and Aquivion electrolytes, which are fluoropolymers, have high proton conductivity and high stability. However, the conductivity decreases greatly in any electrolyte under low humidification conditions. In the present invention, in order to solve these problems, basic molecules are removed after introducing a basic molecule into an acidic polymer to form a conduction path having good proton conductivity due to an acid-base bond. Proton conductivity is improved by the conduction path thus produced, and an electrolyte membrane that exhibits high proton conductivity even at low temperatures or under low humidification can be provided. Basic molecules are used to form a good conduction path, but are removed after the formation of this conduction path because this treatment improves proton conductivity. In addition, if basic molecules remain, there is a possibility that problems may occur when used as an electrolyte membrane. Here, as explained above, since the PFSA polymer has a sulfone group, it can be used as a kind of acidic polymer. The proton acidity is generally the strongest in the sulfone group, but the group that makes the polymer acidic may be other than the sulfone group.

これに限定するわけではないが、PFSAポリマーの例を以下の化学式に示す。   Without being limited thereto, examples of PFSA polymers are shown in the following chemical formula.

ここで、各PFSAの構造式の上にその製造業者名を示す。「Dupont」と表記された化合物がナフィオンであり、また「Solvay」と表記された化合物が実施例でナフィオンと共に使用されるAquivion(アクイヴィオン)(Solvayの登録商標)である。   Here, the manufacturer name is shown on the structural formula of each PFSA. The compound labeled “Dupont” is Nafion and the compound labeled “Solvay” is Aquivion (a registered trademark of Solvay) used with Nafion in the examples.

なお、上で述べたフッ素系ポリマーだけではなく、炭化水素系ポリマーでもスルホン酸基のような酸性の基を有するものであれば、同じように低加湿下で高プロトン伝導性を示すようにできる。また、塩基性分子としては1,2,4−トリアゾール、ウンデシルイミダゾール、1,2,3−トリアゾール、ベンズイミダゾール、ピラゾール、イミダゾール等の複素環式化合物やアミノ基を含む界面活性剤を使用できる。界面活性剤を使用した場合には、これが伝導パス形成時の一種の型として機能する。更に、シリカ系酸化物材料、特にそのナノ粒子も使用可能である。   In addition, not only the fluorine-based polymer described above but also a hydrocarbon-based polymer having an acidic group such as a sulfonic acid group can similarly exhibit high proton conductivity under low humidification. . Further, as basic molecules, heterocyclic compounds such as 1,2,4-triazole, undecylimidazole, 1,2,3-triazole, benzimidazole, pyrazole, imidazole, and surfactants containing amino groups can be used. . When a surfactant is used, this functions as a kind of mold for forming a conductive path. Furthermore, silica-based oxide materials, particularly nanoparticles thereof, can also be used.

なお、従来よりこの種の電解質膜の強度を強くするために電解質を補強材(ポーラスフィルム)へ充填(pore filling)が行なわれていた。本発明の電解質も従来から行なわれているポア充填をそのまま適用することができるのは言うまでもない。   Conventionally, in order to increase the strength of this type of electrolyte membrane, the electrolyte is filled into a reinforcing material (porous film) (pore filling). It goes without saying that the conventional pore filling can be applied to the electrolyte of the present invention as it is.

低加湿下でも高プロトン伝導性を示すようにできる炭化水素系ポリマーとしては例えば、ポリアリールサルファイド(polyarylsulfide)、ポリアリールエーテル(polyarylether)、ポリアリールスルホン(polyarylsulfone)、ポリアリールケトン(polyarylketone)、ポリアリールヘキサフルオロイソプロピリデン(polyaryhexafluoroisopropylidene)の骨格構造を含む重合体や共重合体を好適に使用することができる。本発明で使用できる炭化水素系ポリマーまたはそのためのモノマーの例の化学式を以下に示す。なお、以下の化学構造式で酸性の基を有していないものがあるが、その場合にはスルホン基等の酸性の基で修飾して酸性ポリマーを作製するための骨格構造を表している。   Examples of hydrocarbon polymers that can exhibit high proton conductivity even under low humidification include polyarylsulfide, polyarylether, polyarylsulfone, polyarylketone, polyarylketone, and polyarylketone. A polymer or copolymer containing a skeleton structure of arylhexafluoroisopropylidene can be preferably used. Chemical formulas of examples of hydrocarbon-based polymers that can be used in the present invention or monomers therefor are shown below. In addition, some of the following chemical structural formulas do not have an acidic group. In that case, the skeleton structure for producing an acidic polymer by modifying with an acidic group such as a sulfone group is shown.

他の炭化水素系ポリマーを以下に示す。   Other hydrocarbon polymers are shown below.

ここで最後に示した化学構造式で表される化合物は非特許文献2に開示されているブロックコポリマーである。   The compound represented by the chemical structural formula shown last is a block copolymer disclosed in Non-Patent Document 2.

以下に2つのPFSAポリマー(ナフィオン、アクイヴィオン)を使用した場合を例にとって本発明の実施例を説明するが、使用できる酸性ポリマーはこれに限定されるものではないことに注意されたい。   In the following, examples of the present invention will be described with reference to the case where two PFSA polymers (Nafion, Aquivion) are used, but it should be noted that the acidic polymer that can be used is not limited thereto.

[ナフィオン系改質電解質膜の製造]
ナフィオンポリマーに5% 1,2,4−トリアゾールを投入し、更に溶媒であるN−メチル−2−ピロリドン (N-methylpyrrolidone、NMP) を投入して撹拌することにより、NMPに溶解させた。この溶解液を容器に入れ、80℃で24時間保持し、その後130℃で24時間保持することにより膜を得た。得られた膜を沸騰水で2時間煮沸した後、1M H中に80℃で2時間、更に1M HSO中に80℃で2時間保持し、沸騰水で2時間煮沸を行った。当初の膜作製後の上記処理により、その膜中から塩基性分子(ここでは1,2,4−トリアゾール)を除去することで、ナフィオン系改質電解質膜を完成させた。
[Manufacture of Nafion-based modified electrolyte membrane]
5% 1,2,4-triazole was added to Nafion polymer, and N-methylpyrrolidone (NMP) as a solvent was further added and stirred to dissolve in NMP. The solution was put in a container and kept at 80 ° C. for 24 hours, and then kept at 130 ° C. for 24 hours to obtain a membrane. The obtained film was boiled with boiling water for 2 hours, then kept in 1 MH 2 O 2 at 80 ° C. for 2 hours, further kept in 1 MH 2 SO 4 at 80 ° C. for 2 hours, and boiled in boiling water for 2 hours. went. The Nafion-based modified electrolyte membrane was completed by removing basic molecules (here, 1,2,4-triazole) from the membrane by the above treatment after the initial membrane preparation.

[アクイヴィオン系改質電解質膜の製造]
アクイヴィオンポリマーに5% 1,2,4−トリアゾールを投入し、更に溶媒であるNMPを投入して攪拌することにより、NMPに溶解させた。この溶解液を容器に入れ、80℃で24時間保持し、その後150℃で24時間保持することにより膜を得た。得られた膜を沸騰水で2時間煮沸した後、1M H中に80℃で2時間保持し、1M HSO中に80℃で2時間保持し、沸騰水で2時間煮沸を行うことによって、上と同じく当初の膜中から塩基性分子を除去することで、アクイヴィオン改質電解質膜を完成させた。
[Manufacture of Aquivion modified electrolyte membrane]
Aquivion polymer was charged with 5% 1,2,4-triazole, and NMP as a solvent was further added and stirred to be dissolved in NMP. This solution was put in a container and kept at 80 ° C. for 24 hours, and then kept at 150 ° C. for 24 hours to obtain a membrane. The obtained film was boiled in boiling water for 2 hours, then kept in 1 MH 2 O 2 at 80 ° C. for 2 hours, kept in 1 MH 2 SO 4 at 80 ° C. for 2 hours, and boiled in boiling water for 2 hours. As in the above, the basic molecule was removed from the original membrane to complete the Aquivion modified electrolyte membrane.

[ナフィオン系及びアクイヴィオン系改質電解質膜の特性の測定]
上述のようにして作製した両改質電解質膜のプロトン伝導度特性を、市販のナフィオン212膜(イー アイ デュポン ドゥ ヌムール アンド カンパニー製)及びアクイヴィオンE87−05S膜(Solvay製)とともに測定した。その結果を図1に示す。
[Measurement of properties of Nafion and Aquivion modified electrolyte membranes]
The proton conductivity characteristics of both modified electrolyte membranes prepared as described above were measured together with a commercially available Nafion 212 membrane (Ei Dupont de Nemours and Company) and Aquivion E87-05S membrane (Solvay). The result is shown in FIG.

更に、両改質電解質膜を使用した単セルの電流密度−電圧特性を、市販のナフィオン115膜とともに測定した。その結果を図2に示す。これ以外に、図2においては測定された電流密度−電圧特性から電流密度−電力密度特性を計算してプロットしてある。なお、図中、これらの膜名の右側のかっこ内に示された数値は当該膜の厚さを示す。   Furthermore, the current density-voltage characteristics of a single cell using both modified electrolyte membranes were measured together with a commercially available Nafion 115 membrane. The result is shown in FIG. In addition to this, in FIG. 2, the current density-power density characteristic is calculated from the measured current density-voltage characteristic and plotted. In the figure, the numerical value shown in parentheses on the right side of these film names indicates the thickness of the film.

図1に示された結果からわかるように、電解質膜の材料としてナフィオン、アクイヴィオンの何れを使用した場合でも、塩基性分子(ここでは1,2,4−トリアゾール)を一旦導入してから除去した改質電解質膜の方が、対応する未改質電解質膜に比べて、広い相対湿度範囲(20%〜90%)及び広い温度範囲(40℃〜120℃)の両方ではるかに高い伝導度を示し、特に相対湿度の高い領域では0.3S/cmという非常に高い値を達成できた。この高い伝導度によってセルの内部抵抗が減少するため、図2に示すように、改質電解質膜の方が大電流を取り出すことができ、従って、改質電解質膜を使用したセルの方が1.5倍から2倍を超える電力を取り出すことができることが確認された。図2からわかるように、この傾向は特に高温・低湿度の場合に顕著であった。   As can be seen from the results shown in FIG. 1, even when Nafion or Aquivion was used as the material of the electrolyte membrane, basic molecules (here, 1,2,4-triazole) were once introduced and removed. The modified electrolyte membrane has a much higher conductivity over both a wide relative humidity range (20% to 90%) and a wide temperature range (40 ° C to 120 ° C) than the corresponding unmodified electrolyte membrane. In particular, a very high value of 0.3 S / cm could be achieved in a region where the relative humidity was high. Since the internal resistance of the cell is reduced by this high conductivity, the modified electrolyte membrane can extract a larger current as shown in FIG. 2, and therefore the cell using the modified electrolyte membrane is 1 It was confirmed that electric power exceeding 5 to 2 times can be taken out. As can be seen from FIG. 2, this tendency was particularly remarkable at high temperatures and low humidity.

ナフィオンに代表されるPFSAポリマーが高いプロトン伝導度を示す理由は、これらのポリマーが有するスルホン基によってポリマー中により良いプロトン伝導パスが形成されるためであると信じられている。ただし、このプロトン伝導パスが実際にどのような態様で存在しているかを直接的に観測することは極めて困難であり、未だに実現できていない。   It is believed that the reason why PFSA polymers represented by Nafion exhibit high proton conductivity is that a better proton conduction path is formed in the polymer by the sulfone group of these polymers. However, it is extremely difficult to directly observe how the proton conduction path actually exists, and it has not been realized yet.

従って、本発明の改質電解質膜が上述したようなプロトン伝導度の顕著な改善を示したのは、先に述べたように、酸−塩基結合による伝導パスの形成、更にそこからの塩基の除去によってよりよく形成された伝導パスがプロトン伝導性に寄与したと考えるべきである。なお、スルホン基を有する炭化水素ポリマーによりPFSAポリマーを代替する研究が進められているが、このようなスルホン基を有する炭化水素ポリマーにおいてもPFSAポリマーと同様なプロトン伝導パスが形成されると考えることでそのプロトン伝導性が十分に説明できる。このことから見て、この種の炭化水素ポリマーにおけるスルホン基の機能がPFSAポリマーにおけるそれと同じであることは確実であると考えるべきである。従って、本発明においてPFSAポリマーの代わりに、既に例を列挙したスルホン基を有する炭化水素ポリマーを使用することも可能である。   Therefore, as described above, the modified electrolyte membrane of the present invention showed a remarkable improvement in proton conductivity as described above, as described above. It should be considered that the conduction path better formed by removal contributed to proton conductivity. In addition, research to replace the PFSA polymer with a hydrocarbon polymer having a sulfone group is underway, but it is considered that a proton conduction path similar to that of the PFSA polymer is formed in such a hydrocarbon polymer having a sulfone group. The proton conductivity can be sufficiently explained. In view of this, it should be considered certain that the function of the sulfone group in this type of hydrocarbon polymer is the same as that in the PFSA polymer. Therefore, in the present invention, it is also possible to use a hydrocarbon polymer having a sulfone group already listed as an example instead of the PFSA polymer.

以上説明したように、本発明によればプロトン伝導性が高く、しかも低加湿時にもこの特徴を維持する電解質膜を提供することができるので、高分子電解質形燃料電池の開発に大いに貢献することが期待される。   As described above, according to the present invention, it is possible to provide an electrolyte membrane that has high proton conductivity and maintains this characteristic even when the humidity is low, so that it greatly contributes to the development of a polymer electrolyte fuel cell. There is expected.

R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy & Environmental Science, 2008,1, 101-119.R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy & Environmental Science, 2008,1, 101-119. Angew. Chem. Int. Ed. 2010, 49, 317-320.Angew. Chem. Int. Ed. 2010, 49, 317-320.

Claims (11)

塩基性分子を導入し、酸―塩基による伝導パスを形成後、前記塩基性分子を除去した酸性ポリマーを含む、電解質膜。   An electrolyte membrane comprising an acidic polymer in which a basic molecule is introduced, an acid-base conduction path is formed, and then the basic molecule is removed. 前記酸性ポリマーはスルホン基を含む酸性ポリマーである、請求項1に記載の電解質膜。   The electrolyte membrane according to claim 1, wherein the acidic polymer is an acidic polymer containing a sulfone group. 前記酸性ポリマーはパーフルオロスルホン酸ポリマー及びスルホン基を有する炭化水素ポリマーからなる群から選択される、請求項2に記載の電解質膜。   The electrolyte membrane according to claim 2, wherein the acidic polymer is selected from the group consisting of a perfluorosulfonic acid polymer and a hydrocarbon polymer having a sulfone group. 前記パーフルオロスルホン酸ポリマーは以下の化学構造式からなる群から選択される、請求項3に記載の電解質膜。
The electrolyte membrane according to claim 3, wherein the perfluorosulfonic acid polymer is selected from the group consisting of the following chemical structural formulas.
前記炭化水素ポリマーは以下の化学構造式からなる群から選択される、請求項3に記載の電解質膜。

The electrolyte membrane according to claim 3, wherein the hydrocarbon polymer is selected from the group consisting of the following chemical structural formulas.

前記炭化水素ポリマーはポリアリールサルファイド(polyarylsulfide)、ポリアリールエーテル(polyarylether)、ポリアリールスルホン(polyarylsulfone)、ポリアリールケトン(polyarylketone)、及びポリアリールヘキサフルオロイソプロピリデン(polyaryhexafluoroisopropylidene)からなる群から選択される骨格構造を含む重合体または共重合体である、請求項3に記載の電解質膜。   The hydrocarbon polymer is selected from the group consisting of polyarylsulfide, polyarylether, polyarylsulfone, polyarylketone, and polyaryhexafluoroisopropylidene. The electrolyte membrane according to claim 3, which is a polymer or copolymer containing a skeleton structure. 前記酸性ポリマーに塩基性分子を添加した後、前記塩基性分子を前記酸性ポリマーから除去する、請求項1から6のいずれかの電解質膜の製造方法。   The method for producing an electrolyte membrane according to claim 1, wherein after adding a basic molecule to the acidic polymer, the basic molecule is removed from the acidic polymer. 前記塩基性分子は複素環式化合物またはアミノ基を含む界面活性剤である、請求項7に記載の電解質膜製造方法。   The electrolyte membrane manufacturing method according to claim 7, wherein the basic molecule is a heterocyclic compound or a surfactant containing an amino group. 前記複素環式分子は1,2,4−トリアゾール、ウンデシルイミダゾール、1,2,3−トリアゾール、ベンズイミダゾール、ピラゾール、及びイミダゾールからなる群から選択される、請求項8に記載の電解質膜製造方法。   9. The electrolyte membrane manufacture according to claim 8, wherein the heterocyclic molecule is selected from the group consisting of 1,2,4-triazole, undecylimidazole, 1,2,3-triazole, benzimidazole, pyrazole, and imidazole. Method. 前記塩基性分子の除去は、膜状になった、前記塩基性分子を添加した前記酸性ポリマーに水中での加熱、過酸化水素中での保持及び希硫酸中での保持からなる群から選択される少なくとも一の処理を施すことである、請求項7から9の何れかに記載の電解質膜の製造方法。   The removal of the basic molecule is selected from the group consisting of heating in water, holding in hydrogen peroxide, and holding in dilute sulfuric acid to the acidic polymer with the basic molecule added in the form of a film. The method for producing an electrolyte membrane according to claim 7, wherein at least one treatment is performed. 請求項1から6の何れかに記載の電解質膜を使用した固体高分子形燃料電池。   A solid polymer fuel cell using the electrolyte membrane according to claim 1.
JP2015156552A 2015-08-07 2015-08-07 Manufacturing method of electrolyte membrane Active JP6567359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156552A JP6567359B2 (en) 2015-08-07 2015-08-07 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156552A JP6567359B2 (en) 2015-08-07 2015-08-07 Manufacturing method of electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2017036360A true JP2017036360A (en) 2017-02-16
JP6567359B2 JP6567359B2 (en) 2019-08-28

Family

ID=58047655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156552A Active JP6567359B2 (en) 2015-08-07 2015-08-07 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP6567359B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252845A (en) * 2005-03-09 2006-09-21 Bridgestone Corp Solid polyelectrolyte film and its manufacturing method
JP2009238754A (en) * 2009-05-11 2009-10-15 Hitachi Ltd Solid polymer electrolyte and its membrane, membrane/electrode junction using the membrane, and fuel cell
JP2013256641A (en) * 2012-05-16 2013-12-26 National Institute For Materials Science Perfluorosulfonic acid polymer-azole-acid blend membrane and manufacturing method therefor, perfluorosulfonic acid polymer-azole blend membrane, manufacturing method therefor, and proton exchange membrane fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252845A (en) * 2005-03-09 2006-09-21 Bridgestone Corp Solid polyelectrolyte film and its manufacturing method
JP2009238754A (en) * 2009-05-11 2009-10-15 Hitachi Ltd Solid polymer electrolyte and its membrane, membrane/electrode junction using the membrane, and fuel cell
JP2013256641A (en) * 2012-05-16 2013-12-26 National Institute For Materials Science Perfluorosulfonic acid polymer-azole-acid blend membrane and manufacturing method therefor, perfluorosulfonic acid polymer-azole blend membrane, manufacturing method therefor, and proton exchange membrane fuel cell

Also Published As

Publication number Publication date
JP6567359B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
Iulianelli et al. Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review
Devanathan Recent developments in proton exchange membranes for fuel cells
Scott et al. Intermediate temperature proton‐conducting membrane electrolytes for fuel cells
Wycisk et al. New developments in proton conducting membranes for fuel cells
JP5498643B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
WO2012046777A1 (en) Fluorine-containing polymer electrolyte membrane
Meenakshi et al. Chitosan‐polyvinyl alcohol‐sulfonated polyethersulfone mixed‐matrix membranes as methanol‐barrier electrolytes for DMFCs
JP4435746B2 (en) Fuel cell electrolyte, membrane electrode assembly, and method for producing fuel cell electrolyte
EP3229302B1 (en) Polymer electrolyte membrane
JP5489945B2 (en) Fluorine polymer electrolyte membrane
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
Moorthy et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells-A versatile review
ul Imaan et al. In-situ preparation of PSSA functionalized ZWP/sulfonated PVDF composite electrolyte as proton exchange membrane for DMFC applications
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP5189394B2 (en) Polymer electrolyte membrane
JP5230646B2 (en) How to operate a fuel cell under dry conditions
JP2007503707A (en) Fullerene electrolytes for fuel cells
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
JP2007031718A5 (en)
EP3228613B1 (en) Halogenated compound, polymer comprising same, and polymer electrolyte membrane comprising same
Ying et al. Perspectives on Membrane Development for High Temperature Proton Exchange Membrane Fuel Cells
JP6567359B2 (en) Manufacturing method of electrolyte membrane
JP2008103262A (en) Ion conductor, electrolyte using the same, and energy device
JP2015153573A (en) Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP2014110232A (en) Fluorine-based polymer electrolyte film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 6567359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250